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Intraclonal genetic variation: ecological and evolutionary aspects.
Edited by H. D. Loxdale FLS, FRES and G. Lushai FRES

The dynamic clonal genome and its adaptive potential
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Populations of clonal organisms are often represented as being evolutionary inert with persistent genetic fidelity. The
advent of molecular methods and the corresponding increased genetic resolution of clonal populations forces a recon-
sideration of this viewpoint. We review molecular data from viruses, prokaryotes and eukaryotes to support the argu-
ment that clones possess a highly dynamic and adaptive genome. © 2003 The Linnean Society of London, Biological
Journal of the Linnean Society, 2003, 79, 193-208.
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INTRODUCTION

In the debate over the evolution of sex, important
questions are raised by the longevity of asexual spe-
cies (Judson & Normark, 1996; Normark, Judson &
Moran, 2003). In particular, given that sex is benefi-
cial because it generates genetically variable off-
spring, how do asexual genomes survive? By
definition, evolution is dependent on genetic variance,
even if operative for a relatively short time in the life
cycle (Gorokhova et al., 2002).

The advent of molecular technologies has resulted
in an increased ability to detect mutational change
and thus quantify the levels of variation in asexual
populations (Lushai & Loxdale, 2002). Changes within
non-coding, repeat DNA and synonymous or silent
mutations are probably effectively neutral (although
their effect on secondary structuring and spacing of
genes is not well understood) but most mutations with
observable phenotypic effects are deleterious. Work on
Drosophila has suggested that deleterious mutations
arise at the level of about one per individual per gen-
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eration, although this is considerably less for other
organisms (Lynch, Blanchard & Postlethwait, 1999).

In an asexual population, unless very large, no indi-
vidual will be free of harmful mutations. Hence the
mean fitness of an asexual population is expected to
decrease with time (Lynch et al., 1993) and the popu-
lation should eventually become extinct. As a result of
mutation and subsequent isolation, an asexual popu-
lation may consist of several clones, each adapted to a
particular niche, but in a stochastic environment
mean fitness will often be severely reduced (Haldane,
1932, 1990). Yet, despite these points, asexual lineages
persist in numerous independent taxa, and some of
these lineages are very ancient indeed (Judson & Nor-
mark, 1996; Normark, Judson & Moran, 2003). How-
ever, we here take a step back from such interclonal
genetic variation and its ecological consequences
(Vrijenhoek, 1998) and concentrate instead on intrac-
lonal variation.

EMPIRICAL EVIDENCE FOR RAPID CHANGE
IN CLONAL ORGANISMS

Recent molecular studies have highlighted the levels
of intraclonal genetic variation in both unicellular (e.g.
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Elena, Cooper & Lenski, 1996) and multicellular
organisms (Lushai et al., 1998). Phages, bacteria,
yeast and mitochondrial lineages are some of the
groups that have provided insights on evolutionary
processes in relation to molecularly identified changes
in the genome (see Table 1a for an overview). Most of
the data derive from studies on strains and popula-
tions under environmental stresses of nutrition and
temperature. For an insight into the experimental
utility of such study organisms, see Bull et al. (1993;
bacteriophage-T7) and Lenski & Travisano (1994;
Escherichia coli).

Studies on the complexity of evolution in asexual
species is exemplified by work on bacteriophages (Bull
et al., 1993, 1997; Cunningham et al., 1997; Crill,
Wichman & Bull, 2000; Wichman et al., 2000). These
reveal a high level of parallel molecular evolution
within independently evolving lines derived from a
common ancestor, and show similarities in deletion
events and related nonsense mutations in loci adja-
cent to the points of breakage (T7, Cunningham et al.,
1997). Similar work on the bacteriophage-¢X 174 has
also revealed such parallelisms, as well as reversals
to the ancestral type; in fact the convergence made
the lineages appear more closely related than they
were in reality (Bull et al., 1997; Wichman et al.,
2000). In these experiments, the purity of the lineages
was ensured by allowing them to evolve in geograph-
ically distant laboratories; however, trends across
these geographically dispersed lineages were consis-
tent. The convergence strongly indicates selection
(Bull et al., 1997). Fitness of a mutation was genome-
dependent; when the same genome was subjected to
the same selection, the same mutations were
favoured.

Rapid evolutionary changes in bacteriophages have
also been illustrated by host alternation studies,
where in some lineages Salmonella enterica was sub-
stituted for the typical E. coli host. Typically, the high-
est levels of convergence were observed among
lineages grown with the same species of host (Wich-
man et al., 2000) to the extent of a depressed ability to
grow when phages from an S. enterica lineage were
returned to the ancestral E. coli (Crill, Wichman &
Bull, 2000). Other significant trends included rates of
substitution that were far more rapid during the ini-
tial stages of the evolutionary experiment, culminat-
ing in an adaptive plateau, and specific sites of
reversion at ‘gene F’ that appeared responsible for
host-change. Other beneficial mutations have been
found in this system, two involving gene F, and a third
affecting the amino acid sequence of the internal scaf-
folding protein, gene B (Bull, Badgett & Wichman,
2000). Selection coefficients for these were between
0.03 and 0.14, where 0.01-0.1 are generally consid-
ered large.

Stimulated by the classic experiments of Luria &
Delbriick (1943), there is now a wealth of information
about mutational change and adaptation in bacterial
lineages. We focus on recent work by Lenski and col-
leagues using their cryogenic ‘fossil-bed’ E. coli exper-
imental lineages (Lenski & Travisano, 1994; but see
Dykhuizen, 1990). Their work has revealed how rare
beneficial mutations sweep through a standing popu-
lation of purely asexual lineages causing bursts of
change moving the population to new ‘adaptive’ pla-
teaus, whereupon stasis ensues until the onset of the
next selective-sweep (Elena et al., 1996; see Elena,
Codofier & Sanjuéan, 2003, with respect to viruses).
Over approximately 10 000 generations, Lenski & co-
workers have, for example, observed stepped incre-
ments (punctuated evolution?) of cell size in a fixed-
resource environment.

Further studies have identified the evolution of
‘mutator genotypes’ that help maintain levels of vari-
ation up to two orders of magnitude greater than the
norm (Elena & Lenski, 1997; Sniegowski, Gerrish &
Lenski, 1997). The effect of mutator genotypes in a
population was most significant when they originated
in rare rather than common lines, suggesting strong
frequency-dependent selection. The data showed an
upper limit to evolutionary change in these asexual
lineages, recognized as a plateau of adaptive change
after the initial rapid rate of evolution from the ances-
tral state when placed in a new environment (De Vis-
ser et al., 1999; Bull, Badgett & Wichman, 2000). This
eventual steady-state is perhaps evidence for clonal
interference. In strictly asexual lineages, advanta-
geous mutations that have arisen in separate lines
that cannot be combined lead to interclonal competi-
tion checking further adaptation (Gerrish & Lenski,
1998).

Verification of such experiments by the use of inser-
tion sequence (IS) probes have validated many of the
trends (Papadopoulos et al., 1999). Microsatellite
markers have been used to confirm the trends and to
predict a rate for rare beneficial mutations, i.e. 4 x
107° (Imhof & Schlétterer, 2001). Another study on E.
coli demonstrates the dynamic nature of these organ-
isms in a static environment, a ‘constant batch’ culture
system devoid of periodic renewal or thinning out of
growth media (Finkel & Kolter, 1999). After a few days
in culture, ‘growth advantage in stationary phase’
(GASP) phenotypes that were different from their
original ancestor evolved and stabilized at constant
population levels. Interestingly, serial collections from
the stock culture indicated that the GASP cultures
were continually adapting, with newer collections
being progressively fitter than previous ones. DNA
restriction fragment length polymorphisms (RFLPs)
and phenotype variation all indicated that selection
favoured a series of different genotypes over time
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following trends noted in the experiments where cul-
tures were sequentially renewed.

Another group of bacterial lineages that are buff-
ered from environmental changes are the ancient
endosymbiotic associations of bacteria living within
specialized polyploid host cells (mycetocytes), for
example the 100-250 million year old association of
Buchnera aphidicola with its aphid host (Baumann
et al., 1993; Moran, 1996). Infection is through cyto-
plasmic inheritance. A comparison of the 16S rDNA
from a range of mutualistic symbionts (Buchnera from
aphids, P-symbionts from whitefly and mealybugs and
Wolbachia pipientis from tsetse flies) with E. coli and
Salmonella typhimurium showed that the symbionts
have evolved faster than their free-living relatives
(Moran, 1996). Minimum rates of evolution were
1.7-2.7 (16S rDNA) and 1.4-3.2 times faster (eight
additional genes compared between Buchnera and E.
coli). Synonymous substitutions between these bacte-
ria were similar, indicating that these were largely
mildly deleterious (Ohta, 1992). The rate of non-syn-
onymous substitutions was particularly high in the
Buchnera lineages, and resulted from increased third
position codon substitutions favouring A + T changes,
and confirms the prediction of the fast accumulation of
deleterious mutations in small populations of asexual
endosymbionts, as predicted from Muller’s ratchet
(Moran, 1996). That these ancient asexual lineages
have existed for over 100 Myr suggests the existence
of strong compensatory processes overriding the dele-
terious effects, or of selection that is too weak or dif-
ficult to detect.

Similar trends for the accumulation of mildly dele-
terious mutations have been reported from compari-
son of tRNA genes in asexually propagating organelle
genomes of animals, plants and fungi. Such muta-
tional load should lead to slow declines in mean fitness
(over 10-100 Myr) and could cause eventual extinc-
tion (Lynch, 1997; Lynch & Blanchard, 1998). The
accumulation of mild deleterious mutations has been
reported for genes from Drosophila mitochondrial
DNA (mtDNA) (Rand & Kann, 1998), but whilst some
show high genetic polymorphism (cytochrome-f and
ATPase 6 genes), others show little or no variation
(ND3 and ND5) (Rand & Kann, 1996). However, such
genomes are perhaps not entirely non-recombinant as
there is mounting evidence for rare recombination in
mtDNA (Wallis, 1999). Many pieces of the puzzle
remain unclear. Details of why differential loads occur
in the mtDNA genome need to be clarified to under-
stand how these systems remain intact even under
high mutational stress. One possibility is that
genomes can carry high genetic loads provided certain
regions remain unaffected (Redfield, 1999).

Endosymbiotic asexual bacteria such as Buchnera,
together with examples of ancient asexuals (Judson &

Normark, 1996), directly contradict evolutionary the-
ories that suggest that clonal lines should be short-
lived (Table 1b). Included here should be the arbuscu-
lar mycorrhizal fungi (asexuals for >300 Myr) that
have a unique multinuclear genomic complement
(Kuhn, Hijiri & Sanders, 2001). Evidence from the fos-
sil record suggests that darwinulid ostracods may
have persisted without sex for about 100 Myr (Butlin,
Schon & Martens, 1998; Butlin et al., 1999). DNA
sequence variability can also be used to test the dura-
tion of asexuality in such lineages since both nuclear
and mitochondrial data should theoretically be in con-
gruence in truly asexual lineages. As the mitochon-
drial DNA divergence within and between species of
darwinulids range, respectively, from 3.8 to 27.7%
(Schon et al., 1998, 2003), current invertebrate molec-
ular clock models (~2.0% = 1 Myr) imply a minimum of
14 Myr of divergence from a common ancestor. Mito-
chondrial DNA divergence (~2.5%) among clonal sam-
ples of another ostracod species have been equated to
5 Myr of divergence based on rates of 0.5% variation
per million years (Chaplin & Herbert, 1997); there-
fore, a similar estimate would put the divergence rates
of some of the darwinulids at approximately 60 Myr.
Irrespective of exact dates, both fossil and molecular
divergence records within the ostracods suggest that
old asexual lineages are prevalent in this group (But-
lin et al., 1998). In contrast, nuclear sequence data
from the ribosomal DNA (rDNA) internal transcribed
spacer-1 (ITS1) region show no variation in one of
these species, Darwinula stevensoni (Brady & Robert-
son), in comparison to 3.8% divergence for mtDNA.
This may suggest the rare occurrence of sex (Normark,
1999), but this seems highly unlikely when we take
into account the lack of variation among populations
from Finland to South Africa. Instead, slow molecular
evolution with a propensity to highly efficient DNA
repair may explain these observations (Schon et al.,
1998).

Further examples of ancient asexuals include the
brine shrimp, Artemia salina L. with an estimate of
30 Myr (mtDNA, Perez et al., 1994), and the bdelloid
rotifers (Mark-Welch & Meselson, 2000, 2003). All
members of the class Bdelloidea are believed to repro-
duce wholly asexually (Mark-Welch & Meselson,
2000). Part of the observed invariance stems from the
absence of retroviruses in this group (Arkhipova &
Meselson, 2000). In the absence of any records of sex-
ual forms, the occurrence of bdelloids in 35-40 Myr
amber suggests that they are ‘ancient asexuals’. One
important indication for ancient asexuality within
diploid genomes would be the progressive divergence
between homologous alleles at the same locus in
paired chromosomes (Mark-Welch & Meselson, 2000).
This unique signature of genetic divergence from the
time of ancient ancestral asexuality or ‘genome freeze’
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with regards to recombinant events has to date only
been noted in bdelloids. Other references of old asex-
ual lineages include the weevil, Aramigus tessellatus
(Say) +2 Myr (mtDNA, Normark, 1996) and sala-
manders of the genus Ambystoma, ~4—5 Myr (mtDNA,
Hedges, Bogart & Maxson, 1992). The study of such
phenomena is fundamental to our understanding of
genomic evolution and adaptation (Normark, Judson
& Moran, 2003).

FACTORS AFFECTING RAPID CHANGE IN
THE CLONAL GENOME

Estimates for rates of deleterious mutations in flies,
nematodes and plants are given in Table 1b and are as
high as one per individual per generation (Crow,
1997), but much lower levels are normal (Fry et al.,
1999; Schultz, Lynch & Willis, 1999; Vassilieva, Hook
& Lynch, 2000; but see Lynch et al., 1999 and Kon-
drashov, 1999). Most of these mutations are recessive
and decrease fitness by around 1-2% per generation
(Houle, Morikawa & Lynch, 1996), with 0.07% being
attributed to barely detectable ‘cryptic’ mutations as
identified in the nematode Caenorhabditis elegans
(Maupas) (Davies, Peters & Keightley, 1999). Such
mutations will eventually be eliminated by natural
selection, but many questions still remain about the
detrimental effects of all mutations in ecological set-
tings, especially with regards to the effects of compen-
sating mutations and back mutations (Bull et al.,
1997). The estimate for the rate of beneficial muta-
tions, 4 x 107, has allowed workers to predict selective
sweeps in bacterial populations (Imhof & Schlétterer,
2001).

Two well-described mechanisms of genetic change
are: (1) those involving the activation of mutagenic
activity (e.g. trans-lesion synthesis, TLS, SOS and Y-
family polymerases) or the inhibition of an antimu-
tagenic (proofreading) system (MRS) (Radman, 1999;
Friedberg, Wagner & Radman, 2002); and (2) those
involving transposable elements (TEs) (Tn in bacteria;
LINE-like elements and hobo in Drosophila; Ty in
yeast; Capy et al., 2000). Because of the function of the
first class of mechanisms, it has been suggested that
point mutations that are maintained (as most damage
is repaired) should not necessarily be looked upon as
genetically erroneous because variation is accurately
and actively assimilated by this group of DNA poly-
merases. Such phenomena are changing the interpre-
tation of apparently chaotic genetic change in
individual genomes to one of events that are adaptive
(De Visser etal., 1999; Radman, Matic & Taddei,
1999). Analogues of both systems have been found in
prokaryotes (TLS; see Friedberg, Wagner & Radman,
2002; IS changes, e.g. Schneider et al., 2000) and
eukaryotes (TLS: see Friedberg et al., 2002; TEs:

Nuzhdin, Pasyukova & Mackay, 1997; Caceres et al.,
1999; see Nuzhdin & Petrov, 2003). Interestingly, dif-
ferent elements of the TLS and TE mechanisms corre-
spond to hotspots, sites of inversions, deletions and
gene rearrangement (for TEs, see Table 1b).

How do such mechanisms work? In the case of TEs,
metabolic and environmental cues (stresses) on
genomes trigger an intricate response by these latent
mutator mechanisms to ‘reveal’ the genetic variability
from amongst the soup of genetic variation that hith-
erto lies hidden by buffering proteins such as Hsp90
(Rutherford & Lindquist, 1998). These agents then
promote adaptive mutations with large effects on fit-
ness (Capy et al., 2000; Friedberg, Wagner & Radman,
2002). When the stress is alleviated, populations
revert back to non-mutator or ‘hidden’ states associ-
ated with favourable genotypes. Because of their mode
of operation, these factors involve explosive evolution-
ary events that can be thought of as near-Lamarckian
or ‘directed mutations’ rather than genetic mecha-
nisms mediated by fast selective processes (see Lenski
& Mittler, 1993).

There is a significant amount of relevant research
on mutational changes (Drake, 1991) and adaptation
(Szafraniec, Borts & Korona, 2001) in brewing yeast
Saccharomyces cerevisiae. The latest results include
mechanisms of change affecting genomes that are not
genetically inherited. Instead, cytoplasmically inher-
ited prions, PSI*, PIN* and ISP*, have been implicated
as epigenetic modifiers. In a manner similar to the fac-
tors described above (polymerase mutases, TEs), pri-
ons provide the means to activate hidden genetic
variation and produce new heritable phenotypes (see
True & Lindquist, 2000; for [ISP*], Volkov et al., 2002).
The difference from that described for mutase
enzymes and TEs is that the epigenetic influences
allow heritable changes to be operational in a single
step or generation rather than through a process of
selection over generations. Hence, such factors appear
to allow the organisms to adapt to new niches without
‘closing the door’ on their ability to occupy the previ-
ous one. A lineage with such modifying elements
acquires the ability to ascend or descend multiple
adaptive peaks. A molecular mechanism showing such
an immediate effect could be described as functioning
in an adaptive homeostatic fashion with respect to
metabolic/environmental change.

The discovery of TEs and prion-like elements
enables us to move away from searching for ‘linear
affects’ in strings of sequences effecting rapid change
and start to search for associations of secondary and
tertiary structure in functional genomes (Wolffe &
Matzke, 1999). Future research should address where
and when these aspects interact with specific sites of
change, leading to chromosomal breakage (ciliates:
Meyer & Duharcourt, 1996; Yao, 1996), chromosomal
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rearrangements (e.g. Sunnucks et al., 1998), karyo-
type variation (Blackman, Spence & Normark, 2000),
and the production of duplicate genes (e.g. in bacteria:
Force, Lynch & Postlethwait, 1999; Lynch & Conery,
2000). There may be a cascade or temporal association
in the way genetic change is fixed through the evolu-
tion of a lineage and studies on this are already begin-
ning to emerge (e.g. Lerat et al., 1999). A proviso also
has to be made to the natural assumption that com-
plexity through epigenetic interactions gives rise to
significant adaptive changes over time. There are
many examples of point mutations effecting gross phe-
notypic changes (e.g. in mtDNA of C. elegans; Denver
et al., 2000).

The short generation time and potential for rapid
growth in many clonal populations are a key aspect of
their ability to exploit heterogeneous environments.
In the case of aphids, an asexual clonal population
derived from a founder has been described as a ‘thinly
spread single individual with many pieces’ (Janzen,
1977). In the phage studies described earlier, the long-
est experiments lasted 33 days and the number of evo-
lutionary generations was estimated as 1.0 x 10"-10°
phage/host populations 100 times a day (Bull et al.,
1997). The reproductive potential of asexual multicel-
lular clonal organisms such as aphids and nematodes
is also enormous. Aphids could theoretically generate
up to 7.6 x 10%® individuals per year from a single
founder in perfect conditions (Harrington, 1994). If
such r-type strategy was to be coupled with, for exam-
ple, an aphid’s ability for ‘telescoping of generations’
(Dixon, 1998) (involving a process whereby an adult
parthenogenetic female not only has daughter
embryos developing inside her, but these in turn have
their own progeny developing within them), then the
potential for adaptation is huge. This is because such
populations also have the capacity to become precon-
ditioned to external environmental changes, both by
maternal metabolic factors and in some situations,
directly by environmental influence through the
mother’s abdominal wall on the developing embryos,
allowing adaptive changes to take place very quickly.
Not all asexuals ascribe to this enormous reproductive
potential and, in their case, mutation-based models,
e.g. mutational meltdown within a finite number of
generations (less than 100 in water fleas, Daphnia
pulex (Leydig): Lynch et al., 1998), Red Queen and
other models supporting frequency-dependent factors
(Van Valen, 1973; Charlesworth, 1987; Hamilton,
Axelrod & Tanese, 1990) cannot be ignored in account-
ing for the extinction of many distinct clonal lines.

Clonal adaptation has been perceived, as a conse-
quence of its mode of reproduction, as being ‘locked’
within lines (Fisher, 1930). Clonal organisms in a het-
erogeneous environment can be envisaged as a set of
lineages each close to its ‘adaptive peak’. Each lineage,

locked into its specialized niche, is unable to shift hor-
izontally between peaks (Wright, 1988; Cruzan, 2001),
as described for clonal populations of the freshwater
snail, Potamopyrgus antipodarum (Gray) (Fox et al.,
1996; Jokela et al., 2003).

THE DYNAMIC CLONAL GENOME

However, this is not the whole story. ‘Multiple-gener-
ation complex lifecycles’ occur in several multicellular
taxa (Moran, 1994). One example is the bird cherry-
oat aphid Rhopalosiphum padi (L.). Its complex life-
cycle includes sexual phases, where apomictic parthe-
nogenetic lineages are intermittent with the produc-
tion of sexual forms (males and oviparae); asexuals
with continual parthenogenesis irrespective of envi-
ronmental cues; androcyclic with continual partheno-
genesis and the inclusion of rare males, and
intermediate forms where parthenogenesis is occa-
sionally interrupted by the production of a few sexual
females in response to specific cues (Tatchell & Parker,
1990). Irrespective of lifecycle, a number of behav-
iourally and physiologically distinct phenotypes can
be produced by the same clonal lineage. For example,
aphids can exhibit up to seven distinct phenotypes in
a single holocyclic lifecycle (see Dixon, 1998). These
clonal phenotypes often have very different physiology
and ecology in relation to one another, and can occupy
quite different niches over time.

Variation or plasticity, even in a single phenotype, is
a separate issue and has been described in highly
inbred lines of C. elegans for the traits of productivity
and longevity (Vassilieva & Lynch, 1999; Loxdale &
Lushai, 2003). Such variance has adaptive signifi-
cance when environments are changing. In the gall-
forming lettuce root aphid Pemphigus bursarius (L.),
behavioural modifications in facultative asexuals have
meant that clonal populations that would have nor-
mally been driven extinct persisted past expected eco-
logical dead-ends (Phillips, Bale & Tatchell, 1999).
Similarly, there are adaptive differences within indi-
viduals of artificial clones of red-spotted cherry
salmon Oncorhynchus masou macrostomus (Berg)
(Iguchi, Matsubara & Hakoyama, 2001). Intraclonal
variation is the basis of such phenomena and the
potential for somatic mutations to drive such variation
is well-described in plants (Gill et al., 1995; Kle-
kowski, 2003). However, what is lacking is the molec-
ular support. An example is the recent correlation of
rDNA intergenic space (IGS) size variants with major
life history traits in D. pulex, indicating rapid adapt-
ation in clonal lineages (Gorokhova et al., 2002).

All the examples above involve vertical propagation
with offspring produced in different generations. Hor-
izontal propagation can also occur when a single fert-
ilized egg cleaves into several embryos. Classic
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examples include mammalian ‘identical’ siblings such
as Armadillos, which have up to 12 offspring (Nowalk,
1991), and some parasitic hymenoptera, e.g. Copido-
soma floridanum (Ashmead) with several thousand
offspring (Grbic, Nagy & Strand, 1998). During devel-
opment, such embryos are under very similar meta-
bolic and environmental conditions; however, in the
case of the wasp, after birth, development can be chan-
nelled into either a normal larva or a defensive soldier
morph (Harvey, Corley & Strand, 2000; see Loxdale &
Lushai, 2003, for a photograph of these morphs).

Analysis of eukaryotic genome databases suggests
that duplicate genes arise at a high rate (0.01 per gene
per Myr) (Lynch & Conery, 2000). In time, most
become functionally silenced; however, the accumula-
tion of such duplications may act as barriers to inter-
specific gene flow and thus promote speciation. In
largely asexual lineages, a high level of karyotype
variation has been noted that surpasses intraspecific
sequence differences (Blackman, Spence & Normark,
2000). In some species, karyotype variation has been
correlated with host shifts. Thus the corn-leaf aphid
Rhopalosiphum maidis (Fitch) has karyotypic forms
specific to barley (2n = 10) and maize Zea mays L. (2n
usually = 8) (Brown & Blackman, 1988). Hence such
karyotypic variation could be an early stage in sym-
patric speciation.

Horizontal gene transfer between genomes would
also allow non-recombinant genomes to change, as
occurs in both prokaryotes and eukaryotes (Jain, Riv-
era & Lake, 1999; Jain et al., 2003). It appears that
universal ‘housekeeping’ genes are more likely to cross
species boundaries than informational genes govern-
ing processes such as transcription and translation
because the latter relate to large complex systems.
Sequence comparisons indicate that the transfers con-
sist of singular large-scale events that could have led
to the evolution of new taxa.

Some species have multiple genomes. For example,
fluorescent in situ hybridization (FISH) probes have
been used to trace the distribution of two divergent
sequences of the rDNA ITS2 in arbuscular mycor-
rhizal fungi (Kuhn, Hijiri & Sanders, 2001; Sanders,
2003). The molecular probe shows that the ITS2 copies
can occur alone in a proportion of nuclei whilst some
nuclei support both types, suggesting that several
independent genomes exist within individual asexual
lineages (with the potential for recombination
between the different nuclear genomic populations).
Such genomic variation within coenocytic hyphae
raises the possibility of intraclonal genome competi-
tion as the organism adapts to changing environ-
ments. Chimerism, the physical merging of two
separate clonal organisms, has been verified by phe-
notypic characters and randomly amplified polygenic
markers (RAPDs) in red algae, rhodophyta and ascid-

ian zooids (Ascidiacea, Tunicata) (Sommerfeldt &
Bishop, 1999; Santelices, 2001; Sommerfeldt, Bishop
& Wood, 2003). The evolutionary analysis of such com-
plex associations awaits further molecular analysis.

Part of the success of asexuals has been attributed
to the possible existence of general purpose genotypes
(‘GPGs’, Lynch, 1984). The ancient asexual ostracod
D. stevensoni (with an extensive geographical distri-
bution) was compared with asexual populations of
Heterocypris incongruens (Ramdohr), a cypridinid spe-
cies with mixed reproduction, and another ancient
asexual darwinulid species with a limited geographi-
cal and ecological distribution, Vestalenula molopoen-
sis (Martens & Rossetti) (Van Doninck et al., 2002).
Salt and temperature tolerances were greater in
D. stevensoni compared with both H. incongruens and
V. molopoensis and one interpretation of this is that
the D. stevensoni clonal population has a GPG giving
the ostracods a selective advantage in a range of envi-
ronments. Such entities are thought able to adopt sev-
eral niches in a heterogeneous environment due to
their wider tolerances to change.

CLONAL LINKAGE

In species with multiple lifecycles, there are opportu-
nities for individuals within clonal lineages to benefit
from alternative sexual lifecycle gambits, emphasizing
that asexual lineages are not necessarily stuck in evo-
lutionary ‘dead ends’. As molecular markers continue
to be applied to population genetic studies, possible
linkage between asexual and sexual lineages has been
suggested in a growing number of species — aphids of
the genus Trama (Normark, 1999) and Sitobion (Del-
motte et al., 2001), water fleas, Daphnia spp. (Crease,
Stanton & Hebert, 1989) and non-marine ostracods
(Schon et al., 2000) (see also Simon et al., 2003). Such
linkage may involve interspecies hybridization, as
suggested between the predominantly asexual grain
aphid Sitobion avenae (F.) and the holocyclic (with sex-
ual phase) sister species, the blackberry-grain aphid
S. fragariae (Walker). This appears to result in habitat
specialization in the largely clonal summer popula-
tions (Sunnucks et al., 1997; for ostracod examples,
see Havel, Hebert & Delorme, 1990; Chaplin, Havel &
Hebert, 1997).

To describe the adaptive clone in this synthesis, the
focus has been on pure asexual reproduction and
apomictic parthenogenesis. Yet the different types of
clonal systems are in themselves evolutionary strate-
gies that promote genetic variability (Hughes, 1989).
‘Gynogens’ is a process whereby clonal egg activation
is dependent on sperm produced by ancestral or
related species. This is a remarkably diverse system,
for example, in salamanders of the genus Ambystoma
(Hedges et al., 1992). Here mtDNA studies have
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revealed that in all-female salamanders incorporating
the nuclear genome of several sympatric bisexual spe-
cies, hybrids are produced with unusual ploidy. The
result is that maternal inheritance has become uncou-
pled from the nuclear genome, to the extent that in
certain species of this complex the prevalent gynoge-
netic maternal lineage derives from an ancient line for
which there is no contemporary equivalent nuclear
bisexual species. ‘Hybridogenesis’ is maintained by
heterospecific fertilization, where an invariant hap-
loid maternal genome is combined with a recombinant
paternal genome. Some vertebrates, e.g. Mexican
poeciliid fish (Quattro, Avise & Vrijenhoek, 1992), and
invertebrates, e.g. stick insects of the genus Bacillus
(Tinti & Scali, 1996; see Pertoldi, Scali & Loeschcke,
2001; Scali et al., 2003), demonstrate this phenome-
non and certainly the fish appear to derive from old
maternal lineages (~0.1 Myr). All these modes impart
genetic variation involving a basic clonal component.

CLONAL ADAPTATION IN THE FIELD

In peach-potato aphids Myzus persicae (Sulzer) col-
lected from natural populations, adaptation to envi-
ronmental selective pressure is well-documented in
the form of resistance to pesticides. In the highly
insecticide-resistant strains of this insect (R, and Rj),
tolerance to organophosphates (OPs) and carbamates
is conferred by overproduction of a carboxylesterase
enzyme following amplification of the E4 and FE4
genes, a factor associated with a translocation event
between autosomes 1 and 3 in the case of E4 (Black-
man et al., 1995). In the absence of the pesticide the
phenotype may revert to a lower esterase expression
due to loss of methylation, yet the number of E4 genes
involved is apparently not affected (Hick, Field &
Devonshire, 1996; Field et al., 1999; Field & Black-
man, 2003). In these strains resistance to OPs and car-
bamates is also conferred by altering enzyme catalytic
site conformation (MACE, modified acetyl cholinest-
erase) or other structurally important proteins such as
the domain IIS6 transmembrane in the case of the
insect para-type sodium channel gene responsible for
knockdown (kdr) resistance to pyrethroids (Devon-
shire et al., 1998; Foster, Denholm & Devonshire,
2000). In such cross-resistant forms in asexual spe-
cies, the multiple resistance is often in strong linkage
disequilibrium (Hick et al., 1996; Devonshire et al.,
1998), perhaps as a consequence of ‘selective sweeps’.
The clonal genotype has not altered (except for epige-
netic influence in the case of E4/FE4; Field & Black-
man, 2003), yet the change brought about by a
selective environment benefits the organism in the
short term in the face of continued pesticide selective
pressure (Foster et al., 2000). These changes have
been noted to have fitness costs, notably in sensitivity

to alarm pheromones, overwintering survival and
migration, which makes these genotypes less success-
ful over the course of time (Foster et al., 2000, 2002)
(Table 1b).

Several other examples of fitness effects are evident
from molecular studies of aphids in the field or green-
house. Use of molecular markers has revealed high
intensity of selection driving adaptation in new habi-
tats or hosts. Examples include Sitobion aphids mov-
ing between native grasses and cereals (Sunnucks
et al., 1997; Wilson, Sunnucks & Hales, 1999), and the
cotton-melon aphid Aphis gossypii Glover moving
between cucurbit and non-cucurbit hosts (Vanler-
berghe-Masutti & Chavigny, 1998; Fuller et al., 1999;
see Wilson, Sunnucks & Hales, 2003, for an overview).
Such exploitation of new resources may initially
be successful because exploitation of a novel
resource reduces intraspecies competition or clonal
interference.

Lastly, the combination of genetic changes, prodi-
gious growth rate and rapid developmental responses
to environmental cues along with geographical dis-
placement to new habitats are probably the main rea-
sons for the successful establishment of several well-
reported clonal pests, such as the spotted alfalfa aphid
Therioaphis maculata (Buckton) in North America.
Here a large number of novel adapted clones, includ-
ing insecticide-resistant strains, appear to have
evolved within a few generations from a small intro-
duced asexual founder population. It has been esti-
mated that from 1.7 x 10" aphids in one Californian
valley, a rare variant would have evolved 170 000
times (Dickson, 1962). The transition from clonal vari-
ation (intraclonal variants) to the establishment of
interclonal variation is a population phenomenon
involving persistent selection. Once established, such
systems are susceptible to environmental change
(Charlesworth, Morgan & Charlesworth, 1993;
Howard & Lively, 1994; Waxman & Peck, 1999). Rare
genotypes may tend to survive when selective sweeps
strike the majority (Vrijenhoek, 1998) and may help to
maintain population dynamics (Sasaki, Hamilton &
Ubeda, 2002). Molecular studies are already revealing
rare genotypes that appear to be maintained within
asexual populations (Lushai, Markovitch & Loxdale,
2002).

CONCLUSIONS

Theoretical biologists continue to stress the longevity,
and thus high adaptedness of lineages, although
extinction is inevitable for all lifecycle types (Raup &
Jablonski, 1993). Intense discussion of the persistence
of sex tends to override further debate on genetic
variability and adaptation in asexual populations
(Falush, 1999; but see Fagerstrom, Briscoe & Sun-
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nucks, 1998). Furthermore, variation in asexual
organisms in agricultural, horticulture, forestry and
medicinal industries have very real applied signifi-
cance. Artificial cloning is a new and expanding field
that will also benefit from a better understanding of
the dynamic nature of clonal lineages. These points
are exemplified by recent developments in cloned
mammals where such lineages are corrupted due to
epigenetic-related genomic malfunctions (De Sousa
et al., 2001; Humpherys et al., 2001; Kang et al., 2001;
Taeyoung et al., 2002). Much still needs to be under-
stood about the basic mechanisms of change in clonal
genomes, along with a continual need to upgrade our
preconceptions.
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