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Detecting chaotic dynamics of insect populations
from long-term survey data
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Abstract 1. Estimates of the Lyapunov exponent, a statistic that measures the
sensitive dependence of the dynamic behaviour of a system on its initial conditions,
are used to characterize several sets of insect time series.

2. A new method is described to overcome the difficulty of defining the dynamics
of an observed, noisy, short ecological time series. This method provides two test
statistics for the estimated Lyapunov exponent.

3. This method is applied to forty-six time series comprising six aphid species
from five sites and four moth species from six sites. There are few positive Lyapunov
exponents and none is sufficiently large to characterize its time series as chaotic.

4. Two methods to estimate the Lyapunov exponent are compared; that based on
logarithmically transformed counts yields less variable estimates for highly variable
insect data than that based on untransformed counts.

Key words. Chaos, aphids, moths, population dynamics, time series, Lyapunov
exponent.

Introduction underestimated because the degree of density-dependence was
underestimated. Turchin & Taylor (1992) proposed a response-
surface model that they claimed had many advantages overComplex dynamics can arise from simple, theoretical and

ecological models involving difference equations (May, 1974, other methods to characterize the non-linear dynamic behaviour
of insect populations from real ecological data. Perryet al.1976). Advances in computing power have rekindled this

interest in recent years and chaotic dynamics in ecology have (1993) used this technique to study the endogenous dynamics
underlying two ecological time series for the aphidPhyllaphisbeen the subject of several reviews (May, 1987; Logan & Allen,
fagi (Linn.); the method was sensitive to a number of factors,1992; Hastingset al., 1993). Until recently, the perception of
including further data from the same population and extra datathe prevalence of chaos in ecology was largely determined by
from different but comparable populations.a very influential study of life-table data of twenty-eight insect

Observed ecological time series are the consequences ofpopulations with discrete generations (Hassellet al., 1976).
density-dependent processes and density-independent randomThe authors concluded that most of these populations were
processes and their interactions in multispecies communitiesstable and that examples of complex dynamics were rare in
(Turchin & Taylor, 1992). Clearly, a mixture of density-nature. This conclusion was criticized by Turchin & Taylor
dependent and delayed density-dependent processes is common(1992) on the basis that Hassellet al.’s (1976) single-species
in many insect populations (Sinclair, 1989; Turchin, 1990;model was overly simple and lacked delayed density-
Woiwod & Hanski, 1992; Hanskiet al., 1993b; Holyoak, 1993;dependence. Complex dynamics are more likely to arise in
Perry, 1994). However, it remains a challenge in ecology tosystems with a larger number of dimensions. Delayed density-
separate the density-dependent, endogenous dynamics from thedependence occurred frequently in the multispecies
exogenous density-independent noise. Turchin & Taylor (1992)communities typically found in many insect populations
suggested that the fitted response-surface model be used to(Turchin, 1990). Perry (1994) suggested that the incidence of
reconstruct directly the endogenous dynamics of a time series,complex dynamics found by Hassellet al. (1976) was possibly
but their approach was superseded by that of Ellner & Turchin
(1995) who regard the exogenous noise as an integral part of
the dynamics of the series, and as a possible modulator of theCorrespondence: Professor Joe N. Perry, Department of Entomology
qualitative dynamics to be estimated. For example, whereasand Nematology, Rothamsted Experimental Station, Harpenden, Herts.

AL5 2JQ, U.K. the endogenous dynamics might indicate limit cycles,
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consideration of the exogenous dynamics could alter the overall
estimated dynamics qualitatively, to stability (less complex) or
chaos (more complex). They recommended definition of the
qualitative dynamics through estimation of the Lyapunov
exponent, by the Jacobian method of Nychkaet al. (1992).
Perryet al. (1993) and Renshaw (1994) stressed the difficulties
caused by the need to investigate complex, multiparameter
response-surface models, for data that are strictly limited by
the length of the time series available.

The Lyapunov exponent,λ, is a quantitative measure of the
sensitive dependence of the subsequent dynamics on initial
conditions: it quantifies the rate of growth (ifλ . 0), or decay
(if λ , 0) over time, of the effects of a small perturbation on
a system’s dynamics (Ellner & Turchin, 1995). It is used
increasingly to characterize the dynamic behaviour of both
ecological models (Bascompte & Sole, 1994; Rohaniet al.,
1994; Sole & Bascompte, 1994; Rohani & Miramontes, 1995)
and observed ecological time series (Turchin & Taylor, 1992;
Hanskiet al., 1993a; Turchin, 1993). A system withλ . 0 is
a ‘noise amplifier’: after a small perturbation occurs, the effects
of the perturbation are magnified over time by the system’s
intrinsic dynamics. This property causes unpredictability in the
system’s dynamics, one of the most important signatures of
chaos. On the other hand, a system withλ , 0 is a ‘noise
muffler’: the effects of the perturbation decay to zero over
time, the system’s intrinsic dynamics are predictable and
any unpredictability is due solely to the direct effects of
external noise.

The data analysed here comprise some of the longest series
of field data available, yet the number of points remains
minimal for the analyses attempted. Often, for a single series, Fig. 1. Locations of aphid suction traps (d: RT, Rothamsted; W, Wye;

BB, Broom’s Barn; N, Newcastle; D, Dundee) and moth light trapsthe dynamics found are dependent on the type of model fitted.
(s: AH, Alice Holt; GS, Geescroft; SB, Sutton Bonnington; SH, SpurnToo complex a model will overfit the data by treating the noise
Head; KD, Kielder; EL, Elgin).as part of the signal; too simple a model cannot represent the

complexity of the endogenous process. Therefore, caution
should prevent firm conclusions concerning the dynamic (Sulzer) andMetopolophium dirhodum(Walker), based on those

for which relationships between temperature and phenology arebehaviour of the time series analysed here. To ameliorate some
of these problems, two test statistics were developed, to attempt known and which represent a range of life cycle types (Table 1).

The six selected light trap sites, at Alice Holt, Geescroft,to strengthen the conclusions available from the estimate
of the Lyapunov exponent. This paper introduces this new Sutton Bonnington, Spurn Head, Kielder and Elgin, covered a

similar geographical range as the suction trap sites (Fig. 1). Themethodology to characterize chaotic dynamics using observed
time series of various aphid and moth species. four moth species,Apamea monoglypha(Hufn.), Cerapteryx

graminis (Linn.), Perizoma alchemillata (Linn.) and
Xanthorhoe montanata(D & S) are univoltine.

Materials and Methods The annual total counts from the aphid series come from
daily samples of winged aphids accumulated during the year,

Data in which most aphid species have three migratory periods (here
B. helichrysi, H. lactucae, M. persicaeandM. dirhodum). The
first period occurs in spring. For aphid species with a majorityThe data are annual total counts from the Rothamsted Insect

Survey, which samples winged aphids throughout Great Britain of clones that are anholocyclic in the U.K., reproducing
parthenogenetically throughout the year (hereE. abietinum,using 12.2-m suction traps and moths using standard

Rothamsted light traps (Woiwod & Harrington, 1994). M. ascalonicusandM. persicae), winged aphids develop from
overwintering aphid populations and migrate to more nutritiousFive suction trap sites were selected with 23 years or more

of data, at Wye, Rothamsted, Broom’s Barn, Newcastle and host plants, including crops. For species with a majority of
clones that are holocyclic in the U.K., producing male andDundee, to span the geographical range of latitudes in Great

Britain (Fig. 1). Six aphid species were selected:Brachycaudus female sexual morphs in autumn and overwintering as eggs
but reproducing parthenogenetically throughout the rest of thehelichrysi(Kltb), Elatobium abietinum(Walker),Hyperomyzus

lactucae (Linn.), Myzus ascalonicusDoncaster,M. persicae year (hereB. helichrysi, H. lactucaeandM. dirhodum), winged
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Detecting chaotic dynamics 233

Table 1. A summary of the time series of annual total catches for the six aphid species at five sites: Rothamsted (RT), Wye (W), Broom’s Barn
(BB), Newcastle (NC) and Dundee (DD) with series lengths of 27, 25, 27, 25 and 25 years, respectively, except forBrachycaudus helichrysi, for
which 24 years of data were available at all sites. M is the sample mean; SD is the standard deviation. Non-integer counts arise from estimated
missing values.

Min. Max. M SD Min. Max. M SD Min. Max. M SD

Site Brachycaudus helichrysi Elatobium abietinum Myzus ascalonicus

RT 45.0 2837.0 1089.0 815.5 2.0 380.9 66.9 85.7 7.0 364.6 111.1 91.3
W 99.9 2722.0 831.6 638.3 5.0 441.6 133.1 126.1 3.0 107.9 42.4 31.0
BB 47.4 3655.0 802.4 765.3 2.0 209.9 38.7 48.2 3.0 190.9 56.2 47.5
NC 23.0 597.4 151.8 127.9 3.0 1573.0 308.4 455.8 0.0 82.0 26.1 23.2
DD 34.0 475.4 203.4 123.3 4.1 1034.0 137.3 243.1 0.0 31.4 9.1 8.6

Myzus persicae Hyperomyzus lactucae Metopolophium dirhodum

RT 42.0 911.0 211.8 202.5 14.0 171.6 58.1 40.8 19.0 18449.0 1564.0 3671.0
W 75.0 1113.0 300.6 256.6 29.0 366.3 79.5 68.9 54.1 34434.0 2006.0 6786.0
BB 72.0 1737.0 419.9 397.1 10.0 362.1 73.8 72.9 73.0 187931.0 9704.0 35951.0
NC 4.6 313.1 59.5 75.2 0.0 36.7 12.1 8.9 16.3 3572.0 644.2 878.2
DD 4.0 670.4 165.6 171.2 5.0 93.4 23.4 19.8 22.0 44667.0 3473.0 8813.0

aphids develop from aphids originating from overwintering are due to a very few missing values in daily catches that were
estimated (Zhouet al., 1996). The criteria for some moth timeeggs on primary (usually woody) hosts where they are laid in

the previous autumn. These migrate to specific herbaceous host series were not met at all sites, so these were not analysed
(Table 2). All data were transformed fromNt to (Nt 1 1), toplants where they reproduce parthenogenetically. The second

migratory period occurs in summer. For both anholocyclic and avoid problems caused by the logarithm of zero.
holocyclic species, winged aphids develop and disperse in
response to crowding and decline in host plant nutrients. The
third migratory period occurs in autumn. Winged aphids of The model
anholocyclic clones move to overwintering host plants, usually
herbaceous weeds and grasses. In holocyclic clones, winged The model of Perryet al. (1993) was used in this study to
males and gynoparae (parents of the wingless, sexual females,provide a more stable alternative to that suggested by Turchin
the oviparae) develop in response to short photoperiod and & Taylor (1992). Denoting the population density in yeart as
migrate to the primary hosts where overwintering eggs are Nt; and the transformed population growth rate, log10(Nt/Nt–1),
laid. Elatobium abietinumfeeding on spruce (Picea) and in year t asγt; the model with three time lags is:
M. ascalonicus feeding on Compositae, Cruciferae and

γt 5 F(X,Y,Z) 5 a0 1 a1X 1 a11X
2 1 a2Y 1 a22Y

2 1 a3Z 1Rosaceae have only one migratory period in May and June,
a33Z

2 1 a12XY 1 a13XZ 1 a23YZ 1 εt (1)when winged aphids develop and disperse in response to a
decline in plant nutrients (Zhouet al., 1996). where

The annual total counts from the moth series come from X 5 log10(Nt–1), Y 5 log10(Nt–2), Z 5 log10(Nt–3).nightly catches of adult moths in light traps.Apamea
monoglyphaoverwinters as larvae that feed on Gramineae and For models with one and two lags, terms withY andZ, andZ

in eqn 1 are deleted, respectively. As a preliminary screen ofthe adults fly between June and August.Cerapteryx graminis
overwinters as eggs, feeds on Gramineae and the adults fly the dynamics and to assess stationarity, diagnostic plots of the

ACF and the partial autocorrelation function (PACF) (Turchin,between July and September.Perizoma alchemillata
overwinters as pupae, feeds onGaleopsisspp. and the adults 1990; Berryman, 1992) and power spectra (Kadanoff, 1983)

were produced for each time series. The parameters in eqn 1fly between June and July.Xanthorhoe montanataoverwinters
as larvae, feeds on herbaceous plants such asGalium and were estimated using the statistical package,GENSTAT 5

(GENSTAT 5 Committee, 1993). Models were fitted with one,Primula spp. and the adults fly between May and July (Emmet
& Heath, 1991). two and three lags to each of the time series and the percentage

variance accounted for (PVA) by the different lags wasEach time series of annual total catch (Nt) analysed for these
sites and species met two additional criteria: it had no more compared (Perryet al., 1993). TheGENSTAT 5 definition of

‘percentage variance accounted for’ is an adjustedR2 statistic,than a single zero catch and was stationary, in the sense that
its autocorrelation function (ACF) decayed to zero (Box & a measure of the goodness of fit of the model, calculated as:

100[1–(residual mean square)/(total mean square)]. The modelJenkins, 1976). The mean (M), minimum (Min), maximum
(Max) and standard deviation (SD) of these time series are with three lags improved the fit of about half of the time series,

compared to the models with one or two lags (Fig. 2). Thepresented in Tables 1 and 2. Decimal points in the aphid data
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Table 2. A summary of the time series of annual total catches for the four moth species at six sites: Alice Holt (AH), Geescroft (GS), Sutton
Bonnington (SB), Spurn Head (SH), Kielder (KD) and Elgin (EL) with series lengths of 28, 28, 24, 24, 25 and 27 years, respectively. M is the
sample mean; SD is the standard deviation. —, values are not presented where time series failed to meet minimum criteria (see text).

Species

Site Apamea monoglypha Cerapteryx graminis Perizoma alchemillata Xanthorhoe montanata

Min. Max. M SD Min. Max. M SD Min. Max. M SD Min. Max. M SD

AH — — — — 1 20 6.8 4.5 1 133 34.3 35.2 2 59 19.3 14.2
GS 3 112 32.4 29.6 — — — — 1 209 70.1 66.2 — — — —
SB 4 90 24.1 19.5 — — — — — — — — 3 120 48.5 32.6
SH 6 137 38.8 34.5 — — — — — — — — 4 45 16.8 11.5
KD 4 151 40.8 33.9 5 143 38.1 34.0 5 239 58.7 66.2 — — — —
EL 4 149 37.7 37.2 4 73 24.9 16.0 4 115 28.9 25.6 5 77 41.9 18.2

data points, starting in each case with the first data point and
ending with the last. The PVA values from the resulting 2n–1
series were averaged over the sites for each species, and the
model with the largest average PVA selected (Table 3).

Characterizing dynamics with Lyapunov exponents

The Lyapunov exponent,λ, was adopted as a quantitative
measure of the sensitive dependence of the subsequent
dynamics on initial conditions (Turchin & Millstein, 1993;
Ellner & Turchin, 1995). Forλ , 0 the dynamics are classified
as stable, with a fixed point equilibrium or cyclic equilibrium.
For λ 5 0 the dynamics are classified as quasiperiodic. For
λ . 0 the dynamics are classified as chaotic, when the effects
of small perturbations are compounded and therefore cannot
be ignored in predicting the future dynamics of the system.
Wolf et al. (1985) gave two methods to estimate the Lyapunov
exponent: the trajectory and the Jacobian (Turchin & Millstein,
1993). The trajectory method calculates the rate at which two
nearby trajectories diverge in time. It requires a large number
of data values, especially in high-dimensional systems (Wolf
et al., 1985; Turchin, 1991a). This method, if used for stochastic
systems, is likely to yield more biased and highly variable
estimates than the Jacobian method (Turchin, 1991a; Turchin
& Millstein, 1993). Here, Ellneret al.’s (1991) modified
Jacobian method was used, that calculates the rate of divergence
using the Jacobian matrix comprising partial derivatives of the
system map, and which Ellner & Turchin (1995) note is less
sensitive to the dynamic noise that most biological systemsFig. 2. Relationships between percentage of variance accounted for

(PVA), after fitting models with one, two and three lags to the data contain. The estimated value ofλ is calculated from:
for the full time series. The solid line is the fitted regression line and

λ̂ 5 1 log±JnJn–1...J1ν± (2)the dotted line is the equality line. (a) lag-three model (Y) against lag-
n

one model (X): Y 5 –1.6911 1.045X, F1, 285 32.0; (b) lag-three
model (Y) against lag-two model (X): Y 5 –8.201 1.182X, F1, 285 whereJt is the Jacobian matrix of partial derivatives of eqn 1
64.4. evaluated atNt; ± · ± is a matrix norm;ν is a vector of length

one (1,0,0...,0)T; andn is the length of the time series.
The following is a brief explanation. For the three-lag modelmost appropriate lag for each species was selected using cross-

validation, as described by Turchin & Millstein (1993). This denotext asNt, xt–1 as Nt–1, yt–1 asNt–2, andzt–1 asNt–3. The
system map of eqn 1 may be rewritten in terms of functions:involved the generation of 2n–1 new series from each original

series, by the removal of first one, and then two successive d(), g() and p() as:
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Table 3. Average ‘percentage variance accounted for’ (PVA) from cross-validations of models for each time series over five sites for each aphid
and moth species, and the model selected for each species.

PVA

Species Model selected Lag one Lag two Lag three

Brachycaudus helichrysi Lag three 51.186 49.694 51.780
Elatobium abietinum Lag one 58.566 53.618 57.278
Hyperomyzus lactucae Lag three 55.114 56.020 62.390
Myzus ascalonicus Lag one 38.756 33.224 29.314
Metopolophium dirhodum Lag one 59.464 57.220 57.642
Myzus persicae Lag two 45.804 49.648 44.910
Apamea monoglypha Lag one 36.796 36.100 35.614
Cerapteryx graminis Lag one 17.880 17.002 15.396
Perizoma alchemillata Lag three 35.485 45.075 49.810
Xanthorhoe montanata Lag one 29.852 23.262 22.842

xt 5 d(xt–1, yt–1, zt–1), with respect toLxt–1, Lyt–1 and Lzt–1, respectively, i.e. where
Lxt–1 5 log10(xt–1), Lyt–1 5 log10(yt–1), Lzt–1 5 log10(zt–1), U11yt 5 g(xt–1, yt–1, zt–1) and

zt 5 p(xt–1, yt–1, zt–1), t 5 1 1 ­F/­Lxt–1, U12
t 5 1 1 ­F/­Lyt–1 and U13

t 5 1 1 ­F/
­Lzt–1.where g(xt–1, yt–1, zt–1) ¥ xt–1 and p(xt–1, yt–1, zt–1) ¥ yt–1. The second method used the partial derivatives of the original

Then, for stability analysis, this may be linearized using a system map, with respect toxt–1, yt–1 andzt–1 (here termed the
Taylor series expansion as: direct method). Defining log10ήt 5 νt, the components of the

alternative Jacobian matrix,Jlt, are:=xt =xt–1
=yt 5 Jt =yt–1 (3)

­d/­xt–1 5 ήt [1 1 xt–1(­F/­Lxt–1)(­Lxt–1/­xt–1)] 5 ήt U11
t,{

=zt
} {

=zt–1
}

­d/­yt–1 5 ήt [xt–1(­F/­Lyt–1)(­Lyt–1/­yt–1)] 5
ήt (xt–1/yt–1)U12

t,where = represents a small difference between two nearby
­d/­zt–1 5 ήt [xt–1(­F/­Lzt–1)(­Lzt–1/­zt–1)] 5trajectories on the map at a particular time andJt is the Jacobian

ήt (xt–1/zt–1)U13
t,matrix evaluated at timet, whose components are:

and the rest of the components are the same as those in eqn 6.­d/­x ­d/­y ­d/­z
Jt 5 ­g/­x ­g/­y ­g/­z (4){

­p/­x ­p/­y ­p/­z
}

Randomization tests
and­/­x represents the partial derivative with respect tox. The
divergence or convergence of= from timet–1 to timet depends A method is required to assess the importance of deviations
on the nature of the Jacobian at timet–1, specifically whether of estimated Lyapunov exponents from zero. Dynamics with a
it is of the stretching or shrinking kind. The value of= is positive estimated Lyapunov exponent cannot be ascribed as
amplified for the former, for which the dominant eigenvalue definitely chaotic with any confidence, because noise in the
of the Jacobian is greater than unity, and reduced for the latter, data may give rise to positive estimates for stable systems, or
for which the dominant eigenvalue is less than unity. However, negative estimates where the underlying dynamics are chaotic.
the divergence rate of= may vary, because the Jacobians may The method developed here is in the spirit of Pollardet al.
change over time. It is therefore necessary to measure the(1987), who constructed a randomization distribution for a
average divergence rate, over an infinite time period: density-dependence statistic, by random permutation of a

time series. Firstly, consider a null hypothesis of completeλ 5 lim
t→`

[ ± Jt–1 Jt–2...J0 ± / t] (5)
compensation, where the series returns to its overall mean

Two methods were used to obtain the Jacobian matrix of value each year and ‘forgets’ any deviation experienced in the
the system map. The first was used by Turchin & Millstein previous year. This corresponds to an extreme form of density-
(1993) (here termed the indirect method), who transformed the dependence in which the series exhibits strong stability; all
system map to logarithms by considering, instead ofNt, Lt 5 fluctuations from the mean are merely temporary shocks.
log10Nt to obtain the Jacobian,Jlt: The model here isNt 5 µ 1 εt or log10Nt 5 µ 1 εt . Series

corresponding to this null hypothesis (hypothesis I) may be
U11

t U12
t U13

t

generated by randomly permuting the observed counts in the
Jlt 5 1 0 0 (6)

series. Secondly, consider a null hypothesis of complete density-[
0 1 0

]
independence, when the growth rate for one year is unrelated
to the population in the previous year (Pollardet al., 1987)where U11

t, U12
t and U13

t are partial derivatives of the
logarithmically transformed function ofxt 5 d(xt–1, yt–1, zt–1) and is assumed to be a constant,k, apart from some stochastic
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Fig. 3. (a) 100 points from a known chaotic time series with a
Lyapunov exponent of 0.624 reconstructed from the Turchin–Taylor
model with an additional temperature variate (T) (hereT 5 4.81):γt 5

4.491 0.212T – 35.8Nt–1
0.3641 57.4Nt–2

4.591 1.053 107Nt–3
1.391

5.013 1011Nt–1
0.728–289.0Nt–2

9.181 7727Nt–3
2.78–

3.803 107Nt–1
0.364Nt–2

4.591 665.8Nt–1
0.364Nt–3

1.39– Fig. 4. Relationships between estimated Lyapunov exponents obtained
2.283 108Nt–2

4.59Nt–3
1.39, and (b) its power spectrum. using the direct (Y) and indirect (X) method. The solid line is the fitted

regression line and the dotted line is the equality line. (a) aphid time
series,Y 5 0.0361 1.013X, F1, 285 3648; (b) moth time series,Y 5fluctuation. The model here is: log10Nt 5 log10Nt–11 k 1 εt,
0.1041 1.088X, F1, 145 1414. ∆ are data from one-lag models,uor similar. A stationary series corresponding to this null
data from two-lag models,m data from three-lag models.hypothesis (hypothesis II) may be generated by calculating

each of the (n–1) observed growth rates,γt, of the series,
permuting them, and constructing a new series with those series was no larger than that expected from (I) a completely
permuted growth rates plus a starting value,N1, randomly compensating series or (II) a density-independent series,
selected from one of the observed values ofNt from the actual composed of those identical counts. The null hypothesis was
series. Both hypotheses cover extreme situations, so are notrejected at a 5% (or 95%) level of significance if more than
ideal, but the multiplicity of different models that can generate 95% of theλrdm values were less (or more) than the value
chaotic dynamics makes it difficult to select an obvious λobs. The consistent occurrence of positive values ofλobs that
alternative. The rationale of the randomization test used here were judged significant by this test over the sites studied
is whether the estimate ofλobs from the observed time series was taken as evidence of possible chaotic dynamics for a
should be judged as unusual compared with those obtainedparticular species.
from all the possible random permutations of the time series
(Pollard et al., 1987). Firstly, the model parameters were
estimated and used to calculate the Lyapunov exponentλobs Effects of time series length and number of permuted time

seriesfor the observed time series. Then the bootstrapping techniques
(Efron & Tibshirani, 1986) outlined above were used, with the
random number generator of Wichmann & Hill (1982), to Two time series known to be chaotic were used to obtain

some idea of the power of the above methods to detect complexobtain 1000 new series for each hypothesis. The model
parameters were estimated and the exponentλrdm calculated non-linear dynamics, and of the effect of the length of the time

series on the test results. The first time series used was afor each of these series, and a probability distribution was
formed from these values. This distribution was used to test Turchin–Taylor, three-lag, response-surface model with an

additional temperature variate (Fig. 3). The data points usedthe null hypothesis that the value,λobs, of the observed time
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Table 4. Effects of noise level and series length on estimates of Lyapunov exponents from the Ricker model using both direct (Dir.) and indirect
(Ind.) methods. The percentages in the noise level column headings express the average noise as a percentage of the mean of the time series.

No noise Small noise (6.3%) Moderate noise (25%) Large noise (50.9%)

Series length Dir. Ind. Dir. Ind. Dir. Ind. Dir. Ind.

30 0.302 0.480 0.115 0.503 –0.610 0.410 –0.860 1.053
50 0.438 0.509 0.201 0.475 –0.468 0.415 –0.855 0.940

100 0.524 0.546 0.226 0.447 –0.379 0.438 –0.869 0.875
1000 0.546 0.548 0.226 0.447 –0.436 0.443 –0.884 0.903

were the next 30, 50 and 100 points after discarding the initial but none was significantly large under either hypothesis (Tables
6 and 7). ForB. helichrysi, exponents were positive at two5000 time steps from the reconstructed dynamics of the model

(Fig. 3). The time series had a Lyapunov exponent of 0.624 sites and significantly negative at Broom’s Barn under both
hypotheses. All exponents obtained forH. lactucaewere closeand its power spectrum confirmed that it was chaotic. Each of

these artificially constructed series was permuted 1000, 3000, to zero. Those forE. abietinum, M. ascalonicus and M. persicae
were all negative, and significantly so (P , 0.05) under5000 and 10 000 times. The parameters and Lyapunov

exponents were estimated for each of these series as hypothesis II forE. abietinumat three sites andM. ascalonicus
at two sites (Table 6). ForM. dirhodumestimates ofλ weredescribed above.

The second time series used was a simple, single-lag, Ricker significantly negative under hypothesis II at four sites, but not
at Wye. For the moths (Table 7), estimates for all speciesequation:Nt–1 5 Nt exp[τ(1–Nt)], with τ 5 3.50, for which the

model is known to be chaotic (Ricker, 1954; May, 1976; were negative except forA. monoglyphaat three sites, for
P. alchemillataat Kielder and forX. montanataat Spurn HeadKadanoff, 1983; Stone, 1993). One thousand points were taken

after the initial 5000 points were discarded. Noise was added (P , 0.05). For both aphid and moth species, hypothesis II
yielded more significant negative estimates, especially for theat three levels to each value of this series by adding a uniform

random number on (0,α), whereα was selected as, respectively, one-lag model (Tables 6 and 7).
For the simulated data from the Turchin–Taylor model, an0.125, 0.5 and 1.0, for small, moderate and large noise levels.

The Lyapunov exponents were estimated from the first 30, 50, increase in series length decreased the values of the estimated
Lyapunov exponents. As the length increased to 100, the values100 and 1000 points from this extracted series, using the

Jacobian matrix derived from the Ricker equation. approached zero, but remained positive (Table 8), a similar
result to that found by Turchin & Taylor (1992). As expected,
the number of permutations had no effect. All time series with

Results fifty points or greater yielded significant results with the
randomization tests.

The results of the cross-validations revealed that models with
one, two or three lags had similar values for the PVA for most
species except M. ascalonicus, P. alchemillata and Discussion
X. montanata(Table 3).

The Lyapunov exponents estimated from the direct method Turchin & Millstein (1993) demonstrated that the Jacobian
method was better than the trajectory method for quantifyingwere significantly and positively correlated with those from

the indirect method in both aphid and moth time series (Fig. 4). the dynamic behaviour of short, noisy, time series. The present
study shows that there are apparent differences betweenHowever, for the simulated data from the Ricker model, a

decrease in the series length seriously affected the Lyapunov estimated Lyapunov exponents using the direct and indirect
Jacobian methods, especially from the three-lag models,estimates for the direct method. Whilst use of the indirect

method obtained accurate exponents at all but the largest level although the values from both methods were highly correlated.
However, the crucial evidence informing a choice between theof noise, the direct method performed less well, especially

when the time series contained a moderate or large level of methods is the unreliability of the direct method for the Ricker
model when noise is present. Thus the present authors supportnoise (Table 4). Therefore only the indirect method is considered

further in this paper. Turchin & Millstein’s (1993) and Ellner & Turchin’s (1995)
use of the indirect method to estimate Lyapunov exponents,The Lyapunov exponents from the randomly permuted

series under hypothesis I were normally distributed, but the for ecological data in the form of counts.
Results from non-linear time series analysis are subject todistribution of exponents under hypothesis II was skewed to

the right. The means of these exponents were smaller under errors due both to exogenous noise within the time series and
in the functional form of the model assumed. Positive estimateshypothesis I than II at all five sites and the majority of

exponents under hypothesis II were between –0.6 and zero of Lyapunov exponents arising from reconstructions of the
endogenous dynamics of time series data are now seen to be(Table 5). For the actual data, positive exponents were obtained

only from lag-three models for both aphid and moth series, insufficient to characterize the series as chaotic, so previous
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Table 5. Samples of distributions of values of estimated Lyapunov exponents,λ̂, of 1000 permuted series for the aphidMyzus ascalonicusat five
sites under hypotheses I and II.

Sites

Rothamsted Wye Broom’s Barn Newcastle Dundee

Range ofλ̂ value I II I II I II I II I II

,–3.8 5 0 6 0 7 0 9 0 5 0
–3.8~–3.6 5 0 4 0 3 0 5 0 2 0
–3.6~–3.4 4 0 3 0 8 0 5 0 3 1
–3.4~–3.2 11 0 10 0 8 0 7 0 6 0
–3.2~–3.0 15 0 15 1 19 0 15 0 6 0
–3.0~–2.8 22 0 16 0 28 1 13 0 20 0
–2.8~–2.6 25 0 25 1 29 0 8 1 18 0
–2.6~–2.4 33 0 31 0 57 2 33 0 21 0
–2.4~–2.2 50 0 61 1 58 1 34 0 34 0
–2.2~–2.0 60 1 83 1 101 2 58 1 54 0
–2.0~–1.8 82 3 97 2 117 1 82 1 65 1
–1.8~–1.6 113 3 130 5 122 3 76 3 86 2
–1.6~–1.4 126 2 146 12 147 10 84 6 82 8
–1.4~–1.2 104 10 130 16 114 30 101 8 87 9
–1.2~–1.0 129 23 111 32 90 26 113 23 122 17
–1.0~–0.8 91 47 66 61 60 58 133 46 105 43
–0.8~–0.6 74 85 51 87 29 93 65 82 99 90
–0.6~–0.4 35 199 13 199 3 187 85 179 74 191
–0.4~–0.2 15 382 2 356 0 384 44 359 67 352
–0.2~–0.0 0 245 0 226 0 202 21 291 29 285
0.0~0.2 1 0 0 0 0 0 7 0 12 1
.0.2 0 0 0 0 0 0 2 0 3 0

Mean λ̂ –1.565 –0.398 –1.655 –0.443 –1.779 –0.453 –1.375 –0.383 –1.291 –0.383

work (Turchin & Taylor, 1992; Hanskiet al., 1993a; Perry For the data studied here, complex models with two or three
lags were appropriate only for holocyclic aphid species oret al., 1993) requires re-evaluation. Confidence limits have

been developed for Lyapunov exponent estimates by using anholocyclic species with three migratory periods per year,
while one-lag models were appropriate only for anholocyclicreplicated laboratory populations (Turchin, 1991b), populations

from different geographical locations (Turchin, 1993) or species with a single migratory period per year. This may
suggest that species with more complex life-history strategiesbootstrap techniques (Falcket al., 1995) to try to overcome

the uncertainties involved in the analysis of relatively short and migratory patterns may undergo more complex population
regulation. Although high levels of the incidence of density-series. However, this study shows that estimates of Lyapunov

exponents may be very different at different localities, dependence and delayed density-dependence were found from
5715 time series of both aphid and moth species by Woiwodespecially for species with a three-lag model (Tables 6 and 7).

The second randomization test developed here employs a null & Hanski (1992), it remains unclear whether the differences
between life history strategies in aphids and moths are relatedhypothesis (II) which may be questionable, because most

species display density-dependent dynamics, but it provides to their strength of density-dependence (Hanski & Woiwod,
1993). Further studies are necessary to verify this theory, assome confidence to aid the interpretation of small positive or

negative exponents. Data from several sites have been used to the selection of the appropriate complexity of a model to best
describe the underlying dynamics of a time series is crucial instrengthen the conclusions from this test and as an examination

of the consistency and robustness of the estimated Lyapunov defining its dynamic type. The use of more complex models
than necessary is likely to yield estimates of exponents biasedexponents. Longer time series with more than fifty points may

be needed to obtain much greater confidence. The time series towards positive values (Table 6, and P. Turchin, personal
communication).analyses yielded only few positive Lyapunov exponents, mainly

in aphid series with lengths between twenty-four and twenty- Aphids usually have complex life histories. In addition to
the many complications arising from the switch between sexualeight values. None of these was large enough to provide

evidence of chaotic dynamics. These results indicate that and asexual reproduction, often involving a change of host
plant, and the production of winged and wingless forms, aphidsevidence of chaotic dynamics in aphid and moth populations

may be difficult to obtain at the spatial and temporal scales have a telescoping of generations whereby live offspring are
produced that already have the next generation developingstudied.
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Table 6. Estimated Lyapunov exponents,λ, and results of randomization tests on the time series of the six aphid species (indirect method). The
percentages,p1 andp2, show how many simulated series under hypothesis I and II, respectively, had estimated Lyapunov exponents that were less
thanλ for the observed series.

Site

Species Rothamsted Wye Broom’s Barn Newcastle Dundee

Brachycaudus helichrysi λ 0.113 0.109 –0.528 –0.087 –0.018
(lag three model) p1 67.5 77.2 0.0 33.0 47.7

p2 68.0 72.8 0.0 20.8 37.1

Elatobium abietinum λ –0.878 –1.392 –5.376 –1.537 –1.030
(lag one model) p1 89.2 58.2 0.0 65.9 80.6

p2 10.1 1.8 0.0 1.3 6.9

Hyperomyzus lactucae λ –0.039 –0.107 –0.070 0.027 0.072
(lag three model) p1 63.5 27.4 58.3 53.6 75.8

p2 43.0 18.9 37.8 56.5 62.8

Myzus ascalonicus λ –0.882 –1.145 –1.755 –0.481 –0.731
(lag one model) p1 84.5 79.6 47.2 89.1 75.3

p2 6.7 4.5 0.8 25.3 10.8

Metopolophium dirhodum λ –1.115 –0.701 –1.405 –1.970 –1.278
(lag one model) p1 91.1 99.0 68.7 26.7 80.3

p2 4.5 22.3 1.5 0.2 1.4

Myzus persicae λ –0.476 –0.148 –0.152 –0.202 –0.302
(lag two model) p1 45.4 85.9 94.2 74.3 68.8

p2 12.1 67.2 75.3 57.8 36.2

Table 7. Estimated Lyapunov exponents,λ, and results of randomization tests on the time series of the four moth species (indirect method). The
percentages,p1 andp2, show how many simulated series under hypothesis I and II respectively, had estimated Lyapunov exponents that were less
thanλ for the observed series, — indicates values not calculated as time series failed to meet minimum criteria (see text).

Site

Species Alice Holt Geescroft Sutton Bonnington Spurn Head Kielder Elgin

Apamea monoglypha λ — –0.926 –1.091 –1.646 –1.515 –1.781
(lag one model) p1 — 96.5 84.9 48.3 59.6 44.5

p2 — 5.4 7.2 1.2 1.9 1.3

Cerapteryx graminis λ –0.584 — — — –0.829 –0.518
(lag one model) p1 96.5 — — — 91.3 100.0

p2 24.6 — — — 11.6 19.4

Perizoma alchemillata λ –0.123 0.042 — — –0.330 –0.007
(lag three model) p1 69.5 68.3 — — 3.9 73.9

p2 24.5 21.1 — — 1.4 60.7

Xanthorhoe montanata λ –1.434 — –0.989 –1.231 — –0.800
(lag one model) p1 63.5 — 79.2 62.8 — 91.9

p2 10.0 — 7.4 3.2 — 12.5

inside them. Under these circumstances it is practically and are known to give a very good representation of general
field population levels over a considerable area (Tatchell,impossible to separate generations as might be required for the

assumptions of certain restrictive population-dynamic models, 1991). Hence, the use of annual suction trap catches as a
measure of overall annual population size for analyses relatingalthough these assumptions may usually be rewritten to give

a fully valid analysis. Survey suction traps such as those used several successive years is not unreasonable for most purposes
and was used in this way in previous dynamic studies withhere monitor the migrating aerial phase of the aphid life cycle
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Table 8. Effects of series length and the number of randomizations on estimated Lyapunov exponents,λ̂, from a known chaotic time series under
hypotheses I and II. The percentages show how many simulated series had estimated Lyapunov exponents less than the value ofλ̂.

Number of permutations (%)

Series length λ̂ Hypothesis 1000 3000 10 000

25 0.165 I 89.1 88.0 87.8
II 83.8 84.3 83.4

30 0.163 I 96.7 96.1 96.9
II 93.0 92.8 92.8

50 0.066 I 99.8 99.8 99.7
II 96.4 95.6 95.7

100 0.035 I 100 100 100
II 99.9 99.9 99.9

Box, G.E.P. & Jenkins, G.M. (1976)Time Series Analysis: Forecastingthese data (Woiwod & Hanski, 1992; Hanski & Woiwod,
and Control. Holden Day, Oakland, California.1993). The univoltine moth species chosen as examples in this

Chan, K.S. & Tong, H. (1990) On likelihood ratio tests for thresholdanalysis conform much more closely to the assumptions made
autoregression.Journal of the Royal Statistical Society Series B, 52,in commonly used population-dynamic models. However, even
469–476.

here the samples do not measure density directly, but provide Efron, B. & Tibshirani, R. (1986) Bootstrap methods for standard errors,
a correlate that combines density and activity. The resulting confidence intervals, and other measures of statistical accuracy.
figure seems to give a reasonably accurate measure of Statistical Science, 1, 54–77.
population levels in the immediate vicinity of the trap, although Ellner, S. & Turchin, P. (1995) Chaos in a ‘noisy’ world: new methods

and evidence from time series analysis.American Naturalist, 145,an exact definition of the area from which the sample is
343–375.drawn or its calibration with absolute population size is not

Ellner, S., Gallant, A.R., McCaffrey, D. & Nychka, D. (1991)possible currently.
Convergence-rates and data requirements for jacobian-basedNon-linearity is necessary, although not sufficient, for
estimates of Lyapunov exponents from data.Physics Letters A, 153,producing chaotic dynamics (Schuster, 1988). Statistical
357–363.

methods have been developed to test for the non-linearity of Emmet, A. M. & Heath, J. (1991)The Moths and Butterflies of Great
a time series (Chan & Tong, 1990; Tong, 1990; Thieleret al., Britain and Ireland. Vol. 7, Part 2. Harley Books, Essex.
1992; Terasvirta, 1994). For instance, Falcket al. (1995) used Falck, W. M., Bjornstad, O. N. & Stenseth, N.C. (1995) Bootstrap
the method of Chan & Tong (1990) on thirty-four Holarctic estimated uncertainty of the dominant Lyapunov exponent for

Holarctic microtine rodents.Proceedings of the Royal Society ofmicrotine rodent time series and found that nineteen were
London Series B-Biological Sciences, 261, 159–165.linear. The methods to estimate Lyapunov exponents described

Genstat 5 Committee (1993)Genstat 5 Reference Manual. Oxfordhere may be used independently of these.
University Press, Oxford.

Hanski, I. & Woiwod, I.P. (1993) Mean-related stochasticity and
population variability.Oikos, 67, 29–39.Acknowledgements

Hanski, I., Turchin, P., Korplmakl, E. & Henttonen, H. (1993a)
Population oscillations of boreal rodents: regulation by mustelid

IACR Rothamsted receives grant-aided support from the predators leads to chaos.Nature, 364, 232–235.
Biotechnology and Biological Sciences Research Council of Hanski, I., Woiwod, I.P. & Perry, J.N. (1993b) Density dependence,
the UK. This work was supported by the BBSRC, grant no. population persistence, and largely futile arguments.Oecologia, 95,

595–598.PG206/0538. We thank the Rothamsted Insect Survey, the
Hassell, M.P., Lawton, J.H. & May, R.M. (1976) Patterns of dynamicalScottish Agricultural Science Agency, the Scottish Crop

behaviour in single-species populations.Journal of Animal Ecology,Research Institute and Newcastle University for data, and Jordi
45, 471–486.Bascompte, Stephen Ellner, Robert Smith and Peter Turchin

Hastings, A., Hom, C.L., Ellner, S., Turchin, P. & Godfray, H.C.J.
for many helpful discussions. (1993) Chaos in ecology: is mother nature a strange attractor?

Annual Review of Ecology and Systematics, 24, 1–33.
Holyoak, M. (1993) The frequency of detection of density dependence

References in insect orders.Ecological Entomology, 18, 339–347.
Kadanoff, L.P. (1983) Simple mathematical systems exhibit complex

Bascompte, J. & Sole, R.V. (1994) Spatially induced bifurcations in patterns of behaviour that can serve as models for chaotic behavior,
single-species population dynamics.Journal of Animal Ecology, 63, including perhaps turbulent flow in real hydrodynamic systems.
256–264. Physics Today, 36 (12), 46–53.

Berryman, A. (1992) On choosing models for describing and analyzing Logan, J.A. & Allen, J.C. (1992) Nonlinear dynamics and chaos in
insect populations.Annual Review of Entomology, 37, 455–477.ecological time series.Ecology, 73, 694–698.

© 1997 Blackwell Science Ltd,Ecological Entomology, 22, 231–241



Detecting chaotic dynamics 241

May, R.M. (1974) Biological populations with non-overlapping Peters and J.A. Webster), pp. 215–230. Oklahoma Agricultural
Experiment Station, Miscellaneous Publication 132, Oklahoma.populations: stable points, stable cycles, and chaos.Science, 186,

Terasvirta, T. (1994) Testing linearity and modeling nonlinear time645–647.
series.Kybernetika, 30, 319–330.May, R.M. (1976) Simple mathematical models with very complicated

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. & Farmer, J.D.dynamics.Nature, 261, 459–467.
(1992) Testing for nonlinearity in time-series – the method ofMay, R.M. (1987) Chaos and the dynamics of biological populations.
surrogate data.Physica D, 58, 77–94.Proceedings of the Royal Society of London Series A-Mathematical

Tong, H. (1990)Non-linear Time Series Analysis. Oxford Scienceand Physical Sciences, 413, 27–44.
Publication, Oxford.Nychka, D., Ellner, S., Gallant, A.R. & McCaffrey, D. (1992) Finding

Turchin, P. (1990) Rarity of density dependence or population regulationchaos in noisy systems.Journal of the Royal Statistical Society
with lags?Nature, 344, 660–663.Series B-Methodological, 54, 399–426.

Turchin, P. (1991a) Nonlinear modeling of time series data: limitPerry, J.N. (1994) Chaotic dynamics can generate Taylor’s power law.
cycles and chaos in forest insects, voles, and epidemics.Chaos andProceedings of the Royal Society of London Series B-Biological
Insect Ecology(ed. by J.A. Logan and F.P. Hain), pp. 39–62. VirginiaSciences, 257, 221–226.
Experiment Station, information series 91–3 edn. Blacksburg,Perry, J.N., Woiwod, I.P. & Hanski, I. (1993) Using response-surface
Virginia.methodology to detect chaos in ecological time series.Oikos, 68,

Turchin, P. (1991b) Reconstructing endogenous dynamics of a329–339.
laboratoryDrosophila population.Journal of Animal Ecology, 60,Pollard, E., Lakhani, K.L. & Rothery, P. (1987) The detection of
1091–1098.density dependence from a series of annual censuses.Ecology, 68,

Turchin, P. (1993) Chaos and stability in rodent population-dynamics –2046–2055.
evidence from nonlinear time-series analysis.Oikos, 68, 167–172.Renshaw, E. (1994) Chaos in biometry.IMA Journal of Mathematics

Turchin, P. & Millstein, J.A. (1993)EcoDyn/RSM Response SurfaceApplied in Medicine and Biology, 11, 17–44.
Modeling of Nonlinear Ecological Dynamics I. Theoretical

Ricker, W.E. (1954) Stock and recruitment.Journal of the Fisheries
Background.Applied Biomathematics, Setauket, New York.

Research Board of Canada, 11, 559–623.
Turchin, P. & Taylor, A.D. (1992) Complex dynamics in ecological

Rohani, P. & Miramontes, O. (1995) Host-parasitoid metapopulations:
time-series.Ecology, 73, 289–305.

the consequences of parasitoid aggregation on spatial dynamics and
Wichmann, B.A. & Hill, I.D. (1982) An efficient and portable pseudo-

searching efficiency.Proceedings of the Royal Society of London random number generator.Applied Statistics, 31, 188–190.
Series B-Biological Sciences, 260, 335–342. Woiwod, I.P. & Hanski, I. (1992) Patterns of density dependence in

Rohani, P., Miramontes, O. & Hassell, M.P. (1994) Quasiperiodicity moths and aphids.Journal of Animal Ecology, 61, 619–629.
and chaos in population models.Proceedings of the Royal Society Woiwod, I.P. & Harrington, R. (1994) Flying in the face of change:
of London Series B-Biological Sciences, 258, 17–22. the Rothamsted Insect Survey.Long-term Experiments in

Schuster, H.G. (1988)Deterministic Chaos, an Introduction. VCH, Agricultural and Ecological Sciences(ed. by R. A. Leigh and A. E.
Weinheim, Germany. Johnston), pp. 321–342. CAB International, Wallingford.

Sinclair, A.R.E. (1989) Population regulation in animals.Ecological Wolf, A., Swift, J.B., Swinney, H.L. & Vastano, J.A. (1985)
Concepts(ed. by J. M. Cherrett), pp. 197–241. Blackwell Scientific Determining Lyapunov exponents from a time series.Physica, 16D,
Publications, Oxford. 285–317.

Sole, R.V. & Bascompte, J. (1994) Ecological chaos.Nature, 367, 418. Zhou, X., Harrington, R., Woiwod, I.P., Perry, J.N., Bale, J.S. & Clark,
Stone, L. (1993) Period-doubling reversals and chaos in simple S.J. (1996) Effects of temperature on aphid phenology.Global

ecological models.Nature, 365, 617–620. Change Biology, 1, 303–313.
Tatchell, G.M. (1991) Monitoring and forecasting aphid problems.

Accepted 14 October 1996Aphid–Plant Interactions: Populations to Molecules(ed. by D.C.

© 1997 Blackwell Science Ltd,Ecological Entomology, 22, 231–241


