
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Dawson, K. J. 2002. The evolution of a population under recombination: 

how to linearise the dynamics. Linear Algebra and its Applications. 348 

(1-3), pp. 115-137. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1016/S0024-3795(01)00586-9

The output can be accessed at: https://repository.rothamsted.ac.uk/item/88y43/the-

evolution-of-a-population-under-recombination-how-to-linearise-the-dynamics.

© 15 June 2002, Elsevier Science Inc.

25/10/2019 14:44 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1016/S0024-3795(01)00586-9
https://repository.rothamsted.ac.uk/item/88y43/the-evolution-of-a-population-under-recombination-how-to-linearise-the-dynamics
https://repository.rothamsted.ac.uk/item/88y43/the-evolution-of-a-population-under-recombination-how-to-linearise-the-dynamics
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


Linear Algebra and its Applications 348 (2002) 115–137
www.elsevier.com/locate/laa

The evolution of a population under
recombination: how to linearise the dynamics

Kevin J. Dawson∗

Plant and Invertebrate Ecology Division, IACR Rothamsted, Harpenden, Herts AL5 2JQ, UK

Received 14 May 1999; accepted 5 November 2001

Submitted by R.A. Brualdi

Abstract

A system of recursions is derived for the dynamics of an infinitely large population,
evolving under a very general process of recombination, whereby an individual can inherit
genes from an arbitrary number of parents, sampled independently from the population in the
proceeding generation. In general, the number of parents sampled is itself a random variable.
A procedure is presented for linearising this system of recursions. This generalises the lin-
earisation procedure introduced by Bennett, for the dynamics of an infinite population where
offspring are the product of two parents sampled independently from the population. © 2002
Elsevier Science Inc. All rights reserved.

AMS classification: 92D10; 92D15; 15A99

Keywords: Bennett’s principal components; Linkage disequilibrium; Population genetics; Random mat-
ing; Recombination

1. Introduction

Most animals and plants have life cycles which alternate between haploid (car-
rying a single copy of every gene) and diploid (carrying two copies of every gene)
phases. This alternation is a consequence of sexual reproduction. Haploid cells called
gametes (sperm and egg cells) unite in pairs to form diploid cells called zygotes,
which can then proliferate to produce individuals composed of many diploid cells.
Diploid cells can undergo a process called meiosis, in which the diploid cell divides
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to produce haploid cells. In general, when a diploid cell (derived from the fusion of
two haploid gametes, labelled 1 and 2) undergoes meiosis, each haploid product of
meiosis will carry some genes which are inherited from gamete 1, and some from
gamete 2. Such a process, where an individual, or cell, inherits genes from more than
one parental individual, or cell, is called recombination.

So, population geneticists are interested in the dynamics of the composition of
a population having a life cycle where union of gametes is followed by meiosis
and recombination. A classical problem in population genetics has been to solve the
dynamics of the genotype composition of a population, under the following assump-
tions: (1) the population is infinitely large; (2) pairs of gametes unite at random (the
two gametes in a pair are sampled independently from the population); (3) genera-
tions are discrete and non-overlapping. To be more precise, the problem is to find an
explicit solution for the genotypic composition of the population after t generations.
This problem has been solved. A brief history is given below. For a more detailed
history, see [9].

Real populations are obviously finite in size, and population geneticists are ulti-
mately more interested in the dynamics of finite populations. The most natural mod-
els for finite populations are Markov chains. The analysis of Markov chain models of
finite populations incorporating recombination has proved to be extremely challeng-
ing, although important results have been obtained in the case of two loci [24,27].
In view of these difficulties, the obvious place to begin with is the limit where the
population size tends to infinity. In this large population limit, chance events have
a negligible effect on genotype composition over the short term. (The number of
generations which it takes for chance events to appreciably change the genotype
composition of a population is of the same order as the population size. See for
example [18, pp. 24–28].) So, in the short term at least, the evolution of an infinite-
ly large population is essentially deterministic. There are many situations in which
population geneticists are interested in short term dynamics of large populations.
For example, when previously isolated populations meet and hybridise [7]; and the
response when strong selection is applied to a large population, and the response
when strong selection is relaxed [13].

While the assumption that pairs of gametes unite at random, as described above,
is clearly an idealisation, it is believed to be an adequate approximation to the be-
haviour of many large outcrossing populations. The assumption that generations are
discrete and non-overlapping applies to many species, including annual plants and
many insects. However, the principal justification for this assumption is that this is
the simplest case. Age structure leads to an enlarged system of recursions.

We follow the genotype composition in the haploid phase at each generation (rath-
er than the diploid phase), because the resulting dynamics are simpler. Furthermore,
the genotype composition of the population of diploid zygotes is completely deter-
mined by the population of haploid gametes from which they are formed.

Progress with this problem began when Robbins [23] linearised, and hence solved,
the dynamics of an infinitely large population with two arbitrarily linked, diallelic
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loci. Geiringer [12] showed how to solve the analogous problem for three arbitrarily
linked loci. Geiringer [11] demonstrated that for an arbitrary number of loci, it is
always possible to linearise the dynamics. However, her linearisation procedure was
rather cumbersome.

Bennett [3], building on the work of Geiringer [11], indicated an elegant gen-
eral solution to the dynamics of an infinitely large population under meiosis and
random union of gametes—linearising, and simultaneously diagonalising, the
dynamics. Bennett [3] found a recursive method for defining a set of variables (or
“principal components” as he called them) consisting of the allele frequencies (which
are invariant under meiosis and union of gametes), together with quantities which
measure departures from linkage equilibrium, and which decay geometrically at
rates determined by the recombination rates. However, Bennett nowhere stated his
recursive algorithm explicitly, nor did he give a general formula for his measures of
linkage disequilibrium, for an arbitrary number of loci.

Dawson [9] presented a method for obtaining explicit expressions for Bennett’s
variables in terms of the “allelic moments” (introduced by Geiringer [11]). It
was established that the transformation from the allelic moments to Bennett’s vari-
ables, and the inverse transformation, always have the form that Bennett claimed.
Recursions for calculating the coefficients in the forward transformation and the
coefficients in the inverse transformation were derived. In general, these coeffi-
cients can be expressed as rational functions of the probabilities of the different
recombination events.

In certain special cases, explicit expressions are available for Bennett’s variables
for arbitrary numbers of loci. For example, when the haploid offspring of a pair of
haploid parents has probability 1/2 of receiving its allele at any given locus for either
parent, and where the transmission of alleles to the offspring occurs independently at
all loci—a situation referred to as “unlinked loci”. Turelli and Barton [26] recognised
that in this case, Bennett’s variables can be equated with a certain set of multivar-
iate cumulants. Explicit formulae are available for the multivariate cumulants [25,
pp. 437–438]. In the forthcoming paper [10] I generalise this result, and present an
alternative derivation.

Baake [2] analysed the dynamics of a population evolving under random union
of gametes and recombination, in the special case where loci are arranged in a se-
quence (corresponding to a linear chromosome), and following the union of two
haploid gametes, recombination occurs by no more than one “cross-over”. This is a
reasonable assumption for a set of loci which lie close together on the same chromo-
some. Interestingly, this turns out to be a “singular case”, where Bennett’s variables
are not uniquely defined. Here there are many different sets of variables which de-
cay geometrically under random union of gametes and recombination. Baake [2]
obtained expressions for a set of variables which decay in this way. Remarkably,
the coefficients in the transformation from the factorial moments to these variables
(and its inverse) are purely combinatorial, and independent of the recombination
probabilities. Baake [2] also considered the dynamics when mutation is present.
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Alternative representations of the solution for the dynamics of an infinitely large
population under random union of gametes and recombination have been obtained
using genetic algebras. See in particular [14,15,19,20,22]. For useful reviews of this
literature, see [16,17].

Using genetic algebras (in particular, the differential operator approach intro-
duced by Reiersol [22]), Lyubich [19] derived expressions for Bennett’s variables
in terms of certain measures of linkage disequilibrium. However, the expressions are
not the same as those found by Bennett. (They do not express Bennett’s variables in
terms of the allelic moments.) This work is also covered in [20, Chapter 6].

It is possible to write down recursions for the dynamics of a population where
offspring are produced from their parents by a more general process of recombina-
tion, where an individual can receive its genes from an arbitrary number of parents,
sampled at random from the previous generation. These recursions include as a spe-
cial case, the more familiar recursions for the genetic composition of a population
with a standard life cycle where reproduction is bi-parental, with random pairing of
gametes followed by meiosis.

More general processes of recombination involving d > 2 parents are almost un-
known in nature. (Recombination events of this type may occur sporadically among
certain viruses. For example, the segmented double-stranded RNA viruses: reovirus-
es, rotaviruses and influenza viruses.) However, exotic processes of recombination
can be incorporated into artificial evolutionary systems. For a review of recombina-
tion processes which have been used for bi-parental reproduction in genetic algo-
rithms, see [21].

There is one other context where recombination processes involving multiple
parents may play a role. Individuals in a human population may inherit culturally
transmitted traits form many individuals, or “cultural parents”. For example, lin-
guistic traits such as vocabulary, pronunciation and syntax are typically influenced
by many individuals. For simple models of cultural transmission, see [5,6]; and in
particular, the multifactor model introduced by Boyd and Richardson [5, pp. 76–79].
See also [8]. The more general process of recombination introduced below may serve
as rather crude models of cultural inheritance in humans and some other species [28].

2. Allele types and genotypes

In this section, I define the space of genotypes, and at the same time, introduce
some useful population genetic terminology.

In population genetics, the term locus is used to specify the discrete elements
between which recombination can occur. Provided that recombination events are
much more common between genes than within genes, it is appropriate to identify
genes with loci. A particular gene in a particular individual can be referred to as an
allele copy. The alternative types of a particular gene coexisting within a popula-
tion are referred to as allele types. Here, we assume that all loci are diallelic. That
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is, only two allele types are present in the population. These are arbitrarily labelled
0, 1.

Let S denote a set of n loci, labelled 1, 2, . . . , n. So S = {1, 2, . . . , n}. A haploid
individual carries one copy of each locus, each of which is occupied by an allele
copy which has a particular allele type. This ordered sequence of allele types is the
genotype of the haploid individual. In the diallelic case, the 2n distinct genotypes
can be put into a one-to-one correspondence with the 2n sub-sets of S. The genotype
corresponding to set U ⊂ S is the genotype where all loci belonging to set U are
occupied by alleles of type 1, and all loci belonging to S − U (the complement of U
in S) are occupied by alleles of type 0.

3. Partitions of sets

Before introducing the terminology for the process of recombination, it will be
helpful to first introduce some notation and terminology for partitions of sets. A
partition � of a set S is a set of non-empty disjoint sub-sets of S, the union of which
is the set S itself. (That is

⋃
A∈� A = S.) Let π(S) denote the set of all distinct

partitions of a set S.
A partition � is said to be finer than a partition �, whenever � and � are both

partitions of the same set, and � can be obtained from � by: (i) replacing each
element of � by a partition of that element; and then (ii) forming the union of
all these partitions. This relationship is denoted by � ≺ �. We can also express
this relationship by saying that the partition � is a refinement of the partition �.
Alternatively, we can say that � is coarser than � (which can also be denoted by
� 	 �). This terminology and notation is conventional. See for example Aigner
[1, pp. 12–13]. (However, in Aigner’s notation, the symbol ≺ is underscored to
emphasise that � ≺ � includes the case where � = �.) Notice that � ≺ � implies
|�| � |�|.

Unfortunately, in a previous paper [9], I used the unconventional notation � � �,
in place of � 	 �.

I will now introduce some more notation which is not conventional. A partition
� of a set S induces a partition on every sub-set of S. There is a partition � of
U ⊂ S, which has the property that: for every element A ∈ �, either A ∩ U = ∅
or A ∩ U ∈ �. We will say that the partition � of S induces the partition � of U.

This relationship will be expressed by the notation � = �
⇒∩ U . This notation will

simplify the presentation of the recursions in Section 7.
For a pair of partitions �,�, we will say that � induces � if there exists any

set U such that � = �
⇒∩ U . This relationship will be expressed by the notation

� ⇒ �.
Notice that if � ≺ �, then � can be expressed as the union of certain partitions

(the �
⇒∩ U ) of the elements of � (the U ⊂ �). In symbols, we have
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U∈�

(
�

⇒∩ U
) = � for � : � ≺ �. (3.1)

In a previous paper [9] I introduced the closely related notation U
→∩ �, for the

relationship which can now be defined as

U
→∩ � =

{
�

⇒∩ U if
(
�

⇒∩ U
) ⊂ �,

∅ otherwise.

The earlier notation U
→∩ � is now redundant, and will not be used in what follows.

Lyubich [19, p. 85] used the terminology “� is an extension of �”, in place of
“� induces �”. (Lyubich [19, p. 87] also used the terminology “� is the restriction
to U ⊂ S of �”.) Unfortunately Lyubich [19] used the notation � 	 � in place of
� ⇒ �. What is more, Lyubich [20, pp. 235–236] retained the notation � 	 �, but
used the terminology “� refines �”, along with “the partition � of S induces the
partition � of U”. Lyubich’s [20] use of the term “refine” must not be confused with
the more conventional use of that term (as for example by Aigner [1]).

Closely related to the concept of a partition is what I will call an ordered partition.
An ordered partition of a set S is an ordered sequence (S1, S2, . . . , Sd) of disjoint
sub-sets of S, the union of which is the set S itself (that is

⋃d
a=1 Sa = S). Any number

of empty sets may be included in the sequence (S1, S2, . . . , Sd) (since empty sets are
disjoint in the sense that A ∩ ∅ = ∅ for any set A).

Every ordered partition of a set induces a partition of the same set. Let unordered
(U1, U2, . . . , Ud) denote the partition induced by the ordered partition
(U1, U2, . . . , Ud). This is the partition

unordered (U1, U2, . . . , Ud) = {
A : A ∈ {U1, U2, . . . , Ud} , A /= ∅}. (3.2)

4. The recombinational distribution

The very general recombination process under consideration here is as follows.
First, d (the sample size) is chosen from a probability distribution {γd} on the positive
integers 1, 2, . . . Then d individuals are chosen independently from the population.
These d individuals, labelled 1, 2, . . . , d , play the part of “parents” in the generalised
recombination process. So, γd is the probability that the number of parents is d.
The genotype of the offspring is constructed from the genotypes of the parents as
follows. For each locus i ∈ S, a parent P(i) is chosen at random from among the
parents 1, 2, . . . , d . P(i) is the “parent of origin” for the allele copy at locus i in
the offspring. The joint distribution of P(1), P (2), . . . , P (n) will be referred to as
the ordered recombinational distribution.

The possible outcomes of P(1), P (2), . . . , P (n) will be referred to as ordered
recombination events. Every ordered recombination event can be represented as an
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ordered partition (S1, S2, . . . , Sd) of the set of loci S, where Si is the set of loci that
an individual received from parent i.

Let rd(U1, U2, . . . , Ud) denote the probability that an individual receives its al-
leles at the loci belonging to U1 from parent 1, its alleles at the loci belonging to U2
from parent 2, . . . , and its alleles at the loci belonging to Ud from parent d, given
that there are exactly d parents. It follows from this definition that these probabilities
must satisfy the identity∑

(U1,U2,...,Ud ):⋃d
a=1 Ua=U

Ua∩Ub=∅ for a /=b

A1⊂U1,...,Ad⊂Ud

rd(U1, U2, . . . , Ud) = rd(A1, A2, . . . , Ad), (4.1)

for any given ordered partition (A1, A2, . . . , Ad), and any set U satisfying (
⋃d

a=1 Aa)

⊂ U ⊂ S.
In view of this relationship, it is natural to define rd(∅, ∅, . . . ,∅) = 1 so that the

obvious identity∑
(U1,U2,...,Ud ):⋃d

a=1 Ua=U
Ua∩Ub=∅ for a /=b

rd(U1, U2, . . . , Ud) = 1

is a special case of (4.1).
The ordered recombination event specified by the ordered partition is specific

to a particular labelling of the parents. We can also define unordered recombination
events, which take no account of the how parents are labelled, and depend only on the
partition which is induced on the set of loci S. The corresponding recombinational
distribution is a probability distribution on π(S).

Let rd(�) denote the probability that the unordered recombination event induces
a partition � on the set of loci U ⊂ S, given that there are exactly d parents. That is

rd(�) =
∑

(U1,U2,...,Ud ):unordered(U1,U2,...,Ud )=�

rd(U1, U2, . . . , Ud), (4.2)

where the number of terms in this summation is d!/(d − |�|)!.
It follows directly from definition (4.2) (and also via the identity (4.1)) that the

rd(�) must satisfy the identity∑
�:�∈π(U)

�⇒�

rd(�) = rd(�) (4.3)

for any set U satisfying
⋃

B∈� B ⊂ U ⊂ S. So, it is natural to define rd({∅}) = 1 to
make the obvious identity∑

�:�∈π(U)

rd(�) = 1,

a special case of (4.3).
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A set containing on a single element {i} has only one possible partition {{i}}.
Therefore

rd({{i}}) = 1 for every i ∈ S. (4.4)

Let r(�) denote the probability that the unordered recombination event induces a
partition � on the set of loci U ⊂ S. That is

r(�) =
∞∑

d=|�|
γdrd(�). (4.5)

It follows directly from definition (4.5) (and also via the identity (4.3)) that the
r(�) must satisfy the identity∑

�:�∈π(U)
�⇒�

r(�) = r(�) (4.6)

for any set U satisfying
⋃

B∈� B ⊂ U ⊂ S. So, it is natural to define r({∅}) = 1 to
make ∑

�:�∈π(U)

r(�) = 1,

a special case of (4.6). Also, notice that

r({{i}}) = 1 for every i ∈ S. (4.7)

5. The recursions for the genotype frequencies

For each U ⊂ S, let gt (U |S ) denote the frequency, in the population at generation
t, of the genotype where all loci belonging to set U are occupied by alleles of type 1:∑

U :U⊂S

gt (U |S ) = 1. (5.1)

Suppose that an individual had exactly d parents, and that it received its alleles at
all loci belonging to the set Ra , from parent a (for a = 1, 2, . . . , d). Further suppose
that parent a carries alleles of type 1 at all loci belonging to the set Aa , and allele 0
at the loci belonging to S − Aa (for a = 1, 2, . . . , d). Now, if U is the set of loci at
which the individual carries alleles of type 1 (so that S − U is the set of loci at which
the offspring carries alleles of type 0), then these sets must satisfy the following
conditions:

U ⊂ S and Aa ⊂ S for a = 1, 2, . . . , d, (5.2a)

d⋃
a=1

Ra = S, (5.2b)
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Ra ∩ Rb = ∅ for a /= b, (5.2c)

d⋃
a=1

(Ra ∩ Aa) = U. (5.2d)

So, we can write down the recursion

gt+1(U |S)=
∞∑
d=1

γd




∑
(R1,R2,...,Rd ):⋃d

a=1 Ra=S
Ra∩Rb=∅ for a /=b

∑
(A1,A2,...,Ad ):A1,...,Ad⊂S⋃d

a=1 (Ra∩Aa)=U

rd(R1, R2, . . . , Rd)

(
d∏

a=1

gt (Aa|S)
)

=
∞∑
d=1

γd




∑
(R1,R2,...,Rd ):⋃d

a=1 Ra=S
Ra∩Rb=∅ for a /=b

rd(R1, R2, . . . , Rd)

×




∑
(A1,A2,...,Ad ):A1,...,Ad⊂S⋃d

a=1 (Ra∩Aa)=U

(
d∏

a=1

gt (Aa|S)
)




for U ⊂ S. (5.3)

The following proposition enables us to rewrite (5.3) in a new form.

Proposition 1. The set of conditions (5.2) is equivalent to the following set of
conditions:

U ⊂ S and Aa ⊂ S for a = 1, 2, . . . , d, (5.4a)

d⋃
a=1

Ra = S, (5.4b)

Ra ∩ Rb = ∅ for a /= b, (5.4c)

Ra ∩ U = Ra ∩ Aa for a = 1, 2, . . . , d. (5.4d)

For a proof of Proposition 1, see Appendix A. By using Proposition 1, we can
rewrite (5.3) in the form
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gt+1(U |S)=
∞∑
d=1

γd




∑
(R1,R2,...,Rd ):⋃d

a=1 Ra=S
Ra∩Rb=∅ for a /=b

rd(R1, R2, . . . , Rd)

×

 ∑

A1:R1∩U=R1∩A1

· · ·
∑

Ad :Rd∩U=Rd∩Ad

(
d∏

a=1

gt (Aa|S)
)




=
∞∑
d=1

γd




∑
(R1,R2,...,Rd ):⋃d

a=1 Ra=S
Ra∩Rb=∅ for a /=b

rd(R1, R2, . . . , Rd)

×

 d∏

a=1


 ∑

Aa :Ra∩U=Ra∩Aa

gt (Aa|S)







=
∞∑
d=1

γd


 ∑

�:�∈π(S)
|�|=d

rd(�)

(∏
R∈�

( ∑
A:R∩U=R∩A

gt (A|S)
))

for U ⊂ S. (5.5)

Using definition (4.5) of r(�), we can rewrite (5.5) in the from

gt+1(U |S) =
∑

�:�∈π(S)

r(�)

(∏
R∈�

( ∑
A:R∩U=R∩A

gt (A|S)
))

for U ⊂ S.

(5.6)

6. Geiringer’s transformation

In the case of bi-parental reproduction, Geiringer [11] found a change of variables
that transforms the system of recursions (5.6) (which is quadratic in the special case
of bi-parental reproduction) into one which has a particular hierarchical form. A sys-
tem of recursions of this special form can be linearised, and hence solved [11]. This
underlying hierarchical (and hence, linear) structure is not immediately apparent in
the original system of recursions. So, Geiringer’s transformation to a hierarchical
form is the crucial first step in the linearisation of this quadratic system. Geirin-
ger’s transformation also transforms the more general system of recursions (5.6) to
a hierarchical form. Again, this is the crucial first step in the linearisation of this
system.
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Let pt (U) denote the frequency, among the population of gametes in generation
t, of all those genotype that have the loci belonging to U occupied by 1 alleles. From
this definition it follows that

pt (U) =
∑

A:U⊂A⊂S

gt (A|S). (6.1)

This is the change of variables introduced by Geiringer [11]. It is easy to verify the
inverse relationship

gt (U |S) =
∑

A:U⊂A⊂S

(−1)|A−U |pt (A) (6.2)

by substituting (6.1) into (6.2) and changing the order of summation. (This fact could
be established using the general form of the Möbius inversion formula, see for ex-
ample [4].) Therefore, the variables pt (U) completely determine the genotype fre-
quencies gt (U |S).

A very simple relationship exists between the multivariate generating function of
the gt (U |S), and that of the pt (U). Let

Gt (z1, . . . , zn |S ) =
∑

U :U⊂S

gt (U |S)
(∏

i∈U

zi

)
, (6.3)

and

Pt (z1, . . . , zn|S) =
∑

U :U⊂S

pt (U)

(∏
i∈U

zi

)
. (6.4)

The generating function Gt(z1, . . . , zn|S) is the probability generating function
for a set of random variables defined as follows. First, let χ

X
(i) denote the

“indicator function” of a set X. That is χ
X
(i) = 1 when i ∈ X, and χ

X
(i) = 0

otherwise. Now suppose that Xt is the set representing the genotype of a haploid in-
dividual chosen at random from the population at generation t. The random variables
(χ

Xt
(1), . . . , χ

Xt
(n)) are referred to as “allelic indicators”. Clearly, Gt(z1, . . . , zn|S)

is the generating function for this set of random variables.
It can be shown (by a change in the order of summation) that

Pt(z1, . . . , zn|S) = Gt(z1 + 1, . . . , zn + 1|S). (6.5)

This is exactly the general relationship between the probability generating function
of a multivariate distribution, and the corresponding multivariate factorial moment
generating function (see [25, pp. 83, 102–104]). Therefore, Pt(z1, . . . , zn|S) is the
factorial moment generating function of these same random variables. In general, the
factorial moments mt(k1, . . . , kn) are defined by the Taylor expansion

Pt(z1, . . . , zn|S) =
∞∑

k1=1

· · ·
∞∑

kn=1

mt(k1, . . . , kn)

k1! · · · kn! z
k1
1 · · · zknn .
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Therefore

pt (U) = mt

(
χ

U
(1), . . . , χ

U
(n)
)

for U ⊂ S, (6.6a)

while

mt(k1, . . . , kn) = 0 if any of k1, . . . , kn exceeds 1. (6.6b)

The factorial moment (about the origin) mt(χU
(1), . . . , χ

U
(n)) coincides with the

corresponding moment (about the origin). However, the higher-order factorial mo-
ments (mt(k1, . . . , kn), where any of k1, . . . , kn exceeds 1) are all zero, and do not
coincide with the corresponding moments (see [9]). So, while Pt(z1, . . . , zn|S) is a
factorial moment generating function, it is not a moment generating function. For
this reason, it may be more appropriate to refer to the pt (U) as factorial moments.

Previously [9], I referred to the pt (U) as the “allelic moments”, in order to avoid
confusion with another set of factorial moments—the “recombinational moments”—
also discussed in that paper. Here, as no such confusion can arise, I will simply refer
to the pt (U) as the “factorial moments”.

The recursions for the pt (U) are easily derived from those for the genotype fre-
quencies as follows. From definition (6.1), we see that

pt (S) = gt (S|S) (6.7)

for any set of loci S. So, putting U = S in (5.6), we obtain

gt+1 (S |S ) =
∑

�:�∈π(S)

r(�)

(∏
R∈�

( ∑
A:R⊂A⊂S

gt (A|S)
))

. (6.8)

Using definition (6.1) we can write this as

pt+1(S) =
∑

�:�∈π(S)

r(�)

(∏
R∈�

pt (R)

)
. (6.9)

Again, this is true for any set of loci S. So, we have

pt+1(U) =
∑

�:�∈π(U)

r(�)

(∏
R∈�

pt (R)

)
for all U ⊂ S. (6.10)

Note that the “allele frequencies” pt ({i}) are invariant: pt+1({i}) = pt ({i}).
In the next section, I consider a further change of variables of the type introduced

by Bennett [3].

7. A generalisation of Bennett’s transformation

Bennett [3] found that there exists a set of variables {bt (U)} of the form

bt (U) =
∑

�∈π(U)

C(�)

(∏
A∈�

pt (A)

)
(7.1)
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(where the coefficients C(�) are constants, yet to be determined), which satisfy
linear recursions of the special (diagonal) form

bt+1(U) = λ(U)bt (U) (7.2)

(where the λ(U) are constants, yet to be determined). Furthermore, Bennett showed
that the rate of decay λ(U) of the variable bt (U) is equal to r({U}) (the probability
of non-recombination across the loci belonging to U). Bennett [3] also found that the
inverse of this transformation (7.1) is of the form

pt (U) =
∑

�∈π(U)

C̄(�)

(∏
A∈�

bt (A)

)
(7.3)

(where the coefficients C̄(�) are constants, yet to be determined). Notice that the
transformation (7.1) and its inverse (7.3) are of essentially the same form (as will be
verified below).

Bennett [3] referred to the variables bt (U) as “principle components”. Here (as
in [9]), I refer to the bt (U) as “Bennett’s variables”. Bennett [3] found a recursive
method for constructing the transformation (7.1) from the allelic moments the pt (U)

to his new set of variables bt (U), and a recursive method for constructing the inverse
of this transformation (7.3). (In fact in Bennett’s approach, the inverse transformation
is derived first.)

Below, I present a recursion (7.11) for calculating the coefficients C(�) given the
r(�), and a recursion (7.7) for calculating the coefficients C̄(�) given the r(�). I
also present a recursion (7.13) for calculating the coefficients C(�) given the coeffi-
cients C̄(�), and a formally identical recursion (7.15) for calculating the coefficients
C̄(�) from the coefficients C(�).

The recursive equations for the C(�) are constructed in such a way that the func-
tions defined in (7.1) must have property (7.2). So, if these equations for the C(�) do
have a solution, then there must be functions having property (7.2) that are of form
(7.1). In fact, below I establish that the recursive equations for the C(�) and for the
C̄(�) always have a solution. This confirms that a set of variables satisfying (7.2)
always exists, and that the transformation (7.1) and the inverse transformation (7.3)
are always of this same form. Furthermore, I show that for given initial conditions,
this solution is unique except in certain singular cases.

In order to write these recursions in a compact form, we now make use of the
notation introduced in Section 3. The recursion for calculating the coefficients C̄(�),
given the r(�), is

((∏
R∈�

λ(R)

)
− r({U})

)
C̄(�) =

∑
�:�≺�

� /={U}

r (�)

(∏
A∈�

C̄
(
�

⇒∩ A
))

,

(7.4)
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where U = ⋃
R∈� R. For a derivation of this recursion, see Appendix B. The condi-

tion � ≺ � (defined in Section 3) ensures that the partition � can be generated from
the partition �, by the following procedure: (i) Represent � as a set of sets. Partition
� into non-empty disjoint sub-sets. (ii) Replace each of these sub-sets by the union
of all its elements (these elements are themselves sets of loci).

For the trivial partition of a set into one part (a partition � where |�| = 1), (7.4)
reduces to(

λ(U) − r({U}))C̄({U}) = 0. (7.5)

Therefore, if C̄({U}) /= 0, then

λ(U) = r({U}) (7.6)

for any set U /= ∅. Other than the constraint C̄({U}) /= 0, the value of C̄({U}) is ar-
bitrary. So, the values of the C̄(�), where |�| = 1, must be specified as initial condi-
tions. For convenience, we can choose C̄({U}) = 1 for every set U /= ∅. Substituting
(7.6) back into (7.4), we obtain the recursion((∏

R∈�

r ({R})
)

− r({U})
)
C̄(�) =

∑
�:�≺�

� /={U}

r (�)

(∏
A∈�

C̄
(
�

⇒∩ A
))

.

(7.7)

From this we can obtain the rest of the C̄(�).
Because of its recursive nature, it is obvious that the system of equations (7.7)

always has a unique solution, except in certain “singular” cases. The form of the
left-hand side of (7.7) immediately alerts us to the possibility of these singular cases.
Any partition � = {U1, U2, . . . , Uk} of set of loci U, where

r ({U1}) r ({U2}) · · · r ({Uk}) = r ({U}) ,
will be referred to as a “singular partition”. At a singular partition �, the recursion
(7.4) reduces to 0, C̄(�) = 0. Thus, C̄(�) is an arbitrary constant which we are free
to choose. From this point onwards, all subsequent results of the recursion are non-
unique. This behaviour is mirrored by the recursion (7.11) for the coefficients C(�),
at exactly the same singular partitions.

In connection with this non-uniqueness, notice that if � = {U1, U2, . . . , Uk} is
a singular partition of U, then for any choice of the constants A, B, the variable
Ab(U1)b(U2) · · · b(Uk) + Bb(U) satisfies (7.2), and is of the same form as b(U)

(see (7.1)).
Singular cases arise when r({U}) = 1 for a set of loci U, where |U | > 1 (a situ-

ation referred to as “complete linkage”). Singular cases also arise in certain extreme
forms of “interference”, where the non-occurrence of recombination among one set
of loci implies that there has also been no recombination among some other set of
loci.
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For a particularly important class of singular cases, see [2]. Baake [2] analysed the
dynamics of a population evolving under random union of gametes and recombina-
tion. Here, the loci 1, 2, . . . , n are arranged, in ascending order, along a single linear
chromosome. Following the union of two haploid gametes, recombination occurs by
no more than one “cross-over”. Notice that one consequence of this is that if there is
no cross-over between loci i and j (i < j), then this implies that there must also be
no cross-over between loci i + 1 and j − 1 (2 < j − i).

Note that the analysis which follows applies to non-singular cases only. We can
economise a little on the proliferation of algebra which arises when we use (7.7)
to derive the coefficients C̄(�) recursively, by making use of a reduction formula.
For any partition of a set into non-empty disjoint sub-sets, at least one of which
contains only a single element (locus)—for example, the partition � ∪ {{j}} of the
set U ∪ {j} (where � is a partition of U)—we have the simple reduction formula

C̄ (� ∪ {{j}}) = C̄(�)C̄ ({{j}}) . (7.8)

For a proof of this reduction formula, see Appendix B. This reduction formula does
not apply to singular cases.

Now we turn to the coefficients C(�) in the forward transformation. The recur-
sion for calculating the coefficients C(�), given the r(�), is((∏

R∈�

r ({R})
)

− λ(V )

)
C (�)

= −
∑

�:�≺�
� /=�

(∏
A∈�

r
(
�

⇒∩ A
))

C (�), (7.9)

where V = ⋃
R∈� R. For a derivation of this recursion, see Appendix C.

For the trivial partition of a set into one part (a partition � where |�| = 1 ), (7.9)
reduces to(

ρ(V ) − λ(V )
)
C ({V }) = 0. (7.10)

Therefore, if C({V }) /= 0, then λ(V ) = r({V }) for any set of loci V /= ∅, as we have
already established in (7.6). So, the values of the C({V }) /= 0, must be specified as
initial conditions. Substituting (7.6) back into (7.9), we obtain the recursion((∏

R∈�

r ({R})
)

− r ({V })
)
C(�)

= −
∑

�:�≺�
� /=�

(∏
A∈�

r
(
�

⇒∩ A
))

C (�). (7.11)

From this we can obtain the rest of the C(�).
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Now we turn to the relationship between the coefficients C(�) in the forward
transformation (7.1) and the coefficients C̄(�) in the inverse transformation (7.3).

By substituting (7.3) into (7.1), and then equating coefficients of the
∏

R∈� bt (R),
the following direct relationships between the C(�) and C̄(�) can be derived.

1 = C̄ ({V }) C ({V }) , (7.12a)

0 =
∑

�:�≺�

(∏
A∈�

C̄
(
�

⇒∩ A
))

C (�) (7.12b)

(see Appendix D for details). Rearranging (7.12b) yields(⋃
R∈�

C̄ ({R})
)
C(�) = −

∑
�:�≺�

� /=�

(∏
A∈�

C̄
(
�

⇒∩ A
))

C (�). (7.13)

Provided that C̄({U}) /= 0 for all sets U /= ∅, (7.13) determines recursively the val-
ues of the coefficient C(�) for all partitions � from the coefficients C̄(�). There-
fore, when C̄({U}) /= 0 for all sets U /= ∅, the system of recursions (7.13) has a
unique solution {C(�)}. This result will play an important role in the forthcoming
paper.

The inverse of this relationship between the C(�) and C̄(�) can be obtained
directly by substituting (7.1) into (7.3), and then equating coefficients of the∏

R∈� pt (R). However, because (7.1) and (7.3) are of the same form, it is possible
to obtain the inverse relationship immediately from (7.12), by symmetry. Hence the
inverse relationship is

1 = C ({V }) C̄ ({V }) , (7.14a)

0 =
∑

�:�≺�

(∏
A∈�

C
(
�

⇒∩ A
))

C̄ (�), (7.14b)

which rearranges to give the recursion(⋃
R∈�

C ({R})
)
C̄(�) = −

∑
�:�≺�

� /=�

(∏
A∈�

C
(
�

⇒∩ A
))

C̄ (�). (7.15)

So, by the same argument as before, when C({U}) /= 0 for all sets U /= ∅, the system
of recursions (7.15) has a unique solution {C̄(�)}.

The variables which Lyubich denotes by C{U}(p(g)) are identical to Bennett’s
principle components (b(U) in my notation). It appears that the variables which
Lyubich denotes by C�(p(g)) must reduce to products of Bennett’s variables(∏

R∈� bt (R) in my notation
)
. However, this is not apparent from Lyubich’s own

presentation.
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Appendix A

In this appendix, we give a proof of Proposition 1. To prove that the set of condi-
tions (5.2) is equivalent to the set of conditions (5.4), first, notice that (5.2a)–(5.2c)
are identical to (5.4a)–(5.4c). Next, (5.2d) we find that

Ra ∩ U =
d⋃

b=1

(
Ra ∩ (Rb ∩ Ab)

) =
d⋃

b=1

(
(Ra ∩ Rb) ∩ Ab

)
(using the fact that ∩ is distributive over ∪, then using the fact that ∩ is associative).
This, together with (5.2c) implies (5.4d). So, the set of conditions (5.2) implies the
set of conditions (5.4).

The union of the left-hand sides of (5.4d) over all a = 1, 2, . . . , d must be
identical to the union of the left-hand side of (5.4d) over all a = 1, 2, . . . , d . This
immediately gives us

d⋃
a=1

(Ra ∩ U) =
d⋃

a=1

(Ra ∩ Aa),

and hence(
d⋃

a=1

Ra

)
∩ U =

d⋃
a=1

(Ra ∩ Aa)

(using the fact that ∩ is distributive over ∪). This, together with (5.4a) and (5.4b)
implies (5.2d). So, we have proved that the set of conditions (5.4) implies the set of
conditions (5.2). We now know that (5.2) implies (5.4) and (5.4) implies (5.2). So,
the set of conditions (5.2) is equivalent to the set of conditions (5.4).

Appendix B

In this appendix, we first derive the recursions (7.4) for the C̄(�). Second, we
prove the reduction formula (7.8) for the C̄(�).

If we substitute (7.3) into both sides of (6.10), then we obtain

∑
�∈π(V )

C̄(�)

(∏
R∈�

bt+1(R)

)

=
∑

�∈π(V )

r(�)


∏

A∈�


 ∑

�∈π(A)

C̄(�)

(∏
R∈�

bt (R)

)

 (B.1)

provided that we adopt the convention that C̄({∅}) = 1, bt (∅) = 1. If we substitute
(7.2) into the left-hand side of (B.1), we have
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∑
�∈π(V )

C̄(�)

(∏
R∈�

λ(R)

)(∏
R∈�

bt (R)

)

=
∑

�∈π(V )

r(�)


∏

A∈�


 ∑

�∈π(A)

C̄(�)

(∏
R∈�

bt (R)

)


. (B.2)

Expanding out the product on the right-hand side, we obtain

∏
A∈�


 ∑

�∈π(A)

C̄(�)

(∏
R∈�

bt (R)

)


=
∑

�:�≺�

(∏
A∈�

C̄
(
�

⇒∩ A
))(∏

R∈�

bt (R)

)
. (B.3)

(Hint: compare this with (3.1).) Now, if we substitute this back into the right-hand
side of (B.2), we obtain

∑
�∈π(V )

C̄(�)

(∏
R∈�

λ(R)

)(∏
R∈�

bt (R)

)

=
∑

�∈π(V )

r (�)


 ∑

�:�∈π(V )
�≺�

(∏
A∈�

C̄
(
�

⇒∩ A
))(∏

R∈�

bt (R)

)

=
∑

�∈π(V )


 ∑

�:�∈π(V )
�:�≺�

r(�)

(∏
A∈�

C̄
(
�

⇒∩ A
))

(∏
R∈�

bt (R)

)
. (B.4)

So, equating coefficients of the
∏

R∈� bt (R) in (B.4) gives(∏
R∈�

λ(R)

)
C̄(�) =

∑
�:�≺�

r(�)

(∏
A∈�

C̄
(
�

⇒∩ A
))

. (B.5)

By a small rearrangement, we obtain the recursion (7.4) as required.
The proof of this reduction formula (7.8) (which does not apply to singular cases)

is as follows. For a partition of the form � ∪ {{j}}, (7.4) can be written in the form

r({j})
(∏

R∈�

r({R})
)
C̄(� ∪ {{j}})

=
∑

�:�≺�

r(� ∪ {{j}})
(∏

A∈�

C̄
(
(� ∪ {{j}})⇒∩ A

))
C̄
(
(� ∪ {{j}}) ⇒∩ {j})
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+
∑

�:�≺�

( ∑
B:B∈�

r (� ∪ (B ∪ {j}) − {B})

×

 ∏

B∈�−{B}
C̄
(
(� ∪ {{j}})⇒∩ A

)

C̄

(
(� ∪ {{j}})⇒∩ (B ∪ {j}))

=
∑

�:�≺�

r (� ∪ {{j}})
(∏

A∈�

C̄
(
�

⇒∩ A
))

C̄ ({{j}})

+
∑

�:�≺�

( ∑
B:B∈�

r (� ∪ (B ∪ {j}) − {B})

×

 ∏

A∈�−{B}
C̄
(
�

⇒∩ A
)

C̄ ({B, {j}}) . (B.6)

Recall (from 7.6) that r({{j}}) = 1. If the reduction formula (7.8) is true, then (B.6)
is equivalent to (implies and is implied by)(∏

R∈�

r ({R})
)
C̄(�)C̄ ({{j}})

= C̄ ({{j}})
∑

�:�≺�

(
r
(
� ∪ {{j}})+

∑
B:B∈�

r
(
� ∪ (B ∪ {j}) − {B})

)

×
(∏

A∈�

C̄
(
�

⇒∩ A
))

, (B.7)

from which C̄({{j}}) cancels out, leaving(∏
R∈�

r ({R})
)
C̄(�)

=
∑

�:�≺�

(
r
(
� ∪ {{j}})+

∑
B:B∈�

r
(
� ∪ (B ∪ {j}) − {B})

)

×
(∏

A∈�

C̄
(
�

⇒∩ A
))

. (B.8)

By (2.3)

r
(
� ∪ {{j}})+

∑
B:B∈�

r
(
� ∪ (B ∪ {j}) − {B}) = r (�) . (B.9)
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So (B.8) reduces to (7.4) for C̄(�). Therefore, the reduction formula (7.8) together
with the recursion (7.4) for C̄(�) implies the recursion (7.4) for C̄(� ∪ {{j}}).

So, if for any partition �, we have a set of C̄(�),� ⊂ �, that satisfy the system
(7.4), then formula (7.8) enables us to construct a set of C̄(�), � ⊂ � ∪ {{j}}, which
also satisfies the system (7.4).

However, given “boundary conditions” specifying the values of the C̄(�)

for all � having |�| = 1, the system (7.4) has a unique solution, except in singular
cases. (This is obvious from its recursive form.) Therefore, the solution {C̄ (�)}
of the system (7.4) for � ⊂ � ∪ {{j}}, constructed (from the solution for � ⊂ �)
using formula (7.8), must be the unique solution of the system (7.4) for � ⊂ � ∪
{{j}}. This argument holds true for any partition �. Therefore, for every partition
�, the solution {C̄(�)}, � ⊂ � of the system (7.4) must satisfy the reduction formula
(7.8). This completes the proof of the reduction formula (7.8) for non-singular
cases.

Appendix C

In this appendix, we derive the recursions (7.9) for the C(�). Substitute (7.1) into
both sides of (7.2) to obtain

∑
�∈π(V )

C(�)

(∏
A∈�

pt+1 (A)

)
= λ(V )

∑
�∈π(V )

C(�)

(∏
R∈�

pt (R)

)
. (C.1)

Substitute (6.10) into the left-hand side of (C.1) to obtain

∑
�∈π(V )

C (�)


∏

A∈�


 ∑

�∈π(A)

r (�)

(∏
R∈�

pt (R)

)



= λ(V )
∑

�∈π(V )

C(�)

(∏
R∈�

pt (R)

)
. (C.2)

Expanding out the product on the left-hand side of (C.2), we obtain

∏
A∈�


 ∑

�∈π(A)

r (�)

(∏
R∈�

pt (R)

)

=
∑

�:�≺�

(∏
A∈�

r
(
�

⇒∩ A
))(∏

R∈�

pt (R)

)
. (C.3)

The above expansion is exactly similar to that in (B.3). Now, if we substitute this
back into the left-hand side of (C.2), we obtain
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∑
�∈π(V )

C (�)


 ∑

�:�∈π(V )
�≺�

(∏
A∈�

r
(
�

⇒∩ A
))(∏

R∈�

pt (R)

)

=
∑

�∈π(V )


 ∑

�:�∈π(V )
�≺�

(∏
A∈�

r
(
�

⇒∩ A
))

C (�)



(∏

R∈�

pt (R)

)

= λ(V )
∑

�∈π(V )

C(�)

(∏
R∈�

pt (R)

)
. (C.4)

Equating coefficients of the
∏

R∈� pt (R), we obtain
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This can be rearranged to give the recursion (7.9) for the C(�).

Appendix D

In this appendix, we derive the direct relationship (7.12) between the C(�) and
C̄(�). Substituting (7.3) into the right-hand side of (7.1), we obtain
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Now, expand out the product on the right-hand side of (D.1) (exactly as in (B.3)).
Then substituting this back into the right-hand side of (D.1), we obtain
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Now we equate coefficients of the
∏

R∈� bt (R) in (D.2). Equating the coefficients
of bt (V ), we obtain (7.12 a). Equating the coefficients of

∏
R∈� bt (R) /= bt (V ), we

obtain (7.12 b).
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