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Detecting chaotic dynamics of insect populations
from long-term survey data
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Abstract 1. Estimates of the Lyapunov exponent, a statistic that measures the
sensitive dependence of the dynamic behaviour of a system on its initial conditions,
are used to characterize several sets of insect time series.

2. A new method is described to overcome the difficulty of defining the dynamics
of an observed, noisy, short ecological time series. This method provides two test
statistics for the estimated Lyapunov exponent.

3. This method is applied to forty-six time series comprising six aphid species
from five sites and four moth species from six sites. There are few positive Lyapunov
exponents and none is sufficiently large to characterize its time series as chaotic.

4. Two methods to estimate the Lyapunov exponent are compared; that based on
logarithmically transformed counts yields less variable estimates for highly variable
insect data than that based on untransformed counts.

Key words. Chaos, aphids, moths, population dynamics, time series, Lyapunov
exponent.

Introduction underestimated because the degree of density-dependence was
underestimated. Turchin & Taylor (1992) proposed a response-
Complex dynamics can arise from simple, theoretical and surface model that they claimed had many advantages over

ecological models involving difference equations (May, 1974, other methods to characterize the non-linear dynamic behaviour
1976). Advances in computing power have rekindled this of insect populations from real ecological data. Pestyal.
interest in recent years and chaotic dynamics in ecology have (1993) used this technique to study the endogenous dynamics

been the subject of several reviews (May, 1987; Logan & Allen, underlying two ecological time series for the apRilyllaphis
1992; Hastinget al,, 1993). Until recently, the perception of  fagi (Linn.); the method was sensitive to a number of factors,
the prevalence of chaos in ecology was largely determined by including further data from the same population and extra data
a very influential study of life-table data of twenty-eight insect from different but comparable populations.
populations with discrete generations (Hassalbl, 1976). Observed ecological time series are the consequences of
The authors concluded that most of these populations were density-dependent processes and density-independent random
stable and that examples of complex dynamics were rare in processes and their interactions in multispecies communities
nature. This conclusion was criticized by Turchin & Taylor (Turchin & Taylor, 1992). Clearly, a mixture of density-
(1992) on the basis that Hassellal's (1976) single-species  dependent and delayed density-dependent processes is common
model was overly simple and lacked delayed density- in many insect populations (Sinclair, 1989; Turchin, 1990;
dependence. Complex dynamics are more likely to arise in Woiwod & Hanski, 1992; Hanslet al,, 1993b; Holyoak, 1993;
systems with a larger number of dimensions. Delayed density- Perry, 1994). However, it remains a challenge in ecology to
dependence occurred frequently in the multispecies separate the density-dependent, endogenous dynamics from the
communities typically found in many insect populations exogenous density-independent noise. Turchin & Taylor (1992)
(Turchin, 1990). Perry (1994) suggested that the incidence of suggested that the fitted response-surface model be used to
complex dynamics found by Hassellal. (1976) was possibly reconstruct directly the endogenous dynamics of a time series,
but their approach was superseded by that of Ellner & Turchin
(1995) who regard the exogenous noise as an integral part of
Correspondence: Professor Joe N. Perry, Department of Entomology the dynamics of the series, and as a possible modulator of the
and Nematology, Rothamsted Experimental Station, Harpenden, Herts. qualitative dynamics to be estimated. For example, whereas
AL5 2JQ, U.K. the endogenous dynamics might indicate limit cycles,
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consideration of the exogenous dynamics could alter the overall
estimated dynamics qualitatively, to stability (less complex) or

chaos (more complex). They recommended definition of the

qualitative dynamics through estimation of the Lyapunov
exponent, by the Jacobian method of Nychital. (1992). &
Perryet al. (1993) and Renshaw (1994) stressed the difficulties

caused by the need to investigate complex, multiparameter
response-surface models, for data that are strictly limited by

the length of the time series available.

The Lyapunov exponen, is a quantitative measure of the
sensitive dependence of the subsequent dynamics on initial
conditions: it quantifies the rate of growth {f> 0), or decay
(if A < 0) over time, of the effects of a small perturbation on
a system’s dynamics (Ellner & Turchin, 1995). It is used
increasingly to characterize the dynamic behaviour of both
ecological models (Bascompte & Sole, 1994; Rohanal.,
1994; Sole & Bascompte, 1994; Rohani & Miramontes, 1995)
and observed ecological time series (Turchin & Taylor, 1992;
Hanskiet al., 1993a; Turchin, 1993). A system with> 0 is
a ‘noise amplifier’: after a small perturbation occurs, the effects
of the perturbation are magnified over time by the system’s
intrinsic dynamics. This property causes unpredictability in the
system’s dynamics, one of the most important signatures of
chaos. On the other hand, a system with< O is a ‘noise
muffler’: the effects of the perturbation decay to zero over
time, the system’s intrinsic dynamics are predictable and
any unpredictability is due solely to the direct effects of
external noise.

The data analysed here comprise some of the longest series
of field data available, yet the number of points remains
minimal for the analyses attempted. Often, for a single series, Fig. 1. Locations of aphid suction trap@( RT, Rothamsted; W, Wye;
the dynamics found are dependent on the type of model fitted. BB, Broom's Barn; N, Newcastle; D, Dundee) and moth light traps
Too complex a model will overfit the data by treating the noise (O: AH, Alice Holt; GS, Geescroft; SB, Sutton Bonnington; SH, Spurn
as part of the signal; too simple a model cannot represent the Head; KD, Kielder; EL, Elgin).
complexity of the endogenous process. Therefore, caution

should prevent firm conclusions concerning the dynamic (Sulzenyitdpolophium dirhodurWalker), based on those
behaviour of the time series analysed here. To ameliorate somefor which relationships between temperature and phenology are

of these problems, two test statistics were developed, to attempt known and which represent a range of life cycle types (Table 1).
to strengthen the conclusions available from the estimate The six selected light trap sites, at Alice Holt, Geescroft,

of the Lyapunov exponent. This paper introduces this new Sutton Bonnington, Spurn Head, Kielder and Elgin, covered a
methodology to characterize chaotic dynamics using observed similar geographical range as the suction trap sites (Fig. 1). The

time series of various aphid and moth species. four moth speijpEamea monoglyphéHufn.), Cerapteryx

graminis (Linn.), Perizoma alchemillata (Linn.) and
Xanthorhoe montanatéD & S) are univoltine.

Materials and Methods The annual total counts from the aphid series come from
daily samples of winged aphids accumulated during the year,
Data in which most aphid species have three migratory periods (here

B. helichrysj H. lactucag M. persicaeand M. dirhodun). The

The data are annual total counts from the Rothamsted Insectfirst period occurs in spring. For aphid species with a majority
Survey, which samples winged aphids throughout Great Britain of clones that are anholocyclic in the U.K., reproducing
using 12.2-m suction traps and moths using standard parthenogenetically throughout the year (h&eabietinum
Rothamsted light traps (Woiwod & Harrington, 1994). M. ascalonicusand M. persicag, winged aphids develop from

Five suction trap sites were selected with 23 years or more overwintering aphid populations and migrate to more nutritious
of data, at Wye, Rothamsted, Broom’s Barn, Newcastle and host plants, including crops. For species with a majority of
Dundee, to span the geographical range of latitudes in Greatclones that are holocyclic in the U.K., producing male and
Britain (Fig. 1). Six aphid species were selectBthchycaudus female sexual morphs in autumn and overwintering as eggs
helichrysi(KItb), Elatobium abietinunfWalker),Hyperomyzus but reproducing parthenogenetically throughout the rest of the
lactucae (Linn.), Myzus ascalonicu®oncaster,M. persicae year (hereB. helichrysj H. lactucaeandM. dirhodun), winged

© 1997 Blackwell Science Ltd:cological Entomology22, 231-241



Detecting chaotic dynamics 233

Table 1. A summary of the time series of annual total catches for the six aphid species at five sites: Rothamsted (RT), Wye (W), Broom’s Barn
(BB), Newcastle (NC) and Dundee (DD) with series lengths of 27, 25, 27, 25 and 25 years, respectively, exegthfpcaudus helichrysfor

which 24 years of data were available at all sites. M is the sample mean; SD is the standard deviation. Non-integer counts arise from estimated
missing values.

Min. Max. M SD Min. Max. M SD Min. Max. M SD
Site Brachycaudus helichrysi Elatobium abietinum Myzus ascalonicus
RT 45.0 2837.0 1089.0 815.5 2.0 380.9 66.9 85.7 7.0 364.6 111.1 91.3
w 99.9 2722.0 831.6 638.3 5.0 441.6 133.1 126.1 3.0 107.9 42.4 31.0
BB 47.4 3655.0 802.4 765.3 2.0 209.9 38.7 48.2 3.0 190.9 56.2 475
NC 23.0 597.4 151.8 127.9 3.0 1573.0 308.4 455.8 0.0 82.0 26.1 23.2
DD 34.0 475.4 203.4 123.3 4.1 1034.0 137.3 243.1 0.0 31.4 9.1 8.6
Myzus persicae Hyperomyzus lactucae Metopolophium dirhodum
RT 420 911.0 211.8 202.5 14.0 171.6 58.1 40.8 19.0 18449.0 1564.0 3671.0
w 75.0 1113.0 300.6 256.6 29.0 366.3 79.5 68.9 54.1 34434.0 2006.0 6786.0
BB 72.0 1737.0  419.9 397.1 10.0 362.1 73.8 72.9 73.0 187931.0 9704.0 35951.0
NC 4.6 313.1 59.5 75.2 0.0 36.7 12.1 8.9 16.3 3572.0 644.2 878.2
DD 4.0 670.4  165.6 171.2 5.0 93.4 23.4 19.8 22.0 44667.0 3473.0 8813.0
aphids develop from aphids originating from overwintering are due to a very few missing values in daily catches that were
eggs on primary (usually woody) hosts where they are laid in estimated (Zhowet al., 1996). The criteria for some moth time
the previous autumn. These migrate to specific herbaceous host series were not met at all sites, so these were not analysed
plants where they reproduce parthenogenetically. The second(Table 2). All data were transformed froi to (N; + 1), to
migratory period occurs in summer. For both anholocyclic and avoid problems caused by the logarithm of zero.

holocyclic species, winged aphids develop and disperse in

response to crowding and decline in host plant nutrients. The

third migratory period occurs in autumn. Winged aphids of The model

anholocyclic clones move to overwintering host plants, usually

herbaceous weeds and grasses. In holocyclic clones, winged The model of Perrnyet al. (1993) was used in this study to
males and gynoparae (parents of the wingless, sexual femalesprovide a more stable alternative to that suggested by Turchin
the oviparae) develop in response to short photoperiod and g Taylor (1992). Denoting the population density in yeaas
migrate to the primary hosts where overwintering eggs are N,; and the transformed population growth rate.;lgi/N;_y),
laid. Elatobium abietinumfeeding on spruce Riceg and in yeart asy; the model with three time lags is:

M. ascalonicus feeding on Compositae, Cruciferae and

Rosaceae have only one migratory period in May and June, %t = F(XYZ) = 8 + aiX + a;X? + &Y + ag¥? + aZ +

when winged aphids develop and disperse in response to a agZ? + @ XY + aqaXZ + aYZ + & (1)
decline in plant nutrients (Zhoet al., 1996). where
The annual total counts from the moth series come from
nightly catches of adult moths in light trapsApamea X = 10g1o(Ni-0). Y = 1001(Ne-2). Z = 10G1o(N-2)-
monoglyphaoverwinters as larvae that feed on Gramineae and For models with one and two lags, terMamdth, andZ
the adults fly between June and AuguSerapteryx graminis in eqn 1 are deleted, respectively. As a preliminary screen of
overwinters as eggs, feeds on Gramineae and the adults fly the dynamics and to assess stationarity, diagnostic plots of the
between July and SeptemberPerizoma alchemillata ACF and the partial autocorrelation function (PACF) (Turchin,
overwinters as pupae, feeds @aleopsisspp. and the adults 1990; Berryman, 1992) and power spectra (Kadanoff, 1983)
fly between June and JuBtanthorhoe montanataverwinters were produced for each time series. The parameters in eqn 1
as larvae, feeds on herbaceous plants suclGalsum and were estimated using the statistical packagensTAaT 5
Primula spp. and the adults fly between May and July (Emmet (GensTaT5 Committee, 1993). Models were fitted with one,
& Heath, 1991). two and three lags to each of the time series and the percentage
Each time series of annual total catdy)(analysed for these variance accounted for (PVA) by the different lags was
sites and species met two additional criteria: it had no more compared (Peaty 1993). TheGeEnsTAT 5 definition of
than a single zero catch and was stationary, in the sense thatpercentage variance accounted for’ is an adjustedtatistic,
its autocorrelation function (ACF) decayed to zero (Box & a measure of the goodness of fit of the model, calculated as:
Jenkins, 1976). The mean (M), minimum (Min), maximum 100[1—(residual mean square)/(total mean square)]. The model
(Max) and standard deviation (SD) of these time series are with three lags improved the fit of about half of the time series,

presented in Tables 1 and 2. Decimal points in the aphid data compared to the models with one or two lags (Fig. 2). The
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Table 2. A summary of the time series of annual total catches for the four moth species at six sites: Alice Holt (AH), Geescroft (GS), Sutton
Bonnington (SB), Spurn Head (SH), Kielder (KD) and Elgin (EL) with series lengths of 28, 28, 24, 24, 25 and 27 years, respectively. M is the
sample mean; SD is the standard deviation. —, values are not presented where time series failed to meet minimum criteria (see text).

Species
Site Apamea monoglypha Cerapteryx graminis Perizoma alchemillata Xanthorhoe montanata
Min. Max. M SD Min. Max. M SD Min. Max. M SD Min. Max. M SD
AH — — — — 1 20 6.8 45 1 133 343 352 2 59 193 142
GS 3 112 324 296 — — @— @ — 1 209 70.1 66.2 _ = = =
SB 4 90 241 195 — — — — — — — — 3 120 485 326
SH 6 137 388 345 — — — @— _- - = = 4 45 168 115
KD 4 151 40.8 339 5 143 38.1 34.0 5 239 58.7 66.2 — — — —
EL 4 149 377 372 4 73 249 16.0 4 115 28.9 256 5 77 419 182
901 a data points, starting in each case with the first data point and
8ot : ending with the last. The PVA values from the resulting-2
g 704 series were averaged over the sites for each species, and the
g 0 L model with the largest average PVA selected (Table 3).
o5l
i 40 Characterizing dynamics with Lyapunov exponents
g 1
§ 30 + The Lyapunov exponenf, was adopted as a quantitative
& 0l measure of the sensitive dependence of the subsequent
10 . dynamics on initial conditions (Turchin & Millstein, 1993;
' Ellner & Turchin, 1995). Fol < 0 the dynamics are classified
10 90 as stable, with a fixed point equilibrium or cyclic equilibrium.
For A = 0 the dynamics are classified as quasiperiodic. For
A > 0 the dynamics are classified as chaotic, when the effects
90 of small perturbations are compounded and therefore cannot
__ 80 be ignored in predicting the future dynamics of the system.
S 4l Wolf et al. (1985) gave two methods to estimate the Lyapunov
g 0 L exponent: the trajectory and the Jacobian (Turchin & Millstein,
8 1993). The trajectory method calculates the rate at which two
£ 507 nearby trajectories diverge in time. It requires a large number
2 404 of data values, especially in high-dimensional systems (Wolf
< 30 1 et al, 1985; Turchin, 1991a). This method, if used for stochastic
E systems, is likely to yield more biased and highly variable
20 : estimates than the Jacobian method (Turchin, 1991a; Turchin
10 ' ' ' | & Millstein, 1993). Here, Ellneretal’s (1991) modified
10 30 50 70 90 Jacobian method was used, that calculates the rate of divergence
PVA(lag two model) using the Jacobian matrix comprising partial derivatives of the

system map, and which Ellner & Turchin (1995) note is less
Fig. 2. Relationships between percentage of variance accounted for Sensitive to the dynamic noise that most biological systems
(PVA), after fitting models with one, two and three lags to the data contain. The estimated value dfis calculated from:
for the full time series. The solid line is the fitted regression line and

S - . =1
the dotted line is the equality line. (a) lag-three modéldgainst lag- A= - l0gl9nJn-1.- JaVIl 2
one model X): Y =-1.691+ 1.045, F; ,3=32.0; (b) lag-three
model () against lag-two modelX): Y = -8.20+ 1.18X, F; »g= whereJ; is the Jacobian matrix of partial derivatives of eqn 1
64.4. evaluated al;; || - || is @ matrix norm;v is a vector of length

one (1,0,0...,0) andn is the length of the time series.
most appropriate lag for each species was selected using cross- The following is a brief explanation. For the three-lag model
validation, as described by Turchin & Millstein (1993). This dengtas N, X1 asN¢y, Vi1 @SN, andz_j; asN;_3 The
involved the generation ofr2l new series from each original  system map of eqn 1 may be rewritten in terms of functions:
series, by the removal of first one, and then two successive d(), g() and p() as:
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Detecting chaotic dynamics 235

Table 3. Average ‘percentage variance accounted for’ (PVA) from cross-validations of models for each time series over five sites for each aphid

and moth species, and the model selected for each species.

PVA
Species Model selected Lag one Lag two Lag three
Brachycaudus helichrysi Lag three 51.186 49.694 51.780
Elatobium abietinum Lag one 58.566 53.618 57.278
Hyperomyzus lactucae Lag three 55.114 56.020 62.390
Myzus ascalonicus Lag one 38.756 33.224 29.314
Metopolophium dirhodum Lag one 59.464 57.220 57.642
Myzus persicae Lag two 45.804 49.648 44910
Apamea monoglypha Lag one 36.796 36.100 35.614
Cerapteryx graminis Lag one 17.880 17.002 15.396
Perizoma alchemillata Lag three 35.485 45.075 49.810
Xanthorhoe montanata Lag one 29.852 23.262 22.842

X = d(xt—l! Yi-1 Zt—l) ’
Vi = 91 Yi-1, Z2-1) and
4= p(Xt_l, Yi-1 z(—l)v

where g1, Vi1, 2D = X-1and P&y, Yin 2D = Y1
Then, for stability analysis, this may be linearized using a
Taylor series expansion as:

VX \
{ %% ] = { VY1 ] (3
Vz Vz

where V represents a small difference between two nearby
trajectories on the map at a particular time dpid the Jacobian
matrix evaluated at timg whose components are:

adlox  oadley  adloz
J = [ aglox  aglay ag/az} (4)
aplox  oploy  aploz

ando/ox represents the partial derivative with respect.tdhe
divergence or convergence %Bffrom timet-1 to timet depends
on the nature of the Jacobian at tirre, specifically whether

it is of the stretching or shrinking kind. The value &fis
amplified for the former, for which the dominant eigenvalue

with respect toLx_j, Ly;_; and Lz_,, respectively, i.e. where
Lx1 = 10010(%¢-1), LYt-1 = 10010(¥t-1), Lz-1 = 10010(z-1), U1z
t=1+ (')F/E)th_l, U:|_2t =1+ aFlaLyt_l and U]_3t =1+ oF/
oLz_,.

The second method used the partial derivatives of the original
system map, with respect 1@ 4, y;_; andz_, (here termed the
direct method). Defining logf; = v;, the components of the
alternative Jacobian matriy};, are:

ad/ox_q = A [1 + %1 (0F/0Lx_1)(ILx-2/0% )] = fy Usd,
adloy,_1 = At %1 (OF/oLyi_1)(ILya/0Yi1)] =

Nt K1Y V12,
adl0ze_g = Nt [%1 (IF/ILZ_1)(0LZ1/0Z_1)] =

Nt (X1/Z)U1g,

and the rest of the components are the same as those in egn 6.

Randomization tests

A method is required to assess the importance of deviations
of estimated Lyapunov exponents from zero. Dynamics with a
positive estimated Lyapunov exponent cannot be ascribed as
definitely chaotic with any confidence, because noise in the

of the Jacobian is greater than unity, and reduced for the latter, data may give rise to positive estimates for stable systems, or

for which the dominant eigenvalue is less than unity. However,
the divergence rate &f may vary, because the Jacobians may

negative estimates where the underlying dynamics are chaotic.
The method developed here is in the spirit of Pollatdl

change over time. It is therefore necessary to measure the(1987), who constructed a randomization distribution for a

average divergence rate, over an infinite time period:

A= Eme (31 do-Joll /1] (5)

density-dependence statistic, by random permutation of a
time series. Firstly, consider a null hypothesis of complete
compensation, where the series returns to its overall mean

Two methods were used to obtain the Jacobian matrix of value each year and ‘forgets’ any deviation experienced in the

the system map. The first was used by Turchin & Millstein

previous year. This corresponds to an extreme form of density-

(1993) (here termed the indirect method), who transformed the dependence in which the series exhibits strong stability; all

system map to logarithms by considering, insteadNofL; =
log;gN\; to obtain the Jacobiard;:

Un' Ut Ugg
am=|1 o o ©)
0 1 0

where Upt, Uit and U;g are partial derivatives of the
logarithmically transformed function of;, = d(X._1, V-1, Z_1)

© 1997 Blackwell Science Ltd:cological Entomology22, 231-241

fluctuations from the mean are merely temporary shocks.
The model here idN; = p + & or logigNy = 1 + & . Series
corresponding to this null hypothesis (hypothesis I) may be
generated by randomly permuting the observed counts in the
series. Secondly, consider a null hypothesis of complete density-
independence, when the growth rate for one year is unrelated
to the population in the previous year (Pollagtlal., 1987)

and is assumed to be a constdqtapart from some stochastic
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Fig. 3. (a) 100 points from a known chaotic time series with a
-2 4 : 1

Lyapunov exponent of 0.624 reconstructed from the Turchin—Taylor
model with an additional temperature varialg (hereT = 4.81):y;, =
4.49+ 0.212T — 35.8N;_12364 + 57.4N, ,*59 + 1.05X 10'N,_g~39 +
5.01x 10'N,_,0728-289.0N, 718 + 772N, 52 78—

-2 -1.5 -1 -0.5 0 0.5

Indirect method

3.80% 10'N,_1*364N;_5*5% + 665.8N, 036N, 3% Fig. 4. Relationships between estimated Lyapunov exponents obtained

2.28 X 10NN 513, and (b) its power spectrum. using the directY) and indirect X) method. The solid line is the fitted
regression line and the dotted line is the equality line. (a) aphid time

fluctuation. The model here is: lgg\; = logioNi_q + K + &, series,Y = 0.036+ 1.013, Fy 5= 3648; (b) moth time series( =

or similar. A stationary series corresponding to this null 0-104+ 1.088X,Fy 14=1414.A are data from one-lag model]
hypothesis (hypothesis Il) may be generated by calculating 98t from two-lag modelsk data from three-lag models.
each of the it—-1) observed growth ratesy;, of the series,

permuting them, and constructing a new series with those series was no larger than that expected from (I) a completely
permuted growth rates plus a starting valdé, randomly compensating series or (ll) a density-independent series,
selected from one of the observed valuedipfrom the actual ~ composed of those identical counts. The null hypothesis was
series. Both hypotheses cover extreme situations, so are notrejected at a 5% (or 95%) level of significance if more than
ideal, but the multiplicity of different models that can generate 9504 of theA 4, values were less (or more) than the value
chaotic dynamics makes it difficult to select an obvious )‘obs The consistent occurrence of positive Vaiueg&;sthat
alternative. The rationale of the randomization test used here were iudged Significant by this test over the sites studied

is whether the estimate @y from the observed time series  was taken as evidence of possible chaotic dynamics for a
should be judged as unusual compared with those obtainedparticular species.

from all the possible random permutations of the time series

(Pollard et al, 1987). Firstly, the model parameters were

estimated and used to calculate the Lyapunov expohgt Effects of time series length and number of permuted time

for the observed time series. Then the bootstrapping techniquesseries

(Efron & Tibshirani, 1986) outlined above were used, with the

random number generator of Wichmann & Hill (1982), to Two time series known to be chaotic were used to obtain
obtain 1000 new series for each hypothesis. The model some idea of the power of the above methods to detect complex
parameters were estimated and the expongpt calculated non-linear dynamics, and of the effect of the length of the time
for each of these series, and a probability distribution was series on the test results. The first time series used was a
formed from these values. This distribution was used to test Turchin—Taylor, three-lag, response-surface model with an
the null hypothesis that the valuk,,s of the observed time additional temperature variate (Fig. 3). The data points used
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Detecting chaotic dynamics 237

Table 4. Effects of noise level and series length on estimates of Lyapunov exponents from the Ricker model using both direct (Dir.) and indirect
(Ind.) methods. The percentages in the noise level column headings express the average noise as a percentage of the mean of the time series.

No noise Small noise (6.3%) Moderate noise (25%) Large noise (50.9%)

Series length Dir. Ind. Dir. Ind. Dir. Ind. Dir. Ind.

30 0.302 0.480 0.115 0.503 -0.610 0.410 -0.860 1.053

50 0.438 0.509 0.201 0.475 —-0.468 0.415 —-0.855 0.940

100 0.524 0.546 0.226 0.447 -0.379 0.438 —-0.869 0.875
1000 0.546 0.548 0.226 0.447 -0.436 0.443 —-0.884 0.903
were the next 30, 50 and 100 points after discarding the initial but none was significantly large under either hypothesis (Tables
5000 time steps from the reconstructed dynamics of the model 6 and 7). ForB. helichrysj exponents were positive at two
(Fig. 3). The time series had a Lyapunov exponent of 0.624 sites and significantly negative at Broom's Barn under both
and its power spectrum confirmed that it was chaotic. Each of hypotheses. All exponents obtained férlactucaewere close
these artificially constructed series was permuted 1000, 3000, to zero. ThesabietinumM. ascalonicus and M. persicae
5000 and 10000 times. The parameters and Lyapunov were all negative, and significantly sdP € 0.05) under
exponents were estimated for each of these series as hypothesik lldloietinumat three sites anil. ascalonicus
described above. at two sites (Table 6). FoM. dirhodumestimates oA were

The second time series used was a simple, single-lag, Ricker significantly negative under hypothesis Il at four sites, but not
equation:Ni_; = N; expft(1-Ny)], with T = 3.50, for which the at Wye. For the moths (Table 7), estimates for all species
model is known to be chaotic (Ricker, 1954; May, 1976; were negative excepf.foronoglyphaat three sites, for

Kadanoff, 1983; Stone, 1993). One thousand points were takenP. alchemillataat Kielder and forX. montanataat Spurn Head
after the initial 5000 points were discarded. Noise was added P < .05). For both aphid and moth species, hypothesis I
at three levels to each value of this series by adding a uniform yielded more significant negative estimates, especially for the

random number on (@), wherea was selected as, respectively, one-lag model (Tables 6 and 7).

0.125, 0.5 and 1.0, for small, moderate and large noise levels. For the simulated data from the Turchin—Taylor model, an

The Lyapunov exponents were estimated from the first 30, 50, increase in series length decreased the values of the estimated
100 and 1000 points from this extracted series, using the Lyapunov exponents. As the length increased to 100, the values
Jacobian matrix derived from the Ricker equation. approached zero, but remained positive (Table 8), a similar

result to that found by Turchin & Taylor (1992). As expected,
the number of permutations had no effect. All time series with
Results fifty points or greater yielded significant results with the

randomization tests.
The results of the cross-validations revealed that models with

one, two or three lags had similar values for the PVA for most
species except M. ascalonicus P. alchemillata and Discussion
X. montanatgTable 3).

The Lyapunov exponents estimated from the direct method Turchin & Millstein (1993) demonstrated that the Jacobian
were significantly and positively correlated with those from method was better than the trajectory method for quantifying
the indirect method in both aphid and moth time series (Fig. 4). the dynamic behaviour of short, noisy, time series. The present
However, for the simulated data from the Ricker model, a study shows that there are apparent differences between
decrease in the series length seriously affected the Lyapunov estimated Lyapunov exponents using the direct and indirect
estimates for the direct method. Whilst use of the indirect Jacobian methods, especially from the three-lag models,
method obtained accurate exponents at all but the largest level although the values from both methods were highly correlated.
of noise, the direct method performed less well, especially However, the crucial evidence informing a choice between the
when the time series contained a moderate or large level of methods is the unreliability of the direct method for the Ricker
noise (Table 4). Therefore only the indirect method is considered model when noise is present. Thus the present authors support
further in this paper. Turchin & Millstein’s (1993) and Eliner & Turchin’s (1995)

The Lyapunov exponents from the randomly permuted use of the indirect method to estimate Lyapunov exponents,
series under hypothesis | were normally distributed, but the for ecological data in the form of counts.
distribution of exponents under hypothesis Il was skewed to  Results from non-linear time series analysis are subject to
the right. The means of these exponents were smaller under errors due both to exogenous noise within the time series and
hypothesis | than Il at all five sites and the majority of in the functional form of the model assumed. Positive estimates
exponents under hypothesis Il were between —-0.6 and zero of Lyapunov exponents arising from reconstructions of the
(Table 5). For the actual data, positive exponents were obtainedendogenous dynamics of time series data are now seen to be
only from lag-three models for both aphid and moth series, insufficient to characterize the series as chaotic, so previous
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Table 5. Samples of distributions of values of estimated Lyapunov expon&ntﬂ, 1000 permuted series for the apiityzus ascalonicuat five
sites under hypotheses | and II.

Sites

Rothamsted Wye Broom’s Barn Newcastle Dundee
Range ofh value | Il | 1l | 1l | 1l | 1]
<-3.8 5 0 6 0 7 0 9 0 5 0
-3.8~-3.6 5 0 4 0 3 0 5 0 2 0
-3.6~—3.4 4 0 3 0 8 0 5 0 3 1
-3.4~-3.2 11 0 a 0 8 0 7 0 6 0
-3.2~-3.0 15 0 15 1 19 0 51 0 6 0
-3.0~-2.8 22 0 16 0 28 1 13 0 20 0
—2.8~-2.6 25 0 25 1 P 0 8 1 18 0
-2.6~-2.4 33 0 31 0 57 2 33 0 21 0
—2.4~-2.2 50 0 61 1 58 1 34 0 34 0
-2.2~-2.0 60 1 83 1 101 2 58 1 54 0
-2.0~-1.8 82 3 97 2 117 1 82 1 65 1
-1.8~-1.6 113 3 130 5 122 3 76 3 86 2
-1.6~—-1.4 126 2 146 12 147 10 84 6 82 8
-14~-1.2 104 10 130 16 114 30 101 8 87 9
-1.2~-1.0 129 23 111 32 90 26 113 23 122 17
-1.0~-0.8 91 47 66 61 60 58 133 46 105 43
—-0.8~-0.6 74 85 51 87 29 93 65 82 99 90
-0.6~-0.4 35 199 13 199 3 187 85 179 74 191
-0.4~-0.2 15 382 2 356 0 384 44 359 67 352
-0.2~-0.0 0 245 0 226 0 202 21 291 29 285
0.0~0.2 1 0 0 0 0 0 7 0 12 1
>0.2 0 0 0 0 0 0 2 0 3 0
Mean A -1.565 —0.398 —-1.655 —-0.443 -1.779 —-0.453 -1.375 -0.383 -1.291 -0.383
work (Turchin & Taylor, 1992; Hansket al, 1993a; Perry For the data studied here, complex models with two or three
etal, 1993) requires re-evaluation. Confidence limits have lags were appropriate only for holocyclic aphid species or
been developed for Lyapunov exponent estimates by using anholocyclic species with three migratory periods per year,
replicated laboratory populations (Turchin, 1991b), populations while one-lag models were appropriate only for anholocyclic
from different geographical locations (Turchin, 1993) or species with a single migratory period per year. This may
bootstrap techniques (Falakt al., 1995) to try to overcome suggest that species with more complex life-history strategies
the uncertainties involved in the analysis of relatively short and migratory patterns may undergo more complex population
series. However, this study shows that estimates of Lyapunov regulation. Although high levels of the incidence of density-
exponents may be very different at different localities, dependence and delayed density-dependence were found from
especially for species with a three-lag model (Tables 6 and 7). 5715 time series of both aphid and moth species by Woiwod
The second randomization test developed here employs a null & Hanski (1992), it remains unclear whether the differences
hypothesis (Il) which may be questionable, because most between life history strategies in aphids and moths are related
species display density-dependent dynamics, but it provides to their strength of density-dependence (Hanski & Woiwod,
some confidence to aid the interpretation of small positive or 1993). Further studies are necessary to verify this theory, as
negative exponents. Data from several sites have been used to the selection of the appropriate complexity of a model to best
strengthen the conclusions from this test and as an examinationdescribe the underlying dynamics of a time series is crucial in
of the consistency and robustness of the estimated Lyapunov defining its dynamic type. The use of more complex models
exponents. Longer time series with more than fifty points may than necessary is likely to yield estimates of exponents biased
be needed to obtain much greater confidence. The time series towards positive values (Table 6, and P. Turchin, personal
analyses yielded only few positive Lyapunov exponents, mainly communication).
in aphid series with lengths between twenty-four and twenty- Aphids usually have complex life histories. In addition to
eight values. None of these was large enough to provide the many complications arising from the switch between sexual
evidence of chaotic dynamics. These results indicate that and asexual reproduction, often involving a change of host
evidence of chaotic dynamics in aphid and moth populations plant, and the production of winged and wingless forms, aphids
may be difficult to obtain at the spatial and temporal scales have a telescoping of generations whereby live offspring are
studied. produced that already have the next generation developing
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Table 6. Estimated Lyapunov exponents, and results of randomization tests on the time series of the six aphid species (indirect method). The
percentagesy; andp,, show how many simulated series under hypothesis | and Il, respectively, had estimated Lyapunov exponents that were less

thanA for the observed series.

Site

Species Rothamsted Wye Broom’s Barn Newcastle Dundee
Brachycaudus helichrysi A 0.113 0.109 -0.528 -0.087 -0.018
(lag three model) Py 67.5 77.2 0.0 33.0 47.7

p2 68.0 72.8 0.0 20.8 37.1
Elatobium abietinum A -0.878 -1.392 -5.376 -1.537 -1.030
(lag one model) Py 89.2 58.2 0.0 65.9 80.6

p> 10.1 1.8 0.0 1.3 6.9
Hyperomyzus lactucae A -0.039 -0.107 -0.070 0.027 0.072
(lag three model) Py 63.5 27.4 58.3 53.6 75.8

P2 43.0 18.9 37.8 56.5 62.8
Myzus ascalonicus A -0.882 -1.145 -1.755 -0.481 -0.731
(lag one model) Py 84.5 79.6 47.2 89.1 75.3

p2 6.7 45 0.8 253 10.8
Metopolophium dirhodum A -1.115 -0.701 —1.405 -1.970 -1.278
(lag one model) Py 91.1 99.0 68.7 26.7 80.3

p2 45 223 15 0.2 14
Myzus persicae A -0.476 -0.148 -0.152 —-0.202 —-0.302
(lag two model) Py 45.4 85.9 94.2 74.3 68.8

p2 121 67.2 75.3 57.8 36.2

Table 7. Estimated Lyapunov exponents, and results of randomization tests on the time series of the four moth species (indirect method). The
percentagesp; andp,, show how many simulated series under hypothesis | and Il respectively, had estimated Lyapunov exponents that were less

thanA for the observed series, — indicates values not calculated as time series failed to meet minimum criteria (see text).

Site

Species Alice Holt Geescroft Sutton Bonnington Spurn Head Kielder Elgin
Apamea monoglypha A — -0.926 -1.091 -1.646 -1.515 -1.781
(lag one model) pP1 — 96.5 84.9 48.3 59.6 44.5

P> — 54 7.2 1.2 1.9 1.3
Cerapteryx graminis A -0.584 — — — -0.829 -0.518
(lag one model) pP1 96.5 — — — 91.3 100.0

P2 24.6 — — — 11.6 19.4
Perizoma alchemillata A -0.123 0.042 — — —-0.330 —-0.007
(lag three model) Py 69.5 68.3 — — 3.9 73.9

P2 245 21.1 — — 14 60.7
Xanthorhoe montanata A -1.434 — —0.989 -1.231 — —0.800
(lag one model) pP1 63.5 — 79.2 62.8 — 91.9

P2 10.0 — 7.4 3.2 — 12.5

inside them. Under these circumstances it is practically
impossible to separate generations as might be required for thefield population levels over a considerable area (Tatchell,
assumptions of certain restrictive population-dynamic models,
although these assumptions may usually be rewritten to give measure of overall annual population size for analyses relating
a fully valid analysis. Survey suction traps such as those used
here monitor the migrating aerial phase of the aphid life cycle and was used in this way in previous dynamic studies with
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1991). Hence, the use of annual suction trap catches as a

several successive years is not unreasonable for most purposes
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Table 8. Effects of series length and the number of randomizations on estimated Lyapunov expionﬁnts,a known chaotic time series under
hypotheses | and Il. The percentages show how many simulated series had estimated Lyapunov exponents less than the value of

Number of permutations (%)

Series length A Hypothesis 1000 3000 10 000
25 0.165 | 89.1 88.0 87.8
Il 83.8 84.3 83.4
30 0.163 | 96.7 96.1 96.9
Il 93.0 92.8 92.8
50 0.066 | 99.8 99.8 99.7
Il 96.4 95.6 95.7
100 0.035 | 100 100 100
Il 99.9 99.9 99.9

these data (Woiwod & Hanski, 1992; Hanski & Woiwod, Box, G.E.P. & Jenkins, G.M. (197@)me Se_ries_AnaIysis: Forecasting
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