
 

Journal of Applied 
Ecology

 

 2003 

 

40

 

, 17–31

 

© 2003 British 
Ecological Society

 

Blackwell Science, LtdOxford, UKJAPPLJournal of Applied Ecology0021-8901British Ecological Society, 20032 2003401

 

METHODOLOGICAL INSIGHTS

 

Biometrical issues of GMHT FSEJ. N. Perry 

 

et al.

 

Design, analysis and statistical power of the Farm-Scale 
Evaluations of genetically modified herbicide-tolerant 
crops

 

JOE N. PERRY, PETER ROTHERY*, SUZANNE J. CLARK, 
MATT S. HEARD* and CATHY HAWES†

 

Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; 

 

*

 

NERC Centre for Ecology and Hydrology, Monks 
Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS, UK; and 

 

†

 

The Scottish Crop Research Institute, 
Invergowrie, Dundee DD2 5DA, UK 

 

Summary

1.

 

The effects on British farmland wildlife of  the management of  four genetically
modified herbicide-tolerant crops are currently being studied in a 5-year trial termed the
Farm-Scale Evaluations (FSE), the first 4 years of  which are completed. The FSE is
controversial and extensive. There has been intense scrutiny of the experimental design
and proposed analysis, and of the estimated statistical power to detect effects of a given
magnitude, should any exist.

 

2.

 

For each crop, the FSE is a form of on-farm trial with a single composite null hypo-
thesis and a simple randomized block experimental design. This has statistical implications
for the imposition of treatments by growers and the need for proper randomization. The
choice of  a half-field experimental unit was based on field availability, the focus on
herbicide management, the need to reduce variability and efficiency gains in sampling
effort. Farms and fields were selected to represent the range of variability of geography
and intensiveness across Britain for each crop.

 

3.

 

Results of a power analysis suggested that the planned replication of the FSE of
about 60 fields per crop over 3 years would be sufficient to provide useful information,
from which valid statistical inferences could be drawn. The achieved replication for
spring crops in the FSE exceeded, by more than threefold, that in any of 82 comparable
terrestrial manipulative ecological experiments undertaken previously.

 

4.

 

Here, we exemplify a range of analyses including covariates, interactions between
various factors including years and treatments, diagnostic procedures to aid selection of
the most efficient statistical model, the estimation of power from coefficients of vari-
ation, a novel and apparently robust test statistic and the calculation of overall variance
from within- and between-unit variability. Preliminary results indicated that a simple
log-normal model appeared adequate for most analyses.

 

5.

 

Synthesis and applications.

 

 Statistical challenges created by the scope of the FSE
were resolved from a sound knowledge of good experimental design. There is an urgent
need for further statistical studies to develop experimental designs or modelling
approaches that allow similar studies of genetically modified (GM) crops, at reduced
cost. However, this power analysis has shown that this cannot be achieved at the expense
of adequate replication, essential for all risk assessment studies.
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Introduction

 

The first genetically modified (GM) crops under con-
sideration for commercial planting in the UK have been
altered to make them less sensitive to broad-spectrum
herbicides. In 1998, English Nature, the statutory body
set up to promote the conservation of England’s wild-
life, raised concerns that the management of these
genetically modified herbicide-tolerant (GMHT) crops
could result in reductions of plant and invertebrate
populations on which farmland birds and other farm-
land wildlife depend (Anonymous 1998).

There is evidence that farmland wildlife has already
been affected deleteriously by the intensification of
agriculture (Krebs 

 

et al

 

. 1999; Robinson & Sutherland
2002). On the one hand, the introduction of GMHT
crops might exacerbate this situation by allowing
greater use of herbicide in farmland. This would result
in fewer plants for insects to live on, and consequently
fewer insect prey for farmland birds. Alternatively, the
use of GMHT crops may allow more precise weed con-
trol, allowing plants to remain longer in the crop.
GMHT herbicide management might thereby increase
the abundance and diversity of farmland wildlife com-
pared with herbicide use in equivalent conventional
crops. To distinguish between these alternatives the
Department for the Environment, Food and Rural
Affairs (DEFRA) and the Scottish Executive have
funded a 5-year study termed the Farm-Scale Evaluations
(FSE) to provide a thorough understanding of the envi-
ronmental effects of growing GMHT crops (Firbank

 

et al

 

. 1999). This is being conducted by a consortium
of public sector research institutes (Firbank 

 

et al

 

. 2003).
It began in spring 1999 with a pilot year to develop pro-
tocols; the evaluations proper began in spring 2000.
Three spring-sown crops, spring oilseed rape, fodder
maize and beet (sugar and fodder), were studied in each
of 3 years, 2000, 2001 and 2002. Also, one autumn-sown
crop, winter oilseed rape, was sown in those years and
the third year’s data for this crop will be collected in
2003. The taxa studied are plants and invertebrates.

For each crop the FSE aims to test a specific null
hypothesis: that there is no difference between the man-
agement of GMHT varieties and that of comparable
conventional varieties, in their effect on the abundance
and diversity of arable plants and invertebrates. The
alternative hypothesis is that there is a difference in
abundance or diversity, in either possible direction; all
tests are therefore two-tailed.

Effects are likely to be indirect resulting from crop
management, rather than from the direct effect of the
use of GM plant breeding technology. Indeed, had her-
bicide resistance been introduced to the experimental
crops by traditional breeding, the design of the study
would have been the same. Farmers grow and manage
both GM and conventional crops as closely as possible
to commercial practice. The FSE is one of the most
controversial ecological experiments proposed in Brit-
ain and perhaps the most extensive ever attempted; 272

fields have been sown, over four crops and 3 years.
There has therefore been intense scrutiny of its design
and analysis and of its estimated statistical power to
detect effects of a given magnitude. This study focused on
three major biometrical issues: design, analysis and power.
An overview of the project is given by Firbank 

 

et al

 

. (2003).

 

Design

 

  

 

In statistical terms the chosen design for the FSE is
straightforward. It is a paired-comparison experiment
in a randomized block design, with a single treatment
factor at two levels. Each block is a single field; in any
year, each field is sited on a different farm. The two levels
of the treatment factor are GMHT crop management
and conventional crop management. There are two
experimental units per block, comprising two halves of
the same field. The GMHT crop is allocated randomly
to one half-field and the conventional crop to the other.

 

 

 

The form of the FSE null hypothesis dictated that treat-
ments be chosen deliberately to represent a composite
of agronomic effects, not a single ecological process.
Any feature of the crop itself, such as a varietal trait,
and any concomitant agronomic practice linked to the
crop concerned, such as recommended herbicide
usage, would contribute towards the potential treat-
ment effect being measured. Such practices, tied to the
crop, had therefore to be allocated to units as part of
the identical process whereby the treatments were ran-
domized. Composite null hypotheses are often used in
initial studies, to demonstrate the existence and esti-
mate the magnitude of effects and thereby to screen out
those unworthy of further interest. In such experi-
ments, the most important property is of realism and
applicability, so that the results relate unequivocally to
the system that is studied. The FSE was designed as a
large-scale experiment of this kind.

 

- .  -: 
   

 

An issue for discussion before the design was finalized
concerned the size and location of experimental units.
Specifically, should farms act as blocks and units be
whole-fields, paired within the farm to be as alike in
biodiversity as possible? Alternatively, should a single
field be divided into two halves, again as alike as pos-
sible, defining a unit as a half-field? The arguments in
favour of the alternative approaches involved scientific,
statistical and practical issues.

A strong argument for the half-field design was the
potential for reduction in variability. The two halves of
a field are much more likely to be similar, in previous
management, soil type and surrounding habitat, than
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two different fields. Residual variation is reduced by
choosing blocks such that experimental units within
them are matched, as far as practicable, for the meas-
ured variable (Perry 1997). Under this argument, halv-
ing fields should enhance the statistical power to detect
differences between treatments, and increase the preci-
sion with which they are estimated.

However, ecological relationships measured at one
spatial scale may not have the same parameters or per-
tain at all at other scales (Heads & Lawton 1983;
Norowi 

 

et al

 

. 2000). Caution is required in extrapolat-
ing the results of a study on half-fields to a larger
whole-field scale. Duffield & Aebischer (1994), Perry
(1997) and Kennedy 

 

et al

 

. (2001) have shown how the
use of relatively small plots close to one another has
affected the interpretation of experiments for relatively
mobile species such as carabid beetles; this argument
could favour the use of paired whole-fields. Indeed, birds
and small mammals were excluded from comparison
within the main FSE precisely because their territories
and foraging areas often extend beyond half- or whole-
fields (Firbank 

 

et al

 

. 2003). More generally, tritrophic
interactions between the chemical ecology of plants, her-
bivores and their natural enemies are subtle (Vet 1999) and
Schuler 

 

et al

 

. (1999) highlighted many potential indirect
effects of GM plants on arthropod natural enemies.

Movement of individuals between the two halves of
the same field might bias the estimated difference
between treatments, especially if  movement was related
to the effect of crop management. For example, in-
creased mortality on one half  of  the field could be
compensated by density-dependent immigration from
the other half. An individual carabid may easily travel
the order of 300 m, the breadth of a square 10-ha field,
in two nights (Kennedy 1994). Duffield & Aebischer
(1994) noted that the recovery from pesticide applica-
tion of invertebrate populations would proceed at a
slower rate when entire fields were treated, compared
with within-field plots of  an identical size. Despite
limited replication in the largest of  their plots, they
suggested that small-scale within-field trials to evaluate
pesticides would in many cases fail to predict accurately
the impact of commercial pesticide management.

Despite these caveats, useful information may still be
obtained from half-fields for highly mobile species,
such as bees and butterflies, as long as direct inferences
concerning abundance are not made from counts.
Instead, treatment differences relate to foraging pref-
erences towards flowering plants. These problems of
interpreting data concerning bees, butterflies and, to a
lesser extent, some carabids must be seen in the context
of the ecology of the taxa studied, relative to the treat-
ments imposed. Direct effects of herbicide manage-
ment regimes are most likely to impinge on vegetation;
effects on invertebrates will probably be indirect.

Care must be taken to avoid interference between ex-
perimental units that are close together, for example from
spray drift. Here, the separation distances, of 50 m for rape
and maize and 6 m for beet, between half-field units help

to minimize problems. Any chosen design would have
to attempt to match field-margin biodiversity between
experimental units. Such margins are important habitat
in arable ecosystems as reservoirs for plants and over-
wintering sites for insects, cover and food for birds, and
may affect invertebrate distributions (Lewis 1967).

The FSE aims to compare GMHT and conventional
varieties of each of the four crops grown in realistic
commercial conditions, which might favour the use of
whole-fields. Against this was the practical issue that in
the pilot year there was a lack of candidate fields, vital
to choose pairs sufficiently well-matched for previous
management and cropping history; this strongly
favoured the use of half-fields. Also, half-fields reduce
greatly the sampling effort, as recorders travel less to
collect data. Accuracy might be improved if  there is less
time pressure; experience during the pilot year revealed
this as an important consideration at particular times
of the year when sampling overlapped between taxa.

Unfortunately, very few data exist on the relative
variability between whole-fields within farms and that
between half-fields within whole-fields. Surveys have
been used to assess the environmental effects of intensive
agriculture within the UK for decades (Potts & Vickerman
1974) but designed experiments are relatively recent
and lack adequate replication of realistic-sized units
(Sotherton, Jepson & Pullen 1988; Aebischer 1990; Perry
1997; Moller & Raffaelli 1998; Raffaelli & Moller 2000).
Lennon (1998) listed nine recent European projects
on integrated pest management and noted that each
suffered difficulties with inference that resulted from
either inadequate replication or complications due to
crop rotations. Unfortunately, the crops studied in the
well-designed MAFF LINK Integrated Farming Systems
Study (Ogilvy 

 

et al

 

. 1995) were largely different to those of
the FSE. However, some data from the Game Conserv-
ancy and Allerton Research and Educational Trusts
(Boatman & Brockless 1998), from up to five winter oilseed
rape fields on the demonstration farm at Loddington,
Leicestershire, UK, provided information on compon-
ents of variation (Perry 1989) within eight abundant
suction-sampled invertebrate groups. Some fields were
halved, yielding information from 1994 to 1996 on
between- and within-field variation, that could be used
to compare the likely efficiency of half-field and paired-
field designs. The variability of paired-fields was often
similar to that for half-fields, but sometimes, especially
during 1995, was much greater (Fig. 1). It was not pos-
sible, due to constraints of proper randomization and
insufficient replication, to use data from the FSE pilot
year (1999) to inform the choice of design, although an
informal inspection suggested that half-fields were
inherently less variable than paired-fields.

The final choice of a half-field design was based on
the availability of fields, the associated difficulty of
obtaining suitably matched paired fields, the probable
major effect of herbicide being on weeds rather than
invertebrates, the need to reduce variability and effi-
ciency gains in sampling effort. The choice was made
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with the proviso that half-fields should fall within the
range of field sizes used commonly for each crop, and
should not compromise realistic growing conditions.

 

   : 
  

 

An important requirement of the FSE is that its results
should apply to the British agricultural ecosystem and
landscape as a whole. This raises the question of the
representativeness of the farms included and the issue
of farm and field selection. For example, it would be
unsatisfactory if  there were no fields within the FSE
growing spring oilseed rape in Scotland, where a large
acreage of the crop is grown. For the pilot study, fields
came from a limited self-selected set of growers who
were willing to grow GMHT crops. Within the FSE
proper, the issue of representativeness was addressed
by attempting to select fields that encompassed the full
range of variation, in various variables, likely to be
found in commercial practice. The current status
within Britain for each crop was summarized with
regard to its geographical distribution, usual agron-
omy, soil types and field sizes. This profile was then
compared with more detailed information on specific
candidate farms and fields, obtained from a question-
naire issued by the consortium to each grower who
expressed interest in taking part (Firbank 

 

et al

 

. 2003).
Estimates were made of the intensiveness of the
grower’s inputs and the extent to which the farmers
managed their land in ways that might favour biodiver-
sity. Potential growers required early notification of
whether their farm was selected, so a sequential approach
was used to monitor the structure of the sample in terms

of geographical spread, intensiveness and biodiversity,
and to identify underrepresented strata.

The approach in the FSE was not to sample farms in
proportion to their frequency of occurrence according
to some factor. For example, low-intensity farms are
relatively rare but they may contribute proportionately
more to biodiversity than intensively managed farms
(Watkinson 

 

et al

 

. 2000). The consortium sought to
include a disproportionately large sample of such low-
intensity farms. Analyses will seek to identify a possible
interaction between the treatment effect and intensity,
for which there are ample degrees of freedom available.

Note that the randomization to half-fields within
each field is distinct from the ability to scale-up from
the experiment to some wider population, which requires
that the experimental units within fields, and the fields
themselves, must be representative. The larger the pool
of farms, the more likely it was that a suitable set of
farms could be selected. However, there is no require-
ment 

 

per se

 

 for such selection, either to ensure validity
of the statistical test or for the ability to scale up.

Rather than the statistical tests of  the null hypo-
thesis, other approaches are to extrapolate the results of
the FSE through explanatory, mechanistic modelling
(Firbank & Forcella 2000; Watkinson 

 

et al

 

. 2000) or
multivariate community-based analysis; such work is
not considered here.

 

       
 

 

Randomization of allocation of the GMHT and con-
ventional varieties to the two halves of the field safe-
guarded against selection bias, for example GMHT
crops being applied to the weedier half  of the field. It
also provided statistical validity for the test of the null
hypothesis, and for the estimates of the precision of the
magnitude of any differences. and it allowed differences
detected to be ascribed causally as treatment effects.

The randomization protocol for the trial required a
structured dialogue between the recorder from the con-
sortium and the grower, so that the choice of boundary
line to halve the field for sowing was made on scientific
grounds not agronomic convenience. The optimum
choice of boundary should result in two half-field units
as alike as possible over the range of factors that con-
tribute to the variability of wildlife within the field. The
protocol also guarded against any preference a grower
had for what side of the field should receive the GMHT
treatment. Thus, treatment allocation was predeter-
mined by project statisticians who assigned one treat-
ment at random to the label ‘A’ and the other to label
‘B’. This allocation was provided to the recorder (but
unknown to him or her) in a sealed envelope. After the
boundary line was agreed between recorder and grower,
the half-field unit towards the north (for an east–west
boundary line) or towards the west (for a north–south
boundary line) was labelled as ‘A’, and the other as ‘B’,
and drawn on a rough map. The envelope was then

Fig. 1. Comparison of estimated coefficients of variation
(CV) between half- and paired-fields from 1994 to 1996 from
Loddington Farm. The data from the Allerton Project
(Boatman & Brockless 1998), run by the Game Conservancy
Trust for the Allerton Research and Educational Trust, were
supplied by Dr Nicholas Aebischer (Game Conservancy
Trust). Symbols represent annual values for the eight most
abundant invertebrate groups in suction samples: Collembola
(C), aphids (A), Homoptera (H), Thysanoptera (T), para-
sitoids (P), staphylinid larvae (S), Coleoptera adults (C) and
Coleoptera larvae (L).
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opened and the treatments noted on this map. With this
auditable procedure none of the recorder, statistician
or grower could influence the randomization.

 

     


 

In some respects, the FSE experimental design has
much in common with on-farm trials carried out by
farmers, on their own land, in studies on third-world
agriculture (Buzzard 2000). The control crop variety
was selected by the farmer according to local condi-
tions, and varied between farms. Both GMHT and
conventional systems were managed by growers as
closely as possible according to their current commer-
cial practice, although within this constraint manage-
ment practices were kept as similar as possible. Any
pesticide seed treatment was the same on both treat-
ments at a farm. Where non-herbicide treatments were
imposed on both GMHT and the conventional vari-
eties, they were applied at the same time unless there was
good agronomic reason, for example if  there were more
pests on one half-field than the other. Growers took
usual decisions for weed control on the conventional
variety; this might or might not involve the use of con-
sultant agronomists. However, usual practice remains
difficult to define for GMHT varieties, because none
has yet been grown commercially within Britain. Pro-
cedures that ensured that the treatment applied within
each management regime was applicable are outlined
by Firbank 

 

et al

 

. (2003). Such considerations are vital
to enable valid inference, and are equally important
as biometrical issues of design and analysis; no treat-
ment randomization can allow for biases arising from
inappropriate management of the GMHT variety.
Note that it was possible for there to be no herbicide
applications to either half-field unit if, for example,
there were no weeds to treat.

Some agronomic practices, such as the increased
use of direct drilling or changes to normal rotations,
might become associated with GMHT technology if
it were commercialized. The FSE cannot, at this early
stage in the use of GMHT, evaluate efficiently such
events within an experimental framework of imposed
treatments. However, the FSE will provide data to para-
meterize predictive models in which such scenarios
may be studied.

 

  

 

Details of  the range of  farmland wildlife taxa studied
in the FSE are given by Firbank 

 

et al

 

. (2003). Both
density and biomass of plants were recorded, as well as
the seed bank and seed return. Invertebrates counted
included carabid beetles in pitfall traps; butterflies and
bees sighted along transects; other arthropods, such as
Collembola and Heteroptera, in Vortis suction samples;
crop pests counted on plants; and gastropods in refuge
traps and verge searches. Although samples were

usually identified to species or family level, analyses
focused initially on totals over all species, functional
groups and over large groupings such as total mono-
cotyledons. Several samples may have been taken for
each taxonomic group through the year; these may
have been aggregated to give a single annual total or
analysed separately. Whilst this present study is not
intended to provide an exhaustive list of potential ana-
lyses, it is likely that measures of species richness and
diversity will also be compared between treatments.

 

Statistical power

 

     


 

The choice of the number of fields in the FSE was con-
troversial because it represented the first occasion on
which GMHT crops were sown on this large scale in
Europe and it was deemed inappropriate to grow a
large area. Also, the cost of any publicly funded experi-
ment must be constrained within limits and the more
fields sown and sampled, the greater the cost. Against
this, sufficient replication was required to detect effects.
The statistical power that comes from proper control of
variation and adequate replication (Perry 1986) is
important in regulatory trials, which seek to study
whether there are any deleterious environmental effects
of new products (Anonymous & Perry 1999). A statis-
tical power analysis, which quantifies the likely effi-
ciency of an experiment, was essential for the FSE.

The statistical power of a significance test is the
probability of rejecting the null hypothesis when some
given alternative hypothesis is true. The power meas-
ures the chance of detecting an effect of a known mag-
nitude using the specified experimental design, and
varies according to the magnitude of the effect speci-
fied. It is often difficult for biologists to specify this
quantitatively but without an answer to the question
‘Precisely what degree of treatment effect do you con-
sider important?’ any power analysis is uninformative.
Power depends also on sample size, the degree of
random variation between experimental units and the
chosen significance level of the test (Sokal & Rohlf
1981). Power is a continuum that varies non-linearly
and gradually with sample size. There is no threshold
level of replication below which an experiment is too
poorly resourced to be worth conducting and above
which it is satisfactory.

Power was estimated for the FSE over scenarios that
encompassed a range of treatment differences, num-
bers of fields and degrees of random variability. For
data that approximately follow a normal distribution,
the power of standard tests, such as Student’s 

 

t

 

-test, can
be calculated routinely. However, more complex calcu-
lations are required when, as here, ecological count
data are collected that have an asymmetric frequency
distribution and vary in relation to mean abundance.
Power was estimated both for a standard, simple,
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model based on a logarithmic transformation of counts,
and also for an extended model developed to be more
realistic for the form of ecological count data collected,
with a large proportion of zero counts possible for
some species.

 

  :   , - 

 

Suppose there were 

 

j

 

 = 1, … , 

 

n

 

 fields, with two experi-
mental half-field units per field. The treatment factor,
GMHT vs. conventional, had two levels, denoted 

 

i

 

 =
1,2. In the simple model, the observed response variate,
the count 

 

c

 

ij

 

, was transformed to 

 

l

 

ij

 

 = ln(

 

c

 

ij

 

 + 1). Then, a
standard randomized block 

 



 

 was done, with
fields as blocks, on the transformed values, 

 

l

 

ij

 

; the treat-
ment effect was assessed with a 

 

t

 

-test. This approach
assumed a normal distribution for 

 

l

 

ij

 

 and therefore an
approximately log-normal distribution for 

 

c

 

ij

 

; this was
termed the log-normal model (Table 1).

 

   :   ,  
 

 

The extended model was designed to allow for
many small or zero values of 

 

c

 

ij

 

 and for the observed
dependence of variance, 

 

V

 

, upon mean abundance, 

 

µ

 

,
for ecological count data, often expressed through a
power-law (Taylor 1961), with parameters 

 

α

 

 and 

 

β

 

:

 

V

 

 = 

 

αµ

 

β

 

eqn 1

Model I above explicitly assumed that variance
is homogeneous after transformation, and therefore
implicitly assumed that the exponent, 

 

β

 

, was close to
2·0. This followed from the result based on first-order
Taylor series approximation (Cochran 1938), that the
variance on a natural log scale is approximately equal
to the variance on the untransformed scale divided by
the square of the untransformed mean (i.e. var[ln(

 

c

 

ij

 

)]

 

≈

 

 

 

V

 

/

 

µ

 

2

 

).
The systematic effects in the extended model explic-

itly allowed for variability in the blocking structure.
The effects represented by the parameters of the
extended model were: an overall mean, 

 

µ

 

 = 

 

e

 

γ

 

, say, a

field effect 

 

F

 

j

 

 and a treatment effect 

 

t

 

i

 

. These combined
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Treatment and field effects were assumed multiplica-
tive on the natural count scale.

The random component of the extended model
reflected variability from unit to unit, i.e. between half-
fields and within fields. A negative binomial distribu-
tion was assumed for the counts, 
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, but the shape
parameter of the distribution, 
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, for each treatment on
each field was constrained (Perry 

 

et al

 

. 1998) to follow
equation 1. The mean of this negative binomial distri-
bution, for each treatment on each field, was denoted
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otherwise eqn 3

Three submodels were studied, with a different single
value of 

 

β

 

 for each submodel: 

 

β

 

 = 1, 1·5 and 2, respect-
ively (Table 1). These values of  

 

β were chosen to
incorporate relationships typical of  those observed
for ecological count data. When β = 1, variance was pro-
portional to the mean. For efficient analysis, a gener-
alized linear model (GLM) with a logarithmic link
would be assumed typically, with Poisson errors and
estimated scale parameter (McCullagh & Nelder
1989); this was termed the log-linear model. When
β = 2, the coefficient of variation was theoretically con-
stant, and the simple model with a logarithmic trans-
formation provided an efficient analysis. Values close
to β = 1·5 lacked such mathematically tractable inter-
pretation, but were typical of exponents encountered
for many species in field data (Taylor, Woiwod & Perry
1978).

To generate the counts, given specified values of µ, the
field effect Fi and the treatment effect ti (see below),
the value of φij was found from equations 1 and 2. Then,
given values of α and β for a particular submodel, the
value of kij was found from equation 3. This equation

Table 1.  Summary of statistical models used in the study. Models differ in their assumed variance-mean relationship, measured
through the power-law function, V ∝  µβ. Parametric methods use F-tests.  denotes analysis of variance. GLM denotes
generalized linear model; for β = 1 with Poisson errors and log-link, for β = 1.5 with user-defined error and log-link. Entry in
column detailing the non-parametric randomization test is the test-statistic used: d is mean difference in logarithmically-
transformed count; r is logarithmically-transformed ratio of arithmetic means of counts; dw is a weighted version of d. For further
details see text
  

β

Data analysis Power estimate 

Parametric
Non-parametric 
randomization test Parametric

Non-parametric 
randomization test

2 Log-normal,  d Log-normal d
1·5 GLM dw – dw

1 Log-linear, GLM r – r
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treated the rare case of a negative simulated value of k
as indicating effectively Poisson variation, for which
case the value of k was set to infinity and the Poisson
distribution replaced the negative binomial for simu-
lation. A negative binomial variate with mean µ and
variance µ + µ2/k was simulated using the following
two-step procedure (Morgan 1984). First, a random
variate, say g, was sampled from a gamma distribution
with mean µ and variance µ2/k; secondly, a count
from a Poisson distribution with mean g was sampled.
Random gamma and Poisson variates were generated
using subroutines from the NAG library (Numerical
Algorithms Group 1997).

     
  

The model was used to generate sets of count data for
specified combinations of parameter values and dif-
ferent magnitudes of the treatment effects (Table 2).

Mean abundance, µ, was studied for four values: 1, 5,
10, 50; the first three values were chosen because, for
these simulations, attention was focused largely on the
case of smaller counts. The field effect, Fi, modelled the
effect of the variability between fields and contributed
to the variability of counts, at larger than unit scales,
through equation 2. Field effects were simulated as
fixed effects, such that Fi = –M + ( j – 1)q, where j = 1,
… , n and q = 2M/(n – 1), with M = loge 10 = 2·303, and
n specified the number of fields. For example, for n = 20,
this resulted in the series: Fi = −2·303, −2·182, … ,
−0·364, −0·121, 0·121, 0·364, … , 2·182, 2·303. This
scheme ensured two orders of magnitude variation in
the blocking factor representing the field effect, so the
expected values of the response variable for the two
extreme fields varied by 100-fold. The variation in
mean abundance, above, when combined with the field
effect, gave expected ranges of simulated abundance of
0·10–10, 0·50–50, 1–100 and 5–500; and means of 2,
12, 23 and 115.

The degree of random variation between the experi-
mental half-field units was varied through the parameter
α. Values of α were chosen to achieve coefficients of
variation (CV) of 50%, 80% and 100%. The coefficient
of variation, √V/µ, here equated to α1/2µ(β/2−1). It provided
a useful way of  specifying baseline variability that
permitted direct comparison with characteristic values
for a particular taxon, perhaps calculated from previous
experiments. However, the theoretical values listed above,
of 50%, 80% and 100%, were different from those values
actually realized by the simulations, which were subject
to random variation.

Three different values of treatment effect, ti, were
specified, representing multiplicative differences of
× 1·3-fold, × 1·5-fold and × 2-fold. If  treatment effects
were denoted as t1 = 0·5 ln(R) and t2 = −0·5 ln(R) on the
natural scale, then this corresponded to a multiplicative
difference of R, expressed either as a (R – 1)% increase
or a (1 − R−1)% decrease, of  one treatment relative to

the other. For example, values of ti = ±0·203 were used
to represent a multiplicative difference of R = 1·5
between the treatments. Then, for a mean count on the
logarithmic scale of 0·0, the expected value, back-
transformed onto the natural count scale under treat-
ment 1, would be 1·225. For treatment 2 the value
would be 0·816. This yielded a multiplicative difference
of 1·5-fold between the two treatments; it may be
viewed either as a 50% increase or as a 33·33% decrease
of one relative to the other.

   

The power of three statistics was computed, each based
on Monte Carlo paired randomization tests (Manly
1994), and applied to each set of simulated data
(Table 1). Briefly, this entailed recording the value of
the ‘observed’ statistic computed for each generated set
of 2n counts, and comparing this value against 199
other ‘randomized’ values of the statistic, recomputed
after random relabelling of the treatment codes for
each of the n pairs of counts. If  the observed statistic
exceeded the upper 5th centile of the ranked random-
ized values then the null hypothesis was rejected for
that generated set. Two-tailed tests were performed by
using the absolute value of the test-statistic. The pro-
cess was then repeated for 500 sets and the power
estimated as the proportion of rejections.

The three statistics studied reflected the three forms
of variance–mean relationships, characterized by the
exponent β. The first, d, closely related to the log-
normal model, was the simple mean of the differences
between the two treatments on the logarithmic scale,
d = Σi[l1i – l2i]/n. This should have relatively high power
when variance is proportional to the square of the
mean (β = 2). The second statistic, r, closely related to
the log-linear or Poisson regression model for count
data (McCullagh & Nelder 1989), was the logarithm of

Table 2. Summary of runs used in statistical power simu-
lations. In each case the variance, V, of  the count is related
to the mean, µ, through V = αµβ. Means and coefficients of
variation (CV) are expected values, which take no account of
any additional variability induced by field and treatment
effects

Reference 
number of run α β µ CV%

1 1 1·0 1 100
2 1 1·5 1 100
3 1 2·0 1 100
4 5 1·0 5 100
5 1 2·0 10 100
6 7·07 1·5 50 100
7 1·79 1·5 5 80
8 6·4 1·0 10 80
9 0·64 2·0 50 80
10 0·25 2·0 5 50
11 0·79 1·5 10 50
12 12·5 1·0 50 50



24
J. N. Perry et al.

© 2003 British 
Ecological Society, 
Journal of Applied 
Ecology, 40,
17–31

the ratio of the overall arithmetic means of the two
treatments, r = ln [Σic1j/Σic2 j]. This should have rela-
tively high power when variance is proportional to
the mean (β = 1). The third statistic, dw, derived by P.R.,
was introduced to try to accommodate the intermedi-
ate case (β = 1·5). It was a weighted version of d, with
weights based on the approximate variance, assuming
β = 1·5, of the difference in logarithmically trans-
formed counts, i.e. dw = Σjwj[l1j − l2j] /(Σjwj) , where
wj = [(1 + c1j)

−0·5 + (1 + c2j)
−0·5]−1.

Power was estimated for treatment differences of
magnitude R = 1·3, 1·5 and 2, for 12 different com-
binations of the parameter values α, β and µ. It was
decided to study power assuming equal sample sizes of
20 and 30 fields per year. Over a 2-year experiment
these would give sample sizes of n = 40 and 60, and over
3 years n = 60 and 90. Hence, the range of sample sizes
used, n = 20, 30, 40, 60 and 90, covered all combina-
tions of 20 and 30 fields per year, for periods from 1 to
3 years. This power study simulated a total of more
than 8·5 million negative binomial random variables,
in a total of  90 000 sets of  data. In addition, the type
I error of  each test was checked using 1000 sets of
simulated data.

    

Table 3 shows that in each case the type I error was
close to its nominal value of 5%. Tables 4–6 show the
estimated power for values of R = 1·3, 1·5 and 2, respec-
tively, and, for comparison, the corresponding power of
a paired t-test for the situation when lij was assumed to
have a normal distribution, i.e. the simple log-normal
model referred to earlier. The power of the t-test was

calculated using the statistical package Minitab Release
13 (Moultine & Bluman 2001). For a treatment effect
of R = 1·5, n = 60 pairs and a CV = 50%, the power
exceeded 90% in all but one case. When the treatment
effect represented a doubling or halving of  density
and R = 2, for n = 60, for values of  CV = 50%, 80%
and 100% and for values of µ ≥ 5, the power exceeded
85% in all but one case.

As expected, the power of the r-statistic was higher
than that of  the d-statistic when the variance was
proportional to the mean (β = 1) and vice-versa when
the variance was proportional to the square of the
mean (β = 2). The dw-statistic performed best for β = 1·5,
but also appeared agreeably robust, maintaining com-
parable power to d for β = 2 and to r for β = 1.

Table 3. Estimated type I errors (5% level) for Monte Carlo
paired randomization tests using n = 20 pairs. Estimates based
on 1000 sets of simulated data (SE = 0·7%). The three test
statistics for testing treatment difference were d, r and dw,
where d denotes the mean difference in logarithmically
transformed count; r denotes logarithmically transformed
ratio of arithmetic mean counts; dw is a weighted version of d.
For further details see text

Reference 
number 
of run β µ CV%

Type I error (%) 
test statistic 

d r dw

1 1·0 1 100 5·3 3·5 5·6
2 1·5 1 100 4·6 3·9 5·5
3 2·0 1 100 4·0 3·6 4·9
4 1·0 5 100 5·5 4·4 4·8
5 2·0 10 100 5·4 5·3 5·4
6 1·5 50 100 4·9 5·6 4·7
7 1·5 5 80 5·6 4·4 5·1
8 1·0 10 80 4·3 4·2 3·6
9 2·0 50 80 4·8 4·4 4·9
10 2·0 5 50 6·3 4·9 5·5
11 1·5 10 50 6·5 4·8 5·6
12 1·0 50 50 5·1 4·2 4·7
Mean 5·2 4·4 5·0

Table 4. Statistical power for detecting a × 1·3-fold difference
for simulated count data. Details of run parameters and the
three test-statistics are in Table 2. Estimates based on 500 sets
of simulated data. The power for the log-normal model was
based on a paired t-test. Values of power exceeding 80%
shown in bold. See text for further details
  

  

Reference 
number 
of run CV%

Test 
statistic

Number of pairs (n)

20 30 40 60 90

1 100 d 16 19 27 41 55
r 15 22 35 48 69
dw 19 23 35 49 67

2 100 d 10 15 22 31 43
r 10 12 19 27 40
dw 10 16 22 31 46

3 100 d 6 14 13 16 22
r 5 10 11 15 16
dw 6 12 13 16 22

4 100 d 15 19 25 39 53
r 20 25 35 53 70
dw 20 27 33 56 70

5 100 d 11 11 11 19 26
r 10 11 10 16 21
dw 11 12 12 21 29

6 100 d 16 17 19 28 40
r 13 19 17 30 42
dw 17 21 21 36 51

Log-normal 100 16 22 28 40 55
7 80 d 14 20 28 38 47

r 14 20 26 36 44
dw 15 24 32 41 52

8 80 d 20 25 34 46 60
r 30 39 53 74 88
dw 29 37 50 69 86

9 80 d 12 20 27 31 46
r 9 13 17 19 28
dw 11 17 22 28 39

Log-normal 80 20 29 37 52 70
10 50 d 20 30 39 57 75

r 19 25 30 43 61
dw 22 32 39 58 77

11 50 d 32 47 57 76 88
r 31 50 59 80 92
dw 36 58 68 88 94

12 50 d 24 38 46 62 76
r 60 80 91 98 100
dw 53 72 87 97 100

Log-normal 50 39 55 68 85 96
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Because of its complexity, the power estimated from
the negative binomial model varied more than that
based on the log-normal model. Some of this variation
could be accounted for by deviations of the actual real-
ized CVs from the theoretical target values given in
Tables 4–6.

To summarize this complex situation power was
examined in relation to a standard statistical ‘non-
centrality parameter’ (Pearson & Hartley 1976; section
14.5, tables 27 and 30), when a consistent pattern
emerged (Fig. 2). The non-centrality parameter used,
∆, was the true difference divided by the standard error
of the estimated difference, d; it therefore had much in
common with the simple t-statistic, well-known in
ecology. Specifically, ∆ was calculated as loge R (2σ2/n )−1/2,
where σ2 was the variance of lij. For the negative binomial
model, σ2 was estimated from the simulated data by
calculating the average residual mean square after fit-

ting field and treatment effects in the  of  lij. In
addition, the solid line in Fig. 2 shows the power for the
simple log-normal model, which, because it was plot-
ted vs. ∆, was independent of the quantity R/σ and so
may be utilized generally to estimate the power when-
ever the magnitude of effect is expressed as a multiple
number of standard errors. The log-normal model
therefore provided a useful baseline against which to
assess the effect of assuming negative binomial counts,
i.e. the effect of the discrete, variable and sometimes
small counts encountered commonly in ecology. Inter-
pretation was aided by noting that for the log-normal
model the percentage coefficient of variation was equal
to 100√[exp(σ2) − 1] (Hastings & Peacock 1975), so the
four solid circles in Fig. 2 corresponded to CV of 50%,
80%, 100% and 156%. Clearly, most of the simulated
powers fell slightly below the solid line, so the addi-
tional variability resulted, as expected, in a small

Table 5. Power for detecting a × 1·5-fold difference using
simulated count data (see Table 4)
  

Reference 
number 
of run CV%

Test 
statistic

Number of pairs (n)

20 30 40 60 90

1 100 d 32 42 53 72 91
r 37 54 65 85 97
dw 40 53 65 83 97

2 100 d 25 31 42 55 72
r 22 28 41 53 71
dw 26 34 46 59 77

3 100 d 13 22 22 34 47
r 12 18 20 29 44
dw 14 23 24 35 49

4 100 d 29 46 50 75 86
r 35 60 69 88 97
dw 37 61 70 89 97

5 100 d 16 21 27 39 58
r 12 16 23 30 42
dw 16 22 28 38 55

6 100 d 21 38 43 56 77
r 25 35 43 58 81
dw 30 42 50 66 88

Log-normal 100 31 45 56 75 90
7 80 d 28 43 51 68 84

r 28 40 51 70 86
dw 33 46 59 77 91

8 80 d 38 53 65 77 92
r 55 75 90 97 100
dw 54 74 88 96 100

9 80 d 25 39 46 63 82
r 17 26 31 44 59
dw 24 35 38 59 78

Log-normal 80 41 58 71 87 97
10 50 d 44 63 77 91 98

r 37 50 65 80 93
dw 47 64 77 93 99

11 50 d 57 79 88 98 100
r 65 83 92 99 100
dw 73 92 97 100 100

12 50 d 50 71 80 93 99
r 91 99 100 100 100
dw 88 98 100 100 100

Log-normal 50 73 90 96 100 100

Table 6. Power for detecting a × 2-fold difference using
simulated count data (see Table 4)
  

  

Reference 
number 
of run CV%

Test 
statistic

Number of pairs (n)

20 30 40 60 90

1 100 d 67 87 94 100 100
r 75 94 99 100 100
dw 77 94 98 100 100

2 100 d 51 69 82 96 100
r 49 66 83 97 99
dw 55 74 86 98 100

3 100 d 26 44 51 74 89
r 21 38 46 65 86
dw 27 45 54 75 90

4 100 d 69 86 95 98 100
r 77 96 99 100 100
dw 82 97 99 100 100

5 100 d 37 53 64 85 95
r 31 42 49 71 84
dw 37 52 65 85 95

6 100 d 52 69 84 95 100
r 54 73 85 95 100
dw 60 82 90 99 100

Log-normal 100 70 88 95 99 100
7 80 d 67 83 92 99 100

r 63 82 91 99 100
dw 71 90 96 99 100

8 80 d 77 93 97 100 100
r 94 99 100 100 100
dw 92 99 100 100 100

9 80 d 57 76 88 97 100
r 40 58 69 87 100
dw 51 72 85 97 100

Log-normal 80 84 96 99 100 100
10 50 d 91 96 99 100 100

r 81 91 97 100 100
dw 89 98 100 100 100

11 50 d 97 100 100 100 100
r 98 100 100 100 100
dw 100 100 100 100 100

12 50 d 88 98 100 100 100
r 100 100 100 100 100
dw 100 100 100 100 100

Log-normal 50 99 100 100 100 100
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reduction in power. This approach also provided a
direct method of linking the theoretical power calcula-
tions to the analysis of actual data, via an estimate of σ2

from a simple  of lij. For any desired value of R and
projected value of n, we may use this future estimate of
σ2 to derive a value of ∆; an approximate prediction of
power may then be made for the log-normal model,
perhaps with some slight downward adjustment for
the effect of extra variability. For the log-normal model
the power for detecting a difference of three times the
standard error was about 85%, and about 98% for a dif-
ference of four standard errors.

There are some cases, mainly for small µ and large
CV, where the recommended minimum replication
level of 20 fields per crop per year over 3 years (n = 60)
had low power for R = 1·5. Tables 4–6 suggested, for
µ ≥ 5, that this reduction in power could sometimes be
offset by using the r-statistic and the log-linear model
for analysis. However, if  the mean count was as small as
µ = 1, even in the ideal case of a completely random
distribution of counts power would always be limited.
For example, for the log-linear model the standard
error of the estimate of log R, s, was approximated by
s ≈ {A[(Σjc1j)

−1 + (Σjc2 j)
−1]}1/2, where A was an esti-

mate of the overdispersion. Consider a scheme with
n = 60 pairs; mean counts per half-field of µ1 = 1 and µ2

= 0·7 for the two treatments, so ln(R) = 0·36; and with
no overdispersion, so A = 1. Then s = 0·20, and the dif-
ference of 0·36 was a mere 1·8 times the standard error.
Hence it was not surprising that the power for detecting
an effect would be small. This emphasizes the import-
ance of having adopted protocols that yielded suffi-
ciently large means per half-field unit, and of focusing
on the analysis of the abundance of common individual
species or groups. Rare species are important too, but

their contribution will be mainly analysed through
indices of diversity.

    


The consortium sowed 272 fields over four crops, an
average of n = 68 per crop. The power analysis indicated
that replication of 20 fields per crop per year over
3 years (n = 60) should have provided adequate power
(> 80%) to detect multiplicative differences of R = 1·5-
fold, so long as CV did not exceed 50% and mean abun-
dance exceeded 5·0. There was no need for strictly
equal replication of 20 fields per crop per year, as it is
the total replication that is important. Estimates of CV
from sets of data made prior to the start of the FSE
were, in most cases, close to the figure of  50% used
in the power analysis. Mean CV in half-fields from
the Allerton project (Boatman & Brockless 1998) for
different taxonomic groups were (Fig. 1): Collem-
bola (38%), aphids (45%), Homoptera adults (46%),
Thysanoptera (55%), Parasitica (59%), staphylinid
larvae (47%), Coleoptera (65%) and Coleoptera larvae
(128%). Frampton (1999) reported other suction sample
data in winter wheat for which the total Collembola
count had a CV of 51% for variation between different
fields.

The weighted test-statistic dw, may provide a promising
basis for future analyses of data with a variance-mean
exponent, β, between 1 and 2. The results reinforced
the importance of  reducing the CV between experi-
mental units, and of the limitations in analyses of variates
with small means. The need to reduce the CV supported
the choice of  half-field over paired-fields in the FSE
design.

Analysis

  

In the FSE, the crops are considered and will be ana-
lysed, at least initially, separately. Here we illustrate a
mode of analysis that follows the simple and extended
models and their associated test-statistics. The ration-
ale is to provide a range of analyses that (i) address the
null hypothesis and allow estimation of treatment
effects; (ii) are appropriate to the data; (iii) match the
simplicity of the design; (iv) provide results that are
transparent and easily understood; (v) allow for hetero-
geneity and other deviations from model assumptions;
and (vi) have the flexibility to allow for the inclusion
of covariates and multifaceted extensions to the basic
analysis. Currently, a two-stage process is envisaged.
The first relates to a basic analysis, which conforms
to criteria (i–v) above, and will be almost identical
for all variates and crops. Extensions to allow for
criterion (vi) will build on this basic analysis. What
follows is presented to exemplify the sort of analysis
that might be performed on 3 years of data from the

Fig. 2. Statistical power (%) for detecting an R = ×1·5-fold
difference with a scheme of 20 fields over 3 years (i.e. n = 60
pairs), based on simulated data from a negative binomial
model with theoretical, target CV of 50% (triangles), 80%
(open circles) and 100% (squares), using the d-statistic (see
Table 5), for values of µ ≥ 5. Solid lines show power for log-
normal model; solid circles on these lines relate to CV, from
left to right, of 156%, 100%, 80% and 50%. Non-centrality
parameter, ∆, calculated as ∆ = loge R(2σ2/n)−1/2, where σ2 is
the variance of the logarithmically transformed count (see
text).
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FSE. The basic analysis will consist of  three com-
ponents, each with a parametric and non-parametric
form (Table 1). In the first of the parametric analyses
each count is assumed to vary proportionally to the
square of its mean. This leads naturally to a logarithmic
transformation for efficient analysis, and hence to the
log-normal model. An analysis of variance is used to
provide a test of the null hypothesis, with the fields as
blocks; the magnitude of d is estimated. In the second,
the variability of counts is assumed to vary proportion-
ally to the mean. The log-linear GLM described above
is used, with an analogous analysis of deviance; the
magnitude of r is estimated. Both these models are used
ubiquitously in the ecological literature to analyse
plant and insect counts; both provide an F-statistic to
test the null hypothesis. An extension of this GLM, to
the case where the variability of  counts is assumed
to vary as a power of 1·5 of the mean, is also fitted.

The models underlying the parametric approach
might lack sufficient robustness to deviations from the
assumed distributions. The distributional assumptions
implicit in the different variance–mean relationships
adopted by the models will be tested informally, using
a suite of  diagnostic plots of  residuals (Carroll &
Ruppert 1988). In addition, formal Monte Carlo random-
ization tests will also be done by random relabelling of
the treatment codes for each of  the observed pairs
of counts. Such randomization tests are useful when
there are many small and/or zero counts in a data set,
for which parametric tests might be too liberal. The
test-statistics are, respectively, d, r and dw (Table 1). The
randomization tests use 999 random permutations
within each run to estimate P-values.

   
   

Here an illustration is given of an extension to the basic
analysis to answer additional questions, subsidiary to
the main null hypothesis but adding to the interpret-
ative power of the FSE. One is the possible interaction
between treatment and years. Another is the require-
ment to confirm with experimental data that sugar and
fodder beet can, as claimed, be treated as effectively the
same crop for the FSE; this involves testing the inter-
action between treatment and crop type. With so many
two-factor interactions that require testing, it might be
prudent to test some higher-order interactions as well,
and the FSE design provides plenty of degrees of free-
dom. For example, consider the analysis of a variable
for 60 beet fields, with, for convenience, levels equally
apportioned over three factors representing intensity,
years and crop type (i.e. sugar and fodder beet), with
two, three and two levels, respectively. There would
therefore be five fields representing each combination
of levels of intensity, years and crop type, with the main
treatment factor occurring at both levels on each field.
In a skeleton analysis of variance (Table 7), with all
possible interactions fitted up to the full four-factor

interaction, all F-tests of interest are computed with 48
residual degrees of freedom. There would, of course, be
sufficient flexibility to fit other covariates of interest.

Examples of analyses using FSE data from 
year 2000

After the first year of the FSE, data were available to
estimate CV for a range of taxa from each protocol,
and to reassess the statistical power calculations. Some
example analyses follow.

-  -- 
     
 

The first data considered were weed seeds and weed
seedlings on fields where no pre-emergence herbicide
was used. This ensured that for all these data, at the
time of sampling, each half-field had exactly the same
operations; there was therefore no reason to expect any
treatment effect. For the seeds, samples were taken
from n = 4, and for the seedlings from n = 12 transects
per half-field (Firbank et al. 2003). This analysis took a
components of  variance approach (Perry 1989) to
distinguish the component governed by sampling error,
arising from variation (Vt) between transects within

Table 7. Skeleton analysis of variance for 60 beet fields over 3
years, with levels equally apportioned over three blocking
factors representing intensity (I), years (Y) and crop type
(sugar and fodder beet, C), with two, three and two levels,
respectively. All the main effects and interactions measured by
these blocking factors are estimated in the fields stratum. The
main treatment factor, comparing GMHT vs. conventional, is
represented by T. The main effect of T, and all two-, three- and
four-factor interactions involving T are estimated in the half-
field units stratum. All F-tests are based on 48 residual degrees
of freedom
  

  

Source of variation d.f. SS MS F

Fields stratum
I 1
Y 2
C 1
All interactions between 

I, Y and C
7

Residual 48 RSSs RMSs

Total 59
Half-field units stratum
Total fields (blocks, 

from above)
59

Main effect of T 1 FT

T × I interaction 1 FTI

T × Y interaction 2 FTY

T × C interaction 1 FTC

T × I × Y interaction 2 FTIY

T × I × C interaction 1 FTIC

T × Y × C interaction 2 FTYC

T × I × Y × C interaction 2 FTIYC

Residual 48 RSSu RMSu

Total 119
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half-fields, from the variation between half-fields
within fields (Vh). We then studied whether within-half-
field sampling intensities were sufficiently large to
reduce the overall variance (Vo, where Vo = Vh + Vt/n)
to an acceptable level, when expressed as a CV. Data
were pooled over all four crops sown in 2000 (Table 8).
If, say, only n = 1 transect per field been sampled, then
the predicted CV would have been approximately 80%
and 66% for seedlings and seeds, respectively. This jus-
tified the multiple transects used, which reduced the
estimated CV to 38% and 41%, respectively.

    

The next analysis was of total weed seed abundance for
the 24 fields of the beet crop sown in 2000. Samples
were taken after halving the field, but before sowing, so
no treatment had been applied and no difference was
expected between the treatments, here denoted as 1 and
2. The geometric mean abundance was 93 seeds, and
the estimated CV was 52%. Such abundance and
variability would be entirely satisfactory according to
the power analysis. A scatterplot (Fig. 3) showed, as
expected, no gross differences between the treatments.
The range of values for both treatments exceeded 1·5
orders of magnitude, comparable with the two orders
of magnitude assumed for the power analyses.

The estimate of R, the multiplicative factor by which
one treatment was greater than the other was, for the
log-normal model, ×1·33 (approximate SE = 0·199; P
= 0·068; Table 9). By contrast, the estimate for the log-
linear model was ×1·25 (approximate SE = 0·183; P =
0·139). The difference in these estimates of R emphasized
the importance of discrimination between the two models
with diagnostic residual plots. In fact, the log-linear
model demonstrated a clear increase in the variability
of the residuals as the fitted values increased (Fig. 4a),
indicating the assumed variance–mean relationship was
wrong and the need for a more skewed distribution.
By contrast, the diagnostic plots implied a preference

Table 8. Hierarchical nested analysis of variance of total weed seedling and total weed seed counts for each transect, pooled over
all crops. Data pooled over all four crops sown in 2000. Counts, c, were transformed to loge(c + 1) prior to analysis. Variance
component Vt was estimated directly as the between-transect, within-half-field MS. Variance component Vh was estimated from:
Vh = (between-half-field MS – within-half-field MS)/n, with n = 12 for seedlings and n = 4 for seeds. Overall variance of the total
count per half-field was estimated as Vo = Vh + Vt/n, and approximate CV% as 100√Vo
  

  

Source of variation  d.f. SS MS F (P) Estimated variance component (% of total)

Weed seedlings
Between-fields, within-crops 17 687·3 40·43 23·0 (< 0·001)
Between-half-fields, within-fields 20 35·18 1·76 3·26 (< 0·001) Vh = 0·102 (16)
Between-transects, within-half-fields 440 235·8 0·536 Vt = 0·536 (84)
Total 447 958·3 Vo = 0·147, approx. CV = 38%

Weed seeds
Between-fields, within-crops 68 366·9 5·40 8·10 (< 0·001)
Between-half-fields, within-fields 72 47·97 0·666 1·84 (< 0·001) Vh = 0·075 (17)
Between-transects, within-fields 432 157·6 0·365 Vt = 0·365 (83)
Total 572 572·4 Vo = 0·166, approx. CV = 41%

Table 9. Analysis of variance and tables of means for weed
seed abundance in the seed bank for the 24 beet fields in year
2000. The main treatment factor, comparing GMHT vs.
conventional, is represented by the factor T. The F-test is
based on 23 residual degrees of freedom. The column headed
P gives the F-probability. The SED is the standard error of the
difference between two means
  

Source of 
variation d.f. SS MS F (P)

Fields 23 6·093 0·265 5·23
T 1 0·186 0·186 3·67 (0·068)
Residual 23 1·165 0·051
Total 47 7·443

Tables of means (logarithmic scale, base 10)
Mean Value Replication SED
Grand mean 1·972 24
Treatments 1 2

2·034 1·910 12 0·0650

Fig. 3. Total weed seed abundance from the beet crop seed
bank, for year 2000, plotted for treatment 2 vs. treatment 1, on
a logarithmic (base 10) scale. Equality line shown for
guidance. Horizontal and vertical lines around points show
approximate standard errors for each estimated total.
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for the log-normal model for which residuals, plotted
against fitted values, appeared homogeneous (Fig. 4b).
This was also indicated by the comparisons between
the parametric and non-parametric analyses for the
log-normal and log-linear models. The above probabil-
ity of 0·068 for the log-normal model was close to the
value of 0·073 estimated by the randomization test for
the d-statistic. However, this was not the case for the
log-linear model, for which the randomization prob-
ability was estimated as 0·248. This discrepancy cor-
roborates the implication that the log-linear model
should be viewed with caution for these data. Indeed,
in similar analyses, the randomization tests were often
more conservative than the equivalent parametric tests,
particularly when there were many zero values, as for
rarer species. Although the P-value of 0·068 was fairly
close to the usual critical value of 0·05, any difference
between treatments was difficult to explain on ecological
grounds because the samples were taken before any
treatments had been applied. The multiplicative dif-
ference of ×1·33 was probably a chance effect; data from
other years should help to clarify the interpretation.

      
   

Analyses of total weed seed abundance from the seed
bank of the two other spring-sown crops during 2000

provided similar results. For maize, the geometric mean
density over the 13 fields was 122, and the estimated CV
was 42%. For spring oil seed rape there were two out-
lying large values that both exceeded 400, while the
geometric mean density over the 14 fields was 89. The
estimated CV was 37%. Again, for both maize and
spring oil seed rape the diagnostic plots showed that the
log-normal model appeared appropriate while the log-
linear model displayed variance heterogeneity.

      

All analyses considered thus far have used abundance
as the response variable, but other responses are possible.
The number of species, S, measured in the seed bank
for the beet crop data above, provided an alternative
quantitative comparison of biodiversity, as long as
abundance was similar between treatments, as here. S
ranged from six to 30 species over the fields, averaging
14·75 for each treatment. The estimated CV was 16%.
Diagnostic plots showed both models appeared appro-
priate. The null hypothesis requires both abundance
and diversity measures to be addressed by the FSE.

Discussion

The ambitious scope of the FSE has created numerous
challenges, many of them concerned with quantitative
issues. Those outlined in this study have largely been
resolved from sound knowledge of good experimental
design and biometrical practice in ecology (Hairston
1989; Perry 1989, 1997; McArdle 1996).

Some problems arose specifically from the large extent
of the study. These included the need for database man-
agement, data verification, punching, storage, integrity
and extraction. The number of protocols is large, but it
is desirable to have a common approach to analysis where
possible. The development of statistical models that
underpin the analysis was driven by the availability of
data that built up slowly over a 3-year period; this resulted
in a gradual evolution of analytical methods. These have
been made available through the provision of standard
Genstat 5 software (Payne & members of the Genstat 5
Committee 1993), running in interactive or batch mode.
The plethora of possible analyses at each stage of the
project imposed a requirement for these to be audited
and results stored for later comparison.

A major statistical issue is whether one of the variance–
mean relationships studied will prove clearly more
appropriate than others. The possible advantage of
the log-normal model, evident through diagnostic plots
and in its agreement between parametric and non-
parametric analyses, will be examined carefully. The
apparent robustness of the dw-statistic (Rothery, Clark
& Perry 2002) may result in its wide use for other ecolo-
gical studies involving count data.

Some motivation for the chosen degree of replication
of fields per crop might have been drawn from the lit-
erature. The planned replication for the FSE exceeds,

Fig. 4. (a) Standardized residuals from log-linear model
analysis of total weed seed abundance from the beet crop seed
bank, for year 2000, plotted against fitted values on natural
scale. The lack of trend in the graph indicates there is no
systematic lack of fit, but variability clearly increases with
fitted values, so the value of unity for the exponent in the
assumed variance–mean relationship is too small. (b)
Residuals plotted against fitted values, both on a logarithmic
scale, for the same data analysed using the log-normal model.
There is no trend, and the logarithmic transformation has
equalized the residuals, supporting the assumed value of 2 for
the exponent in the variance–mean relationship.
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by more than threefold, any of  the comparable 82
terrestrial manipulative ecological experiments under-
taken previously, for all plot sizes, reviewed by Moller
& Raffaelli (1998) and Raffaelli & Moller (2000). Those
are slightly different from the FSE because they refer to
what are termed ‘press experiments’ in animal ecology,
in which animals, often predators, were added to, or
removed from plots. However, they represent the best
recent set of  unbiased data to compare with the FSE.

However, it is the power analyses that provide the
confidence that replication is neither too small to detect
obvious effects that might be present, nor so great that
experimental resources could easily be redirected. At
any stage in the project, available data may be used to
derive a current estimate of power for a particular vari-
ate by estimating σ2 from a simple  of  lij, specify-
ing a desired value of R and a projected value of n, and
thereby deriving a value of ∆. For the log-normal
model, the power for detecting a difference of three (or
four) times the standard error is about 85% (or 98%).
All the results described in this study suggest that if
data were available for about 60 fields per crop the FSE
would be replicated sufficiently, and should provide
useful information from which valid statistical infer-
ences may be drawn. This may subsequently be checked
by plotting the logarithm of the estimated multiplica-
tive treatment ratio vs. the logit-transformed P-value
from the randomization test. The planting of extra fields
was a sensible insurance against unforeseen losses.

The fact that power is a continuous function of
sample size, not a step function, does not weaken the
argument for adequate replication. However, it does
strengthen the argument against naive claims that an
experiment would be useless if  there were a marginal
failure to achieve some arbitrarily chosen target level of
replication. This would be the case even if  there were
only a single variate of interest. It is even more strongly
the case when there is a very large number of variates of
interest, all of  which vary differently. It will always
be the case that for some of these power will be large
while for others it will be small. In any event, even when
the magnitude of  the effect required to be detected
has been specified quantitatively, there remains the
difficulty of interpreting what this means in terms of
environmental impact, given the buffering and resilience
in ecosystems. Another desirable aspect of an experi-
ment is consistency of  results, especially one such as
the FSE in which there are many protocols, some of
which themselves involve many taxa.

Future studies to assess the ecological effects of GM
crops on a large scale may be required for other crops,
in other countries, and of alternative GM traits. It is
unlikely that there will often be sufficient funding for
experiments as intensive as the FSE. Therefore, there is
an urgent need for further statistical methodological
studies to develop experimental designs or modelling
approaches that allow efficient study at reduced cost.
One possible initial approach, available during late
2003, might be to backcast results from the FSE to

estimate how reliable a study it would have been with
reduced replication.
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