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ABSTRACT

Many equi-replicate designs, whether ordinary block designs or multi-stratum
designs, have a structure which is left unchanged by a group G of permutations of the
treatments. This group G is often used in the construction of the design. A survey of
the properties of such designs is given, and useful necessary conditions on G are
found for such a design to be generally balanced. If G is Abelian, then the necessary
conditions are satisfied: in this case explicit formulas for the efficiency factors are
given.

1. INTRODUCTION

The importance and utility of the property of general balance in a
designed experiment have been explicated by Houtman and Speed [41] and
Nelder [62]. Tt is thus not surprising that most designs in common use, and
many that arise from the large number of constructions available in the
literature, are generally balanced. In this paper we shall show that certain
symmetry conditions on the design imply general balance and that, therefore,
certain methods of construction will always produce generally balanced
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184 R. A. BAILEY AND C. A. ROWLEY

designs. As Houtman and Speed showed, if a design has only a single
partition of the plots into blocks, then the design will be generally balanced
no matter what allocation of treatments is used. Although our methods shed
further light on such designs, we are principally concerned with more
complex designs, in particular those with a Tjur block structure.

Section 2 introduces general balance, and Section 3 describes, with
examples, the important role which groups of symmetries play in many
designs. This role is developed further in Section 4, whilst Section 5 uses the
theory of group characters to give an important and useful criterion on the
group of symmetries which guarantees that the design is generally balanced.
The particular case of generalized cyclic designs (in the sense of [49]), in
which the group is commutative (Abelian), is treated (independently of
Section 5) in the final two sections of the paper. For this case we give
explicit, practical formulas for the efficiency factors and projection matrices
needed to analyse designs of this type. Concepts from permutation-group
theory, such as transitivity, which are used without comment can be found in
the first chapter of [81], whilst those from linear algebra are in [37].

2. GENERAL BALANCE

We start with a definition (from [41]) of general balance which is so
general that it does not even require a block structure. Let £ be a set of plots.
Let @, _,, be an orthogonal direct-sum decomposition of the real vector
space RY, and let S, denote the matrix of the orthogonal projection onto &
Let (y,),ecq be random variables and suppose that Cov(y)=%_ . A£,S..
where the S, are as above and are known, but the £, may be unknown (see
{8, 61]). The subspaces %, are called strata, and the matrices S, are called
stratum projection matrices.

Let T be a set of treatments. Suppose that treatments are allocated to
plots according to a map ¢: 2 — T whose dual is represented by the @ X T
design matrix X: thus the (w, ) entry of X is defined by

X(w,t)={1 if ¢(w)=t,

0 otherwise.

Suppose further that there is a positive integer r (called the replication) such
that |¢~Y(t)j=r forall ¢t in T.

In this paper a design is a quadruple (2,{.%, :a€ A}, T, ¢) with the
properties listed above. In particular, all the designs are equireplicate.
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For each a, denote by L, the matrix X'S X, which is the information
matrix for the stratum %, Suppose that 69 ; W, is a direct-sum decomposi-
tion of RT (not necessarily orthogonal). In [62 63] Nelder defined a design
to be generally balanced with respect to EB a1 ¥ if, for all @ in A and all
j in J, the space W, is a subspace of an elgenspace of L, He called the
eigenvalue A o of 7 1L on W; the efficiency factor for W in stratum %,
and showed that 0 <A,;<land X,c 4A,;=1forall j in ]

A design is generally balanced if there exists a decomposition of RT with
respect to which it is generally balanced; in this case there is a unique
coarsest decomposition of RT with respect to which it is generally balanced.
The subspaces in this decomposition are all the nonzero intersections of the
form N, . ,E, where E_ is an eigenspace of L, This decomposition is
coarsest in the sense that any other decomposition with respect to which the
design is generally balanced may be obtained by further decomposing one or
more of the spaces therein.

More simply, a design is generally balanced if and only if there is a basis
of RT whose elements are eigenvectors of every information matrix. We
therefore make the following definition.

DEFINITION. A set of real matrices is cospectral if there is a basis of RT
whose elements are eigenvectors of every matrix in the set.

Thus a design is generally balanced if and only if its set of information
matrices is cospectral. However, it is difficult to test, in general, whether a set
of matrices is cospectral; so in Theorem 2.2 we give a useful and simple test
for general balance. We first need the following definition and lemma, which
proves the theorem.

DerINITION. A set of matrices is commutative if every pair M, N of
matrices in the set commutes (that is, MN = NM).

LemMa 2.1. A set of diagonalizable matrices is commutative if and only
if it is cospectral.

Proof. See the proof of Theorem IV.7 of [44] or the results in Sections
1.49-50 of [82]. |

THEOREM 2.2. A design is generally balanced if and only if the set of
information matrices (L), 5 is commutative.
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In an ordinary block design there is a single nontrivial partition, 8, of
into equal-sized blocks; the two trivial partitions are e, whose blocks are the
singleton plots, and p, whose only block is the whole of Q. There are three
strata: %, consists of constant vectors; & and %, are the interblock and
intrablock strata, respectively. Thus A = {u, 8, ¢}, and the three information
matrices can be calculated as follows:

=1
L,=m™7],

L= k1C-m™Y,
L, =r-k7C,

where n = |T|, k is the size of each block, I is the n X n identity matrix, J is
the n X n all-1s matrix, and C is the concurrence matrix. Because C has
constant row and column sums, these three information matrices commute.
Thus all ordinary block designs are generally balanced; this proof is essen-
tially the same as that given in Section 5.4 of [41], where the authors go on to
point out that this result gives no help whatever in finding the relevant
decomposition of RT. However, for the class of designs we consider in this
paper, we shall give this decomposition in a very explicit form.

Moreover, our results apply to a richer class of structures, those defined
by Tjur [80, Section 4]. A Tjur block structure is a semilattice I' of partitions
of Q (called block systems on ), with various conditions on I'. Each
partition y is into equal-sized blocks of size k.; and I' contains the trivial
partition ¢ (singletons). (Most Tjur designs in practical use also include the
other trivial partition p.) The remaining conditions imposed by Tjur on I are
designed to ensure that I" indexes a particular orthogonal direct-sum decom-
position @YGF(?; of R%: the construction of its projection matrices is given
in the next paragraph.

Each partition y defines a blocks-averaging matrix B, on £ XQ: the
(w,8) entry of B, is k' if w and @ are in the same y-block; otherwise it is
zero. Denote by C, the matrix k X’B, X, which is the concurrence matrix for
the block system y. We define a map z: ' XTI — {0,1} by

(v, 0) = { 1 if a nests y (that is, each y-block is contained in an a-block),
’ 0 otherwise.

Then the matrix Z=[z(y, «)] has an inverse M (see [3, Chapter IV] and
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[77]), and

B, = Y z(v,a)S,, (1)

ael

S= L m(a,v)B,, (2)

yel

where M = [m(¥, a)]. (The function m is the Mébius function of the semilat-
tice I'.)

We call a design (2,{%, :ac€ A}, T,¢) a Tjur design if A can be
identified with the semilattice T' of a Tjur block structure in such a way that
the stratum projection matrices (S,), < a are precisely those given by Equa-
tion (2). We shall abuse our notation slightly and write such a Tjur design as
(2,T,T,¢). The class of Tjur designs includes most of the equireplicate
designs in practical use or in the literature. This is because the class of Tjur
block structures includes many, possibly all, of the classes of block structures
studied by the other authors: for example, the simple orthogonal block
structures [61], the poset block structures or distributive block structures [77,
9, 11, 186}, the orthogonal block structures [77, 14], the complete balanced
response structures [79, 55], and the group block structures [12, 14].

The above linear relationships, (1) and (2), between the matrices (B,), <r
and (8,), < give us the following characterization of general balance for Tjur
designs.

Tueorem 2.3. A Tjur design is generally balanced if and only if the set
of concurrence matrices (C,), < r is commutative.

Proof. Since k; 1Cy= X'B,X and L,=X'S X, Equations (1) and (2)
give (C,), er as linear combinations of (L,),er and vice versa. Thus the
concurrence matrices (C,), cr commute with each other if and only if the
information matrices (L), cp do so. Hence Theorem 2.3 is a corollary of
Theorem 2.2 |

3. TREATMENT PERMUTATIONS

In Section 5 we shall use our characterization of general balance in terms
of the concurrence matrices of a design (Theorem 2.3) to prove that certain
symmetry conditions on these matrices are sufficient to ensure general
balance. These symmetry conditions are best expressed in terms of a group of
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permutations of the set G of treatments; they make precise the idea that
these permutations of the treatments do not alter the design (that is, the
relationship between ¢ and the block structure) in any way which would
affect the analysis of the design. We shall further show that this general
balance is with respect to a decomposition of RT which is determined by the
group of permutations, and give explicit formulas for the projectors onto the
subspaces in this decomposition.

In practice, this group of permutations is often a group of symmetries of
the inherent structure of the set T of treatments. In this case it is likely that
the design is generally balanced with respect to a decomposition of R” related
to this structure; this can greatly aid interpretation of the analysis (see [68,
Chapter 4]). The structure of T may rise naturally from the problem under
investigation (see Example 5.3 below) or may be an artifice introduced to aid
the construction of the design as, for example, the use of affine geometries in
the construction of classical factorial designs (see [20, 21]). Such aids to
construction are the motivation for much of the material in subsequent
sections of this paper.

Let G be a group of permutations of the set T" of treatments. Following
[81], we write the image of a treatment ¢ under a permutation g as ¢%. It is
then necessary to write the elements of R, which are functions from T to R,
on the right of their arguments (thus, for ¢ in T and v in R7, we write tv for
the “t entry in the vector v”). Each permutation g of T defines a linear
transformation P, of RT by

t(ng)=(t5_l)v for ¢t in T and v in R, (3)

and the map g — F, is a faithful linear representation of G on R (see [73,
Section 1.2]), which is called the permutation representation of G on RT. The
matrix of P, with respect to the natural basis of R? is the permutation matrix
for g: the (¢, u) entry of this matrix is equal to 1 if ¢ = u and to 0 otherwise.

There should be no confusion if this matrix is also denoted P,

Derivition.  Let G be a group of permutations of a set T of size n. An
n X n matrix centralizes G if it commutes with the matrices P, for all
g in G. The set of all (real) matrices which centralize G is called the (real)
centralizer algebra of G. (See [81, Section 28]: although Wielandt calls this
algebra the centralizer ring.)

Note that a matrix M commutes with a permutation matrix P, if and only
if applying the permutation g to both the rows and columns of M does not
change M.
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For an ordinary block design, with I'= {u, 8, ¢} as in Section 2, Sinha
[76] defined a design {2, I', T, ¢) to be simple if there is a transitive group G
of permutations of T such that L, centralizes G. Since I and J both
centralize every permutation group G, the design is simple if and only if
there is a transitive group G which is centralized by all three concurrence
matrices, CF, CB’ and C. We want to extend Sinha’s definition to Tjur
designs, and make it specific to the group G.

DerFinttion. A Tjur design (2, T, T, ¢) is G-central if G is a group of
permutations of T such that the concurrence matrices (C,), < all central-
ize G.

Thus a design is G-central if and only if each of its concurrence matrices
is unchanged by each of the permutations in G, applied to both rows and
columns.

Any condition on the permutation group G which ensures that the set of
concurrence matrices of a G-central design is cospectral will ensure that all
such designs are generally balanced. The concurrence matrices of a G-central
design are real symmetric matrices in the centralizer algebra of G. We
therefore make the following definition.

DeFINITION. A permutation group G is cospectral if the set of real
symietric matrices in the centralizer algebra of G is cospectral.

Conditions for a group to be cospectral have been studied in many
contexts, including other aspects of the design of experiments: see, for
example, [60, 38, 45, 28, 26, 29]. One of the major purposes of this paper is to
describe a property of the permutation group G which is equivalent to its
being cospectral and which is particularly useful in that it leads to formulas
for the projectors onto, and dimensions of, the relevant subspaces: these
formulas can be used to specify an appropriate analysis of variance and
calculate its efficiency factors, given sufficient information about the
group G. This property is in fact a condition on the permutation representa-
tion of the group on R7, and its description involves the theory of group
characters: we shall therefore leave this until Section 5.

We conclude this section with some examples of G-central designs chosen
to illustrate certain more straightforward properties of the permutation
group G (including that of being cospectral) and their relationship to the
general balance of the design.

ExampLE 3.1. Identify T with the symmetric group S;, and let G also
be equal to S;, with the right regular action on T: that is, t& =tg. We may
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TABLE 1
DESIGN FOR EXAMPLE 3.1
[1 al 1 b)
(a a®] |a a?b]
[a® 1] [a® ab]
[b ab] [b 1]
[a%b b] [é*b al
(ab a’b] [ab a’]

Ry

write the elements of T as 1, a, a® b, ab, a®h, where a®=b%=1 and
ba = a®b. The design has two block systems, a and 8, with six a-blocks of
size 4, each of which contains two B-blocks of size 2: thus (]| = 24. Treat-
ments are allocated to plots as in Table 1 (where square brackets enclose the
B-blocks and rows are a-blocks). With the elements of T in the order given
above, the concurrence matrices are as follows:

O R NDNDD
O NN DN
DO O OO
MO O O N
DN O
DO RO
— -

HQ

I
OO N ==
OO
(=1 i
— = O O N
—pa DO O
B =D DO

i I

These both centralize G (this may be checked directly; it also follows from
Theorem 4.2). However, these two concurrence matrices do not commute
(check the (a,1) entries), so, by Theorem 2.3, the design is not generally
balanced (nor is G cospectral). Since G is both transitive and regular in this
case, this example shows that neither transitivity nor even regularity of G
suffices to ensure general balance of G-central designs.

By contrast, if G is transitive and Abelian (as is the case in many
important applications of these methods) then, as we show in Section 7, G is
cospectral and so general balance is assured. (Note that, for an Abelian
permutation group, transitivity is equivalent to regularity.)

Examprg 3.2. If, in Example 3.1, the a-blocks (or the B8-blocks) alone are
considered, then the design is an ordinary block design and is thus necessarily
generally balanced even though G is not cospectral. This emphasizes the fact
that the cospectral condition is sufficient for general balance but is not
equivalent to it.
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ExampLE 3.3 (See [76, Section 2.3(b)(i)]). Suppose that a design is
G-central and that the group G is 2-transitive on T. Then every matrix in the
centralizer algebra is a linear combination of the matrices I and J, so G is
cospectral and the design is generally balanced. This is a rather trivial sort of
general balance, for the design is now totally balanced (in the usual sense) for
each block system separately: in other words, each nonzero information
matrix has eigenspaces W, and W', where W, consists of the constant
vectors in RT. See [70, 72, 75, 78, 1] for some examples, and general
constructions, of designs which are balanced incomplete block designs
(BIBDs) with respect to each block system separately.

4. GROUP-GENERATED BLOCKS

The most common way in which G-central designs arise, in practice, is a
direct consequence of a frequently used method of constructing designs: an
allocation of treatments to one, or more, initial blocks is first made, and then
the allocations to further blocks are calculated by applying each permutation
in G to each initial block. This method was used to construct the design in
Example 3.1, starting from the two initial S-blocks {1,a} and {1, b}; these
were combined to give the single initial a-block {1,a,1,b}.

This method of constructing designs has a history which goes back at least
as far as the cyclic and dicyclic designs in [35, Table XVII]; see also the
tables in [53]. These tables are for designs with one nontrivial block system,
as is much of the recent use of this method to construct generalized cyclic
designs (see, for example, [49, 32]). However, some authors have used these
methods to produce designs with somewhat richer block structures [70, 71,
30, 40, 75, 4, 78, 1, 2, 52, 36, 43]. Another important application of these
methods is to factorial designs; their use here ranges from the classical work
[21, 34] for a single nontrivial block system and a prime-power number of
treatments, to the more recent results [15, 7, 14] in which the block structure
can be any group block structure and the number of treatments is arbitrary.
The addition of a pseudofactorial structure to an unstructured set of treat-
ments enables the methods of construction and analysis for factorial designs
to be used in a far wider context.

In fact, Bose [19] seems to have been the first to replace a regular cyclic
group by a regular general Abelian group in this method of construction. He
called his method “the method of differences.” Bose and Nair [23] showed
that this method need not be restricted to balanced designs. Bruck [25]
extended the method to any regular permutation group.

The history of the term “generalized cyclic” needs explanation, as it has
been given two different meanings. In [54, Chapter 13], P. W. M. John
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described Bose’s method of differences, calling the ensuing designs “cyclic”
whether or not the Abelian group is cyclic. In [54, Chapter 15] he gave the
identical construction, but with slightly different notation, and called the
designs “generalized cyclic” on the grounds that Abelian groups could be
considered to be a generalization of cyclic groups. J. A. John [49] used
P. W. M. John’s new terminology and made it widely known.

In all of the examples that we have mentioned so far in this section, the
set T of treatments is identified with the group G, which acts regularly on
itself: for cyclic designs, G is a cyclic group; for dicyclic designs, G is the
direct product of two cyclic groups; for classical factorial designs, G is the
additive group of a finite field. These are all Abelian groups, so these designs
are all, in some sense, special cases of the generalized cyclic designs and
general factorial designs, in which G can be any Abelian group.

However, there is another obvious way to generalize the class of regular
cyclic permutation groups: this is to remove the regularity condition.
Patterson and Williams [67] and Jarrett and Hall [47, 48] give a construction
which is somewhat different from the examples mentioned so far but which
nevertheless follows the pattern outlined at the beginning of this section.
They identify T with a cyclic group, but they permit G to be a proper
subgroup of T, so that (G is merely a semi-regular group of permutations of
T; this is equivalent to identifying T with a union of distinct copies of G.
Jarrett and Hall call their designs “generalized cyclic,” but their construction
can be used to produce any design by taking G to be the trivial group;
therefore no new nomenclature is needed for this class of designs, and the
term “‘generalized cyclic” could with advantage be restricted to the class of
designs given by John [49]. This is not to detract from the utility of Jarrett
and Hall's method of construction, particularly when |T']/|G]| is small.

The group-generation method of constructing and describing a design has
also been much used by mathematicians in their never ending, and recently
most productive, search for BIBDs (see, for example, {6, 59, 46]).

Before discussing properties of designs constructed in this way we need to
describe these designs in a way which is based closely on this construction
method but is sufficiently rigorous to enable precise statements about them to
be made and proved.

One example of the need for a rigorous approach is the fact that blocks
are subsets of £, so a block may well contain a treatment, or treatments,
more than once, and two different blocks may have identical allocation of
treatments. Thus we cannot identify blocks with subsets of T and must take
some care with our definitions. We represent multiple occurrences of a
treatment within a block by using multisets [33]: a multiset is just a function
from T to the natural numbers N which records the number of occurrences of
each treatment in a given block. Thus if b is a block, then its corresponding
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multiset is the function K,: T — N defined by
Ky(t)=|{web:¢(w)=t}| fortinT.

The action of the group G on T extends naturally to an action of G on
multisets by

K&(t) = K(t&") for g in G.

In this action the stabilizer of a multiset K is the subgroup {g € G: KE= K},
and the orbit containing K is the set of distinct multisets K&, g& G. We
now need several definitions.

DeriniTion. Let A be the design (2,T,7T,¢). Let ¥ in I' be a block
system on £, and let G be a group of permutations of T. The design A is a
thin (G, y)-design if (i) no two y-blocks have the same multiset and (ii) the
set of multisets of the y-blocks forms a single orbit of G.

Let Q' be a subset of @ which is a union of y-blocks. Denote by y’ the
partition of Q' into these y-blocks and by & the partition of £’ into
singletons; and let A’ be the design (Q',{y’,¢'},T,¢). The subset Q' is a
(G, y)-component of Q if A’ is a thin (G, y")-design.

The subset Q" of Q is a homogeneous (G, y)ypart of & if " is a maximal
disjoint union of (G, y)components which have the same set of multisets.

The design A is a (G, y)design if Q is a disjoint union of (G, y)-compo-
nents. Finally, A is a homogeneous (G, y)design if @ is a homogeneous
(G, y)part of itself.

Less formally, a thin design is one whose blocks are generated from a
single initial block by applying each element of G in turn to the initial block
and using all the distinct blocks which arise (so that no two distinct blocks
have the same treatment allocation). Let H be the stabilizer of the multiset of
the initial block. When H is nontrivial some authors (such as John [49],
Jarrett and Hall [47], Dean and Lewis [32]) say that the thin design generated
by this initial block has a fractional set of blocks, whilst the design which has
a block for each g in G whether or not the multisets are distinct is said to
have a full set of blocks. Since G is a group, in the latter, “full,” design
every multiset of the thin design occurs as the multiset of exactly |H| blocks,
so the “full” design is the disjoint union of |H| identical thin designs and is
thus a homogeneous design.

Note that the division of a (G, y)}-design into homogeneous (G, v }-parts is
unique, whereas the division into (G, y }components may not be.
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DeriniTION. A G-design is a design (2, T, T, ¢) which is a (G, vy )-design
forall y in I,

Having clarified the terminology, we shall now show that a G-design is
G-central; but this requires some further definitions.

DeriniTiON. Let y €T'. A permutation h of € is a y-morphism of the
design (2, T, T, ¢) if, for all & and 6 in £,

(i) w, @ are in the same y-block < " 8" are in the same y-block;
(i) ¢p(w)=¢(8) = ¢(w)=(8").

A permutation h of Q is an automorphism of the design (2, I, T, ¢) if it is a
y-morphism for all y in T

Thus any group of y-morphisms acts on 7" and on the set of y-blocks.

TueoreM 4.1.  Let A be the design (Q,T,T,¢), let YT, and let G be
a group of permutations of T. Then the following conditions are equivalent:

(i) There is a group of y-morphisms of A whose action on T is isomorphic
to G.

(ii) The design A is a (G, y)-design.

(iii) There is a group of y-morphisms of A whose action on T is faithful
and isomorphic to G.

Proof. (i) = (ii): Let G be such a group of y-morphisms, and let
Y G — G be the _epimorphism induced by the action of G on T. If b is a
y-block and h € G, then b is also a y-block, and its multiset is K}®. Let G,
and Cb be the stabilizers of K, in G and of b in G respectively. Then
Gb cy NG, C G. Let Q' be the union of the y-blocks b" for h in G. Then
the number of y-blocks in @’ is |G|/ |G ph and their multisets are the multi-
sets in the orbit of K,, each occurring |¢~ YG,)|/ [Gbl times. Thus
', {v.¢},T,¢) is a homogeneous (G, y)design. Since @ is the disjoint
union of such subsets §’, the design A is a (G, v)-design.

(ii) => (iii): Suppose that A is a (G, v )-design. Since this implication holds
for the whole of A provided that it holds (with respect to y’) for each
component, it suffices to consider the case when A is thin. We need to show
that there is a faithful action of G on £ as a group of y-morphisms which is
consistent with the action of G on T. Label each plot w in @ by the triple
(K,,¢(w), 1), where b is the block containing & and ! is an integer,
1 <1< Ky (¢(w)), this integer [ being used to distinguish between the plots
in a block which have the same treatment. Since A is thin, the multiset K,
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identifies the block b uniquely, so each such triple labels a unique plot. Let
g € G; then (K&, ¢t8,1) is such a triple if and only if (K,¢t,1) is, so we can
define an action of g on Q by

(K,t,1)8=(Ke,t8,1).

Then g is a y-morphism. Moreover, this defines an action of the group
G on 2, because

((K.t,1)¥)" = (K, ¢t,1)¢"

for g and h in G. This action is faithful, since ¢(£2) =T and a plot cannot be
allocated two distinct treatments.
(iii) = (i): Obvious. [ ]

THEOREM 4.2. Suppose that, for some vy in T, the design (2,1, T, ¢) is
a (G, y)design. Then the concurrence matrix C, centralizes G.

Proof. For t,u in T define the subset Q(t, u) of @ X Q by

Qt,u)= {(w,0)€2XQ:¢p(w)=t,¢(8)=u,

and w and @ are in the same y-block}

Then the concurrence of ¢ and u in y-blocks is just |Q(f,u)|. By
Theorem 4.1, G acts on 2 as a group of y-morphisms. This action thus
induces an action of G on £ X  for which

(R(t, u))®=Q(t8, u®)
forall t and uin T and all g in G. Hence the (¢, u) and (&, u8) entries of C,

are the same for all g in G. Thus C, centralizes G. [ ]

The converse of Theorem 4.2 is false, as the following example shows.

ExamprLE 4.1, Let [Q{=21 and I'= {, vy, ¢}, where y has seven blocks
of size 3. Let T={1,2,...,7} and let G, and G, be the cyclic groups
generated by (1234567) and (1324567) respectively. Let A be the thin
G ,-design with initial block {1,2,4} so that A is isomorphic to the projective
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plan over GF(2). Then C, =21+ J, so C, centralizes the whole symmetric
group S; on T: in particular, C, centralizes G,. But A is not a Gydesign.

Sinha [76] gives a more extreme counterexample. Let A be any BIBD
whose automorphism group is trivial, and let G be a nontrivial group of
permutations of T. Then A is G-central but A is not a G-design.

On the other hand, Theorem 4.2 shows that every G-design is G-central,
so the following result is an immediate consequence of the definition of
cospectral.

THEOREM 4.3. If G is cospectral, then every G-design is generally
balanced.

To a combinatorialist or algebraist, it might be more natural to define a
G-design to be a design which has a group of automorphisms inducing
G on T. Such a design certainly is a G-design in our sense, and so is
generally balanced provided G is cospectral. Although most families of
G-designs which we have seen in the literature do have such groups of
automorphisms, a G-design does not necessarily possess a group of automor-
phisms inducing G on T, as the next two examples (one involving crossing
and the other nesting) show. Thus, being a G-design is a strictly weaker
property, but it is all that is required of a design to guarantee general balance
(for cospectral G).

ExampLE 4.2. Let |Q|=n? and I'= {p, p, 0, ¢}, where the p-blocks and
o-blocks respectively are the rows and columns of an nXn array. Let
T=1{1,2,...,n) with ¢ giving a Latin-square design, and let G be the
symmetric group S, on T. Then this design is a (G, p)design and a (G, 0)-
design. However, for almost all choices of ¢ there is no group of automor-
phisms of the Latin-square design which induces G on T.

For example, if n =5, then the Latin square given by ¢ lies in one of the
two transformation sets given in Table XV of [35]. Thus it is isotopic either to
the square in Table 2 or to the well.known cyclic Latin square: in the former
case the automorphism group of the design induces on T the alternating
group A, (of order 12), fixing treatment 1; in the latter case the group
induced on T is the affine group AGL(1,5) (of order 20).

ExamrLE 4.3. Let |[2|=20 and I'={p,a, B, ¢}, where « has five
a-blocks of size 4, each containing two S-blocks of size 2. Let T = {0,1,...,4},
and let G be the cyclic group on T generated by (01234). The design is in
Table 3 (here square brackets enclose S-blocks and rows are a-blocks); it is a
(G, a)design and a (G, B8)design. Its automorphism group acts faithfully
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TABLE 2
LATIN SQUARE FOR EXAMPLE 4.2
1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

on T. Although this action is isomorphic to that of the affine group AGL(1,5)
on T, no element of it acts on T as (01234). Thus there is no group of
automorphisms of the design whose action on T is that of G.

It is well known that the concurrence matrix of a thin cyclic block design
is circulant and that its first row can be calculated from an examination of the
initial block, without constructing the whole design. Likewise, if G is any
permutation group, the calculation of the concurrences of a G-design can be
simplified: our next theorem gives the details. We need two more pieces of
notation, one for permutation groups and one for multisets. First, for any ¢, u
in {2, the subgroup G,, is the pointwise stabilizer in G of ¢ and u. Secondly,
the usual notion of a tensor product of functions, whose domain is the direct
product of the domains of the individual functions, gives, for multisets,

(K ®Ky)(t,u) = Ky(t) X Ky(u)
=|{(w,0)€b, Xby:p(w)=t and ¢(6) =u}|

if K; and K, are the multisets of the blocks b, and b, respectively.

Tueorem 4.4. Let A be a thin (G, y)design with initial block b. Let K
be the multiset of b, and let H be the stabilizer in G of K. For each orbit U of
G on T XT put ny =YX(K®K)(t, u), the sum being over pairs (t,u) in U.
Then, for any pair (x,y) in U, the concurrence of x and y in y-blocks is
equal to ny|G, |/ |H|

TABLE 3
DESIGN FOR EXAMPLE 4.3
[0 1] [2 3]
2 0] [4 1]
(1 3] [0 4]
(4 2] [3 0]
[3 4] 1 2]
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Proof. The number of y-blocks in the design is |G|/|H|, and each
y-block contributes ny, concurrences of pairs (¢, u) in U. This gives a total of
ny|Gl/|H| such concurrences. By the proof of theorem 4.2, all pairs in U
have the same concurrence. The number of such pairs is equal to |G|/|G,,|,
so the concurrence of any one pair is (n4|G|/|H])/(1G|/|G,, D n

If T contains a single nontrivial block system B, then the dual of the
design (2, I', T, ¢) is defined simply by interchanging the roles of treatments
and blocks. More precisely, if A =(Q,{u, B, ¢}, T, ¢), then the dual A" of A is
Q. {p,7,€), T, ¢"), where T’ is the set of B-blocks, 7 is the partition of Q
such that each 7-block is equal to ¢~ X(¢) for some ¢ in T, and the function
¢’ : © — T’ is defined by

¢’(w) = the B-block containing w, for  in Q.

In [50] John proved that the dual of a thin generalized cyclic design (in the
weak sense of [47]) is an ordinary cyclic design. The following theorem is a
more general version of that result; John’s result follows from the fact that
quotient groups of cyclic groups are themselves cyclic.

TueorEM 4.5.  Let A be a G-design (,{un,B,¢},T, ¢), and let A’ be the
dual of A, with A’ =(Q,{p,7,¢},T",¢"). Then there exists a group G’ of
permutations of T’ such that

(i) A’ is a G'-design;
(ii) G’ is abstractly isomorphic to a quotient group of G;
(iii) if A is a thin (G, y)-design, then G’ is transitive on T".

Proof. It is immediate from the definition of y-morphism that a permu-
tation g of € is a S8-morphism of A if and only if it is a 7-morphism of A"
By Theorem 4.1 [(ii) = (iii)], there is a faithful action of G on  as a group of
B-morphisms of A. Let N be the intersection of the stabilizers in G of all the
B-blocks. Then N is a normal subgroup of G, and the action of G on T’ is a
faithful action of the quotient group G/N. Put G’= G /N. Then Theorem
4.1 [(iii) = (ii)] shows that A’ is a (G’, T)-design. If A is a thin (G, B )-design,
then G is transitive on T’ and so G’ is transitive on T". a

Note that, even if G is the largest permutation group on T such that A is
a G-design, the group G’ may not be the largest such group for T’ and A"
For example, if p is the number of (G, 8)components in the homogeneous
(G, B)design A, then there is a transitive action of G’ XS, on T" such that A’
is a (G" XS, 7)-design.
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We conclude this section with a few remarks about the relationship
between general balance and partial balance for G-designs. For each orbit U
of GonTXT,let Ay beits T X T adjacency matrix: the (¢, u) entry of A,
is defined by

Aylt, u) = {1 if (t,u)eU,
0 otherwise.

These adjacency matrices span the centralizer algebra of G [17, Theorem
I1.1.3]. If they are all symmetric (a condition that has been termed generous
transitivity of G by Neumann [64]), then the A, form an association scheme.
Hence Theorem 4.4 shows that each of the designs (2, {g,v, ¢}, T, ¢), for v
in I', is a partially balanced design in the sense of [24], and (2, T, T, ¢) is
partially balanced in the extended sense of [41]. Hence (,T,T,¢) is
generally balanced, the common eigenspaces of the concurrence matrices
being the eigenspaces well known to be common to all partially balanced
designs with that association scheme [22, 17, 13]. Shah [74] pointed out that,
because concurrence matrices are symmetric, the conditions for an associa-
tion scheme could be slightly weakened without destroying any of the
essential features of partial balance. So long as G is cospectral, the matrices
Ay + A%y do satisfy the weaker conditions of Shah, and such G-designs
behave much like partially balanced designs.

5. THE PERMUTATION CHARACTER

In this section we return to our study of conditions on G which ensure
that all G-central designs are generally balanced. Although, as we mentioned
before, such conditions have been studied by many authors, to our knowledge
no one has stated and proved exactly the result which we feel has the most
practical significance for experimental design, so we shall do this in Theorems
5.4 and 5.5.

The statements of these results involve concepts from the theory of linear
representations of a general finite permutation group. However, the special
case in which G is a regular Abelian group is treated independently in
Sections 6 and 7. Thus the reader whose interest is confined to generalized
cyclic designs may omit this section, as none of the subsequent material, not
even that in Section 6, depends on it in any way.

We need to consider linear representations of G over both the real and
complex fields, R and C, so we let F denote a field, which may be either
RorC
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DEeFiNITION. Suppose that there is a linear representation of the group
G on a vector space V over F, and that W is a subspace of V. Then W is
G-invariant (with respect to this representation) if every element of G
maps each vector in W to another vector in W. Further, W is G-irreducible if
W is nontrivial and G-invariant but no nontrivial proper subspace of W is
G-invariant. The linear representation is said to be irreducible if V is
G -irreducible.

TueoreMm 5.1.  If C is a real symmetric matrix in the centralizer algebra
of the group G of permutations of the set T, then

(i) RT is a direct sum of the eigenspaces of C and
(ii) every eigenspace of C is G-invariant.

Proof. Since C is symmetric, (i) is a standard result of linear algebra. Let
W be an eigenspace of C with eigenvalue A. Let we W and g € G. Then

(ng)C = wCPg (because C commutes with Pg)
=(Aw )Pg
= 7\( ng)

and so wP, € W. This proves (ii). |

Maschke’s theorem [58, Section 1.6] shows that every eigenspace of the
matrix C in Theorem 5.1 is a direct sum of G-irreducible subspaces. If we
can show that RT has a unique decomposition as a direct sum of G-irreduci-
ble subspaces, then each of these irreducible subspaces must be contained in
an eigenspace of C for every concurrence matrix C: thus the set of concur-
rence matrices will be cospectral and the design will be generally balanced.
The existence of a unique such decomposition can be decided by examining
the permutation character of G, which is the function #: G — R defined by

7(g)=|{teT:t8=t}| forg in G.

The characters of a finite group are the “calculus” of its linear representation
theory, because they reduce many matrix problems to manageable calcula-
tions with complex numbers. Ledermann [58] provides a good introduction to
the character theory of finite groups; however, none of the elementary texts
includes all the results we need. Indeed, we have been unable to find our
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main result (Theorems 5.4 to 5.6) in any textbook; we shall therefore give a
brief introduction to the necessary parts of character theory here.

DeriniTION.  An F-character of the group G is the trace of a linear
representation of G on a vector space over F: a character is thus a function
from G to F. The character of an irreducible linear representation is said to
be F-irreducible. An inner product { , ) is defined on characters by

1 _
<x,¢>=@ggcx(g)¢(g)~

It follows straight from the definition that, if x is any F-character and 1 is
the identity element of G, then x(1) is the trace of the identity matrix and so
is equal to the dimension of the corresponding vector space.

ExampLE 5.1

1. The permutation character is the character of the permutation repre-
sentation g — P,; it can be thought of as an R-character or as a C-character.

2. For every field F, any group G has a principal character x,,, defined
by

Xolg)=1 forall ginG;

it is always irreducible.

3. The C-rreducible characters of an Abelian group G are simply the
group homomorphisms from G into the multiplicative group of C. Further
details are given in Section 6.

4. If x is a Ccharacter of G, then so is X, where X is defined by

x(g)=x(g) for g in G.

Moreover, X is irreducible if and only if x is.

The following fundamental result, due to Frobenius, establishes the
importance of the irreducible characters (see [58, Sections 2.1-2.2)).

TueoreM 5.2.  For any finite group G, there are only a finite number of
F-irreducible characters, and every F-character of G is the sum of these.
These irreducible characters form an orthogonal basis, with respect to { , ),
for the subspace of F€ spanned by all the F-characters of G. If F = C, then
this basis is orthonormal.
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The C-rreducible characters of a group are usually displayed in a
character table, such as Tables 4 and 5 below (see [58, Section 2.3]). The
practical utility of the results in this section depends on knowing the
character table of GG. Now, the calculation of the character table of an
arbitrary group can be an extremely lengthy computation. However, those
groups G for which G-central designs are used or proposed appear largely to
be groups whose character tables either are already known or can be easily
calculated from those which are known.

Let I be the set of F-irreducible characters of G. Since we may regard
the permutation linear representation of G as being on either RT or C7,
Theorem 5.2 shows that

(7, X)

F F
7= 3 nfyx, where n] = .
xelp (X x)

The number n is a nonnegative integer called the multiplicity of x in 7.
The permutatlon character is said to be F-multiplicity-free it n € {0,1} for
all x in Ig; that is, no irreducible character appears more than once in the
swin.

Serre [73, Section 2.6] gives an important decomposition of CT. A slight
modification of his Proposition 6 gives a result in a form applicable to both C
and R, which we now state. (In [5], Andersson also states part of this theorem
with F =R.)

Tueorem 5.3. There are orthogonal G-invariant subspaces (V. ), <1, of
T called the G-homogeneous subspaces of FT, such that:

() FT= ® ., Vy (this decomposition is called the G-homogeneous
decomposition of FT)

(i) dim(V,)= n x(1), where 1 is the identity element of G;

(iii) if Wis any G—meduczble subspace of FT, then there is some x in I
such that W C V,, the character of the restriction to W of the permutation
linear representation of G is x, and therefore dim(W ) = x(1);

(iv) the matrix of orthogonal projection onto V, is

x(
Cioo 0 =8

(v) the subspace V, is G-irreducible if and only if n =1; if n = 2, then
there is no unique decomposztion of V, into G—irredumble subspaces
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Since the concurrence matrices are real symmetric matrices, we need to
describe the G-homogeneous decomposition of RT in the case when G is
cospectral. The results we need are summarized in the following portmanteau
theorem.

THEOREM 5.4. Let G be a group of permutations of a set T. Then the
following conditions are all equivalent:

(i) G is cospectral,

(i) the set of symmetric matrices in the real centralizer algebra of G is
commutative;

(iii) the set of diagonalizable matrices in the real centralizer algebra of G
is commutative;

(iv) the permutation character = is R-multiplicity-free;

(v) the G-homogeneous subspaces of RT are G-irreducible;

(vi) RT has a unique decomposition as a direct sum of G-irreducible
subspaces;

(vii) every G-homogeneous subspace of RT is contained in an eigenspace
of every diagonalizable matrix in the real centralizer algebra of G;

(viii) the set of diagonalizable matrices in the real centralizer algebra of
G is cospectral.

Proof. Theorem 5.3 shows that conditions (iv), (v), and (vi) are equiva-
lent. By Lemma 2.1, conditions (i) and (ii) are equivalent, as are conditions
(iii) and (viii). We shall prove that (ii) = (vi) = (vii) = (viii) =» (ii).

(ii) = (vi): Let W be a G-invariant subspace of R”, and let Q be the
matrix of orthogonal projection onto W. It is straightforward to check that Q
is in the centralizer algebra of G.

If condition (vi) is false, then there are G-irreducible subspaces W;, W, of
R” such that W, N W, = {0} but W, and W, are not orthogonal to each
other. Let Q,; and Q, be the matrices of orthogonal projection onto W, and
W, respectively. Then Q, and @, are symmetric matrices in the real
centralizer algebra of G, but [37, Section 76] shows that Q, and Q, do not
commute with each other. Thus condition (ii) is false.

(vi)= (vii): Let C be a diagonalizable matrix in the real centralizer
algebra of G. Then R” is a direct sum of the eigenspaces of C, each of which
is G-invariant, by Theorem 5.1. This decomposition of RTmust therefore be
coarser than the unique decomposition into G-irreducibles, whose compo-
nents are precisely the G-homogeneous subspaces. Therefore every G-homo-
geneous subspace is contained in an eigenspace of C.

(vii) = (viii): Obvious.

(viii) = (ii): Symmetric matrices are diagonalizable, so (viii) implies (i),
which is equivalent to (ii). ]
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Theorem 5.4 gives us conditions equivalent to G being cospectral. In
conjunction with Theorem 5.3, it also gives formulas for the relevant projec-
tors and dimensions in terms of the R-irreducible characters. However, we
feel that criteria and formulas couched in terms of the R-irreducible charac-
ters of G are not very useful in practice, since character tables almost always
show the C-irreducible characters of G; this is partly because the latter can
be easily identified as being those characters x for which (x,x)=1.

Thus we shall modify Theorem 5.3 to describe a G-invariant decomposi-
tion of RT in terms of the C-irreducible characters of G and show that if G is
cospectral, then all G-central designs are generally balanced with respect to
this decomposition. This can be done using the following important classifica-
tion of C-irreducible characters into three types (see [73, Sections 12.1, 12.2,
13.4]).

A C-irreducible character of G is:

complex if there is an element g of G for which x(g) is not real;

real if it is realizable as the character of a linear representation of G on a
real vector space;

quaternionic otherwise.

The type of a character can in fact be readily calculated from the character
table of GG, because

1 0 if x is complex,
el Y X(g2)= +1 if x isreal,
Gl e —-1 if x is quaternionic.

The set of complex C-irreducible characters is a disjoint union of two
equinumerous sets I, and I, such that x €1, if and only if x €1 . Let I,
and I, be the sets of real and quaternionic C-irreducible characters respec-
tively. Serre [73, Section 3.2] shows that there is a bijection

FIULUIL —Ty
given by
x+x i x€I,

flx)=<{x it xel,
2x it xel,.
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Moreover, since 7 is the character of a real representation,

e[, 1k
My if X E 1 q°
Let us say that the Cdrreducible character x of G is m-indecomposable if
nflf(x) € {0,1}.

The formulas in the following theorem now follow directly from those in
Theorem 5.3.

THEOREM 5.5.

(i) The G-homogeneous subspaces of RT are W, for x in [ UL, UI,
where the matrix Q, of orthogonal projection onto W, is given by

x(1) _
—= 2 Ix(e)+x(e)lB, if xel,
Q |GI gec
=
x(1)
—= Y x(g)p, if xelLVl,.
|C| geC
Moreover,
dm(W.) {2n§2x(1) if xel,
im =
X nSx(1) if xelLul,

(i) If W is any G-irreducible subspace of RY, then there is some x in
I, VI, VI, such that W C W, and dim(W)=d, x(1), where

1 if xel,
%“=\2 i xelul,

We have now introduced all the terminology required to state the
following widely applicable theorem, whose proof follows directly from
Theorems 5.4 and 5.5.

THEOREM 3.6. The permutation group G is cospectral if and only if
every C-rreducible character of G is m-indecomposable, where « is the
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TABLE 4
CHARACTER TABLE OF S,
1 a,a’ b,ab,a®b
Xo 1 1 1
X1 1 1 -1
X2 2 -1 0
T 6 0 0

permutation character of G. Moreover, if G is cospectral, then all G-central
designs are generally balanced with respect to the G-homogeneous decompo-
sition of RT.

McLaren stated part of Theorem 5.6 in [60]. He defined the set of real
symmetric matrices in the centralizer algebra of G to be properly constrained
by G if the permutation character 7 of GG is R-multiplicity-free.

Exampre 5.2 (Example 3.1 revisited) Let T and G be as in
Example 3.1. The character table of S; is shown in Table 4: the permutation
character 7 of G can be decomposed as 7 = x, + x; +2X,. Since X, is a real
character, this shows that G is not cospectral, and so G-central designs may
not be generally balanced, as Example 3.1 shows.

ExampLE 5.3. Suppose that the treatments consist of the ten genotypes
of some plant obtained by crossing all pairs of five pure parental lines, but
omitting self-crosses and ignoring the gender of the parents. Then we may
identify T with the set of unordered pairs from {1,2,3,4,5}. Suppose further
that there are two plants per block, there being one block for each pair of
genotypes with no parental lines in common. Then |€} = 30, and the treat-
ment concurrence graph [66, 65] is the Petersen graph (see [39, Chapter 9] or
[69]) shown in Figure 1. Let G be the symmetric group Sy in its action on
unordered pairs, and let 7 be the corresponding permutation character. A
fragment of the character table of S5 is shown in Table 5 (using the usual
notation for the conjugacy classes, which is given in [58]): the decomposition
of mis m=x0+ X1+ Xo

For i in {1,2,3,4,5}, define the element v; of R” by

tu:{l if iet,
: 0 otherwise.

Let W, and W be the subspaces of R” spanned by v, + vy + -+ + vg and
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{1,2}

{3’4} A {4a 5}

{2,5} {1,3}

Fic. 1. The Petersen graph.

{v1, v, U3, Uy, U5} respectively. Then it can be shown that the characters
Xo> X1» Xo are all real and that the corresponding S;-homogeneous subspaces
of RT are W, W,, W,, where W, =W N W3 and W, = W*. The decomposi-
tion W, @ W, ® W, is very strongly related to the natural structure of T.
Since 7 is R-multiplicity-free, the design is generally balanced with respect to
this decomposition.

This example may be generalized: whatever the number of pure parental
lines, any block design for which the concurrence of two genotypes depends
only on how many parental lines they have in common is generally balanced
with respect to a decomposition analogous to the one above. In [76, Section
2.3(b)(ii)], Sinha has observed that all such designs are simple in his sense.

Even if G is not cospectral, the analysis of the permutation character in
terms of the C-irreducible characters of G is still useful. A design may be

TABLE 5
FRAGMENT OF THE CHARACTER TABLE OF S 5
1 2 22 3 2.3 4 5
Xo 1 1 1 1 1 1 1
X1 4 2 0 1 -1 0 -1
Xs 5 1 1 -1 1 -1 0
6 0 -2 0 0 0 1

X3

3
ot
(=2

3
8
S '
W)
)
)
=
o
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known to be generally balanced from other considerations (for example, an
ordinary block design). Then the common eigenspaces of the concurrence
matrices are direct sums of G-irreducible subspaces. Part (ii) of Theorem 5.5
shows that these G-irreducible subspaces may be found by examining each
G-homogeneous subspace separately, rather than by examining the whole
of R”, and shows what dimensions these G-irreducible subspaces have. In
particular, if x is 7-indecomposable, then W, is itself contained in the
common eigenspaces of the concurrences matrices. Thus Theorem 5.5 can
still help in the task of finding a decomposition of RT with respect to which
the design is generally balanced, even though this decomposition may not be
entirely determined by G.

ExampLE 5.4. Let T and G be as in Example 3.1. Let W, W, W, be
the G-homogeneous subspaces of RT corresponding to X, x> X2 respec-
tively: then W, is spanned by (1,1,1,1,1,1), W] is spanned by (1,1,1,—1,
~1,— 1), and W, = (W, ® W,)*.

Consider the class of all ordinary block designs which are G-central. Since
each of these designs has a single nontrivial block system, they are all
generally balanced. The irreducible characters x, and x; are w-indecom-
posable, so the G-homogeneous spaces W, and W, are eigenspaces of the
concurrence matrices of all these designs. However, the space W, is, in
general, a direct sum of two 2-dimensional eigenspaces, and these summands
are, in general, different for different designs.

In particular, consider the designs A; and A,, where A; consists of the
B-blocks in the right-hand column of Table 1, and A, is the design in Table 6,
in six blocks of size 2 (this design was given, in a different form, in [74]). The
design A, is generally balanced with respect to the decomposition

W, W, e W,e W,,
and A, is generally balanced with respect to
W,o W, & Wy & Wy,

where Wj is spanned by (1,—1,0,1,0,— ) and (1,1,— 2,1,— 2,1), W, =W, N
Wy, Wy is spanned by (2,—1,— 1,—v3,0,V3) and (0,v3,—v3,-1,2,— 1),

TABLE 6
DESIGN A, IN EXAMPLE 3.4
1 b) [a ab) [a2 ab]
(1 b] [a a®b] [a® ab)

1 ab] [a b) [a? a?b]
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and W, =W, Wy . There is no decomposition of R” with respect to
which both A, and A, are generally balanced.

ExampLE 5.5. It is instructive to compare Example 5.3 with a diallel
example like those of [45], where the parental genders are distinguished. Thus
{T| = 20 in this case. The permutation character 7 of Sy in its action on
ordered pairs (omitting self-pairs) has decomposition

T'=Xot+2x1t X2+ X3

(these irreducible characters are shown in Table 5).
For i, j in {1,2,3,4,5} define the vectors XijYijs B

t%j={1 it t=(i,j),

0 otherwise;

ij» Vi W; by

Yij = %3+ s

U= inj;
i

0= Yr,
i

Let ¥,Z,V,W be the subspaces of R spanned by
{y,j:1<i, j<5}, {z,;:1<i,j<5), {v;:1<i<5},and {w;: 1 <i <5},

It can be shown that the Sg-homogeneous subspaces of RT corresponding to
Xos» X1 X2» X3 are Wy, W, W,, W, respectively, where W, consists of the
constant vectors, W, =(V+W)NWg, W,=Y N(V+ W)+, and Wy;=2ZnN
(V+W)*. The spaces W, W,, W, are common eigenspaces of the concur-
rence matrices of every Sj-central design with treatment set T; in general,
W, is a sum of two 4-dimensional eigenspaces. The two spaces W, and W,
have a natural interpretation, because W, consists of all contrasts which are
symmetric in the parental genders and orthogonal to each parent, while W,
consists of all contrasts which are antisymmetric in the parental genders and
orthogonal to each parent.

If G is not transitive, then the multiplicity of the principal character x,, is
greater than 1. Since the principal character is real, this shows that G is not
cospectral. Recall that, for an Abelian group, transitivity is equivalent to
regularity. [58, Sections 2.2 and 2.4] shows that, if G is a regular Abelian
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group, then ng =1 for all x in I;. Hence we obtain the following theorem,
which will also be proved in Section 7 independently of the results of the
present section.

THEOREM 5.7. If G is a regular Abelian group, then all G-central
designs are generally balanced with respect to the G-homogeneous decompo-
sition of RT.

6. CHARACTERS OF ABELIAN GROUPS

In this section we introduce some results concerning the irreducible
characters of an Abelian group and their relationship to the regular represen-
tation of the group; it is, however, completely independent of Section 5.
These results will be used in Section 7 to prove an important result: that, if G
is an Abelian group, then any G-design is generally balanced. So, from now
on, G will always be a finite Abelian group acting regularly on T, which will
be identified with G; the resulting G-design is called an Abelian group
design.

An irreducible character x of G is a nonzero map x: G — C such that
x(g)x(h)=x(gh) for all g,h in G. Under the pointwise multiplication
defined by

(x1x2)(g) =x1(g)xo(g) foral ginG,

the irreducible characters form a group, the dual group G* of G, and G* is
isomorphic to G. The identity element of G* is the principal character x,,
of G defined by x(g)=1 for all g in G. For all x in G*, the inverse of x

is the irreducible character X such that x(g)=x(g) for all g in G. (See [42,
Section V.6] or [58, Section 2.4].) The following hold for all irreducible
characters x of G:

x(1;) =1,  where 1, is the identity element of G; (4)
G c
x(g)=x(g™!) forallginG; (5)
1 1 if x=xo
_ - , 5
Gl ggcx(g) {0 otherwise. (6)

Since G is finite, there is a smallest positive integer e, called the exponent
of G, such that g®=1, for all g in G. Thus, for any x in G*, we have
x(g)=x(g°)=x(g)=1, so x(G)C {€':i €N}, where € is a primitive
eth root of 1 in C. Thus x = x if and only if x(g)= 41 for all g in G.
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If we put G* = {x € G*: x =X}, then we may partition G *\G.* into
two equinumerous sets G*, G such that x € G* if and only if X € G2.

TueoreM 6.1, For x in G* and h in G, let v(x, h) be the vector in R¢
whose gth coordinate is x(hg)+ x(hg). Let W, be the subspace of R¢
spanned by the set of vectors {v(x, h):h&€ G)}. Then

(i) if x and ¢ are irreducible characters, then W, =W, if and only if

ve{x:x} '
(ii) if x is an irreducible character, then

dim(w)={} B X"X

X 2  otherwise;

(iii) the vector space R is the orthogonal direct sum of the subspaces W,
for x €GXUGHK.

Proof. See [57]. ]

The decomposition of R® in part (iii) of Theorem 6.1 is called the
G-homogeneous decomposition of RC, and the subspaces (W) ec are
called the G-homogeneous subspaces of R¢. Those who have read Section 5
should note that there is no conflict of terminology here: using Theorem 5.5
and the fact that, for x, ¢ in G* and h in G,

= h)| v(g)] P
IGIgecD(X’ )w(g)+d(g)|P,

o(x,h) if Y+ and x<{¢.¥),

20(x,h) if x=v=4¢,
0 otherwise,

it can be shown that the spaces W, defined in Theorems 5.5 and 6.1 are
identical. Moreover, Theorem 5.4 and the remarks preceding Theorem 5.7
show that each G-homogeneous subspace W, is G-irreducible.

The irreducible characters of the group have been used to decompose the
vector space R® of an Abelian group design in other work [27, 15, 10, 56, 57],
but the resulting decompositions are not identical. The G-homogeneous
decomposition is the finest that is possible, since the components are G-irre-
ducible, but other useful decompositions may be found by combining

appropriate subspaces W, ; for example, the decompositions in [10] and [15]
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both use the subspaces W, defined as follows: for each cyclic subgroup H of
G*, the subspace W, of RE is the sum of the subspaces W, for those x such
that (x) = H (that is, Wy is obtained by combining all the subspaces
corresponding to generators of the cyclic subgroup H). It is straightforward
to check that this decomposition is identical to the G-homogeneous decom-
position if and only if the exponent ¢ of G divides 12.

7. ABELIAN GROUP DESIGNS

THEOREM 7.1. Every Abelian group design is generally balanced with
respect to its homogeneous decomposition (given in Theorem 6.1).

Although Theorem 7.1 was proved as Theorem 5.7 using the general
theory, we shall now give an alternative proof by finding an explicit formula
for the eigenvalue of the concurrence matrix C, (y € I') on the homogeneous
subspace W, (x € G¥).

The proof of Theorem 4.2 shows that the concurrence of treatments ¢ and
u in y-blocks depends only on the orbit of G on G X G which contains (¢, u).
Because G is Abelian, these orbits are indexed by the elements of GG, and are
of the form U,, where U, = {(t, u): tu~!=g}. The adjacency matrix of the
orbit U, is the permutation matrix F,-». We can therefore define the
following notation. For g in G, let ¢, be the common concurrence in
y-blocks of treatment pairs in the orbit U,. Thus C, =%, ¢, F,-1. Each
occurrence in a y-block of a pair (¢, u) with tu='=g corresponds to an
occurrence in the same y-block of the pair (u,t) with ut™1=g~1 Thus

Cp-1, = ¢, for all g in G. For x in G* and y in T, define
1
= 2 cx(e)- (7)
yeged
Thus
1 B 1 . )
nx= = L coX(g) == ¥ conx(g™), by Equation (5).
yegel ygel

Since summation over g € GG is the same as summation over g~! € G, this

implies that »,, = v, ;. A similar argument shows that x(g) can be replaced

by the real number ;[x(g)+ X(g)] in the definition of Yy

Tueorem 7.2. Let G be an Abelian group, and let (Q,1,G,¢) be a
G-design. Then, for all v in T and dll x in G*, the G-homogeneous
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space W, is a subspace of an eigenspace of the concurrence matrix C, with
eigenvalue rk v, .

Proof. We have

C, = 3 CyyBpr= ! gy(P + P- 1), since ¢, = cC,-1

8Y g v’
geC geCG

For x in G* and h in G, let v be the vector v(x,h) in R specified in
Theorem 6.1. Thus, for all ¢ in G,

to=x(ht)+ x(ht).

(Recall that our conventions of Section 3 require us to write vectors and
matrices on the right of their arguments: however, it is convenient to
continue to write characters on the left of their arguments.) By Equation (3),

t[v(B,+P)] = (t8)v+ (18 o
=(tg)o+(tg™")o
= x(htg)+ x(htg)+ x(htg™") + x(htg™")
= [x(ht)+x(ht)][x(g)+x(g™")]  [by Equation (5)]
= (o) [x(g) +x(g™")].
Thus o(P, + P, 1) = o[x(g)+ x(g V). Since x(g)+ x(g™") is a scalar, this

shows that v is an eigenvector of P, + P,-1 with eigenvalue x(g)+ x(g~").
Hence

vC, =0 Y, 3c(F,+P-1)

geC

= Y sc,0(P,+Po)
geC

=[ )y %ng[x(g)+x(g")]}v
geCG

[ Y cgyx(g)]v (since ¢, =c,-1,)

geC

rkyvyxv. [ |
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This completes the proof of Theorem 7.1. The numbers »,, and the block
structure of the design can be used to calculate its efficiency factors, as we
now show,

THEOREM 7.3. Let (,T,G, ¢) be an Abelian group design. For all «
in I and all x in G*, the efficiency factor A,  for the G-homogeneous
treatment subspace W, in stratum &, is given by

Ay = 2 ma,y)v,,,

'yGF

where m is the Mobius function of T and v,, is defined by Equation (7).

Proof. The efficiency factor A,, is equal to the eigenvalue of r L
on W.. Now

o

L,=X'S,X

It

Y. m(a,y)X'B X [by Equation (2)]

yer

= Z @CY-

yel Y

The result therefore follows from Theorem 7.2. ]

The usefulness of Theorem 7.3 depends on our ability to calculate the
concurrences c,.. It turns out that this calculation is particularly easy for thin
Abelian group designs (see Section 4 for the definition of thin designs).
However, it is impossible for a design to be thin with respect to every y in T.
Thus it is convenient to do the calculation for each y in T separately by
decomposing the design into thin (G, y)-designs. So we now fix y in T.

Suppose that A is a G-design, where A =(Q, T, G, ¢). Then, for some
set ], there is a partition (£;); <, of & into (G, y)components. For each j in
J, let b; be any y-block in §; and let s; be the order of the stabilizer in G of
the multiset of b;. For j in J and g in G define

nie = [{(0.0) € b;x by () [6(8)] ' =g} |-
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LEMMA 7.4. With the above notation,

In particular, if s; is constant over j in ], then it is equal to k T/

Proof. The orbit-stabilizer theorem [81, Theorem 3.2] shows that the
number of y-blocks in ; is equal to |G|/s;. Thus

5 1

i€l i

x k,. =

Clx r=|2|=

TuEOREM 7.5.  Forall gin G, the concurrence c,, is equal to 1 jerMig/ S
In particular, if s; is constant over j in ], then ch=(r/kY|]|) ):je,njg,
while ifnjg =n, forall jin], thenc,, =m_/k. .

Proof. Fix j in J. Let v, Ly be the partitions of {; into y-blocks and
singletons respectively, and put A (Q {y], i}, G,¢). Then A is a thin
\Lx 'Y )‘(leblgll LJCL U DC dlly UfUll Ul \J Oil U /\ Ll, if U = {J N thll or LhU
de51gn A the integer ny, defined in Theorem 4.4 will equal n,. Since G acts
regularly on itself, G,, = {1} for all ¢,u in G. Theorem 4.4 shows that if
(t,u) €U, then the concurrence of ¢ and u in yj.blocks in A jis ng/s;
Hence

n.
Coy = Z £ a
jel §;
The numbers n,, may be counted directly from the “table of differences”
[18, Chapter 6]. If s j is not known a priori, it may be found by generating all
y-blocks in A, since the number of these is equal to |G|/s;. However, if A is

homogeneous, the formula for ¢,., and hence v, does not involve s .

E'Y’ X’ ]

CoroLLArY 7.6. If A is a homogeneous (G, y)-design, then

Poex = k2 Z gX(g)

yegel

where n, is calculated from any y-block of A.
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Suppose that the design A is binary with respect to y. Then the trace of
CY is equal to |£2|. Since the trace of a matrix is the sum of its eigenvalues,
taking account of multiplicities, Theorem 7.2 shows that

12|
> V*rx";.i.—;’

x € G*

and this is equal to the number of y-blocks divided by the replication
number. This formula provides a useful check when the values v,, are
calculated.

The trivial concurrence matrices may, of course, be written down di-
rectly. If g # 1 then Coe = 0, while ¢,,=r. Thus, for all x in G*,

Vex = X(IC) =1
by Equation (4). On the other band, ¢,, = r2 for all g in G, and k,=1|G} so
.
e 'x(g)

by Equation (6).

ExampLE 7.1. Suppose that £ consists of 54 plots with the following
block structure. There are three o-blocks, each of size 18, and each o-block
consists of, on the one hand, three p-blocks of size 6 and, on the other, three
x-blocks of size 6. Within a o-block, p-blocks and k-blocks are completely
crossed, but the block system formed by the intersections of p- and «-blocks is
not in this block structure; thus if I' = {u, 0, p, x, &}, then (£,T) is a Tjur
block structure which is not an orthogonal block struciure (in the sense of
[14)).

Let G be the cyclic group of order 9, written additively, and let A be the
design generated by GG from the initial o-block shown in Table 7. This design
is homogeneous for every y in I', so we shall use Corollary 7.6 to calculate
the v, . This requires the values of n, for g in G, which are easily calculated
using the information in Table 7. For the nontrivial block systems this is done
by calculating a table of differences from any block of that system, and the
results are given in Table 8.
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TABLE 7
INITIAL 0-BLOCK FOR THE DESIGN IN EXAMPLE 7.1%
0 1 3 4 6 7
2 7 5 1 8 4
3 5 6 8 0 2

*Each row is a pblock, and each pair of
columns is a k-block.

TABLE 8
VALUES OF n, FOR THE DESIGN IN EXAMPLE 7.1
Block "
system g=0 +1 +2 +3 +4
o 36 36 36 36 36
p 6 3 3 6 3
K 6 3 5 3 4

The irreducible characters of G are {x,: h € G}, where
xnlg) =€, € being a primitive 9th root of 1.

The values of »,, are shown in Table 9. For brevity, we write ¢; for the real
number €' + ¢ * for i € {1,2,4}.

TABLE 9
VALUES OF 7, FOR THE DESIGN IN EXAMPLE 7.1
Y Xo X1 X2 & X4
I 1 0 0 0 0
o 1 0 0 0 0
p 1 0 0 : 0
3+e,—¢ 3+te —e 0 3+te —e
“ 36 36 36
€ 1 1 1 1 1

e, =¢' + €& =2cos(27/9)
o = €2+ € = 2cos(47/9)
e, =¢€* + &5 = 2cos (87/9)
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TABLE 10
EFFICIENCY FACTORS FOR THE DESIGN IN EXAMPLE 7.1
a Xo X1 X2 X3 Xa
© 1 0 0 0 0
¢ 0 0 0 0 0
p 0 0 0 1 0
3+e —e 3te —e 3+e —e
K 0 0 —_—
36 36 36
0 33—e te 33—¢ t+e s 33—¢e,+e
¢ 36 36 1 36

With the elements of T in the order p, o, p, &, &, the M&bius function of T
is given by

——0 OO
—_o O oo

1 0

-1 1

M= 0 -1
0 -1

0 1

—o = OO

Thus Theorem 7.3 and Table 9 give the efficiency factors of the design,
which are shown in Table 10.

ExampLE 7.2. In dairy hygiene experiments, different cleaning treat-
ments may be used on the two sides of the milking parlour at each farm, and
treatments are typically changed monthly. This gives the simple orthogonal
block structure

(farms /sides) X months

in the notation of [61]). Label the partitions into farms, sides, months,
farm-months by ¢, o, p, k respectively. Suppose that there are six farms and
four months, so that |Q] = 48. Let G be the Abelian group Z, XZg, written

TABLE 11
INITIAL y~BLOCK FOR THE DESIGN IN EXAMPLE 7.2
00 11
10 01
14 05

04 15
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TABLE 12
VALUES OF N, FOR THE DESICN IN EXAMPLE 7.2

Block "

system g=00 10 03 13 +01 +02 +11 +12
p 12 12 12 12 12 12 12 12
¥ 8 8 4 4 6 4 6 4
o 4 4 0 0 0 2 0 2
K 2 0 0 0 0 0 1 0

additively in the abbreviated notation of [32]. Let A be the design generated
by G from the initial y-block in Table 11, where rows denote months and
columns denote sides. Values of n, are in Table 12.

From [58, Theorem 2.4], the irreducible characters of G are

{Xhlh,= hy€Zy,hy € Ze}’
where

Xnphy( 81, 8g) = €3ME1T otz ¢ being a primitive 6th root of 1.

Table 13 shows the values of Ve
With the block systems in the order p, p, ¥, 0, k, &, the M&bius function is

O O e =

SCHHOO -
|

bt et = OO

—_—o O OO

———_—0 oo

_—ooQoOoo

This gives the efficiency factors in Table 14.

TABLE 13
VALUES OF 7,, FOR THE DESIGN IN EXAMPLE 7.2
Y Xoo X10 Xos X13 Xo1 Xoz X11 X2
M 1 0 0 0 0 0 0 0
p 1 0 0 0 0 0 0 0
v 1 0 0 0 & o 0 0
o 1 0 1 0 1 1 0 0
K 1 0 0 1 2 1 1 2
€ 1 1 1 1 1 1 1 1
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TABLE 14
EFFICIENCY FACTORS FOR THE DESIGN IN EXAMPLE 7.2
a Xo0 X10 Xo3 Xi13 Xo1 Xoz2 X11 X12
P 1 0 0 0 0 0 0 0
) 0 0 0 0 0 0 0 0
Y 0 0 0 0 X + 0 0
g 0 0 1 0 % < 0 0
K 0 0 0 i 1% 1% : 2
€ 0 1 0 0 & < 3 1

In Example 7.2 the efficiency factors are all rational, and this is a
consequence of the remark at the end of Section 6. In general, if ¢ divides 12,
then the G-homogeneous decomposition given in Theorem 6.1 is identical to
that obtained from the group block structure on G defined by the complete
subgroup lattice I'" of G. The matrices (Q, ), e« of orthogonal projection
onto the spaces (W,),cc+ are thus obtained as in Equation (2) from
blocks-averaging matrices on G X G by means of the Mobius function of T";
they thus have rational entries. Similarly, the information matrices (L,), e 4
have rational entries. Now the efficiency factor A, is a rational multiple of
the trace of L,Q,, and so it is rational.

Finally, we show how the results of this section specialize to give the

results of [7] and [32].

DerFiniTioN.  The treatment subspace W, is totally confounded in stra-
tum &, if A, =1

DeriniTion. If H is a subgroup of the Abelian group G, then the
annihilator H® of H is defined by

H°={xeG*:x(h)=1forall hin H) (see [7])-

THEOREM 7.7. Suppose that (2,1,G,¢) is a homogeneous (G,y)-
design. Let b be one of the initial y-blocks, and suppose that b has multiset
K. Let H be the stabilizer in G of K, and let N be the group generated by all
quotients tu™ ' for treatments t, u such that K(t)K(u) > 0. Then

(i) N°c HY;
(ii) if x €NO then v, =1;
(iii) if x &€ HC then v, =0.

rX
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Proof. (i): The multiset K is constant on each coset of H in G (compare
this with [32, Theorem 1], where H is defined to be the largest subgroup with
this property and then effectively proved to be the stabilizer of K). If Hg is
any coset of H in G, then {tu™':t€ Hg and u€ Hg} = H. Thus HC N.
Taking annihilators reverses inclusion, so N° ¢ H.

(ii): If g & N then n, = 0. Thus

Vox = k2 Z gX(g)

Y gEN

If x € N° then

Y nx(g)= X ng= ) ng=k}
geN gEN geC
and so »,, = 1.
(iii): Since K is constant on cosets of H, the value of n, depends only on
the coset of H containing g, and so »,, is a multiple of ¥, ., x(h). If
x & HP, then the restriction of x to H is not the principal character of H, so

Equatlon (6) shows that ¥, ¢ g x(h) =0, and so »,, = 0. [ ]

Since the annihilator H® is naturally isomorphic to the dual of the
quotient group G /H [42, Section V.6], there is another way to view part (iii)
of Theorem 7.7. If the block stabilizer H is a nontrivial subgroup of G, then a
G-design may be constructed in two stages: first a design for |G|/|H|
treatments is generated using G /H; then each treatment is replaced by |H|
new treatments. All contrasts within cosets of H are orthogonal to y-blocks,
and the efficiency factors for the contrasts between cosets of H are the same
as those for the original design on G /H,

Part (ii) of Theorem 7.7 has a similarly straightforward interpretation,
because the contrasts between cosets of N are totally confounded (or possibly
superconfounded, in the sense of [7]) with y-blocks.

In some Abelian group designs (for example, [51, 31, 7]) there are
subgroups (H,),cr of G with the following property: if b is any y-block,
then there is some coset H g of H_ such that the multiset of b consists of a
number of copies of H, g. In this case H, =N, for all y in T, where N, is
defined like the subgroup N in Theorem 7 7. Hence

: 0
v,,(={1 if xeH?,
0 otherwise.

It follows that, in such designs, every treatment subspace W, is totally
confounded in some stratum.
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