
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Bailey, R. A. and Rowley, C. A. 1990. General balance and treatment 

permutations. Linear Algebra and its Applications. 127, pp. 183-225. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1016/0024-3795(90)90343-B

The output can be accessed at: https://repository.rothamsted.ac.uk/item/865q9/general-

balance-and-treatment-permutations.

© 1 January 1990, Elsevier Science Inc.

25/10/2019 14:46 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1016/0024-3795(90)90343-B
https://repository.rothamsted.ac.uk/item/865q9/general-balance-and-treatment-permutations
https://repository.rothamsted.ac.uk/item/865q9/general-balance-and-treatment-permutations
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


General Balance and Treatment Permutations 

R. A. Bailey 
Statistics Department 
Rothamsted Experimental Station 
Harpenden, Herts, AL5 Z./Q, U.K. 

and 

C. A. Rowley 
Mathematics Faculty 
The Open University 
Walton Hall 
Milton Keynes, MK7 6AA, U.K. 

Submitted by George P. H. Styan 

ABSTRACT 

Many equi-replicate designs, whether ordinary block designs or multi-stratum 
designs, have a structure which is left unchanged by a group G of permutations of the 
treatments. This group G is often used in the construction of the design. A survey of 
the properties of such designs is given, and useful necessary conditions on G are 
found for such a design to be generally balanced. If G is Abehan, then the necessary 
conditions are satisfied: in this case explicit formulas for the efficiency factors are 
given. 

1. INTRODUCTION 

The importance and utility of the property of general balance in a 
designed experiment have been explicated by Houtman and Speed [41] and 
Nelder [62]. It is thus not surprising that most designs in common use, and 
many that arise from the large number of constructions available in the 
literature, are generally balanced. In this paper we shall show that certain 
symmetry conditions on the design imply general balance and that, therefore, 
certain methods of construction will always produce generally balanced 
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designs. As Houtman and Speed showed, if a design has only a single 
partition of the plots into blocks, then the design will be generally balanced 
no matter what allocation of treatments is used. Although our methods shed 
further light on such designs, we are principally concerned with more 
complex designs, in particular those with a Tjur block structure. 

Section 2 introduces general balance, and Section 3 describes, with 
examples, the important role which groups of symmetries play in many 
designs. This role is developed further in Section 4, whilst Section 5 uses the 
theory of group characters to give an important and useful criterion on the 
group of symmetries which guarantees that the design is generally balanced. 
The particular case of generalized cyclic designs (in the sense of [49]), in 
which the group is commutative (Abelian), is treated (independently of 
Section 5) in the final two sections of the paper. For this case we give 
explicit, practical formulas for the efficiency factors and projection matrices 
needed to analyse designs of this type. Concepts from permutation-group 
theory, such as transitivity, which are used without comment can be found in 
the first chapter of [81], whilst those from linear algebra are in [37]. 

2. GENERAL BALANCE 

We start with a definition (from [41]) of general balance which is so 
general that it does not even require a block structure. Let Q be a set of plots. 
Let @ (IE *Ya be an orthogonal direct-sum decomposition of the real vector 

space R”, and let S, denote the matrix of the orthogonal projection onto 9,. 

Let (YJ~~Q be random variables and suppose that Cov(y) = C,, *taSrr, 
where the S, are as above and are known, but the E, may be unknown (see 
[8, 611). The subspaces Y& are called strata, and the matrices S, are called 
stratum projection matrices. 

Let T be a set of treatments. Suppose that treatments are allocated to 
plots according to a map +: Q + T whose dual is represented by the Q x T 
design matrix X: thus the (w, t) entry of X is defined by 

X(w,t)= 
1 if $(o)=t, 

0 otherwise. 

Suppose further that there is a positive integer T (called the replication) such 
that I+-‘(t)l= r for all t in T. 

In this paper a design is a quadruple (a, { 9, : a E A }, T, @) with the 
properties listed above. In particular, all the designs are equireplicate. 
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For each (Y, denote by L, the matrix X’S,X, which is the informution 
matrix for the stratum Y&. Suppose that ej E, Wj is a direct-sum decomposi- 

tion of RT (not necessarily orthogonal). In [62, 631 Nelder defined a design 
to be generally balanced with respect to CB.= W. if, for all 
j in J, the space W. is a subspace of an &g&ace of L,. 

(Y in A and all 

eigenvalue Xaj of T -‘l 
He called the 

L, on Wj the efficiency factor for Wj in stratum Y&, 
andshowedthatO<h,j<landC,,Ahaj=lforall jinJ. 

A design is generally balanced if there exists a decomposition of RT with 
respect to which it is generally balanced; in this case there is a unique 
coarsest decomposition of RT with respect to which it is generally balanced. 
The subspaces in this decomposition are all the nonzero intersections of the 
form n ME AEr*, where E, is an eigenspace of L,. This decomposition is 
coarsest in the sense that any other decomposition with respect to which the 
design is generally balanced may be obtained by further decomposing one or 
more of the spaces therein. 

More simply, a design is generally balanced if and only if there is a basis 
of RT whose elements are eigenvectors of every information matrix. We 
therefore make the following definition. 

DEFINITION. A set of real matrices is cospectral if there is a basis of RT 
whose elements are eigenvectors of every matrix in the set. 

Thus a design is generally balanced if and only if its set of information 
matrices is cospectral. However, it is difficult to test, in general, whether a set 
of matrices is cospectral; so in Theorem 2.2 we give a useful and simple test 
for general balance. We first need the following definition and lemma, which 
proves the theorem. 

DEFINITION. A set of matrices is commutative if every pair M, N of 
matrices in the set commutes (that is, MN = NM). 

LEMMA 2.1. A set of diagonalizuble matrices is commutative if and only 
if it is cospectral. 

Proof. See the proof of Theorem IV.7 of [44] or the results in Sections 
1.49-50 of [82]. n 

THEOREM 2.2. A design is generally balanced if and only if the set of 
information matrices (L,), E A is commutative. 
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In an ordinary block design there is a single nontrivial partition, p, of 52 
into equal-sized blocks; the two trivial partitions are E, whose blocks are the 
singleton plots, and p, whose only block is the whole of !J. There are three 
strata: YP consists of constant vectors; Ys and Ye are the interblock and 
intrablock strata, respectively. Thus A = { ~1, p, E}, and the three information 
matrices can be calculated as follows: 

L, = m-l./, 

Lg = k-W - m-1J, 

L,=rI-k-‘C, 

where n = (T 1, k is the size of each block, Z is the n x n identity matrix, J is 
the n x n all-Is matrix, and C is the concurrence matrix. Because C has 
constant row and column sums, these three information matrices commute. 
Thus all ordinary block designs are generally balanced; this proof is essen- 
tially the same as that given in Section 5.4 of [41], where the authors go on to 
point out that this result gives no help whatever in finding the relevant 
decomposition of RT. However, for the class of designs we consider in this 
paper, we shall give this decomposition in a very explicit form. 

Moreover, our results apply to a richer class of structures, those defined 
by Tjur [80, Section 41. A Tjur block structure is a semilattice r of partitions 
of Gl (called block systems on St), with various conditions on I. Each 
partition y is into equal-sized blocks of size k,; and I contains the trivial 
partition E (singletons). (Most Tjur designs in practical use also include the 
other trivial partition p.) The remaining conditions imposed by Tjur on I are 
designed to ensure that I indexes a particular orthogonal direct-sum decom- 
position eY E r 9, of R”: the construction of its projection matrices is given 
in the next paragraph. 

Each partition y defines a blocks-averaging matrix B,, on 52 X ii?: the 
(0, 6) entry of B, is k;’ if w and 0 are in the same y-block; otherwise it is 
zero. Denote by CY the matrix k,X’B,X, which is the concurrence matrix for 
the block system y. We define a map .z : r x I? -+ { 0, 1) by 

z(v,a)= 
1 if (Y nests y (that is, each y-block is contained in an a-block) , 

0 otherwise. 

Then the matrix 2 = [z(y, a)] has an inverse M (see [3, Chapter IV] and 
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1771) and 

where M = [ m( y, a)]. (The function m is the Mobius function of the semilat- 
tice I.) 

We call a design (G,{~,:cxEA},T,+) a Tjur design if A can be 
identified with the semilattice P of a Tjur block structure in such a way that 
the stratum projection matrices (S,),, A are precisely those given by Equa- 
tion (2). We shall abuse our notation slightly and write such a Tjur design as 
(52, I’, T, +). The class of Tjur designs includes most of the equireplicate 
designs in practical use or in the literature. This is because the class of Tjur 
block structures includes many, possibly all, of the classes of block structures 
studied by the other authors: for example, the simple orthogonal block 
structures [61], the poset block structures or distributive block structures [77, 
9, 11, 161, the orthogonal block structures [77, 141, the complete balanced 
response structures [79, 551, and the group block structures [12, 141. 

The above linear relationships, (1) and (2), between the matrices (B,),, r 

and (S,),,r g ive us the following characterization of general balance for Tjur 
designs. 

THEOREM 2.3. A Tjur design is generally balanced if and only if the set 
of concurrence matrices (C,), E r is commutative. 

Proof. Since k;‘CY = X’B,X and L, = X’S,X, Equations (1) and (2) 

give (C,)r E r as linear combinations of ( Ly)rE r and vice versa. Thus the 
concurrence matrices (C,), E r commute with each other if and only if the 
information matrices (L,), E r do so. Hence Theorem 2.3 is a corollary of 
Theorem 2.2 n 

3. TREATMENT PERMUTATIONS 

In Section 5 we shall use our characterization of general balance in terms 
of the concurrence matrices of a design (Theorem 2.3) to prove that certain 
symmetry conditions on these matrices are sufficient to ensure general 
balance. These symmetry conditions are best expressed in terms of a group of 
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permutations of the set G of treatments; they make precise the idea that 
these permutations of the treatments do not alter the design (that is, the 
relationship between + and the block structure) in any way which would 
affect the analysis of the design. We shall further show that this general 
balance is with respect to a decomposition of Rr which is determined by the 
group of permutations, and give explicit formulas for the projectors onto the 
subspaces in this decomposition. 

In practice, this group of permutations is often a group of symmetries of 
the inherent structure of the set T of treatments. In this case it is likely ihat 
the design is generally balanced with respect to a decomposition of Rr related 
to this structure; this can greatly aid interpretation of the analysis (see [68, 
Chapter 41). The structure of T may rise naturally from the problem under 
investigation (see Example 5.3 below) or may be an artifice introduced to aid 
the construction of the design as, for example, the use of affine geometries in 
the construction of classical factorial designs (see [20, 211). Such aids to 
construction are the motivation for much of the material in subsequent 
sections of this paper. 

Let G be a group of permutations of the set T of treatments. Following 
[81], we write the image of a treatment t under a permutation g as tg. It is 
then necessary to write the elements of Rr, which are functions from T to R, 
on the right of their arguments (thus, for t in T and z) in Rr, we write tv for 
the “t entry in the vector 0”). Each permutation g of T defines a linear 
transformation Ps of Rr by 

t(oP,) = (tg-l)u for t in T and u in Rr, 

and the map g - Pg is a faithful linear representation of G on Rr (see [73, 
Section 1.2]), which is called the permutation representation of G on R*. The 
matrix of Pg with respect to the natural basis of Rr is the permutation matrix 

for g: the (2, u) entry of this matrix is equal to 1 if tg = u and to 0 otherwise. 
There should be no confusion if this matrix is also denoted Pp. 

DEFINITION. Let G be a group of permutations of a set T of size n. An 
n x n matrix centrakes G if it commutes with the matrices P, for all 
g in G. The set of all (real) matrices which centralize G is called the (real) 
centralizer algebra of G. (See [81, Section 281: although Wielandt calls this 
algebra the centralizer ring.) 

Note that a matrix M commutes with a permutation matrix PC if and only 
if applying the permutation g to both the rows and columns of M does not 
change M. 
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For an ordinary block design, with I = (p., p, E} as in Section 2, Sinha 
[76] defined a design (a, r, T, up) to be simple if there is a transitive group G 
of permutations of T such that L, centralizes G. Since I and J both 
centralize every permutation group G, the design is simple if and only if 
there is a transitive group G which is centralized by all three concurrence 
matrices, Cp, C,, and C,. We want to extend Sinha’s definition to Tjur 
designs, and make it specific to the group G. 

DEFINITION. A Tjur design (Q, I, T, $) is G-central if G is a group of 
permutations of T such that the concurrence matrices (C,),, Er all central- 
ize G. 

Thus a design is G-central if and only if each of its concurrence matrices 
is unchanged by each of the permutations in G, applied to both rows and 
columns, 

Any condition on the permutation group G which ensures that the set of 
concurrence matrices of a G-central design is cospectral will ensure that all 
such designs are generally balanced. The concurrence matrices of a G-central 
design are real symmetric matrices in the centralizer algebra of G. We 
therefore make the following definition. 

DEFINITION. A permutation group G is cospectrd if the set of real 
symmetric matrices in the centralizer algebra of G is cospectral. 

Conditions for a group to be cospectral have been studied in many 
contexts, including other aspects of the design of experiments: see, for 
example, [SO, 38,45, 28, 26,291. One of the major purposes of this paper is to 
describe a property of the permutation group G which is equivalent to its 
being cospectral and which is particularly useful in that it leads to formulas 
for the projectors onto, and dimensions of, the relevant subspaces: these 
formulas can be used to specify an appropriate analysis of variance and 
calculate its efficiency factors, given sufficient information about the 
group G. This property is in fact a condition on the permutation representa- 
tion of the group on Rr, and its description involves the theory of group 
characters: we shall therefore leave this until Section 5. 

We conclude this section with some examples of G-central designs chosen 
to illustrate certain more straightforward properties of the permutation 
group G (including that of being cospectral) and their relationship to the 
general balance of the design. 

EXAMPLE 3.1. Identify T with the symmetric group S,, and let G also 
be equal to S,, with the right regular action on T: that is, t g = tg. We may 



190 R. A. BAILEY AND C. A. ROWLEY 

TABLE 1 
DESIGN FOR EXAMPLE 3.1 

[a a21 [a a’b] 

[u2 11 [a2 abl 
Lb abl [b 11 
[u2b b] [u2b aI 
Lab u2b] [ab a21 

write the elements of T as 1, a, u2, b, ab, a2b, where a3 = b2 = 1 and 
ba = a2b. The design has two block systems, (Y and p, with six o-blocks of 
size 4, each of which contains two B-blocks of size 2: thus 101 = 24. Treat- 
ments are allocated to plots as in Table 1 (where square brackets enclose the 
fi-blocks and rows are a-blocks). With the elements of T in the order given 
above, the concurrence matrices are as follows: 

c, = 

-6 2 2 4 2 0 
262204 
226042 
420622 
204262 

LO 4 2 2 2 6 

‘4 1 1 2 0 0 
141002 

G,114020 
B 200411’ 

002141 
-0 2 0 1 1 4 I 

These both centralize G (this may be checked directly; it also follows from 
Theorem 4.2). However, these two concurrence matrices do not commute 
(check the (Q, 1) entries), so, by Theorem 2.3, the design is not generally 
balanced (nor is G cospectral). Since G is both transitive and regular in this 
case, this example shows that neither transitivity nor even regularity of G 
suffices to ensure general balance of G-central designs. 

By contrast, if G is transitive and Abelian (as is the case in many 
important applications of these methods) then, as we show in Section 7, G is 
cospectral and so general balance is assured. (Note that, for an Abelian 
permutation group, transitivity is equivalent to regularity.) 

EXAMPLE 3.2. If, in Example 3.1, the a-blocks (or the /%blocks) alone are 
considered, then the design is an ordinary block design and is thus necessarily 
generally balanced even though G is not cospectral. This emphasizes the fact 
that the cospectral condition is sufficient for general balance but is not 
equivalent to it. 
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EXAMPLE 3.3 (See [76, Section 2.3(b)(i)]). Suppose that a design is 
G-central and that the group G is 2-transitive on T. Then every matrix in the 
centralizer algebra is a linear combination of the matrices I and J, so G is 
cospectral and the design is generally balanced. This is a rather trivial sort of 
general balance, for the design is now totally balanced (in the usual sense) for 
each block system separately: in other words, each nonzero information 
matrix has eigenspaces W, and Wa’, where W, consists of the constant 
vectors in Rr. See [70, 72, 75, 78, l] for some examples, and general 
constructions, of designs which are balanced incomplete block designs 
(BIBDs) with respect to each block system separately. 

4. GROUP-GENERATED BLOCKS 

The most common way in which G-central designs arise, in practice, is a 
direct consequence of a frequently used method of constructing designs: an 
allocation of treatments to one, or more, initial blocks is first made, and then 
the allocations to further blocks are calculated by applying each permutation 
in G to each initial block. This method was used to construct the design in 
Example 3.1, starting from the two initial fl-blocks { 1, a } and { 1, b }; these 
were combined to give the single initial a-block { 1, a, 1, b }. 

This method of constructing designs has a history which goes back at least 
as far as the cyclic and dicyclic designs in [35, Table XVII]; see also the 
tables in [53]. These tables are for designs with one nontrivial block system, 
as is much of the recent use of this method to construct generalized cyclic 
designs (see, for example, [49, 321). However, some authors have used these 
methods to produce designs with somewhat richer block structures [70, 71, 
30, 40, 75, 4, 78, 1, 2, 52, 36, 431. Another important application of these 
methods is to factorial designs; their use here ranges from the classical work 
[21, 341 for a single nontrivial block system and a prime-power number of 
treatments, to the more recent results [15, 7, 141 in which the block structure 
can be any group block structure and the number of treatments is arbitrary. 
The addition of a pseudofactorial structure to an unstructured set of treat- 
ments enables the methods of construction and analysis for factorial designs 
to be used in a far wider context. 

In fact, Bose [19] seems to have been the first to replace a regular cyclic 
group by a regular general Abelian group in this method of construction. He 
called his method “the method of differences.” Bose and Nair [23] showed 
that this method need not be restricted to balanced designs. Bruck [25] 
extended the method to any regular permutation group. 

The history of the term “generalized cyclic” needs explanation, as it has 
been given two different meanings. In [54, Chapter 131, P. W. M. John 
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described Bose’s method of differences, calling the ensuing designs “cyclic” 
whether or not the Abelian group is cyclic. In [54, Chapter 151 he gave the 
identical construction, but with slightly different notation, and called the 
designs “generalized cyclic” on the grounds that Abelian groups could be 
considered to be a generalization of cyclic groups. J. A. John [49] used 
P. W. M. John’s new terminology and made it widely known. 

In all of the examples that we have mentioned so far in this section, the 
set T of treatments is identified with the group G, which acts regularly on 
itself: for cyclic designs, G is a cyclic group; for dicyclic designs, G is the 
direct product of two cyclic groups; for classical factorial designs, G is the 
additive group of a finite field. These are all Abelian groups, so these designs 
are all, in some sense, special cases of the generalized cyclic designs and 
general factorial designs, in which G can be any Abelian group. 

However, there is another obvious way to generalize the class of regular 
cyclic permutation groups: this is to remove the regularity condition. 
Patterson and Williams [67] and Jarrett and Hall [47, 481 give a construction 
which is somewhat different from the examples mentioned so far but which 
nevertheless follows the pattern outlined at the beginning of this section. 
They identify T with a cyclic group, but they permit G to be a proper 
subgroup of T, so that G is merely a semi-regular group of permutations of 
T; this is equivalent to identifying T with a union of distinct copies of G. 
Jarrett and Hall call their designs “generalized cyclic,” but their construction 
can be used to produce any design by taking G to be the trivial group; 
therefore no new nomenclature is needed for this class of designs, and the 
term “generalized cyclic” could with advantage be restricted to the class of 
designs given by John [49]. This is not to detract from the utility of Jarrett 
and Hall’s method of construction, particularly when ITI/ ICI is small. 

The group-generation method of constructing and describing a design has 
also been much used by mathematicians in their never ending, and recently 
most productive, search for BIBDs (see, for example, [6, 59, 461). 

Before discussing properties of designs constructed in this way we need to 
describe these designs in a way which is based closely on this construction 
method but is sufficiently rigorous to enable precise statements about them to 
be made and proved. 

One example of the need for a rigorous approach is the fact that blocks 
are subsets of Q, so a block may well contain a treatment, or treatments, 
more than once, and two different blocks may have identical allocation of 
treatments. Thus we cannot identify blocks with subsets of T and must take 
some care with our definitions. We represent multiple occurrences of a 
treatment within a block by using multisets [33]: a multiset is just a function 
from T to the natural numbers N which records the number of occurrences of 
each treatment in a given block. Thus if h is a block, then its corresponding 
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multiset is the function Kb: T + N defined by 

K,(t)=l{wEb:$(o)=t}l for t in T. 

The action of the group G on T extends naturally to an action of G on 
multisets by 

Kg(t) ==K(N) forg inG. 

In this action the stabilizer of a multiset K is the subgroup { g E G : Kg = K }, 
and the orbit containing K is the set of distinct multisets Kg, g E G. We 
now need several definitions. 

DEFINITION. Let A be the design (52, r, T, $I). Let y in lY be a block 
system on Q, and let G be a group of permutations of T. The design A is a 
thin (G, y)-design if (i) no two y-blocks have the same multiset and (ii) the 
set of multisets of the y-blocks forms a single orbit of G. 

Let a2 be a subset of Q which is a union of y-blocks. Denote by y’ the 
partition of P into these y-blocks and by E’ the partition of !Z into 
singletons; and let A’ be the design (Q’, { y', E’}, T, (p). The subset Q’ is a 
(G, y )-component of Cl if A’ is a thin (G, y ‘)-design. 

The subset Q” of Q is a homogeneous (G, y )-part of 52 if a” is a maximal 
disjoint union of (G, y)-components which have the same set of multisets. 

The design A is a (G, y )-design if Q is a disjoint union of (G, y)-compo- 
nents. Finally, A is a homogeneous (G, y)design if Q is a homogeneous 
(G, y)-part of itself. 

Less formally, a thin design is one whose blocks are generated from a 
single initial block by applying each element of G in turn to the initial block 
and using all the distinct blocks which arise (so that no two distinct blocks 
have the same treatment allocation). Let H be the stabilizer of the multiset of 
the initial block. When H is nontrivial some authors (such as John [49], 
Jarrett and Hall [47], Dean and Lewis [32]) say that the thin design generated 
by this initial block has a fractional set of blocks, whilst the design which has 
a block for each g in G whether or not the multisets are distinct is said to 
have a fuZZ set of blocks. Since G is a group, in the latter, “full,” design 
every multiset of the thin design occurs as the multiset of exactly 1 H ( blocks, 
so the “full” design is the disjoint union of 1 H 1 identical thin designs and is 
thus a homogeneous design. 

Note that the division of a (G, y )design into homogeneous (G, y )-parts is 
unique, whereas the division into (G, y)-components may not be. 
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DEFINITION. A G-design is a design (Q, l?, T, +) which is a (G, y)design 
for all y in r. 

Having clarified the terminology, we shall now show that a G-design is 
G-central; but this requires some further definitions. 

DEFINITION. Let y E l?. A permutation h of C2 is a y-morphism of the 
design (Q I’, T, +) if, for all o and 8 in fi, 

(i) w, 8 are in the same y-block CJ c?, Bh are in the same y-block; 
(ii) G(w) = G(e) e @(ah) = $(eh). 

A permutation h of Q is an automorphism of the design (a, r, T, +) if it is a 
y-morphism for all y in r. 

Thus any group of y-morphisms acts on T and on the set of y-blocks. 

THEOREM 4.1. Let A be the design (S2, r, T, +), let y E r, and let G be 
a group of permutations of T. Then the following conditions are equivalent: 

to 2 Th 
ere is a group of y-morphisms of A whose action on T is isomorphic 

(ii) The design A is a (G, y)design. 
(iii) There is a group of y-morphisms of A whose action on T is faithful 

and isomorphic to G. 

poof. (i) 3 (ii): Let G^ be such a group of y-moFhisms, and let 
4 : G + G be theAepimorphism induced by the action of G on T. If b is a 
y-block and h E G, then bh is also a y-block, and its mul;iset is Ktch). Let G, 
a?d G, be the stnabilizers of K, in G and of b in G respectively. Then 
G, c $-l(Gb) c G. Let 3’ be the Fnio? of the y-blocks bh for h in G^. Then 
the number of y-blocks in Q’ is [Cl/ IGbl, and their multise:s are the multi- 
sets in the orbit of K,, each occurring l$-‘(Gb)l/lGbl times. Thus 
(a’, {Y’, E’}, T, $) IS a homogeneous (G, y )-design. Since D is the disjoint 
union of such subsets P, the design A is a (G, y )-design. 

(ii) =$ (iii): Suppose that A is a (G, y)-design. Since this implication holds 
for the whole of A provided that it holds (with respect to y’) for each 
component, it suffices to consider the case when A is thin. We need to show 
that there is a faithful action of G on Q as a group of y-morphisms which is 
consistent with the action of G on T. Label each plot w in Q by the triple 
(Kb, G(W), I), where b is the block containing w and 1 is an integer, 
1 < 1~ K*(+(w)), this integer 1 being used to distinguish between the plots 
in a block which have the same treatment. Since A is thin, the multiset K, 
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identifies the block b uniquely, so each such triple labels a unique plot. Let 
g E G; then (Kg, tg, 1) is such a triple if and only if (K, t, 1) is, so we can 
define an action of g on 52 by 

Then g is a y-morphism. Moreover, this defines an action of the group 
G on Q, because 

for g and h in G. This action is faithful, since $(a) = T and a plot cannot be 
allocated two distinct treatments. 

(iii) 3 (i): Obvious. W 

THEOREM 4.2. Suppose that, for some y in r, the design (a, I?, T, $) is 
a (G, y)design. Then the concurrence matrix C, centralizes G. 

Proof. For t, u in T define the subset Q(t, u) of Q x Sl by 

Q(t,u)= {(w,e)E~xX::(w)=t,~(e)=u, 
and w and 8 are in the same y-block} * 

Then the concurrence of t and u in y-blocks is just (Ll(t, u)l. By 
Theorem 4.1, G acts on 0 as a group of y-morphisms. This action thus 
induces an action of G on Q X Q for which 

for all t and u in T and all g in G. Hence the (t, u) and (tg, ug) entries of C, 
are the same for all g in G. Thus C, centralizes G. W 

The converse of Theorem 4.2 is false, as the following example shows. 

EXAMPLE 4.1. Let )Q2) = 21 and IY = {p, y, E}, where y has seven blocks 
of size 3. Let T = {1,2 ,..., 7) and let G, and G, be the cyclic groups 
generated by (1234567) and (1324567) respectively. Let A be the thin 
Grdesign with initial block { 1,2,4} so that A is isomorphic to the projective 
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plan over GF(2). Then C,, = 2Z+ J, so C, centralizes the whole symmetric 
group S, on T: in particular, C,, centralizes G,. But A is not a Gadesign. 

Sinha [76] gives a more extreme counterexample. Let A be any BIBD 
whose automorphism group is trivial, and let G be a nontrivial group of 
permutations of T. Then A is G-central but A is not a G-design. 

On the other hand, Theorem 4.2 shows that every G-design is G-central, 
so the following result is an immediate consequence of the definition of 
cospectral. 

THEOREM 4.3. Zf G is cospectral, then every G-design is generally 
balanced. 

To a combinatorialist or algebraist, it might be more natural to define a 
G-design to be a design which has a group of automorphisms inducing 
G on T. Such a design certainly is a G-design in our sense, and so is 
generally balanced provided G is cospectral. Although most families of 
G-designs which we have seen in the literature do have such groups of 
automorphisms, a G-design does not necessarily possess a group of automor- 
phisms inducing G on T, as the next two examples (one involving crossing 
and the other nesting) show. Thus, being a G-design is a strictly weaker 
property, but it is all that is required of a design to guarantee general balance 
(for cospectral G). 

EXAMPLE 4.2. Let ]a] = n2 and l? = { ~1, p, u, E}, where the pblocks and 
u-blocks respectively are the rows and columns of an n X n array. Let 
T = {1,2,..., n } with $ giving a Latin-square design, and let G be the 
symmetric group S, on T. Then this design is a (G, p)design and a (6, o)- 
design. However, for almost all choices of $I there is no group of automor- 
phisms of the Latin-square design which induces G on T. 

For example, if n = 5, then the Latin square given by 4 lies in one of the 
two transformation sets given in Table XV of [35]. Thus it is isotopic either to 
the square in Table 2 or to the well-known cyclic Latin square: in the former 
case the automorphism group of the design induces on T the alternating 
group A, (of order 12), fixing treatment 1; in the latter case the group 
induced on T is the affine group AGL(1,5) (of order 20). 

EXAMPLE 4.3. Let ]a] = 20 and l= { Z.L, (Y, p, E}, where (Y has five 
a-blocks of size 4, each containing two P-blocks of size 2. Let T = (0, 1, . . . ,4}, 
and let G be the cyclic group on T generated by (0 1234). The design is in 
Table 3 (here square brackets enclose /3-blocks and rows are a-blocks); it is a 
(G, cY)-design and a (G, /?)-design. Its automorphism group acts faithfully 
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TABLE 2 
LATINSQUAREFOREXAMPLE 4.2 

1 2 3 4 5 
2 1 4 5 3 
3 5 1 2 4 
4 3 5 1 2 
5 4 2 3 1 

on T. Although this action is isomorphic to that of the affine group AGL(1,5) 
on T, no element of it acts on T as (01234). Thus there is no group of 
automorphisms of the design whose action on T is that of G. 

It is well known that the concurrence matrix of a thin cyclic block design 
is circulant and that its first row can be calculated from an examination of the 
initial block, without constructing the whole design. Likewise, if G is any 
permutation group, the calculation of the concurrences of a G-design can be 
simplified: our next theorem gives the details. We need two more pieces of 
notation, one for permutation groups and one for multisets. First, for any t, u 
in Q, the subgroup G,, is the pointwise stabilizer in G of t and u. Secondly, 
the usual notion of a tensor product of functions, whose domain is the direct 
product of the domains of the individual functions, gives, for multisets, 

if K, and K, are the multisets of the blocks b, and b, respectively. 

THEOREM 4.4. Let A be a thin (G, y)-design with initial block b. Let K 
be the multiset of b, and let H be the stabilizer in G of K. For each orbit U of 
G on T X T put no = E(K@K)(t, u), the sum being over pairs (t, u) in U. 
Then, for any pair (x, y) in U, the concurrence of x and y in v-blocks is 

equal to nUIG,,l/IHI. 

TABLE 3 
DESIGNFOR EXAMPLE 4.3 

Ii ii 
31 

t,” l] 

t: 31 41 
21 t: O] 

[3 41 [1 21 
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Proof. The number of y-blocks in the design is ]G]/ ]H], and each 
y-block contributes n, concurrences of pairs (t, u) in U. This gives a total of 
n,]G]/ ]H] such concurrences. By the proof of theorem 4.2, all pairs in U 
have the same concurrence. The number of such pairs is equal to ]G]/ ]Gxy], 
so the concurrence of any one pair is (n,]G]/]H])/( ]G]/]G,,]). H 

If I contains a single nontrivial block system p, then the dual of the 
design (a, I, T, +) is defined simply by interchanging the roles of treatments 
and blocks. More precisely, if A = (a, {CL, fi, E}, T, +), then the dual A’ of A is 
(CI, {p, r, E}, T’, +‘), where T’ is the set of P-blocks, r is the partition of Q 
such that each r-block is equal to +-r(t) for some t in T, and the function 
+’ : C? + T’ is defined by 

+‘( w ) = the P-block containing w , for 0 in Cl. 

In [50] John proved that the dual of a thin generalized cyclic design (in the 
weak sense of [47]) is an ordinary cyclic design. The following theorem is a 
more general version of that result; John’s result follows from the fact that 
quotient groups of cyclic groups are themselves cyclic. 

THEOREM 4.5. Let A be a Gdesign (Cl, {IL, p, E}, T, +), and let A’ be the 
dual of A, with A’ = (a, {p, r, E}, T’, $I’). Then there exists a group G’ of 
permutations of T’ such that 

(i) A’ is a G’design; 

(ii) G’ is abstractly isomorphic to a quotient group of G; 
(iii) if A is a thin (G, y)design, then G’ is transitive on T’. 

Proof. It is immediate from the definition of y-morphism that a permu- 
tation g of CI is a /?-morphism of A if and only if it is a r-morphism of A’. 
By Theorem 4.1 [(ii) 2 (iii)], there is a faithful action of G on D as a group of 
P-morphisms of A. Let N be the intersection of the stabilizers in G of all the 
/3-blocks. Then N is a normal subgroup of G, and the action of G on T’ is a 
faithful action of the quotient group G/N. Put G’ = G/AT. Then Theorem 
4.1 [(iii) * (ii)] shows that A’ is a (G’, r)design. If A is a thin (G, p)-design, 
then G is transitive on T’ and so G’ is transitive on T’. n 

Note that, even if G is the largest permutation group on T such that A is 
a G-design, the group G’ may not be the largest such group for T’ and A’. 
For example, if p is the number of (G, p)-components in the homogeneous 
(G, p)-design A, then there is a transitive action of G’ X S, on T’ such that A’ 
is a (G’XS,, ~)design. 
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We conclude this section with a few remarks about the relationship 
between general balance and partial balance for G-designs. For each orbit U 
of G on T X T, let A, be its T X T adjacency matrix: the (t, u) entry of A, 
is defined by 

A&, u) = 
1 if (t,u)W, 

0 otherwise. 

These adjacency matrices span the centralizer algebra of G [17, Theorem 
11.1.31. If they are all symmetric (a condition that has been termed generous 
transitivity of G by Neumann [64]), then the A, form an association scheme. 
Hence Theorem 4.4 shows that each of the designs (52, {p, y, E}, T, +), for y 
in I’, is a partially balanced design in the sense of [24], and (a, I, T, +) is 
partially balanced in the extended sense of [41]. Hence (Q, I’, T, +) is 
generally balanced, the common eigenspaces of the concurrence matrices 
being the eigenspaces well known to be common to all partially balanced 
designs with that association scheme [22, 17, 131. Shah [74] pointed out that, 
because concurrence matrices are symmetric, the conditions for an associa- 
tion scheme could be slightly weakened without destroying any of the 
essential features of partial balance. So long as G is cospectral, the matrices 
A, + A’” do satisfy the weaker conditions of Shah, and such G-designs 
behave much like partially balanced designs. 

5. THE PERMUTATION CHARACTER 

In this section we return to our study of conditions on G which ensure 
that all G-central designs are generally balanced. Although, as we mentioned 
before, such conditions have been studied by many authors, to our knowledge 
no one has stated and proved exactly the result which we feel has the most 
practical significance for experimental design, so we shall do this in Theorems 
5.4 and 5.5. 

The statements of these results involye concepts from the theory of linear 
representations of a general finite permutation group. However, the special 
case in which G is a regular Abelian group is treated independently in 
Sections 6 and 7. Thus the reader whose interest is confined to generalized 
cyclic designs may omit this section, as none of the subsequent material, not 
even that in Section 6, depends on it in any way. 

We need to consider linear representations of G over both the real and 
complex fields, R and C, so we let F denote a field, which may be either 
R or C. 
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DEFINITION. Suppose that there is a linear representation of the group 
G on a vector space V over F, and that W is a subspace of V. Then W is 
Ginvariant (with respect to this representation) if every element of G 
maps each vector in W to another vector in W. Further, W is G-irreducible if 
W is nontrivial and G-invariant but no nontrivial proper subspace of W is 
G-invariant. The linear representation is said to be irreducible if V is 
G -irreducible. 

THEOREM 5. i. If C is a real symmetric matrix in the centralizer algebra 
of the group G of permutations of the set T, then 

(i) RT is a direct sum of the eigenspaces of C and 
(ii) every eigenspace of C is G-invariant. 

Proof. Since C is symmetric, (i) is a standard result of linear algebra. Let 
W be an eigenspace of C with eigenvalue A. Let w E W and g E G. Then 

( wP,)C = wCP, (because C commutes with P,) 

= (Xw)Pg 

=X(wP,) 

and so wPg E W. This proves (ii). n 

Maschke’s theorem [58, Section 1.61 shows that every eigenspace of the 
matrix C in Theorem 5.1 is a direct sum of G-irreducible subspaces. If we 
can show that RT has a unique decomposition as a direct sum of G-irreduci- 
ble subspaces, then each of these irreducible subspaces must be contained in 
an eigenspace of C for every concurrence matrix C: thus the set of concur- 
rence matrices will be cospectral and the design will be generally balanced. 
The existence of a unique such decomposition can be decided by examining 
the permutation character of G, which is the function v: G -+ R defined by 

m(g)=l{tET:tg=t}j forg inG. 

The characters of a finite group are the “calculus” of its linear representation 
theory, because they reduce many matrix problems to manageable calcula- 
tions with complex numbers. Ledermann [58] provides a good introduction to 
the character theory of finite groups; however, none of the elementary texts 
includes all the results we need. Indeed, we have been unable to find our 



GENERAL BALANCE AND TREATMENT PERMUTATIONS 201 

main result (Theorems 5.4 to 5.6) in any textbook; we shall therefore give a 
brief introduction to the necessary parts of character theory here. 

DEFINITION. An F-character of the group G is the trace of a linear 
representation of G on a vector space over F: a character is thus a function 
from G to F. The character of an irreducible linear representation is said to 
be F-irreducible. An inner product ( , ) is defined on characters by 

It follows straight from the definition that, if x is any F-character and 1 is 
the identity element of G, then x(1) is the trace of the identity matrix and so 
is equal to the dimension of the corresponding vector space. 

EXAMPLE 5.1. 

1. The permutation character is the character of the permutation repre- 
sentation g t-$ Pg; it can be thought of as an R-character or as a C-character. 

2. For every field F, any group G has a principal character x0, defined 

by 

x0(g) =I forall g in 6; 

it is always irreducible. 
3. The C-irreducible characters of an Abelian group G are simply the 

group homomorphisms from G into the multiplicative group of C. Further 
details are given in Section 6. 

4. If x is a C-character of G, then so is X, where X is defined by 

ri(g) = x(g) forg in G. 

Moreover, 2 is irreducible if and only if x is. 

The following fundamental result, due to Frobenius, establishes the 
importance of the irreducible characters (see [58, Sections 2.1-2.21). 

THEOREM 5.2. For any finite group G, there are only a finite number of 
F-irreducible characters, and every F-character of G is the sum of these. 
These irreducible characters form an orthogonal basis, with respect to ( , >, 
for the subspace of FG spanned by all the F-characters of G. Zf F = C, then 
this basis is orthonormal. 
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The C-irreducible characters of a group are usually displayed in a 
character table, such as Tables 4 and 5 below (see [58, Section 2.31). The 
practical utility of the results in this section depends on knowing the 
character table of G. Now, the calculation of the character table of an 
arbitrary group can be an extremely lengthy computation. However, those 
groups G for which G-central designs are used or proposed appear largely to 
be groups whose character tables either are already known or can be easily 
calculated from those which are known. 

Let I, be the set of F-irreducible characters of G. Since we may regard 
the permutation linear representation of G as being on either RT or Cr, 
Theorem 5.2 shows that 

r= C n!Jx, where nF _ CT7 x) 
x E 1, x (x,x>’ 

The number n: is a nonnegative integer called the multiplicity of x in r. 
The permutation character is said to be F-multiplicity-free if n: E (0,l) for 
all x in I,; that is, no irreducible character appears more than once in the 
sum. 

Serre [73, Section 2.61 gives an important decomposition of CT. A slight 
modification of his Proposition 6 gives a result in a form applicable to both C 
and R, which we now state. (In [5], Andersson also states part of this theorem 
with F = R.) 

THEOREM 5.3. There are orthogonal G-inoariant subspaces (V,), E ,F of 
FT called the G-homogeneous subspaces of FT, such that: 

(i> FT= eXEIF V, (this decomposition is called the G-homogeneous 

decomposition of F T ); 
(ii) dim(V,) = n! x(l), w h ere 1 is the identity element of G; 
(iii) if W is any G-irreducible subspace of FT, then there is some x in I, 

such that W G V,, the character of the restriction to W of the permutation 
linear representation of G is x, and therefore dim(W) = x( 1); 

(iv) the matrix of orthogonal projection onto V, is 

x0) c rzk)Pg; 
IGl(x* x> gsc 

(v) the subspace V, is G-irreducible if and only if n: = 1; if n: > 2, then 
there is no unique decomposition of V, into G-irreducible subspaces. 
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Since the concurrence matrices are real symmetric matrices, we need to 
describe the G-homogeneous decomposition of R* in the case when G is 
cospectral. The results we need are summarized in the following portmanteau 
theorem. 

THEOREM 5.4. Let G be a group of permutations of a set T. Then the 
following conditions are all equivalent: 

(i) G is cospectral; 
(ii) the set of symmetric matrices in the real centralizer algebra of G is 

commutative; 
(iii) the set of diagonalizable matrices in the real centralizer algebra of G 

is commutative; 
(iv) the permutation character VT is R-multiplicity-free; 
(v) the G-homogeneous subspaces of RT are G-irreducible; 
(vi) RT has a unique decomposition as a direct sum of G-irreducible 

subspaces; 
(vii) every G-homogeneous subspace of RT is contained in an eigenspace 

of every diagonalizable matrix in the real centralizer algebra of G; 
(viii) the set of diagonalizable matrices in the real centralizer algebra of 

G is cospectral. 

Proof. Theorem 5.3 shows that conditions (iv), (v), and (vi) are equiva- 
lent. By Lemma 2.1, conditions (i) and (ii) are equivalent, as are conditions 
(iii) and (viii). We shall prove that (ii) * (vi) j (vii) * (viii) * (ii). 

(ii) * (vi): Let W be a G-invariant subspace of RT, and let Q be the 
matrix of orthogonal projection onto W. It is straightforward to check that Q 
is in the centralizer algebra of G. 

If condition (vi) is false, then there are G-irreducible subspaces W,, We of 
RT such that W, n W, = (0) but W, and W, are not orthogonal to each 
other. Let Qr and Qs be the matrices of orthogonal projection onto W, and 
W, respectively. Then Qr and Qs are symmetric matrices in the real 
centralizer algebra of G, but [37, Section 761 shows that Qi and Qa do not 
commute with each other. Thus condition (ii) is false. 

(vi) 3 (vii): Let C be a diagonalizable matrix in the real centralizer 
algebra of G. Then Rr is a direct sum of the eigenspaces of C, each of which 
is G-invariant, by Theorem 5.1. This decomposition of RTmust therefore be 
coarser than the unique decomposition into G-irreducibles, whose compo- 
nents are precisely the G-homogeneous subspaces. Therefore every G-homo- 
geneous subspace is contained in an eigenspace of C. 

(vii) * (viii): Obvious. 
(viii) = (ii): Symmetric matrices are diagonalizable, so (viii) implies (i), 

which is equivalent to (ii). n 
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Theorem 5.4 gives us conditions equivalent to G being cospectral. In 
conjunction with Theorem 5.3, it also gives formulas for the relevant projec- 
tors and dimensions in terms of the R-irreducible characters. However, we 
feel that criteria and formulas couched in terms of the R-irreducible charac- 
ters of G are not very useful in practice, since character tables almost always 
show the C-irreducible characters of G; this is partly because the latter can 
be easily identified as being those characters x for which (x, x) = 1. 

Thus we shall modify Theorem 5.3 to describe a G-invariant decomposi- 
tion of RT in terms of the C-irreducible characters of G and show that if G is 
cospectral, then all G-central designs are generally balanced with respect to 
this decomposition. This can be done using the following important classifica- 
tion of C-irreducible characters into three types (see [73, Sections 12.1, 12.2, 
13.41). 

A C-irreducible character of G is: 

compler if there is an element g of G for which x(g) is not real; 
reul if it is realizable as the character of a linear representation of G on a 

real vector space; 
quaternionic otherwise. 

The type of a character can in fact be readily calculated from the character 
table of G, because 

; s;cx(gs) = I 
0 if x is complex, 

+l if x is real, 
I -1 if x is quatemionic. 

The set of complex C-irreducible characters is a disjoint union of two 
equinumerous sets I, and I,,, such that x E I, if and only if X E I,,. Let I, 
and I, be the sets of real and quatemionic C-irreducible characters respec- 
tively. Serre [73, Section 3.21 shows that there is a bijection 

f: I, u I, u I, -3 I, 

given by 

I 
x+X if XEZC> 

f(x> = x if xEZ,> 
2X if xEZq. 
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Moreover, since 71 is the character of a real representation, 

I nc if 

4x, = 

X XEIcUI,, 

in: if x E 1,. 

Let us say that the C-irreducible character x of G is Andecomposable if 

$,) E {@l>. 
The formulas in the following theorem now follow directly from those in 

Theorem 5.3. 

THEOREM 5.5. 

(i) The G-homogeneous subspaces of RT are Wx for x in I, U I, U I,, 
where the matrix Qx of orthogonal projection onto Wx is given by 

Moreover, 

dim( W,) = 
: 

2nzx(l) if x EZc, 

n: x(1) if XEZrUZq. 

(ii) Zf W is any G-irreducible subs-pace of RT, then there is some x in 
I, U I, u I, such that W c W, and dim(W) = d,x(l), where 

d, = 
1 if x E I, 

2 if xEZcUZq. 

We have now introduced all the terminology required to state the 
following widely applicable theorem, whose proof follows directly from 
Theorems 5.4 and 5.5. 

THEOREM 5.6. The permutation group G is cospectral if and only if 
every C-irreducible character of G is r-indecomposable, where T is the 
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TABLE 4 
CHARACTER TABLE OF s, 

1 a,a2 b, ab, a2b 

x0 1 1 1 

Xl 1 1 -1 

XZ 2 -1 0 

7r 6 0 0 

permutation character of G. Moreover, if G is cospectral, then all G-central 
designs are generally balanced with respect to the G-homogeneous decompo- 
sition of RT. 

McLaren stated part of Theorem 5.6 in [60]. He defined the set of real 
symmetric matrices in the centralizer algebra of G to be properly constrained 
by G if the permutation character 7r of G is R-multiplicity-free. 

EXAMPLE 5.2 (Example 3.1 revisited). Let T and G be as in 
Example 3.1. The character table of S, is shown in Table 4: the permutation 
character 7~ of G can be decomposed as r = x0 + x1 +2x2. Since xZ is a real 
character, this shows that G is not cospectral, and so G-central designs may 
not be generally balanced, as Example 3.1 shows. 

EXAMPLE 5.3. Suppose that the treatments consist of the ten genotypes 
of some plant obtained by crossing all pairs of five pure parental lines, but 
omitting self-crosses and ignoring the gender of the parents. Then we may 
identify T with the set of unordered pairs from { 1,2,3,4,5}. Suppose further 
that there are two plants per block, there being one block for each pair of 
genotypes with no parental lines in common. Then ]Q] = 30, and the treat- 
ment concurrence graph [66, 651 is the Petersen graph (see [39, Chapter 91 or 
[69]) shown in Figure 1. Let G be the symmetric group S, in its action on 
unordered pairs, and let r be the corresponding permutation character. A 
fragment of the character table of S, is shown in Table 5 (using the usual 
notation for the conjugacy classes, which is given in [58]): the decomposition 
of 77 is 7r=xxo+xr+xz. 

For i in { 1,2,3,4,5}, define the element oi of Rr by 

tv,= 1 if iEt, 
t i 0 otherwise. 

Let W, and W be the subspaces of R* spanned by v,+ v,+ . .. + vs and 
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FIG. 1. The Petersen graph. 

{pi, ~a, os, u4, 0s) respectively. Then it can be shown that the characters 
x0, xi, xa are all real and that the corresponding S,-homogeneous subspaces 
of RT are W,, W,, W,, where W, = W n Wt and W,, = W’. The decomposi- 
tion W, @ W, @ W, is very strongly related to the natural structure of T. 
Since T is R-multiplicity-free, the design is generally balanced with respect to 
this decomposition. 

This example may be generalized: whatever the number of pure parental 
lines, any block design for which the concurrence of two genotypes depends 
only on how many parental lines they have in common is generally balanced 
with respect to a decomposition analogous to the one above. In [76, Section 
2.3(b)(ii)], Sinha has observed that all such designs are simple in his sense. 

Even if G is not cospectral, the analysis of the permutation character in 
terms of the C-irreducible characters of G is still useful. A design may be 

TABLE 5 
F’RAGMEWr OF THE CHARACTER TABLE OF s, 

1 2 22 3 2.3 4 5 

x0 1 1 1 1 1 1 1 
Xl 4 2 0 1 -1 0 -1 
X2 5 1 1 -1 1 -1 0 
x3 6 0 -2 0 0 0 1 

zj 20 10 4 6 2 0 2 1 0 1 0 0 0 0 
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known to be generally balanced from other considerations (for example, an 
ordinary block design). Then the common eigenspaces of the concurrence 
matrices are direct sums of G-irreducible subspaces. Part (ii) of Theorem 5.5 
shows that these G-irreducible subspaces may be found by examining each 
G-homogeneous subspace separately, rather than by examining the whole 
of RT, and shows what dimensions these G-irreducible subspaces have. In 
particular, if x is r-indecomposable, then Wx is itself contained in the 
common eigenspaces of the concurrences matrices. Thus Theorem 5.5 can 
still help in the task of finding a decomposition of Rr with respect to which 
the design is generally balanced, even though this decomposition may not be 
entirely determined by G. 

EXAMPLE 5.4. Let T and G be as in Example 3.1. Let W,, W,, W, be 
the G-homogeneous subspaces of RT corresponding to x0, x1, xZ respec- 
tively: then W, is spanned by (I, l,l, l,l, l), W, is spanned by (l,l, l,- 1, 
-l,-l),and Wz=(WO@ W,)‘. 

Consider the class of all ordinary block designs which are G-central. Since 
each of these designs has a single nontrivial block system, they are all 
generally balanced. The irreducible characters x0 and x1 are m-indecom- 
posable, so the G-homogeneous spaces W, and W, are eigenspaces of the 
concurrence matrices of all these designs. However, the space W, is, in 
general, a direct sum of two 2dimensional eigenspaces, and these summands 
are, in general, different for different designs. 

In particular, consider the designs A1 and A,, where A, consists of the 
/3-blocks in the right-hand column of Table 1, and A, is the design in Table 6, 
in six blocks of size 2 (this design was given, in a different form, in [74]). The 
design Ar is generally balanced with respect to the decomposition 

and A, is generally balanced with respect to 

where W, isspanned by(l,- l,O,l,O,--l)and(l,l,-2,1,- 2,1), W4=WSn 

WS1, W,l isspannedby(2,-l,-l,-fi,O,fi)and(O,&,-6,-1,2,-l), 

TABLE 6 
DESIGN A, IN EXAMPLE 5.4 

u bl [a 
P bl [a 
[1 abl [a 

a2b] ia2 
a2b] [a2 

bl [a2 

abl 
abl 

a2b] 
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and Wl=W2nWil. There is no decomposition of RT with respect to 
which both A1 and A, are generally balanced. 

EXAMPLE 5.5. It is instructive to compare Example 5.3 with a diallel 
example like those of [45], where the parental genders are distinguished. Thus 
IT 1 = 20 in this case. The permutation character 7~’ of S, in its action on 
ordered pairs (omitting self-pairs) has decomposition 

“‘=x0+2x1+x2+x3 

(these irreducible characters are shown in Table 5). 
For i, j in {1,2,3,4,5} define the vectors xij, yij, zij, oi, wi by 

trij = 
i 

1 if t=(i,j), 

0 otherwise; 

yij = xii + xii; 

zij = xii - xii; 

Di = xxii; 

wi = cxji. 

Let Y, Z, V, W be the subspaces of RT spanned by 

It can be shown that the S5-homogeneous subspaces of RT corresponding to 
x0, xi, xs, x3 are W,, W,, W,, Wa respectively, where W, consists of the 
constant vectors, W,=(V+W)nWk, Ws=Yn(V+W)l, and Ws=Zf’ 
(V + W)‘. The spaces W,, W,, Wa are common eigenspaces of the concur- 
rence matrices of every Ss-central design with treatment set T; in general, 
W, is a sum of two 4dimensional eigenspaces. The two spaces W, and W, 
have a natural interpretation, because Wa consists of all contrasts which are 
symmetric in the parental genders and orthogonal to each parent, while W, 
consists of all contrasts which are antisymmetric in the parental genders and 
orthogonal to each parent. 

If G is not transitive, then the multiplicity of the principal character x0 is 
greater than 1. Since the principal character is real, this shows that G is not 
cospectral. Recall that, for an Abelian group, transitivity is equivalent to 
regularity. [58, Sections 2.2 and 2.41 shows that, if G is a regular Abelian 
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group, then n: = 1 for all x in I,. Hence we obtain the following theorem, 
which will also be proved in Section 7 independently of the results of the 
present section. 

THEOREM 5.7. Zf G is a regular Abelian group, then all G-central 
designs are generally balanced with respect to the G-homogeneous decmpo- 
sition of RT. 

6. CHARACTERS OF ABELIAN GROUPS 

In this section we introduce some results concerning the irreducible 
characters of an Abelian group and their relationship to the regular represen- 
tation of the group; it is, however, completely independent of Section 5. 
These results will be used in Section 7 to prove an important result: that, if G 
is an Abelian group, then any G-design is generally balanced. So, from now 
on, G will always be a finite Abelian group acting regularly on T, which will 
be identified with G; the resulting G-design is called an Abelian group 
design. 

An irreducible character x of G is a nonzero map x : G -+ C such that 
x(g)x(h) = I for all g, h in G. Under the pointwise multiplication 
defined by 

(x1x2)(g) = xi(g>xs(g> forallg inG, 

the irreducible characters form a group, the dual group G* of G, and G* is 
isomorphic to G. The identity element of G* is the principal character x0 
of G defined by x0(g) = 1 for all g in G. For all x in G*, the inverse of x 

is the irreducible character X such that x(g) =x(g) for all g in G. (See [42, 
Section V.61 or [58, Section 2.41.) The following hold for all irreducible 
characters x of G: 

X(IG) = I, where 1, is the identity element of G; (4) 

ii(g) = x(g-‘1 forall g in G; (5) 

Since G is finite, there is a smallest positive integer e, called the exponent 
of G, such that ge = 1, for all g in G. Thus, for any x in G*, we have 
x(g)“=x(g”)=x(l,)=l, so x(G)c {c’:i~N}, where E is a primitive 
eth root of 1 in C. Thus x =X if and only if x(g) = kl for all g in G. 
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If we put G,* = {x E G*: x = jj}, then we may partition G *\G,* into 
two equinumerous sets G,*, G,T such that x E G,* if and only if z E G,T. 

THEOREM 6.1. For x in G* and h in G, let v(x, h) be the vector in RC 
whose gth coordinate is x( hg) + X( hg). Let Wx be the subspace of RG 
spanned by the set of vectors { v(x, h): h E G}. Then 

(i) if x and 4 are irreducible characters, then Wx = W+ if and only if 

#E {x>xI; 
(ii) if x is an irreducible character, then 

dim( W,) = 
1 if x=x 
2 otherwise; 

(iii) the vector space RG is the orthogonal direct sum of the subspaces Wx 
for x~G~*uGd. 

Proof. See [57]. n 

The decomposition of RC in part (iii) of Theorem 6.1 is called the 
G-homogeneous decomposition of RG, and the subspaces (W,),,,* are 
called the Ghomogeneous subspaces of RG. Those who have read Section 5 
should note that there is no conflict of terminology here: using Theorem 5.5 
and the fact that, for x, 4 in G* and h in G, 

i 

v(x> h) if +#lc/ and XE {$,$}, 
= 2v(x,h) if x=+=$, 

0 otherwise, 

it can be shown that the spaces Wx defined in Theorems 5.5 and 6.1 are 
identical. Moreover, Theorem 5.4 and the remarks preceding Theorem 5.7 
show that each G-homogeneous subspace W, is G-irreducible. 

The irreducible characters of the group have been used to decompose the 
vector space RC of an Abelian group design in other work [27, 15, 10, 56, 571, 
but the resulting decompositions are not identical. The G-homogeneous 
decomposition is the finest that is possible, since the components are G-irre- 
ducible, but other useful decompositions may be found by combining 
appropriate subspaces Wx; for example, the decompositions in [lo] and [15] 
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both use the subspaces W, defined as follows: for each cyclic subgroup H of 
G*, the subspace W, of RG is the sum of the subspaces Wx for those x such 
that (x) = H (that is, W, is obtained by combining all the subspaces 
corresponding to generators of the cyclic subgroup H). It is straightforward 
to check that this decomposition is identical to the G-homogeneous decom- 
position if and only if the exponent e of G divides 12. 

7. ABELIAN GROUP DESIGNS 

THEOREM 7.1. Every Abelian group design is generally balanced with 
respect to its homogeneous decomposition (given in Theorem 6.1). 

Although Theorem 7.1 was proved as Theorem 5.7 using the general 
theory, we shall now give an alternative proof by finding an explicit formula 
for the eigenvalue of the concurrence matrix C, (y E 1) on the homogeneous 
subspace Wx (x E G*). 

The proof of Theorem 4.2 shows that the concurrence of treatments t and 
u in y-blocks depends only on the orbit of G on G X G which contains (t, u). 
Because G is Abelian, these orbits are indexed by the elements of G, and are 
of the form Us, where Ug = {(t, u) : tu- ’ = g }. The adjacency matrix of the 
orbit Us is the permutation matrix Pg-l. We can therefore define the 
following notation. For g in G, let csr be the common concurrence in 
y-blocks of treatment pairs in the orbit Us. Thus C, = X.g~ccg,,Pg~~. Each 
occurrence in a y-block of a pair (t, u) with tu-’ = g corresponds to an 
occurrence in the same y-block of the pair (u, t) with ut-’ = g-‘. Thus 
Cp-lv = cpv for all g in G. For x in G* and y in I, define 

1 c zz- uyx rk 
c,,x(g>. 

Y gEG 

Thus 

“yx = -& c cgyxk) = f c cg&x(g-‘), by Equation (5). 
Y g=G Y gGG 

Since summation over g E G is the same as summation over g- ’ E G, this 
implies that vvx = vvx. A similar argument shows that x(g) can be replaced 

by the real number i[x(g) + X(g)] in the definition of vux. 

THEOREM 7.2. Let G be an Abelian group, and let (fit, I?, G, +) be a 
Gdesign . Then, for all y in r and all x in G*, the G-homogeneous 
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space Wx is a subspace of an eigenspace of the concurrence matrix C, with 

eigenvalue rk,v,,. 

Proof. We have 

cy = c C&&l = c &,(Pg + P,-I), since cgv = cs-lr. 
gEG gEG 

For x in G* and h in G, let v be the vector u(x, h) in RG specified in 

Theorem 6.1. Thus, for all t in G, 

tv=x(ht)+z(ht). 

(Recall that our conventions of Section 3 require us to write vectors and 
matrices on the right of their arguments: however, it is convenient to 
continue to write characters on the left of their arguments.) By Equation (3), 

t[v(P,+Pg-l)] =(tg)v+(tgqv 

= (tg)v +(tg-‘)v 

=x(htg)+X(htg)+~(htg-‘)+X(htg-‘) 

= [x&J + Z&t)] [x(g) + x(6)1 [by Equation (5)] 

= W[xk)+x(g-')I. 
Thus v(P, + P,-I) = v[x(g)+ x(g-‘)I. Since x(g)+ x(g-‘) is a scalar, this 
shows that v is an eigenvector of Pg + Pg-l with eigenvalue x(g) + x(g-‘). 
Hence 

UC7 = v c &,,( Pp + P,-1) 

gsG 

= g;G &v(P, + P,-4 

= gFG ;cg,[xw + xk-‘)I v 
[ 1 

= [ ~ccgyxCg)]v (since cgu = c,-1,> 

= rk,v,,v. 
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This completes the proof of Theorem 7.1. The numbers vvx and the block 
structure of the design can be used to calculate its efficiency factors, as we 
now show. 

THEOREM 7.3. Let (a, I’, G, $) be an Abelian group design. For all OL 
in I- and all x in G*, the efficiency factor X,, for the G-homogeneous 
treatment subspace Wx in stratum y& is given by 

where m is the Miibius function of r and vux is defined by Equation (7). 

Proof. The efficiency 
on Wx. Now 

L, = x5,x 

factor X,, is equal to the eigenvalue of r- ‘L, 

= c m( a, y )X’B,X [by Equation (2)] 
YET 

The result therefore follows from Theorem 7.2. n 

The usefulness of Theorem 7.3 depends on our ability to calculate the 
concurrences csv. It turns out that this calculation is particularly easy for thin 
Abelian group designs (see Section 4 for the definition of thin designs). 
However, it is impossible for a design to be thin with respect to every y in I. 
Thus it is convenient to do the calculation for each y in r separately by 
decomposing the design into thin (G, y)-designs. So we now fix y in r. 

Suppose that A is a G-design, where A = (a, I, G, (p). Then, for some 
set ./, there is a partition (D .)j l I 
J, let bi be any y-block in d, 

of C? into (G, y )-components. For each j in 
and let sj be the order of the stabilizer in G of 

the multiset of bj. For j in J and g in G define 

njg = I((a>‘) EbjXbj:G(~)[G(‘)I -‘=g) 1. 
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LEMMA 7.4. With the above notation, 

c ‘+ 
jCI si r 

In particular, if si is constant over j in J, then it is equal to k,lJI/r. 

Proof. The orbit-stabilizer theorem [81, Theorem 3.21 shows that the 
number of y-blocks in fJ j is equal to ]G]/si. Thus 

n 

THEOREM 7.5. For all g in G, the concurrence csv is equal to Ci E ,nig/si. 

In particular, if si is constant OVH j in I, then cgv = ( r/‘kyl_TI)CjE~njg, 
while if njg = nng for all j in _I, then cpu = mg/kv. 

Proof. Fix j in ]. Let yi, ~~ be the partitions of L? j into y-blocks and 
singletons respectively, and put Aj = (52, { yi, Ed}, G, +). Then A i is a thin 
(G, yi)-design. Let U be any orbit of G on G X G; if U= Ug, then for the 
design A, the integer n, defined in Theorem 4.4 will equal nig. Since G acts 
regularly on itself, G,, = { 1,) for all t, u in G. Theorem 4.4 shows that if 
(t, u) E Ug then the concurrence of t and u in yj-blocks in Ai is nis/si. 
Hence 

n 

The numbers nip may be counted directly from the “table of differences” 
[ 18, Chapter 61. If si is not known a priori, it may be found by generating all 
y-blocks in Ai, since the number of these is equal to (G]/si. However, if A is 
homogeneous, the formula for cgv, and hence vvx, does not involve si. 

COROLLARY 7.6. Zf A is a homogeneous (G, y)-design, then 

“YX =A C ngx(g>y 
Y gsG 

where ng is calculated from any y-block of A. 
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Suppose that the design A is binary with respect to y. Then the trace of 
C, is equal to IQ\. Since the trace of a matrix is the sum of its eigenvalues, 
taking account of multiplicities, Theorem 7.2 shows that 

and this is equal to the number of y-blocks divided by the replication 
number. This formula provides a useful check when the values vvX are 
calculated. 

The trivial concurrence matrices may, of course, be written down di- 
rectly. If g f 1 then csB = 0, while cla = r. Thus, for all x in G*, 

V ex = XL4 = 1 

by Equation (4). On the other hand, cgP = r2 for all g in G, and k, = rIGI, so 

V px=& c x(g) 
gEc. 

1 = if x is the principal character, 

0 otherwise, 

by Equation (6). 

EXAMPLE 7.1. Suppose that D consists of 54 plots with the following 
block structure. There are three u-blocks, each of size 18, and each u-block 
consists of, on the one hand, three pblocks of size 6 and, on the other, three 
K-blocks of size 6. Within a u-block, pblocks and K-blocks are completely 
crossed, but the block system formed by the intersections of p and K-blocks is 
not in this block structure; thus if I = {p, u, p, K, E}, then (Q, I) is a Tjur 
block structure which is not an orthogonal block structure (in the sense of 

[141). 
Let G be the cyclic group of order 9, written additively, and let A be the 

design generated by G from the initial u-block shown in Table 7. This design 
is homogeneous for every y in I’, so we shall use Corollary 7.6 to calculate 
the vuX. This requires the values of ns for g in G, which are easily calculated 
using the information in Table 7. For the nontrivial block systems this is done 
by calculating a table of differences from any block of that system, and the 
results are given in Table 8. 
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TABLE 7 
INITIAL U-BLOCK FOR THE DESIGN IN EXAMPLE 7.1” 

“Each row is a pblock, and each pair of 
columns is a k-block. 

TABLE 8 
VALUES OF fig FOR THE DESIGN IN EXAMPLE 7.1 

Block 
system 

u 36 36 36 36 36 
P 6 3 3 6 3 
K 6 3 5 3 4 

The irreducible characters of G are { xh : h E G }, where 

Xhk) = @> e being a primitive 9th root of 1. 

The values of vvx are shown in Table 9. For brevity, we write e, for the real 

number ei + epi for i E {1,2,4}. 

TABLE 9 
VALUES OF Vvx FOR THE DESIGN IN EXAMPLE 7.1 

Y x0 Xl x2 x3 x4 

I* 1 0 0 0 0 
u 1 0 0 0 0 
P 1 0 0 1 4 0 

K 1 
3+e2-e, 

36 

3 + e, - es 

36 
0 

3+e,-e, 

36 
& 1 1 1 1 1 

e, = 2 + 8 = 2cos(277/9) 
e2=c2+c7=2cos(47T/9) 

e, = c4 + c5 = 2cos(87r/9) 
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TABLE 10 
EFFICIENCY FACTORS FORTHE DESIGN INEXAMPLE 7.1 

cx x0 Xl x2 X3 x4 

cc 1 0 0 0 0 

u 0 0 0 0 0 

P 0 0 0 1 4 0 

K 

E 

0 

0 

3+ e, - el 3 + e, - e, 

36 
33 - e, + e, 

36 

36 
33 - e, + e, 

36 

0 

3 
4 

3+ e, - e, 

36 
33 - el + e, 

36 

With the elements of I in the order p, u, p, K, E, the Mobius function of I 
is given by 

M= 

10 0 00 
-1 1 0 00 

0 -1 1 00 
0 -1 0 10 
0 1 -1 -1 1 1. 

Thus Theorem 7.3 and Table 9 give the efficiency factors of the design, 
which are shown in Table 10. 

EXAMPLE 7.2. In dairy hygiene experiments, different cleaning treat- 
ments may be used on the two sides of the milking parlour at each farm, and 
treatments are typically changed monthly. This gives the simple orthogonal 
block structure 

(farms/sides) x months 

in the notation of [61]. Label the partitions into farms, sides, months, 
farm-months by 4, u, p, K respectively. Suppose that there are six farms and 
four months, so that 1Q2) = 48. Let G be the Abelian group Z, X Z,, written 

TABLE 11 

INITIAL +BLOCK FORTHE DESIGN INEXAMPLE 7.2 

p=++ 
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TABLE 12 
VALUES OF rL= FOR THE DESIGN IN EXAMPLE 7.2 

Block % 
system g =oo 10 03 13 *01 +02 f 11 * 12 

12 12 12 12 12 12 12 12 
8 8 4 4 6 4 6 4 

u 4 4 0 0 0 2 0 2 
K 2 0 0 0 0 0 1 0 

additively in the abbreviated notation of [32]. Let A be the design generated 
by G from the initial J/-block in Table 11, where rows denote months and 
columns denote sides. Values of ng are in Table 12. 

From [58, Theorem 2.41, the irreducible characters of G are 

{ Xh,h,: h, E ‘!i!, h2 E ‘6 >) 

where 

X,+,( g,, &!) = e3h1g1+h2g2, e being a primitive 6th root of 1. 

Table 13 shows the values of vrx. 
With the block systems in the order ~1, p, I), u, K, E, the Mobius function is 

10 0 0 00 
-1 1 0 0 00 
-1 0 1 0 00 

0 o-1 100 
1 -1 -1 0 1 0 

.o 0 l-l -1 1 I* 
This gives the efficiency factors in Table 14. 

TABLE 13 
VALUES OF vux FOR THE DESIGN IN EXAMPLE 7.2 

Y X00 Xl0 x03 x13 x01 x02 x11 x12 

c1 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 
~1000~~00 
0 1 0 1 0 1 1 4 rl 0 0 
K 1 0 0 1 9 1 1 9 rl 4 4 
E 1 1 1 1 1 1 1 ; 
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TABLE 14 
EFFICIENCY FACTORS FOR THE DESIGN IN EXAMPLE 7.2 

a X00 Xl0 x03 x13 x01 x02 x11 x12 

P 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 ~0000&~00 

u 0 0 1 0 L 3 
16 16 0 0 

K 0 0 0 1 s 3 I 3 
16 16 4 4 

E 0 1 0 0 3 & a 1 
16 4 

In Example 7.2 the efficiency factors are all rational, and this is a 
consequence of the remark at the end of Section 6. In general, if e divides 12, 
then the G-homogeneous decomposition given in Theorem 6.1 is identical to 
that obtained from the group block structure on G defined by the complete 
subgroup lattice I” of G. The matrices (ox), EGI of orthogonal projection 
onto the spaces (Wx),,,l are thus obtained as in Equation (2) from 
blocks-averaging matrices on G X G by means of the Mobius function of I’; 
they thus have rational entries. Similarly, the information matrices (L,), E A 
have rational entries. Now the efficiency factor X,x is a rational multiple of 
the trace of LaQx, and so it is rational. 

Finally, we show how the results of this section specialize to give the 
results of [7] and [32]. 

DEFINITION. The treatment subspace Wx is totally confounded in stra- 
tum Y& if X,x = 1. 

DEFINITION. If H is a subgroup of 
annihilator Ho of H is defined by 

the Abelian group G, then the 

Ho= {xEG*:x(h)=lforall hinH} (see 171). 

THEOREM 7.7. Suppose that (&?, r,G,+) is a homogeneous (G,y)- 
design. Let b be one of the initial y-blocks, and suppose that b has multiset 
K. Let H be the stabilizer in G of K, and let N be the group generated by all 
quotients tu - ’ f t or rea ments t, u such that K(t)K(u) > 0. Then t 

(i) No c Ho; 
(ii) if x E No then vrx = 1; 
(iii) if x E Ho then vvx = 0. 
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Proof. (i): The multiset K is constant on each coset of H in G (compare 
this with [32, Theorem 11, where H is defined to be the largest subgroup with 
this property and then effectively proved to be the stabilizer of K). If Hg is 
any coset of H in G, then {tu-‘: tEHg and uEHg}=H. Thus HcN. 
Taking annihilators reverses inclusion, so No c Ho. 

(ii): If g 6 N then ng = 0. Thus 

If x E No then 

C n,x(g)= c ng= c n,=kt 
g E N g E N gsc 

and so vvx = 1. 
(iii): Since K is constant on cosets of I-I, the value of ng depends only on 

the coset of H containing g, and so vYx is a multiple of ChEHx( h). If 
x CZ Ho, then the restriction of x to H is not the principal character of H, so 
Equation (6) shows that Xh E H x( h) = 0, and so vux = 0. n 

Since the annihilator Ho is naturally isomorphic to the duai of the 
quotient group G/H [42, Section V.61, there is another way to view part (iii) 
of Theorem 7.7. If the block stabilizer H is a nontrivial subgroup of G, then a 
G-design may be constructed in two stages: first a design for ]G]/ 1 HI 
treatments is generated using G/H; then each treatment is replaced by IHI 
new treatments. All contrasts within cosets of H are orthogonal to y-blocks, 
and the efficiency factors for the contrasts between cosets of H are the same 
as those for the original design on G/H. 

Part (ii) of Theorem 7.7 has a similarly straightforward interpretation, 
because the contrasts between cosets of N are totally confounded (or possibly 
superconfounded, in the sense of [7]) with y-blocks. 

In some Abelian group designs (for example, [51, 31, 71) there are 
subgroups ( H, )v E r of G with the following property: if b is any y-block, 
then there is some coset H,g of H, such that the multiset of b consists of a 
number of copies of H,g. In this case H, = N, for all y in P, where N, is 
defined like the subgroup N in Theorem 7.7. Hence 

v =(I if XEHZ, 
YX 

\ 0 otherwise. 

It follows that, in such designs, every treatment 
confounded in some stratum. 

subspace Wx is totally 
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