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Historial development

There are many situations in which soil scientists wish to predict the
conditions of the soil in a spatial sense. They can sample only a very small
fraction of the soil mantle, yet in principle they may wish to know what the
soil is like everywhere. And they may wish to estimate the average values of
soil properties in blocks of land very mach bigger than any individual sample.
Since the soil is not the same everywhere these aims can be achieved only by
some form of local estimation. Traditionally this has been attempted by first
classifying the soil and then predicting separately for each class from data
for that class. The approach has undoubtedly had its successes, but those suc-
cesses have dépended on surveyors’ flair and their eye for country. If the
relation between physiography and soil is weak or obscured by the vegetation
or land management then the soil pattern is likely to be revealed only by in-
tensive routine and tedious sampling. It may also happen that the visible
features on which the soil is classified do not relate to the properties that
cne wishes to predict, and so one must resort again to intensive sampling in
order to interpolate with confidence. This is increasingly the case as the
scale becomes larger.

Viewed statistically the traditional procedure whereby the soil mantle
of a region is subdivided by boundaries into distinct classes is fairly sim-
ple. For each class there is a mean value for that class with more or less
variation about it. Formally we can write this as a model

zij = pu+ aj + Eij /1/
in which Zij is the value of the scil property Z at any place i in class j'l
p is the general mean of the property, aj is the difference between . and
the mean of the jth class, “j and eij
which may be assumed to have some particular distribution, If we have n.
sample data for class j the average of those data will estimate the mean

is a random term with variance a?,

51%



value of the class "lj’ with a variance a?/nj, the sgquare root of which is

the familiar standard error. We can in principle improve that estimate to
any extent we like simply by increasing n;, the size of the sample. If we
wish to predict the value at some unsampled point our best estimate will al-

SO ke by though now with a variance n'? + a?/n.. The errcr is now deter—

il
mined very largely by the within-class variance, q?. However much we in-—

crease the sample we cannot diminish the estimation variance to less than
g § And so the quality of the classification sets a ceiling on precision

of prediction, and this is the statistical reason for surveyors’ devoting
so much attention to the quality of their soil classifications.

This model defined by equation [1/ formed the basis of our attempts at
quantitative prediction of soil properties in the 1960s [/WEBSTER and BECKETT,
1968, 1970; BECKETT and WEBSTER, 197la/ and of our interpretation of other
people’s assessment of =oil classifications /BECKETT and WEBSTER, 1971b/.
The latter showed that soil classifications varied from the moderately suc-
cessful to the useless. Nevertheless, there seemed always to be large resid-
ual within-class variances, and from our experience we know that this vari-
ance was not entirely haphazard. The soil did not vary in a wholly random
way ncr did it change abruptlyv at boundaries as implied by the model. In-
stead there seemed to be a structure within classes and more or less gradual
change across many boundaries. Classification did not, indeed could not, rec—
ognize these, and predictions made no use of this specifically local know—
ledge. We were not making the most of information that was there for the
asking. A further disadvantage of classifications is that they tend to be
made once and for all. The approach is very inflexible. Only two kinds of
estimate are possible: one for the whole class and the other for individual
points; and the estimates within a class are the same in both cases.

It was against this background that I sought a new approach to the prob-
lem, and I began by adapting the methods of time series analysis [WEBSTER,
1973; WEBSTER and CUANALO, 1975/. In one dimension, at least, time and space
are analogous. ROZLOVSKII and SOROKHINA 1976/ did similarly. However, the
theory of spatial statistics and its application to estimation were already
well advanced in the mining industry, mainly as the result of work by
MATHERON /1965, 1971/ and his colleagues in France, and it was at this
point that I realised that many of our problems in soil survey were soluble
in principle. It is this theory, the Theory of Regionalized Variables, that
has enabled us to improve the basis of spatial prediction in soil science
and to achieve the advances that we have made in geostatistics recently.
2and so I devote the remainder of this paper to the theory and its applica-
tion.

The Statistical nature of soil variation

As above, to make progress we had to take a new view of the distribu-
tion of soil over the land. To accord with our intuition this must embrace
both continuity and randomess. And so we replace the model of equation [1/
with another, changing the notation scmewhat. A soil property, Z, is assumed
to be distributed continuously in space and to take values z(x;) at places
Xi» 1 = 1, 2, ..., =, where x denotes the spatial coordinates in one, two
or three dimensions according to context. The variation in 7 may have two
components, one deterministic and the other stochastic, and we can represent
these by the following model:
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N
z{x}) = ¢ £ (x) + ¢ (x) /2]
k=0 ak K

The first term on the right-hand side of the equation represents the deter-
ministic component in which fj.(x) are known functions of x and the g, are
unknown coefficients. The quantity ¢ (®) is a random term that is defined
below. The deterministic component may be global; i.e. it may be a general
trend over the whole recion being studied, or it may be local, in which
case it is often referred to as drift.

In practice it is usually found that the first term can be ignored be-
cause the stochastic component dominates at the scale of the investigation,
and in only very few studies of soil /e.g. WEBSTER and BURGESS, 1980/ have
investigators identified any significant drift. As a result a regionalized
s0il property can be regarded as a realization of a random process, and equa-
tion /2] simplifies to

z(x) = by e({x) /3]

where B, is the mean value of 7, E[z(x)]. The random term has the follow-
ing properties. Its expectation is zero:

Ele(x)] =0 [4f

and its variance is such that for any two places x and x + h separated by
the lag vector h, which has both distance and direction,

var{ e(x) - ¢(x + h)] = E({ €(x) - & (x + h)}2] = 2v(h) /57

In other words, the variance of 7 is structured in a way that depends on the
separation of any two sites and not on their absolute positions. With the
mean constant equations [4) and 5/ are equivalent to

Eiz(x) - z(x + h)] =0 /6/
and

var(z(x) - z(x + h)] = E[{z(x) - z(x + h)}2) = 2v(h). 7]

The assurmption of equations /6/ and /7/ constitute MATHERON's Intrinsic
Hypothesis, which forms the basis of much practical geostatistics. The guan-
tity v is known as the semi~variance: it is half the variance of the diffe-
rence between the values at the two sites. As equation [7/ shows, its value
depends on h, and the function that relates the two is the semi-variogram,
increasingly known as just the variogram.

The semi-variance is related to the spatial covariance and autocorrela-
tion. At lag h the spatial covariance, C(h), is defined by

c(h) = B[ {z(x) - p} {z(x + h) - p}] = E[z(x) z(x + h)] - u2 18/

vwhere u is the expectation of Z, Elz(x)].
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The semi-variance is thus

v(h) = c(o) - c(h) 191

where C(0) is the covariance at zero lag, or the a priori variance of the
process. Since the autocorrelation is

¢(h) = % 110/
we have

v(h) = c(o){l - ¢(h))} 111/

These relations require stronger assumptions than those of the intrinsic
hypothesis. In particular there must be a finite a priori variance, and the
variable must be stationary in hoth the mean and variance. Tt often happens
that this cannot be assumed, and in these circumstances the semi-variance
and the variogram exist, whereas the covariance and autocorrelation do not.
For this reason the variogram is the more useful tool for describing soil
variation quantitatively, and it is the one that we use now in most geosta—
tistical applications.

Estimating and modelling the variograms

The variogram of a soil property in same region is useful only if we
can estimate it and find a function to describe it. The first ie best
achieved by sarpling at regular intervals along transects or on a grid.
Often, however, data which have perhaps keen recorded for other purposes
are irreqularly scattered. In any event the general formila

m(h) X 5

¥(h) = 5 I (ale) - 2l 4 ) 12

where m(h) is the mumbers of pairs of points separated by the vector h,
provides the usual éstimate of y(h). By varying h in both distance and di-
rection we obtain the ordered set which constitutes the sample variogram.
The plotted points in Figures 1, 3 and 7 are examples.

This stage is fairly straichtforward. The variance needs to be reason-
ably stable, as it does in many other forms of statistical analysis, and
data that are strongly skewed should ke transformed to approximate normal-
ity. The sample must also be large enocugh for the true semi-variance to be
estimated with adequate confidence. For transect surveys there should be at
least 100 measurements and the variogram computed to no more than about 1/5
of the run. In two dimensions some 400 measurements are likely to be needed
to estimate anisotropy adequately. An investigator also needs same prior
knowledge of the spatial scale to ensure that sampling is sufficiently in-
tensive. This will be clearer when we examine a few variograms.

Choosing functions to descrike variograms and fitting them to the
sample estimates can be more problematic. The function must represent the
salient features of the variogram and must also be such as to return only
non-negative variables. Technically it mast be conditional negative semi-
definite /CNSD/.

Most variograms have fairly simple forms, at least over the lags to
which they are usually estimated. They may show same or all of the follow-
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ing features. There is an increasing part that rises with increasing lag dis-
tance from near zero. This may continue indenfinitely. Alternmatively it may
flatten more or less abruptly or rise to an asymptote. The semi-variance at
zero lag is itself zero, but many variograms appear to approach some larger
value on the ordinate as the lag distance approaches zero. This value is
known as the "nugget variance". The term comes from gold mining and repre-
sents the chance occurrence of finding a gold nugget in a drill core. The
variogram may be more camplex, but if we can find models for the simple forms
we can combine them to describe the more complex ones.

As it happens, the simple functions available to describe variograms
can be divided into two main families depending on whether the variogram is
bounded or not.

Bounded models. — These models are cften known as transitive ones. The
underlying idea is that they derive from overlapping zones of influence -
transition zones. Their general form in one dimension or where variation is
isotropic is:

v(h) = ¢ {£(h}} /13/
where ¢ is the a priori variance and f(h) is a function of the lag distance

that increases fram O to 1, and h is now a scalar in distance only.
The two most commenly fitted functions in this group are the spherical model:

f(h)=%%—%[gl3 for h < a
£(h) =1 for h > a [14/
and the exponential model:
£(h) = l-exp(~h/r) 115/

In these equations a and r are distance parameters that define the ex—
tent of the spatial dependence. The spherical model reaches its maximam or
5ill at h = a, the range of the model. The exponential function approaches
its 5111 asymptotically and has no definite range, though for practical pur-
poses the effective range is often taken as a’ = 3r. The variograms illus-
trated in Figs. 1, 3 and 7-are all examples of these.

Other models belonging to this family include the bounded linear, cir-
cular and penta-spherical functions, all defined in McBRATNEY and WEBSTER
/1986/. The first two must be used with caution: the first is valid in only
one dimension and the second in only one and two dimensions.

Unbounded models. — These are models without an a priori variance: the
variance increases indefinitely with increasing lag distance or at least ap-
pears to on the evidence available. A general eguation for the isotropic
variogram of this type is the power function:

y(h) = bh® /16/

The theoretical origin of this model lies in the traces produced by Brownian
Motion. Unconstrained Brownian motion produces traces in which the changes
produced in successive steps are uncorrelated and whose variograms are linear
as a consequence; i.e. o = 1 and the gradient is b. If the successive changes
are positively correlated then a < 1; contrarily if the changes are nega-
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tively correlated then o < 1. The value of o must, however, be between O
and 2 with the limits excluded.

The above functicns all pass through the origin. Yet we have noted that
many sample variograms seem to approach the origin at some limiting value
greater than zero, the nugget variance. Similarly, although in defining the
pover function above we excluded ones with a = O we have to recognize that
some variograms appear to be flat; i.e, wholly nugget. These are defined for-
mally using a Dirac function, §(h), which takes the value of 1 when h = 0
and zero otherwise. The pure nugget variogram ig then defined formally as

v(h) = ¢ {1 -8(h)), 7

where c, is the variance as h - O.

We can then combine this with any of the above models of spatial depen-—
dence to describe variograms that appear to have nugget variances. Figures
3 and 7 show actual examples of such combinations.

Another combination that has proved valuable both in mining and soil
science [MCBRATNEY et al., 1982; WEBSTER and OLIVER, 1989a/ is the double
spherical model. Fig. 1 is an example. Tt is the variogram of available co-
balt in the topsoil of south—east Scotland. The two spherical components
have distinctly different ranges. The larger at 15 km is almost certainly
due to major changes in geclogy: the different Paloeozoic formations contain
different amounts of copper. The component with the shorter range of about
3 km prokably represents the farm-to—farm variation.

Fitting modals

With experience we may choose a model from the appearance of the sample
variogram, or less often because we kelieve that a particular kind of model
is appropriate. This model nust then be fitted to the sample estimates. Tech-
niques for fitting can range from full maximum likelihood estimation je.q.
KITANIDIS, 1983; MARDIA and MARSHALL, 1984/, which is generally regarded as
the most reliable, to fitting by eye, which can scarcely be considered quan-
titative and has little to comrend it. Unfortunately the maximm likelihood
method is very demanding computaticnally and feasible only for fairly small
samples, say up to 150. Surveys can produce many more data than that and
must if anisotropic variation is to be described adequately.

A sound compromise is to fit models by weighted least squares estima-
tion. The method is based on the assumption that the differences between
the observed semi-variances and the fitted values are normally distributed
and independent of cne another. These assumptions are unlikely to hold exact-
ly, but that might not matter. More seriously, the variance of § depend on
both the magnitude of the true values and on the mumbers of pairs of com-
parisons, m(h) in equation /12/, used to estimate them. The former are un-
xmown. The latter, however, are and they at least should be used to provide
weights in the minimization. Further refinements are feasible, and some of
these are described and discussed by CRESSIE /1985 | and McBRATNEY and WEB-
STER [1986/.

Most of the models are non-linear in their parameters, and so a good
computer program is needed for the fitting. At Rothamsted I use MLP, the
Maximum Likelihood Program [ROSS, 1980/, for this purpose. The same algo-
rithms are now embodied in the more widely available Genstat 5 /Genstat 5
Committee, 1987/ which was also written at Rothamsted.

We should realize that we generally choose a model for a variogram be—
cause it appears to fit well. The model does not necessarily represent a
generating process. Nevertheless, if the model fits well it will serve empir-
ically for estimation by kriging and designing sampling schemes, which T
deal with next.

524



Estimation

The principal application of geostatistics is estimation. The theory was
developed to meet the needs of mining, and it is now applied in many parts
of the world to estimate the concentrations of metal in ore bodies and re-
coverable reserves. The technicques for doing it go under the general name
of kriging, after D. G. KRIGE, a mining engineer, who developed same of them
empirically for the South African goldfields [see KRIGE, 1966/.

My colleagues and I at Rothamsted and several other scientists have
used the same techniques for estimating soil properties. Interestingly, here
it is the desire to map distributions that has been the driving force. Soil
scientists have found that simple kriging serves well to estimate properties
of the soil. T give below the relevant equations, and then I present exam—
ples of these to mapping.

In simple kriging a kriged estimate is no more than a weighted average
of the data. Suppose we wish to estimate the average value of a soil proper-
ty Z in a block of land B. Denote this by Z(B). Then

n
2(B) = Ay 2(x) 118/
i=1
where Agr i=1, 2, ..., n are weights.

We want Z(B) to be an unbiased estimate, and so the weights are chosen
s0 that

n

EoAyp =1 119/
i=1

The estimation variance, E[{z(B) - %(B)}z}, is given by

n n n
a k =2 T A "_f‘(xirB) =~ El J_El ]\i?\jY(Xilxj)_ ?(BFB)J /20!

where ~v(x ,x ) is the semi-variance between sampling points i and j,

T(x ,B) is the average semi-variance between the ith sampling point and the
blodk B, and Y¥(B) is the average semi-variance of Z within the block, i.e.
the within-block variance. This variance is minimized when

n
iil Ay Y(xi,xj) + ¥ = kai,B) for all j, j21/

and this introduces the Lagrange nmltiplier, v , needed for the minimization.
We thus have a set of n linear equations in n unknowns, the weights, plus an
additional equation for ¥, and these are solved to find the weights. The
estimation variance itself is chtained as a by-product as

2 n

B = 151 Ay Y(xB) + ¥ - ¥(B,B). 122/
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Simple kriging is thus a true statistical procedure for estimation. It gives
the Best Linear Unbiased Estimate, and is sometimes known as BIUE therefore.

In soil survey we may wish to estimate the value of soil properties at
points no bigger than the supports of the sample. In these cases B becomes
a point, say x,; the term Y(B,B) disappears from equation /20 and ¥(x,,B)
becomes the simple semi-variance between X, and xO,Y(xi,xo).

If there is any appreciable spatial dépendence in thé data then the
kriging weights for sampling points nearest to the block being estimated are
large, and usually only the nearest 16 to 20 carry sufficient weight to be
of consequence. All others are negligible. Thus kriging is local, and this
seems intuitively desirable. It also has important consequences for camput-—
ing because it means that the matrices which have to be inverted to solve
equations [21/ are never large.

Examples

Our appreciation of soil properties as regionalized variables satisfy-
ing the intrinsic hypothesis is recent. It is a product of the last ten or
twelve years. So too is our experience of modelling the spatial variation.
But already there are mmerous examples in which the theory and technigues
have been applied to estimate and interpolate soil properties optimally and
to map them from sample data. I end this paper with three examples from our
own recent experience at Rothamsted. The examples derive fram my research
with A. B. McBRATNEY, R. G. McIAREN, R. B. SPEIRS and I. M. BURAYMAH to
wham I am grateful.

Cobalt in the soil of south east Scotland

Deficiences of copper and cobalt can cause serious disorders, poor
growth and even death in cattle and sheep. In south east Scotland cobalt
deficiency is widespread, while locally there is deficiency of copper also.
To advise farmers and alert them to the risks of these deficiencies the East
of Scotland College of Agriculture samples the soil in the region and ana-
lyses it for these elements. Practice is to take a bulked sample of 20 ran-
domly located cores of topsoil /O to 20 cm/ from individual fields of 5 to
10 ha, and to measure the copper and cobalt extracted with mild reagents to
give a value of the elements available to the plants and hence to the graz-
ing livestock. More than 3500 samples of soil had been analysed when
McBRATNEY et al. /1982/ analysed the accumilated data statigtically. Here I
present results just for cobalt in the eastern part of the region.

Table 1
Sample statistics of extractable cobalt in the topsoil of south
east Scotland

Index Untransformed Transformed tlo
g /kg log,, mg/kg
Mean 0.271 -0.613
Standard deviation 0.134 0.196
Skewness 1.990 0.126
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Table 1 summarizes the statistics for available cobalt. The original
measurements were strongly skewed and appeared to have a lognormal distribu-
tion /McBRATNEY et al., 1982/. The data were therefore transformed to their
common logarithms to stabilize the variances. The variogram is shown in
Fig. 1 with the sample values plotted as points. It is isotropic. The solid
line is that of a double spherical model with nugget:

( 3 3

_ gh__;[p_” [3h_1[h]]
Y(h) '*CO'('Cl [2 al > al +C2 "2“a—2 E ? fOrO(hsal

3

_ 3h 1 |h
v(h) =cg+cy tcy [Ea—z_f la—z} ] for 0; <hs a, 123/
wr(h)=c0+cl+c2 forh>a2
y(0) =0

The coefficients are given in Fig. 1. As mentioned above the two
spherical components with ranges of 3.4 km and 16.4 km represent two dis-
tinct scurces of variation. The latter arises almost certainly from the
major geological changes in the region. The former seems to represent farm—
to-farm variation.

Using the variogram and the data the cobalt content of the soil was
estimated as its common logarithm for 1 kn? blocks at 0.5 km intervals on a
square gric. Tsarithms /'contours"/ were then threaded through the result-
ing figure field to produce the map, Fig. 2. A value of 0.25 mg Co/kg soil
is regarded as critical for animal nutrition. A smaller cQnoentration is
likely to cause Jdefficiency in livestock, and so on the map the part of the
region where the estimated value is less than loglo 0.25 = -0.602 is stip-

y
1.0

0.5
c 0.583
cy) 0212
c(zy 0.205 ‘
ag) 3.41lkm
a 16.38km
(2)
0 ] ; :
Lag/m 20 30
Fig. 1

Variogram of loglo cobalt in the topsoil of south east Scotland



pled. WEBSTER and OLIVER /1989a,b/ have extended this study to map the prob-
ability that the true concentration is less than the critical value by dis-
junctive kriging [MATHERCN, 1976/.

Fig. 2
Map of the amount of available cobalt in the topsoil of south east Scotland.
Isarithms are in logjn (mg Co/kg soil). The stippled areas are judged defi-
cient (logig Co < =0.602)

Potassium content of the soil at Broom’s Barn

Broom’s Barn Famm near Bury St Edminds in Suffolk /eastern England/
covers same 77 ha of arable land. It was bought for research on sucar beet
in 1959, and in the following year the fertility of its soil was assessed
by sanple survey. The topsoil was sampled by bulking 25 cores to 23 am at
random within 16 m x 16 m sguares at 40 m intervals on a square grid. The
s0il in each square was then analysed for pH, available phosphorus, and ex-—
changeable potassium, magnesium and sodium. Maps were then made to show the
variation in these properties /DRAYCOTT et al., 1976/. Since then we have
analysed the data geostatistically and mapped the distribution of pH, phos-
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phorus and potassium [WEBSTER and McBRATNEY, 1987/ and the conditional prob-
abilities that the true /but unknown/ values of these properties are less
than the critical thresholds for good arable cropping [WEBSTER and OLIVER,
1989a,b/. Here I present the results of simple kriging of potassium.

Table 2
Sample statistics of exchangeable potassium in the topsoil at
Broom's Barn

Index Untransformed Transformed to
mg /kg log,, mg/kg
Mean 26.30 1.39
Variance 81.89 0.01811
Skewness 2.02 0.36

The sample statistics are given in Table 2. The original measurements
were strongly skewed, and they were therefore transformed to their common
logarithms to stabilize the variances. Fig. 3 shows the variogram of the
transformed values with a spherical model fitted. The variation is isotropic.

As for cobalt, the variogram and data were used to estimate the values
of logjg potassium on a fine grid. Fig. 4 is an isarithmic map of the 50 m x
% 50 m block estimates. The results can also be represented as perspective
diagrams. Fig. 5A is such a diajram of the same block estimates, and it
shows a fairly smoothly varying surface. Fig. 5B is a perspective diagram of
the punctual estimates. Striking in this diagram are the spikes at the samp-
ling points. These illustrate the nugget effect. In punctual kriging the
value estimated at a sampling point is the measured value there. In equation

2 4
0.0201
0.015F
0.010fF
- 8. h _1/h\3
7 (h)=0.0051+0.0147}3 7= 2(428) §0<h £428
0.008 Y (h)=0.0061+0.0147 b »428
Y(0)=0
L 1 1 1 1
0 100 200 300 400 500
Lag/m
Fig. 3

Variogram of loglO exchangeable potassium at Broom’s Barn
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Fig. 4
Isarithmic map of loglo exchangeable potassium in the topsoil at Broom's
Barn

/18/ the weight, A, there is 1 and all the other welghts are zero. and in
equation [22/ the estimation variance is zero. Elsewhere the estimates are
local averages. In the presence of a nugget variance, Cy = 0.0051 in this
case, there is a discontinuity in the interpolated surface, and Fig. 5B is
an example of this.

As described above and formalized in equation [22] we cbtain estimates
of the kriging variance, and we can display these too. Figure 6A and 6B
show these as perspective diagrams for block and punctual kriging, respec—
tively. Notice how in gemeral the estimation variances for punctual krig-
ing are much larger than those for block kriging, though they are zero at the
sampling points. The variances imcrease sharply beyond the limits of samp-
ling aromd the margin of the farm. They are also large in the north west
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Fig. 5
Perspective diagrams of block estimates fA/ and punctual estimates [B/ of
available potassium at Broom’s Barn

Fig. &
Perspective diagrams of the estimation variances of block estimates A/ and
punctual estimates [B/ of available potassium at Broom's Barn
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where the farm buildings and laboratories are, and along the access road
fram the east. And there is a small "hump" in the surface in the south west
where data were missing from the grid.

Electrical conductivity in the soil of the Gezira

The third exanple is from a survey of the experimental plots of land
cn the Research Station at Wad Medani in the Sudan Gezira. The Station was
established in 1926 when extensive irrigation of the Gezira began using wa-
ter from the Blue Nile. The standard practice on the cultivated land was to
grow cotton, the principal cash crop, in rotation with wheat and vegetables.
The climate is very dry, and all crops are irrigated by flooding.

As part of the experimental program two plots, each of 0.4 ha, were
set aside in 1926 to receive constant treatment indefinitely. The cne was
left in its natural condition, unirrigated and growing sparse grass. The
other was managed as if it were a standard commercial field growing cotton
in rotation with wheat and vegetables. It was irrigated from the southern
end and drained to the north. And it was cultivated lengthwise on all occa-
sims.

) In 1985 I. M. BURAYMAH surveyed the two plots to find out what effect
the irrigation and cropping had had on the so0il and in particular if the
scil had become more salty or alkaline. He sampled it on a grid at 6.25 m
intervals but with one quarter of the nodes cmitted. The soil was sampled
to 30 am using a hucket auger of 8 cm diameter, taking five randamly chosen
cores within a circle of 1 m radius around each node. The soil was then ana-
lysed for pH, electrical conductivity and the cations Na, Mg, and Ca, from
which the sodium adsorption ratio [SAR/ was calculated.

BURAYMAH and WEBSTER /1989/ report the results, and here I present
those for just electrical conductivity. Table 3 summarizes the sample sta-
tistics.

As with the cobalt and potassium concentrations in the two previous
examples the data were strongly skewed and seemed to be lognormally distri-
buted. We therefore worked on the values transformed to their cammon loga-
rithms. The variograms for the two plots are shown in Fig. 7. Fig. 7a for
the natural plot is virtually flat: it is almost wholly nugget variance at
the working scale. The variogram for the irrigated plots is more interest—
ing. It shows distinct spatial dependence, and it is also anisotropic:
there is more variation across the plot than along it. This is shown by the
different symbols for the semi-variances estimated for the different direc-
tions, as I have described elsewhere [WEBSTER, 1985/. In this instance the
anisotropy has been treated as defined by the functiom 0:

1
Q(6) = (a2 cos? (8 -®) + B2 sin? (g - @)} /24/

where § denotes direction, ¢ is the direction in which the distance parameter
A is greatest and B is the distance parameter in the perpendicular direction.
The best fitting model was exponential, defined by

Y(h, 8) = co + c1l1l - exp {-h/n(8)}] 125/
The values of the coefficients are as follows:

4 0.00654 ¢ A = 150.0 m; 8 = 1.30 radians.
c] = 0.00542; B = 60.5m;

o
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Table 3
Sample statistics of electrical conductivity in the Sudan Cezira

Index Electrical Transformed
conductivity to logy, JEC/
/EC/
mS+cm
Natural plot Mean 0.524 -0.284
Variance 0.005230 0.003209
Skewness 1.47 065
Iri;gamd Mean 0.501 -0.312
P Variance 0.01764 0.009934
Skewness 2.10 1.03
} 0.006"
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Fig. 7

Variograms of the electrical conductivity of the soil in the Sudan Gezira
in the natural state /a/ and after same 60 years of irrigaticn and cultiva-
ticn /b/
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Using this model a surface was estimated by kriging over blocks of
10 m x 10 m. The result is shown in Fig. 8B. For comparison the surface of
conductivity for the natural plot is also shown, Fig. 8a. As expected from
its variogram the conductivity surface of the natural plots is almost flat.
In contrast that of the irrigated plot shows distinct waves parallel to the
long dimension of the plot and to the Blue Nile some 4 km away. This is the
anistropy prominent in the variogram., The surface also has mumerous small
ridges almost perpendicular to the larger waves. These are not immediately
evident in the variogram and were not modelled. Nevertheless the source of
variaticn is evident in the estimates in direction O. The semi~variance in-
Creases to a maximum at about 20 m, decreases and then increases again:
there is repetition.

Fig. 8
Perspective diagrams of the electrical conductivity of the soil in the
Sudan Gezira, in the natural state /Al, and after some 60 years of irriga-—
tion and cultivation /B/
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As Table 3 shows irrigation, here with fairly pure water from the Blue
Nile, has not increased the salinity of this soil. Tt has, however, in-
creased the variability. This is still not serious in this instance , but on
more salty land concentrating salts locally by irrigation could ke very ser-
ious. Periodic geostatistical analysis of soil under irrigation could show
whether variation was increasing, wam managers of trends and identify those
regions where preventative action is needed before it becomes too late and
requires more expensive remedial treatwents.

Conclusions

The last ten years have seen encrmous progress in the adaptation and
application of advanced statistical theory to practical problems in the
earth sciences. A few of us in soil science have been able to play our part.
We have learned much about the statistical nature of soil variation, and now
with our current understanding and the right tools we should be able to
tackle many more problems in estimaticn, spatial prediction and mapping.
There is a rich future for anyone prepared to get to grips with the subject.

Summary

Spatial prediction of soil conditions relied for many years cn using
traditional methods of classification to stratify regions according to soil
type and then applying classical statistical technique for estimation with-
in the strata. It has had its successes and failings. The recent development
of geostatistics has provided new tools for spatial prediction. In many in-
stances soil properties are best regarded as realizations of random proces-
ses. Their spatial variation can be described adequately by the variocgram
assuming the intrinisic hypothesis of stationarity. Values of a soil property
at unvisited sites or over larger blocks of land can be estimated without
bias and with minimm variance by kriging.

The paper summarizes the underlying theory, presents the computational
steps, and illustrates the procedures with results from surveys of cobalt in
the soil of south east Scotland, with exchangeable potassium over an arable
farm in England and the effect of irrigation on the electrical conductivity
of the soil in the Sudan Gezira.
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