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It is well established that asexually reproducing viruses and prokaryotes mutate rapidly. In contrast, the eukaryotic
clone is often still treated as if it is genetically homogeneous within and between populations, i.e. that it is assumed
to show genetic fidelity. However, such fidelity has rarely been tested empirically using the range of high-resolution
molecular markers now available, culminating with direct sequencing of the DNA. If such a biological entity as a
‘clone’ really did exist, it would be a fantastic entity, differing from everything else known in biology, i.e. it would pos-
sess a population mean but no variance for any particular trait. It would not be amenable to selection and adaptive
variation and would thus be unchanging in time and space. In this paper, we argue that the general acceptance of
clonal fidelity is a scientific convenience, since the rate of asexual reproduction of eukaryotes is not as fast as that
of bacteria and hence it is easier to accept fidelity as a ‘fact’ rather than test for it. We propose that part of the accep-
tance of fidelity may have a cultural basis and thereby is a kind of ‘pre-Darwinian relic’. Instead, a clonal genotype
is perhaps largely a function of marker resolution, i.e. dependent on the number and type of markers employed. If
this is so and were enough of the genome explored, perhaps each individual within a clone would be found to differ
genetically at particular regions of the chromosomes. The question of what constitutes a clone is not just a semantic
one and impacts directly on recent attempts to understand and produce ‘artificial’ clones, especially of mammals.
New research is already confirming that mutations and epigenetic influences play a crucial role in the success of clon-
ing attempts. © 2003 The Linnean Society of London. 
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“The process of evolution depends on the occurrence of hered-
itary variation. If DNA replication were always perfect, life
could not have evolved and diversified; the same kinds of
organisms, and no others, would be living today that existed 3
billion years ago, unless these had become extinct in the mean-
time.” (Francisco J. Ayala, 1978)
“In the past, researchers assumed that genomes evolve to min-
imize mutation rates and prevent random genetic change. But
the new findings are persuading them that the most successful
genomes may be those that have evolved to be able to change
quickly and substantially if necessary.” (Elizabeth Pennisi,
1998)
“Chance favours the prepared genome.” Lynne Caporale

 

INTRODUCTION

 

All individuals age, even individual parthenogens
such as aphids. After giving birth to her offspring (per-
haps 30–60 in total; Blackman, 1971), a female asex-
ually reproducing aphid will senesce and die. In
contrast, the clonal lineage (a vertically produced lin-
eage, i.e. between generations) seemingly has some
degree of ‘immortality’, although somatic and germ
line mutations are assumed to occur and perhaps
accumulate, as hypothesized in accordance with
Muller’s ratchet (Muller, 1964). Reference to clones as
‘genetically identical’ is still commonplace in the liter-
ature and media (e.g. Leutwyler, 1998; Cross, 2002),
often despite a lack of supporting empirical evidence.
Thus non-fraternal mammalian twins (an example of
horizontal clonality, i.e. within a generation) are
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known as ‘identical’ (Airhart, 1998), but this is not
proven. Some mammals have even larger numbers of
horizontally produced ‘identical’ offspring, up to 12 in
the case of armadillos, whilst some parasitic wasps
can produce thousands of offspring from a single fer-
tilized egg. In this article, we briefly review current
opinion concerning intraclonal genetic variation in a
range of taxa, especially in relation to aphids. We also
set the scene for the more specialist papers which fol-
low in this volume of the journal, all contributions to
the joint Royal Entomological Society

 

-

 

Linnean Soci-
ety international symposium ‘Intraclonal Genetic
Variation: Ecological and Evolutionary Aspects’, held
at the Linnean Society, 11–12 April, 2002. Before so
doing, we also provide a brief philosophical perspec-
tive concerning the possible reasons why clones are
seen by many to have the special property of genetic
fidelity and homogeneity.

 

PHILOSOPHICAL PERSPECTIVES

 

It is surprising that well over a century after the the-
ories of evolution of Charles Robert Darwin (1809–82)
and Alfred Russel Wallace (1823–1913) and the
acknowledgement among biologists that living things
mutate and adaptively radiate into novel ecological
niches (Wright, 1988), eukaryotic clones are still per-
ceived to maintain genetic fidelity over time. Certainly
this misconception appears to be held by the public at
large, although mutation in viruses and prokaryotes,
particularly in relation to the rapid evolution of anti-
biotic resistance in pathogenic bacteria, is an estab-
lished fact (Neu, 1992; Walsh 

 

et al.

 

, 1996; Maiden,
1998). Even some biologists, although doubtless aware
of mutational processes in general, accept the notion
of eukaryotic clonal genetic fidelity in time and space,
without rigorously questioning the fundamental
premise of this unlikely state. Indeed, ideas of clonal
fidelity of eukaryotes may be seen as a kind of last bas-
tion of pre-Darwinism. How did this come about? It
may, in part, be explained by the fact that viruses and
prokaryotes have very fast rates of reproduction even
compared with fast asexually propagating eukaryotic
species such as aphids and nematodes. Genetic
changes or entire genetic revolutions are thus compar-
atively more readily detected in these relatively sim-
ple organisms within a much shorter time frame.
Another reason may perhaps relate to the fact that it
is easier during a scientific study to 

 

assume

 

 clones
have genetic homogeneity rather than test for this
empirically using molecular markers; in many
instances, useful specific markers (e.g. microsatellites)
do not exist for the organism/s under study. A third
reason, certainly as far as the wider public is con-
cerned, may be a cultural one, as briefly detailed
below, i.e. partially religious/historical in nature,

which may ultimately have its roots in a continuing
failure, wittingly or unwittingly, to fully appreciate
‘What evolution is’ (Mayr, 2002).

Much of modern science (but of course by no means
all), has its origins in Europe, more especially since
the Scientific Revolution of the 16th and 17th centu-
ries. Scientists of this period (the best-known example
being Galileo) were often in direct and serious conflict
with the Christian church for promoting ideas and
theories at variance with the accepted beliefs and dog-
mas of the day. Even as late as the mid-19th century,
Darwin delayed publication of his thoughts on evolu-
tion because it conflicted with his high Anglican
upbringing. He knew, quite rightly as it turned out,
that the established church would not approve of his
ideas, which were deemed heretical – and still are to a
great many people today (Desmond & Moore, 1991;
White & Gribbin, 1996). In the Judeo-Christian world
view, there is one unchanging God, and the world was
created as described in Genesis: the species are fixed.
It is a hierarchical, anthropocentric system with man-
kind, God’s divine creation, created as a facsimile of
the creator, at the apex of the tree of life and with an
immortal soul. This was the philosophy especially
espoused by the Spanish Jesuit Francisco Suarez
(1548–1617), founder of the idea of ‘Special Creation’
(White & Gribbin, 1996).

Contrastingly, in other religions, such as Hinduism
and Buddhism, which had their origins in Asia, a dif-
ferent vision exists. Here, individual organisms live
and die and age, and while mankind 

 

may

 

 be superior
to other creatures in terms of ability, especially men-
tally, it is not held to be necessarily better than the
rest of creation. As an organism dies, its life essence
passes to other creatures; slowly, over many such life-
and-death episodes, it eventually attains the dignity of
humankind (Hindu concept of 

 

Punarjanma

 

, or re-
birth). There is thus the cultural idea and acceptance
of transformation and continual change.

Sometimes the soul or spiritual essence is accompa-
nied by a physical manifestation of change; in Béla
Bartók’s 1930 musical masterpiece, 

 

Cantata Profana

 

,
based on Romanian folklore, humans change into
stags 

 

-

 

 a concept essentially pagan in origin
(Ujfalussy, 1971). Similar ideas are also found in other
cultures at other times, including the present. In
Greek mythology, animal transformation or certainly
hybridization can be seen in creatures like the sphinx,
centaur, chimaera, minotaur and harpy; there is even
a hybrid god, Pan. Hybrid organisms are found in
other Mediterranean and Eastern cultures, including
Persian (the gryphon) and Egyptian (the god Horus).
Merfolk (mermaids and mermen) are ubiquitous in
European, American, Asian and Polynesian folklore.

In ancient pre-Socratic Greek culture the notion of
political and intellectual flexibility was accepted.
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However, with Plato (427–347 BC) and his school such
ideas declined and instead fixity in thought and polit-
ical action became dominant (Popper, 2001). Prior to
Plato, Empedocles of Agrigentum (495–435 BC) was
the first person to propound an evolutionary origin of
life. Here 

 

parts

 

 of animals budded off from plants and
then assembled themselves. Only those creatures
whose constituent parts were in harmony survived
and the more ‘monstrous forms’ died out because they
could not find mates. Aristotle (384–322 BC) in his
treatise 

 

Physics

 

, actually suggested that the fittest
forms of life (in a modern Darwinian use of the term)
could have arisen through chance, rather than design.
He proposed a chain or ladder of evolution leading to
the ideal form of perfection, Man.

In the European medieval world-view, animals and
plants aged, but the seasons and indeed life itself
(here equated with ‘Nature’), were locked into a per-
petual system dependent upon God’s divine grace: it
was a closed circle, essentially one of stasis. The Dar-
winian view of nature as one of flux, of change occur-
ring over time, had its origin in the Enlightenment of
the 18th century (Bury, 1982). Evolution can perhaps
be likened to an open helix, with all the biological
simile that this engenders.

Living entities have a special attribute that is
widely acknowledged – that of variation, the stuff of
natural selection, adaptation (including the process of
genetic drift) and hence, ultimately, evolution. A pop-
ulation has, for any given character, be it genetic or
phenotypic, a mean and its variance, either continu-
ous or discontinuous (Sturtevant & Beadle, 1940;
Shorrocks, 1978). The variation seen within a popula-
tion of living organisms is an imperfect manifestation
of an ‘ideal’ form, i.e. it is contrary to ideal notions of a
divine unchanging entity itself equated with ‘perfec-
tion’ (Davies, 2001).

 

CLONES – IMAGINARY AND REAL

 

If all living creatures in the natural world are subject
to mutation and selection, adaptive radiation and evo-
lution, clones are surely also subject to such changes.

The term ‘clon’ (derived from the Greek 

 

klon

 

, mean-
ing twig or cutting) was originally coined by Herbert
J. Webber in 1903, in reference to the vegetatively
produced offshoot or descendant of a single plant
being ‘a colony of organisms derived asexually from a
single progenitor’ (Webber, 1903). It later evolved into
‘clone’, and came to be used more loosely and broadly
over time (Mittwoch, 1998). Now two definitions
exist. The first describes a clone as being an asexual
lineage from a stem mother, the second additionally
involves genetic identity (i.e. strict clonal fidelity)
between members of the clone (Abercrombie 

 

et al.

 

,
1990). In molecular biology, a clone is a piece of DNA

inserted into a plasmid in order to produce multiple
identical copies by a process of amplification. In
immunology it denotes a protein molecule derived
from a single hybridoma cell lineage with common
immunological properties. If the second definition is
accepted by biologists as having any particular bio-
logical meaning in relation to whole clonal organisms,
then it needs to be tested. Prior to the advent of
molecular markers (proteins, especially allozymes,
and more recently, DNA), this was not possible,
except for commonalties of colour and morphology. All
the rest was assumption and, rather incredibly, a
kind of triumph of hope over expectation. Clonal
genetic homogeneity was rarely if ever tested empiri-
cally, so that when workers wished to describe a lin-
eage as having genetic fidelity derived from a single
founder, they used the term ‘clone’ when perhaps
‘asexual lineage’ was what they meant.

Now with the plethora of molecular (DNA) markers
available, we can test the homogeneity of clones (Nor-
mark & Moran, 2000), both within and between lin-
eages to discover: (1) whether there is genetic
variability present in the genome; (2) if this is in (a)
coding regions and hence potentially selectable, (b) in
non-coding regions or (c) spread between; (3) if any of
this variation has adaptive significance. This paper
provides evidence, including empirical molecular data,
indicating that clones have variance. We suggest that
this variance may have biological significance (a topic
more fully explored elsewhere in this volume; Lushai,
Loxdale & Allen, 2003). But first we briefly explore a
hypothetical world in which clonality in terms of exact
genetic fidelity exists.

 

T

 

HE

 

 

 

HYPOTHETICAL

 

 

 

CLONAL

 

 

 

ORGANISM

 

Selection may be the mechanism of evolution, but
adaptive radiation is the main consequence of the
evolutionary process, with all that this means in
terms of ecological, morphological, physiological (e.g.
pheromones), behavioural and molecular (DNA)
changes. However, until recently there was rather
little direct evidence for adaptive changes at the
level of the gene and genome (see Carvalho 

 

et al.

 

,
2002 for a review). The new area of ‘genomics’ ulti-
mately concerns how the genome functions and
changes in the face of selection and adaptation to
novel selective forces and how changes in the DNA
relate to phenotypic expression.

In a world without mutation and selection 

 

-

 

 with, in
effect, genomic fixity 

 

-

 

 true clones would probably be
unsuited to changing environmental conditions. This
might not be so severe for organisms in a relatively
stable environment, e.g. bacterial endosymbionts of
insects. However, for organisms with short life spans
living in a dynamic habitat with rapidly changing eco-
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logical factors and novel selective pressures, such an
environment would be seemingly detrimental to sur-
vival, both in the short and long term. Organisms
would need to adapt quickly to altered circumstances
(Vrijenhoek, 1998). An example here might be clonal
aphids feeding on an ephemeral summer food plant;
these, as described below, are liable to senesce.

In theory, all natural populations (and, one
assumes, all laboratory populations) have a mean and
variance for various characters (Fig. 1A). Presumably,
laboratory populations, usually a subsample of the
genetic variance in the wild population, may have less
variance, often due to selection or drift (Unruh 

 

et al.

 

,
1983). In the case of clones, if genetic identity really
existed, then it could be graphically represented as a
vertical ‘pole’ (Fig. 1B). Rather, one assumes that
clones have variance, but that this is very restricted
for various parameters, molecular and phenotypic. In
the wild, as the clone evolves and responds to more
and more environmental selective pressures and
adapts accordingly, then the width of the variance may
be assumed to increase as a result of the diverging
lineage.

Asexual (

 

=

 

 apomictic) aphid lineages e.g. the peach
potato aphid, 

 

Myzus persicae

 

 (Sulzer), may be reared
for long periods using a technique which involves
artifical diets and the use of a membrane through
which the aphids probe to obtain nutrients (Van
Emden, 1988). Such aphids show variation for certain
carboxylesterases and this may be selected to produce
individuals 

 

within a clone

 

 with an esterase level
greater than the typical clonal mean (Bunting & van
Emden, 1980). Changes in esterase electrophoretic
banding pattern have also been noted in aphids kept
on similarly artificial diets, perhaps due to the effect of
enzyme induction (Bunting & van Emden, 1981),
although such changes are disputed (White, 1983). It
may be posited that all individuals within the clone
should have an identical lifespan and productivity (i.e.
no variance), such that all members produce exactly
the same number of offspring and all die exactly at the
same time! Anecdotally, some plant clones like rasp-
berries do have a similar lifespan world-wide
(McLaren, 2000), but presumably with variance
around a mean. A truly clonal entity may also have the
distinct biological disadvantage of a lack of ecological
flexibility (barring differential gene expression
depending on environmental cues, e.g. various het-
erotrophic bacteria living on different carbon sources).

It is well known that over-specialization tends to
lead towards extinction if the niche changes. True
clones would be the ultimate in specialization, but
they could not exist in the ‘real’ world of constant envi-
ronmental change. This is a consequence of their life-
cycle; unchanging clones have an adaptive peak and
cannot cross between peaks within an adaptive land-

scape (Fisher, 1958; Wright, 1988). However, recent
data provide evidence of variation, sometimes rapid,
within eukaryotic clonal lineages or their analogues,
i.e. highly inbred lines. In this respect it is worth com-
menting further on aphids, which clearly display the
degree of biological flexibility that may be observed,
starting at the level of the species and then progress-
ing towards the so-called clone 

 

sensu stricto.

 

R

 

APID

 

 

 

GENESIS

 

 

 

OF

 

 

 

GENETIC

 

 

 

VARIATION

 

, 

 

WITH

 

 

 

SPECIAL

 

 

 

REFERENCE

 

 

 

TO

 

 

 

APHIDS

 

Various aphid species show a variety of polymor-
phisms in terms of karyotype, colour (discussed in fur-
ther detail below) and other morphological features
(e.g. anatomical ones such as siphunculi length and
number of setae on abdominal tergites, rostral seg-
ments, legs, etc.; Foottit & Mackauer, 1990; Blackman
& Eastop, 2000). Sometimes, as in the case of the corn
aphid, 

 

Rhopalosiphum maidis

 

 (Fitch) which has two
karyotypic forms (2

 

n

 

 

 

=

 

 

 

~

 

 8 and 10), the polymorphism
appears related to host adaptation (Brown & Black-
man, 1988). In other species, such as 

 

M. persicae s.l.

 

,
translocation of autosomes may be related to actual

 

Figure 1.

 

A. Normal distribution with mean and variance.
B. Hypothesized ‘clone’ – the general perception.
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speciation events to form new ‘asexual species’, e.g.

 

M. antirrhinii

 

 (Macchiati) which has a different
chromosome number (2

 

n

 

 

 

=

 

 13 or 14) compared with

 

M. persicae s.s.

 

 (2

 

n

 

 

 

=

 

 12; Blackman & Paterson, 1986).
Besides the fact that such speciation events question
notions of what a species is exactly (Claridge, Dawah
& Wilson, 1997; Foottit, 1997), the production of chro-
mosomally distinct forms may well be a one-way evo-
lutionary ticket. Thus the newly evolved form may be
unable to sexually reproduce with the founder popu-
lation due to chromosomal non-disjunctions. Chromo-
somal translocation can also lead to the conferment of
pesticide resistance (see below). Particular aphid spe-
cies may also be more or less polyphagous, although
undoubtedly some of this apparent variance is related
to the existence of morphologically similar strains or
even ‘cryptic’ species, as is also known in other
Homoptera like whitefly, 

 

Bemisia tabaci

 

 (Gennadius)
(Legg, 1996).

Within what one may term a ‘good’ aphid species,
that is to say, one that appears to be homogeneous in
respect of host adaptation, variance is still often
apparent. This is clearly demonstrated in the case of
cereal aphids of the genus 

 

Sitobion

 

. Some species, e.g.

 

S. fragariae

 

 (Walker), appear to show cryptic strain
differences or sympatric speciation (Loxdale &
Brookes, 1990; Sunnucks 

 

et al.

 

, 1997), whilst others
show chromosomal re-arrangements of potentially
adaptive significance (Sunnucks 

 

et al.

 

, 1998). Some-
times molecular DNA differences in electrophoretic
banding profile (RAPDs [random amplified polymor-
phic DNA] or microsatellites) related to the host-
plant have been noted, as with 

 

S. avenae

 

 (F.) (De
Barro 

 

et al.

 

, 1995; Sunnucks 

 

et al.

 

, 1997), even on a
microgeographical scale. In this aphid, host selection
is associated with founder events of a colony pro-
duced when winged female migrants search out and
land on various summer hosts such as Poaceae
(grasses and cereals) (Lushai, Markovitch & Loxdale,
2002).

In addition to these ‘adaptive’ changes in geno- and
phenotype, other changes are seen at the level of the
clone itself. Blackman (2000) discusses clonal variabil-
ity and adaptation in a paper entitled ‘The cloning
experts’. However, contrary to expectations, aphids do
not seem to be too good at maintaining exact clonal
phenotypic fidelity, let alone genetic fidelity. Besides
the host adaptation alluded to above, and variance in
anatomical features, an aphid clone can vary in the
number of ovarioles (embryos) produced as well as
reproductive rate (Dixon, 1989). Thus for example,
alate exules (winged migrants) of the bean aphid,

 

Aphis fabae

 

 Scopoli can have either 6, 8, 10 or 12 ova-
rioles. This variability is not related to weight, as it is
in some Diptera (true flies) (Webber, 1955; Bennettova
& Fraenkel, 1981). The range and frequency distribu-

tion of ovariole classes is characteristic for a species
and even for particular morphs within a species
(Dixon, 1989). Differences in reproductive rate (pro-
ductivity) as well as longevity are also seen in highly
inbred lines of the nematode, 

 

Caenorhabditis elegans

 

(Maupas) raised under constant environmental condi-
tions; these show a mean as well as variance for
somatic traits (Vassilieva & Lynch, 1999; Fig. 2).
Hence, the clone is by no means a fixed entity in terms
of potentially adaptive changes, although the majority
of such changes are not only ‘silent’, i.e. unobserved
phenotypically, but probably neutral with only a very
slight effect on fitness (

 

~

 

 0.07%) (Davies, Peters &
Keightley, 1999).

Within an aphid clone, and subject to crowding
effects or plant nutritional status, winged morphs can
be induced as a prelude to migration (Lees, 1967; cf.
Dixon, 1998 for other details). Of these winged mor-
phs, some will be short-range and others long-range
‘flyers’ (Kidd & Cleaver, 1984, 1986). Also, within a
species, some clones are obligatorily asexual and can
only produce winged and wingless asexual individuals
(anholocyclic forms). In contrast, other clones or lin-
eages can produce sexual morphs (gynoparae, presex-
ual females), males and oviparae (egg-laying females
which mate with males) dependent upon diurnal
length and temperature conditions (holocyclic forms)
(Lushai, Hardie & Harrington, 1996; Dixon, 1998). In
turn, this polyphenism is usually associated with host
switching between a primary woody host on which
overwintering eggs are laid and a herbaceous second-
ary host on which asexual propagation occurs during
the summer months. Between times, winged individ-
uals migrate in spring and summer to colonize these
different hosts during the different phases of the life-
cycle (Moran, 1988). Other lineages still can produce
morphs which are sexually intermediate or produce a
few rare males amongst asexual females (androcyclic
forms) (Dixon, 1998). In such multiple life-cycle spe-
cies, genotypes from these partially asexual lines can
mate with sexual lines increasing the genetic diversity
of the lineages (Normark, 1999; Simon, Rispe & Sun-
nucks, 2002). These trends demonstrate that what-
ever a clonal lineage is, it is potentially a very
versatile entity, and adapted to various environmental
stimuli. Such a variety of life-cycle forms contribute to
a complexity almost unparalleled in the natural world,
accentuated by the alternation of sexual and asexual
generations as well as a linkage between them (Del-
motte 

 

et al.

 

, 2001; Simon 

 

et al.

 

, 2003, this issue; Wil-
son, Sunnucks & Hales, 2003, this issue).

Colonies of some gall aphids, often highly inbred,
hence effectively clonal and showing little intergall
migration, can produce morphologically very different
‘soldiers’ possessing mouthparts used to defend the
other morphs against attack from predators and par-
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asitoid wasps (Aoki, 1977; Dixon, 1998). Intraclonal
morph changes (winged and wingless) are known to be
under the influence of, and indeed regulated by, juve-
nile hormone titre (Lees & Hardie, 1981). This type of
morphological change between apparently ‘genetically
identical’ members of the same clone is also noted in
polyembryonic wasps, 

 

Copidosoma floridanum

 

 (Ash-
mead) which parasitize eggs and larvae of moths in
the subfamily Plusiinae (Lepidoptera: Noctuidae),
sometimes producing more than 3000 embryos (Ode &
Strand, 1995). There are two morphologically distinct
castes, reproductive and defensive ‘soldiers’, the latter

thin and worm-like (Fig. 3, which shows a closely
related species, 

 

C. sosares

 

 Walker). There is found to
be a distinct trade-off between these castes in
response to intra- and interspecific competition within
the parasitized host (Grbic, Nagy & Strand, 1998;
Harvey, Corley & Strand, 2000). Geographically sepa-
rate asexual populations of the spionid polychaete
worm, 

 

Pygospio elegans

 

 (Claparède) also show differ-
ent developmental modes as a function of environmen-
tally induced reproductive flexibility (poecilogony)
(Morgan 

 

et al.

 

, 1999). Stress has been shown to influ-
ence the operation of genetic elements within the
genome in bringing about change in function (Capy

 

et al.

 

, 2000). The influences of such mechanisms and
those based on cytoplasmic inheritance (True &
Lindquist, 2000) need to be studied further to better
understand the molecular control of phenotypic
variation.

Recent studies using molecular markers have
revealed a plethora of mutational changes in aphids,
including both direct alteration of the chromosomes,
usually as determined electrophoretically with micro-
satellites, rDNA markers, etc., as well as epigenetic
effects. Some species, for example 

 

S. avenae

 

 and the
bird cherry-oat aphid, 

 

Rhopalosiphum padi

 

 (L.), also
show morph-dependent molecular genetic variance
within clones. Thus, reproducible RAPD banding pat-
tern differences were observed between winged, wing-
less and sexual (male or female) morphs of the same
clone kept under conditions of strict clonal hygiene.
One such band was found to discriminate between
winged and wingless morphs (

 

S. avenae

 

) and sequence
analysis showed it to have about 60% homology with a
myosin gene promoter region (Lushai 

 

et al.

 

, 1997).
These 

 

intra

 

clonal, 

 

inter

 

morphic differences may relate
to differential expression of repeated sequences
between primer binding sites related to the genomic
expression of different phenotypes (Lushai 

 

et al.

 

,
1997) or, less likely, to methylation of the DNA. Empir-
ical studies using a range of molecular markers 

 

-

 

RAPDs, synthetic oligonucleotide probes, i.e. (GATA)

 

4

 

and AFLPs (amplified fragment length polymor-
phisms; cf. Loxdale & Lushai, 1998) 

 

-

 

 have also shown
that clonal lineages of 

 

S. avenae

 

 and other aphids (e.g.
grape rootstock phylloxera, 

 

Daktulosphaira vitifoliae

 

Fitch) display banding pattern differences within a
range of 5–15 generations (De Barro 

 

et al.

 

, 1994;
Lushai 

 

et al.

 

, 1998; Forneck, Walker & Blaich,
2001a,b), mostly somatic, but in one case, in the germ
line (Lushai 

 

et al.

 

, 1998). In 

 

S. avenae

 

, generation
time is about 10 days. Whilst it is possible that the
change noted using AFLPs in D. vitifoliae could be due
to symbiotic bacteria (Moran, Baumann & von Dohlen,
1994; N. A. Moran, pers. comm.; Forneck et al., 2001b),
this seems unlikely in the other studies on S. avenae.
Here positive controls (i.e. aphid heads only, lacking

Figure 2. Graphs showing that highly inbred populations
of the nematode C. elegans are not a ‘perfect form’. Rather,
such populations show variance for intrinsic population
growth rate ‘r’, productivity and longevity (Figure 2 from
Vassilieva & Lynch, 1999: The rate of spontaneous muta-
tion for life-history traits in Caenorhabditis elegans. Genetics
151: 119–129, reproduced with kind permission of the
authors). The distribution of line means at generations 7
(white) and 49 (black). The phenotypic values for longevity
were corrected for the changes in the controls.

0.3

0.2

0.1

0.0
0 0.3 0.7 1.2 1.6

0 120 240 360

0.20

0.15

0.10

0.05

0.00

0.4

0.3

0.2

0.1

0
0 8 16 24 32

Longevity (days)

Productivity

Intrinsic rate, r (days–1)

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/79/1/3/2639839 by Periodicals Assistant - Library user on 10 D

ecem
ber 2019



RAPID CHANGES IN CLONAL LINES 9

© 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79, 3–16

symbionts) and cross-referencing using an aphid-spe-
cific probe supported the aphid origin of the band/s
detected (cf. Lushai et al., 1998 for details). These
molecular studies demonstrate the rapid nature of
molecular evolution in aphids in relation to potential
adaptive significance, e.g. as seen with RAPD profiles
in relation to specific hosts in S. avenae (Lushai et al.,
2002) and indeed, other markers.

Besides these changes, other longer term evolution-
ary changes have been noted in aphids in relation to
host adaptation, more especially those affecting
sequences of the mitochondrial DNA, e.g. cereal
aphids like the greenbug, Schizaphis graminum (Ron-
dani). These aphids have ‘biotypes’ that have been
described in relation to their resistance to crop culti-
vars, although phylogenetic analysis appears to relate
clustering to plant-host adaptation which predates
agricultural practice (Shufran et al., 2000; Anstead,
Burd & Shufran, 2002). At some point, these and other
molecular changes that occur within clonal lines lead
to potentially great diversity (Blackman, 2000). This is
possibly due to the telescoping of generations of
aphids (Dixon, 1998) and the fact that in the absence
of mortality factors like inclement weather, predators/
parasites and pathogens, aphids can produce prodi-
gious numbers of ‘clonal’ offspring in a relatively short
while, e.g. around 14–20 asexual generations per

annum from a single female founder (Loxdale &
Lushai, 2003). All these factors contribute to adaptive
changes that are well exemplified in the case of the
spotted alfalfa aphid, Therioaphis maculata (Buckton)
in California, which supposedly arose from one or a
few founders. It has quickly multiplied and spread and
produced numerous variants, including some resistant
to pesticides (Dickson, 1962; Blackman, 1981, 2000).

With aphid resistance to pesticides, the problem has
arisen in many countries in a relatively few species
(Devonshire, 1989). Perhaps the mutations responsi-
ble for such resistance have only actually occurred a
few times, but the clones have subsequently spread
around the world in a very short time, either by their
own means or, equally likely, by human agency
(Loxdale et al., 1993; Field & Blackman, 2003, this
issue). In Britain, four species of aphid are resistant to
pesticides, including M. persicae (Needham & Saw-
icki, 1971). All these cases arose in greenhouses or in
situations where they have been subject to intense
and repeated pesticide selection pressure, e.g. hop gar-
dens in the case of the damson hop aphid, Phorodon
humuli (Schrank). In M. persicae, high levels of car-
boxylesterase (E4) resistance is associated with an
autosomal translocation (A1,3) which perhaps moves
structural E4 genes away from a repressor gene
(Blackman et al., 1995). E4 regulation is also associ-

Figure 3. Two different clonal larval castes of the hymenopterous parasitic wasp, Copidosoma sosares (Walker). The thin
thread-like larva is the ‘soldier’ or ‘defender’ morph, which protects the normal larval siblings from intra- and interspecific
competition and dies when these pupate. The caste-ratio of soldiers to normal larvae is dependent upon the competitive
pressure, and hence is an adaptive trait. (From: Hardy ICW, 1996: Precocious larvae in the polyembryonic parasitoid
Copidosoma sosares  (Hymenoptera: Encyrtidae).  Entomologische Berichten  (Amsterdam) 56: 88–92. Reproduced with 
kind permission of the author, photographer Kees Hofker and journal).
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ated with methylation of the DNA which switches the
genes on (unlike in vertebrates). How the genes are
switched off when highly resistant clones spontane-
ously revert to lower levels of resistance, which they
can do quickly in the absence of chemical selective
pressure, i.e. one or two generations, is not clear (Hick,
Field & Devonshire, 1996). Reversion does not appear
to involve a change in the copy number of E4 genes as
far as is presently known (see Field & Blackman, 2003
in this issue, for a detailed discussion of this phenom-
enon). Rather, epigenetic changes to the DNA influ-
ence the phenotype, which may direct feedback to its
expression. In addition, the elevated esterases have
pleiotropic effects on other resistance mechanisms,
more especially knockdown resistance (kdr), which
involves a mutation of the sodium channel gating sys-
tem of the nervous system and which influences
behaviour, including response to the alarm pheromone
and movement (Foster, Denholm & Devonshire, 2000).
These changes within clones clearly have adaptive sig-
nificance (Lushai, Loxdale & Allen, 2003, this issue).
Perhaps some of the ‘phenotypic plasticity’ observed in
aphids, for example, changes in size in relation to host
plant factors (Wool & Hales, 1997; Wilson et al., 2003,
this issue), are to a greater or lesser extent influenced
by rapid genetic as well as epigenetic changes of the
genome. Hence, an environmental-genomic feedback
situation arises (as is also evident in the gene-
switching mechanism concerned with the crowding of
aphids earlier alluded to).

A final aspect of aphid clonality worth mentioning is
colour. In some species like the rose grain aphid, Meto-
polophium dirhodum (Walker), a species with an
autumn sexual phase, colour is genetically deter-
mined: females are apple green, males bright pink.
The determining factor is the sex chromosomes,
females being XX, males XO (Stroyan, 1949; Black-
man, 1980; Dixon, 1998). Some species such as
S. avenae come in a range of colours, from browns
through to reds and pinks and greens of various
shades, including a dark green form with a black dor-
sal patch on the abdomen (Jenkins, 1991). The holo-
cyclic aphids (with sexual phase) are often brown.
Under suitable conditions of light, temperature and
diet, brown morphs can give rise to green offspring,
showing that in this species, colour is not uniquely
genetically determined but is also under environmen-
tal control (Jenkins, 1991; Jenkins et al., 1999). The
symbionts which are known to be involved in caro-
tenoid synthesis (Jenkins et al., 1999) may play a sig-
nificant role in determining colour. It is highly
probable that the different colours have adaptive sig-
nificance, especially in relation to predation and par-
asitism by hymenopterous parasitoids (Ankersmit,
Acreman & Dijkman, 1981; Losey et al., 1997), or the
colours are associated with protection from solar radi-

ation (Jenkins et al., 1999). Certainly, the inter- and
intramorphic changes of colour, related to both quan-
titative and qualitative changes in carotenoid pig-
ments (Jenkins et al., 1999), demonstrate that an
aphid clone may vary; it is not a fixed entity, whatever
else it may be in a biological sense.

RAPID GENETIC CHANGES IN OTHER TAXA

Besides aphids, a wide range of other taxa have now
been shown to undergo rapid genetic changes, from
viruses, prokaryotes (bacteria) through to eukaryotes,
including protozoans, plants, fungi and animals.
Table 1 in Lushai & Loxdale (2002) illustrates clearly
that clones are rapidly changing or have the potential
to do so in the light of mutations of varying kinds.
They thus fit in with the maxim of the ancient Greek
philosopher Heraclitus (6th century BC): ‘Everything
is in flux, and nothing is at rest’ (Popper, 2001).

However, even in the absence of direct selection (i.e.
in a constant environment), organisms continue to
spontaneously mutate, for example bacteria, aphids
and nematodes (Moran, von Dohlen & Baumann,
1995; Moran, 1996; Lushai et al., 1998; Vassilieva &
Lynch, 1999). Such change is then seen simply as a
property of the DNA, with its propensity to undergo
point mutations directly, or the product of errors of
replication. DNA repair mechanisms become opera-
tional in order to correct the majority of such changes;
there are also parallel specific mechanisms of infidel-
ity which need to be present for evolution to take place
(Radman, 1999, 2001). There are sites where muta-
tions fix, ‘hotspots’ often related to moieties (transpos-
able elements, etc.) that have been implicated in the
specificity of such sites, whilst other regions of the
genome remain highly conserved. This promotes
the hypothesis that after stochastic mutational
events, some propagated by molecular mechanisms, a
cascade of change may be in operation. In a creature
such as Drosophila with ~ 13.5 thousand genes and
~137 megabases (~1.37 ¥ 108 bases) of DNA (Adams
et al., 2000), it is inconceivable that chromosomes can
be copied with strict fidelity each and every time a new
individual is created. Certainly with bacteria (e.g.
Streptococcus pneumonae) which divide within
20–30 minutes, the entire genome of some 2 million
bases is copied, which means that around 1400 bases
are copied a second! Here then, there is plenty of scope
for error, as is well known, even with mutation and
replication error rates of the order of 10-10-10-9 per
gene per generation.

Besides such fundamental changes to the base
sequence of DNA, other larger scale mutational pro-
cesses are well known (i.e. inversions and duplica-
tions), as well as duplications of repetitive sequences
and slippage mediated events (e.g. microsatellites;
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Goldstein & Schlötterer, 1999). Many of these poly-
morphisms are influenced by hotspots in the genome
(Pennisi, 1998), more especially those mediated by
transposons. Transposons are widely distributed
amongst taxa, including Drosophila (P-elements, mar-
iners, copia; Nuzhdin, Pasyukova & Mackay, 1996;
Hartl, Lohe & Lozovskaya, 1997; Nuzhdin & Petrov,
2003, this issue) and aphids (mariners, L.M. Field,
pers. comm.), although they appear to be absent in
bdelloid rotifers, ancient asexuals which show the
phenomenon of ‘genome freeze’ (Arkhipova &
Meselson, 2000; Mark Welch & Meselson, 2000). In
mosquitoes, MITEs (mini inverted repeat transpos-
able elements) occur in some species at high frequen-
cies throughout the genome (>104 copies) often at
specific sites (Tu, 2001). Such elements are known to
be involved in chromosomal re-arrangments in
Diptera (Drosophila), some of which may have adap-
tive significance (Cáceres et al., 1999a,b). Transposi-
tion rates are known to be high in Drosophila, up to
10-3-10-2 per gene per generation (Nuzhdin et al.,
1996), whilst other non-coding regions such as micro-
satellites and minisatellite regions have mutation
rates in the region of 10-5-10-3 per gene per genera-
tion, sometimes up to 10-2, whilst even the control
region of insect mitochondrial DNA can mutate at
around 10-4 per gene per generation (Lushai, Loxdale
& Maclean, 2000 and Lushai & Loxdale, 2002 discuss
mutation rates in a variety of living organisms; see
also Klekowski, 2003, this issue). Lastly, many of the
aforementioned duplicated regions are exceedingly
abundant throughout the genome, for example in
Drosophila (Schug et al., 1998a, b), and occur as
thousands of copies, sometimes tens of thousands
(Goldstein & Schlötterer, 1999).

All of this makes it highly unlikely that clonal fidel-
ity can be maintained for very long, i.e. over many gen-
erations, if at all (Lushai & Loxdale, 2002; Loxdale &
Lushai, 2003). Thus, whilst the 50 offspring of a single
asexual female aphid such as S. avenae may appear to
be genetically homogeneous, this homogeneity is per-
haps illusory. True, lineages may show a commonality
of genotypes at, say, a range of microsatellite loci,
which has been documented empirically (Haack et al.,
2000), but acceptance of clonality excludes the proba-
bility of mutational changes at other regions of the
genome. It may be that each individual within the so-
called clone varies at some region of its genome and
such a possibility should not be ignored since this may
have biological significance, particularly adaptive
(Vrijenhoek, 1998).

Certainly, unicellular eukaryotic ciliates display
large-scale chromosomal re-arrangements which may
have adaptive significance. These changes appear
rather unique in their operation, occurring at set sites,
and may be under the influence of transposons (Yao,

1996; Meyer & Duharcourt, 1996). Similarly, the mult-
iple nuclei of fungal spores, some of which show intra-
clonal changes in 18s and ITS regions of the rDNA (see
Sanders et al., 1995; Sanders, 1999; Sanders, Koch &
Kuhn, 2003, this issue), may also have adaptive sig-
nificance. In microorganisms, mutational changes are
well known to be adaptive in controlled environmental
experiments where evolutionary processes in the form
of parallel and convergent evolution have been noted
(e.g. Bull et al., 1997) in response to both abiotic and
biotic factors. Away from the experimental bench, bac-
teria have evolved rapidly in recent years under
intense antibiotic selective pressure to develop resis-
tance, rather as aphids have done in response to
intense pesticide selective pressure, both in the labo-
ratory and field (Neu, 1992; Foster et al., 1998, 2000).
In the case of bacteria, frequent recombination
appears to be involved in some of the production of
new mutations (Guttman, 1997). However, this seems
much less likely in aphids such as M. persicae due to
the relative scarcity in northern latitudes of its pri-
mary overwintering host peach (Prunus persica L.) on
which mating occurs and eggs are laid (Blackman,
1974; Tatchell, Parker & Woiwod, 1983).

With all these fast reproducing clonal organisms,
when new ‘fit’ genotypes evolve in novel habitats (e.g.
on new hosts in the case of aphids), perhaps on a
microgeographical scale (Guttman, 1997; Mopper &
Strauss, 1998), selective sweeps rapidly purge popu-
lations of many of the genotypes present. When this
happens, a rather structured population is likely to
result, as with insecticide-resistant aphids (Brookes &
Loxdale, 1987; Foster et al., 2000), with relatively
few main genotypes, and with an initially reduced
capability to undergo further immediate adaptive
switches. However, this is quickly offset by the capac-
ity of such organisms to generate large populations
that adapt quickly, and, of course, linkage to sexual
lines promoting influxes of allelic variance (Delmotte
et al., 2001). In the case of animals like ancient asex-
ual ostracods, perhaps the dearth of variance observed
empirically is the result of the continuous purging of
alleles via bottlenecks, selection or drift or a combina-
tion of these, in effect a severe series of selective
sweeps (Schön et al., 1998,  2003, this issue). We dis-
cuss the potential for adaptive significance of clonal
mutations in another paper (Lushai, Loxdale & Allen,
2003, this issue).

CONCLUDING REMARKS

We now return to the concept of clonal fidelity and its
graphical representation as a ‘vertical pole in time and
space without variance’, i.e. the ‘sacred cow’ of clonal
perfection. If such a biological entity really did exist, it
would be fantastic and unlike any other living organ-
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ism in the real world. We have argued that such an
entity is extremely unlikely. Some may be tempted to
counter-argue that this is still speculation. We believe,
however, that the challenge in the years ahead is to
prove or disprove the statement that all individuals in
a clone vary - the reverse of the old, unproven and
much cherished paradigm that they don’t!

Already, the scientific and commercial drive to pro-
duce viable cloned mammals (Colman, 1999) is being
adversely influenced by unexpected problems related
to chromosomal/mutational changes (although even
these are not true clones since their mitochondrial
DNA differs from that of the nuclear genome donor
female, Mittwoch 1998; see also Evans et al., 1999).
These include epigenetic effects in artificially pro-
duced offspring. Such changes cause a reduction in the
survival of individual embryos or adults per se, the
longevity of animals born to term, and their immuno-
logical competence (Wakayama et al., 2000; De Sousa
et al., 2001; Humpherys et al., 2001; Cibelli et al.,
2002). The epigenetic effects are associated with the
proper switching of regulatory genes as a function of
DNA methylation and are problems that have only
very recently come to light (Kang et al., 2001a, b). In
addition, others appear to suggest problems relating
to telomere length of implanted nuclei derived from
fully differentiated somatic cells (Shiels et al., 1999).

Clearly, a lot still has to be learnt about the nature
of pro- and especially eukaryotic clonal organisms,
including their levels of variance. This quest offers
many new and exciting prospects for future discover-
ies, some no doubt of major fundamental and applied
significance, whilst at the same time allowing old dog-
mas to be revised.

According to Huxley (1880), “it is the customary fate
of new truths to begin as heresies and to end as super-
stitions”. With clones, superstition seemingly pre-
dated the faltering steps on the path to heresy. The
fact remains, however, that until the recent plethora
of high-resolution molecular markers (particularly
sequencing) became available in the last 20 years or
so, clonal fidelity could not be rigorously empirically
tested, only guessed at. We have argued elsewhere
(Lushai & Loxdale, 2002) that clonality is merely a
genotype resolution phenomenon dependent upon the
resolving power of molecular markers (including type
and number used), culminating with direct sequenc-
ing of the DNA. We concluded that it was a biological
improbability. If so, what is a clone precisely?
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Note added in proof
A very recent paper by Douhovnikoff V. & Dodd RS.
2003. Theoretical and Applied Genetics (on-line)
reveals intraclonal variation in clones of willow, Salix
exigua, found using AFLP molecular markers; see
http://link.springer.de/link/service/journals/00122/
contents/03/01200
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