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Genetic structure of fragmented November moth
(Lepidoptera: Geometridae) populations in farmland

IAN R. WYNNE* HUGH D. LOXDALE, CLIFF P. BROOKES and IAN P. WOIWOD
Plant and Invertebrate Ecology Division, Rothamsted Research, Harpenden, Herts., AL5 2JQ, UK
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Habitats are now becoming increasingly fragmented throughout the world due to intense cultivation. As a conse-
quence, populations of some animals with low mobility have become isolated, thus increasing the risk of inbreeding
and local extinction. In Britain, weakly flying geometric moths of the genus Epirrita are a good model species with
which to test the genetic effects of habitat fragmentation on insect populations. Genetic variation within and
between populations of two Epirrita species captured using a network of light traps at two spatial scales (local and
national) was assessed using allozyme electrophoresis, with particular reference to the local scale (the 330-ha arable
farm estate at Rothamsted, Hertfordshire, in southern Britain). Populations sampled widely in England and Wales
displayed low (but statistically significant) levels of genetic differentiation for both species (F,; = 0.0051-0.0114 and
0.0226 for E. dilutata and E. christyi, respectively). However, analysis of large samples of E. dilutata from four small
woods at Rothamsted revealed low (F,, =0.0046) but significant differentiation, indicating that gene flow was
restricted, even at this very small scale. It was concluded that small intervening patches of farmland (often a few
fields width) were enough to prevent genetic homogeneity. The close similarity between more distant Epirrita pop-
ulations was considered to be a result of historical, rather than recurrent gene flow, as genetic equilibrium between
drift and gene flow is unlikely over such scales. © 2003 The Linnean Society of London. Biological Journal of the
Linnean Society, 2003, 78, 467-477.

ADDITIONAL KEYWORDS: allozymes — conservation genetics — Epirrita dilutata — Epirrita christyi —
molecular markers — habitat fragmentation — population genetic structure.

INTRODUCTION

Many insect species are declining in industrialized
countries (Heath, Pollard & Thomas, 1984; Falk, 1994;
van Swaay & Warren, 1999; Asher et al., 2001). The
pressures of modern agriculture and increased urban-
ization has led to a decrease in the total area of many
natural and semi-natural habitats, through destruc-
tion or changes in management regimes, and what
remains is often highly fragmented (e.g. Kirby &
Thomas, 1994). This fragmentation may lead to isola-
tion of the populations resident within these frag-
ments, particularly if a species has poor powers of
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dispersal. Those species that are prone to regular or
intermittent local extinction and rely on recoloniza-
tion to persist within a region (i.e. have a metapopu-
lation structure) will decline if habitat fragmentation
prevents dispersal between patches (Hanski,
Kuussaari & Nieminen, 1994). Indeed this appears to
be the pattern of decline in many well studied butter-
fly species in Britain (Thomas, Thomas & Warren
1992). Where gene flow is restricted, habitat fragmen-
tation will also affect the population genetic structure
of a species (Saccheri et al., 1998). In the absence of
gene flow (and/or stabilizing selection), natural selec-
tion will tend to favour adaptation to local conditions
and populations will differentiate due to genetic drift.
If populations are small (and thus the effect of genetic
drift great) both factors may lead to the loss of genetic
variation within populations. In the short term selec-
tion may increase fitness, but in the long term it may
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468 I.R. WYNNE ET AL.

reduce the evolutionary potential of the population,
leaving it susceptible to environmental change or
reducing its potential for expansion. For instance,
there is evidence that complete isolation of some
British butterfly populations has led to a reduction in
dispersal ability (Dempster, 1991): as emigrants
rarely encounter or colonize suitable habitats and
immigrants never enter the population, selection
favours less mobile individuals.

Recent studies at Rothamsted (Hertfordshire, UK)
on macrolepidoptera diversity and spatial population
distribution at the ’farmland scale’ have indicated
that, for many species, strong population density gra-
dients can occur over very short distances, often at the
boundaries of different land-use types (Woiwod &
Thomas, 1993). Not surprisingly, populations of tree
feeding species such as Epirrita spp. have, by far, their
highest densities in the fragments of woodland distrib-
uted on the farm and are very rare in open arable land
(Fig. 1). Epirrita spp. may therefore be good represen-
tatives of a wide range of taxa occupying fragments of
habitat, which formally occurred in large continuous
areas.

The aim of the present study was to determine
whether fragmentation of woodland within the agro-
ecosytem has led to population genetic substructuring
of Epirrita at the local scale, whilst at the same time,
assessing population genetic structure at the national
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scale. The Rothamsted Light Trap network (Woiwod &
Harrington, 1994) was employed to catch insects, both
at a small spatial scale on the Rothamsted estate
(330 ha), and at the national scale (England and
Wales). Thereafter, genetic variability of individual
moths was assessed using electrophoretic markers
(Loxdale & Lushai, 1998) from which estimates of pop-
ulation genetic structure be calculated, as has been
done for many insect species (cf. Daly, 1989; Loxdale,
1994; Loxdale & Lushai, 1999, 2001; Mallet, 2001). It
was hoped that collection of this type of data, by pro-
viding further insights into how insect population
structure of species of low vagility is influenced by
habitat fragmentation, will prove useful in the conser-
vation of species that are currently widely distributed,
as well as those that are endangered.

MATERIAL AND METHODS

STUDY INSECTS

The November moth Epirrita dilutata Denis &
Schiffermiiller and its congener the pale November
moth E. christyi Allen (Lepidoptera: Geometridae) are
two closely related moths that are single brooded and
widely distributed in the British Isles (Skinner, 1984),
although E. christyi occurs more locally. The larvae of
both species are polyphagous, feeding on a wide range

Figure 1. Density distribution of Epirrita dilutata in 1991 on the Rothamsted estate (Log;, number of individuals +1)
based on 26 light traps (indicated by white dots). The positions of the four woodland sites, where population densities were
greatest, are outlined in white (WHS = White Horse Spinney). Black lines indicate arable and grassland field boundaries.

The area shown measures approximately 1.4 x 1.9 km.

© 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78, 467—-477
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of trees and shrubs (e.g. Betula, Quercus, Fagus, Cra-
taegus, Ulmus and Corylus). The overwintering eggs
hatch in April and the larvae feed until June when
they pupate in the soil (Harrison, 1920). The weakly
flying adults emerge in autumn, from late September
to mid November and are readily captured using stan-
dard Rothamsted light traps with 200 W tungsten
bulbs (Williams, 1948), representing a significant pro-
portion of the catch at these particular flight times.

INSECT COLLECTIONS

Samples of E. dilutata were obtained between 1990
and 1992 from four woodland sites at Rothamsted
Experimental Station (RES) using standard Rotham-
sted light traps (Williams, 1948). These sites were:
White Horse Spinney (WHS); Knott Wood (KW);
Manor Wood (MW); and Geescroft Wilderness (GW)
(Fig. 1). At three sites (KW, MW and GW), two light
traps were operated, thus providing replicate samples
for comparison. Light traps were operated daily
throughout the flight period. Samples of E. christyi
were available from only two RES sites (KW and MW).
A further 19 traps distributed on the estate were also
in operation, but sample sizes for both species were too
low to provide meaningful data for genetic analysis.

To investigate large scale geographical variation,
samples of E. dilutata were also obtained from
Flitwick (Bedfordshire), Colt Park (North Yorkshire)
and Tregaron (Dyfed) in 1991, and from Potton Wood
(Bedfordshire) in 1992 and Oxford (Oxfordshire) in
1993. Samples of E.christyi were obtained from
Tregaron in 1991, Potton Wood in 1992 and 1993,
White Parish Common and Bently Wood (both in
Wiltshire) in 1993. Samples from Colt Park and
Tregaron were collected using Rothamsted light traps
of the Rothamsted Insect Survey national light-trap
network (Woiwod & Harrington, 1994). Samples from
other sites were collected using either mercury vapour
light alone or in combination with collection by net.
The Epirrita collection sites are shown in Figure 2.
Moths required for electrophoretic work were stored
at —80 °C.

ELECTROPHORESIS

The wings and genitalia of the moths were removed
and kept for later identification. Moths were then
homogenized and stored in liquid nitrogen as multiple
7-uL aliquots following the methods described by
Wynne & Brookes (1992). Electrophoresis was under-
taken using the Helena cellulose acetate system (see
Wynne, Loxdale HD & Brookes, 1992).

A total of 17 enzymes (representing approximately
21 putative loci) were screened (at least 40 individuals
per locus per species) for polymorphic and discrimina-
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Figure 2. Map of England and Wales showing sampling
sites for Epirrita spp. Colt Park (COLT); Tregaron (TREG);
Flitwick Wood (FLIT); Potton Wood (POT); Rothamsted
Experimental Station (RES); Oxford (OXF); White Parish
Common (WPC); Bently Wood (BENT). RES sites were:
White Horse Spinney (WHS); Knott Wood (KW); Manor
Wood (MW); and Geescroft Wilderness (GW).

tory enzymes suitable for population and taxonomic
use, respectively. These were: adenylate kinase (AK;
EC 2.7.4.3), fructose-1,6-diphosphate (FDP;
EC 3.1.3.11), glutamate dehydrogenase (GDH;
EC 1.4.1.3), glutamate-oxaloacetate transaminase
(GOT; EC 2.6.1.1), glucose-6-phosphate dehydroge-
nase (G6PD; EC 1.1.1.49), glycerol-3-phosphate dehy-
drogenase (oGPD; EC 1.1.1.8), hexokinase (HK; EC
2.7.1.1), isocitrate dehydrogenase (IDH; EC 1.1.1.42),
lactate dehydrogenase (LDH; EC 1.1.1.27), malate
dehydrogenase (MDH; EC 1.1.1.37), malic enzyme
(ME; EC 1.1.1.40), mannose-phosphate isomerase
(MPI; EC 5.3.1.8), peptidases (PEP-A and PEP-D,
using substrates leucyl-glycine and phenyl-alanine,
respectively) (PEP; EC 3.4.11), phosphoglucose
isomerase (PGI; EC 5.3.1.9), 6-phosphogluconate

© 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78, 467-477
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dehydrogenase (6PGD; EC 1.1.1.44) and phosphoglu-
comutase (PGM; EC 2.7.5.1). The running buffers used
were 50 mM Tris-citrate, pH 7.8 (for 6PGD), 100 mM
Tris-citrate, pH 8.2 (for AK, FDP, GDH, G6PDH,
oGPD, HK, IDH, LDH, MDH, ME and MPI) and
25 mM Tris-glycine, pH 8.5 (for GOT, PEP-A, PEP-D,
PGI and PGM). For most enzymes, the duration of the
run was 20 min, the exceptions being G6PDH (30 min)
and 6PGD (40 min). Staining recipes were used
directly or modified from Richardson, Baverstock &
Adams (1986).

Of the enzymes screened, only GOT (Got-f), G6PD,
PGI and PGM displayed polymorphism of a clear
Mendelian basis. The remainder were either mono-
morphic (aGPD, HK, MDH, PEP-A and PEP-D), dis-
played polymorphism that proved difficult to interpret
(IDH, ME, MPI and 6PGD), were poorly resolved or
stained weakly (AK, FDP, GDH, Got¢-s and LDH).
After the initial screening, all samples were tested for
the variable enzymes (GOT, PGI, PGM and G6PD) and
a limited number for the monomorphic enzymes
(0GPD, HK, PEP-A, PEP-D and MDH).

The computer program BIOSYS-1 (Swofford &
Selander, 1981) was used to calculate allele and gen-
otype frequencies and measure genetic distance (Nei,
1978). Allele frequency variance measures (Wright,
1951; Weir & Cockerham, 1984), and deviations from
Hardy—Weinberg (H-W) equilibrium were analysed
using the program GENEPOP (version 3.2a; Raymond
& Rousset, 1995).

RESULTS

BAND INTERPRETATION

Alleles for each polymorphic locus were designated
alphabetically in order of increasing mobility from the
cathode. An additional five alleles were noted, which
had migration positions too close to other alleles to be
scored consistently (two alleles close to Pgiy, one close
to Pgiy, and two close to Pgm,.) and subsequently were
binned with the nearest named allele.

GENETIC VARIATION IN EPIRRITA SPP.

In E. dilutata, 25% (3/12) and 33% (4/12) of the scor-
able loci were polymorphic at the 95% and 99% levels,
respectively. Corresponding values for E. christyi were
25% (3/12) and 25% (3/12). Estimates of mean het-
erozygosity per locus were 0.134 for E. dilutata and
0.063 for E. christyi. The only locus which could be
used to distinguish the two species with any degree of
certainty was G6pd. In E. christyi, G6pd was fixed for
allele G6pd,, whereas E. dilutata was almost fixed for
allele G6pd,, (with G6pd, and G6pd, occurring at low
frequency). The absence of G6pd, and G6pd, in
E. christyi and the low frequency of G6pd, in

E. dilutata meant that the chance of misidentification
was about 0.6% using this enzyme alone. No evidence
for the existence of linkage disequilibrium was found
between any two of the three polymorphic loci (<95%
criterion), indicating the independence of these loci.
The genetic distance between the two species, based
on four polymorphic and eight monomorphic loci,
ranged from 0.144 to 0.171 with a mean (£SD) of 0.156
(£6.3 x 107®).

VARIATION IN E. DILUTATA

Data collected separately for the sexes (females com-
prised <10% of any sample) were combined as no het-
erogeneity was detected between them. For those sites
with two sample sets (Knott Wood, Manor Wood and
Geescroft Wilderness) analysis revealed no heteroge-
neity and the data were combined. Allele frequency
data calculated for the samples from four woodland
sites at Rothamsted and the five other British
populations are presented in Tablel. In 68
(population X locus) tests, six showed significant devi-
ation from H-W expectations (P < 0.05). However,
over all loci, only one population (Knott Wood 1992)
deviated significantly (P = 0.039), indicating little
deviation from random mating within populations.

VARIATION AMONG E. DILUTATA POPULATIONS
AT ROTHAMSTED

Amongst the four sites at Rothamsted, allele frequen-
cies at the three polymorphic loci (95% criterion) were
found to be broadly similar. Estimates of the level of
genetic subdivision are consequently low (F,; < 0.008).
However significant heterogeneity was found among
the populations in each of the three years studied
(Table 2). Pairwise comparisons between populations
revealed that most of the heterogeneity was due to dif-
ferences between Geescroft Wilderness and the other
three sites (Table 3). No temporal heterogeneity in
allele frequency was found in the four populations at
Rothamsted (Table 4), either for individual or over all
loci (Fig. 3).

LARGE SCALE GEOGRAPHICAL VARIATION
IN E. DILUTATA

The allele frequencies for Got-f, Pgi and Pgm from
sites sampled across Britain were similar to those
sampled locally at Rothamsted. However tests
revealed significant heterogeneity in allele fre-
quencies at all three loci (P <0.05) and overall
(P << 0.0001). Estimates of F,, among the six sites
(Flitwick Wood, Potton Wood, Colt Park, Tregaron,
Oxford and Rothamsted) ranged from 0.0051 to 0.0114
depending on which population was used to represent

© 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78, 467—-477
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472 1. R. WYNNE ET AL.

Table 2. Estimates of the standardized gene frequency variance (F,,) and exact tests for heterogeneity (P), among four

Epirrita dilutata populations at Rothamsted, 1990-92

1990 1991 1992
Locus F, P F, P F, P
Got-f 0.0009 0.2186 0.0061 0.0005 0.0031 0.0072
Pgi 0.0029 0.1602 0.0071 <<0.0001 0.0045 0.0105
Pgm 0.0024 0.0261 0.0092 0.0010 0.0065 0.0102
All 0.0020 0.0296 0.0072 <<0.0001 0.0045 0.0001

Table 3. Pairwise locus x locus comparisons of four Rothamsted populations of Epirrita dilutata in years 1990-92. Only
comparisons in which at least one locus displayed significant heterogeneity (P < 0.05) are shown

Got-f Pgi Pgm All
1990 GW WHS 0.4953 0.0244 0.0002 0.0003
GW KW 0.1783 0.2039 0.0125 0.0174
GW MW 0.0777 0.0695 0.0467 0.0110
1991 GW WHS 0.0637 <0.0001 1.0000 0.0003
GW KW <<0.0001 <0.0001 <0.0001 <<0.0001
GW MW 0.0053 0.0444 0.0645 0.0011
KW MW 0.0233 0.8769 0.2199 0.0945
KW WHS 0.7040 0.0001 0.0354 0.0003
1992 GW WHS 0.0095 0.0078 0.4455 0.0021
GW KW 0.0350 0.0109 0.0005 <0.0001
MW WHS 0.0131 0.4422 1.0000 0.1124
a C
55 70 85
50 65 80
o)
g 451 60 75
g
T8
40 A 55 70
35 50 65
30 45 60
o 91 e % o1 % o 91 e

Year

Figure 3. Frequencies of the most common alleles of three enzyme loci (a: Got-f,; b: Pgi.; ¢: Pgm,) for Epirrita dilutata at
two woods at Rothamsted (Knott Wood, triangle; and Geescroft Wilderness, circle) separated by 1.5 km. Error bars are
95% confidence intervals.

© 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78, 467-477
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Table 4. Exact tests for heterogeneity of gene frequencies
among years (1990, 1991 and 1992) in four Epirrita dilutata
populations at Rothamsted (White Horse Spinney (WHS),
Knott Wood (KW), Manor Wood (MW) and Geescroft
Wilderness (GW))

Locus WHS KW MW GW
Got-f 0.49583 0.11009 0.21501 0.10222
Pgi 0.34085 0.05886 0.70280 0.83170
Pgm 0.08354 0.80972 0.67287 0.16028
All 0.2024 0.1051 0.5998 0.1979

Rothamsted (1991 data), indicating little more differ-
entiation at this scale. (Values of F, for the individual
loci ranged from 0.0035 to 0.0119 for Got-f, 0.0096—
0.0100 for Pgi and 0.0013-0.0135 for Pgm).

VARIATION IN E. CHRISTYI

For those sites with two sample sets (Knott Wood and
Manor Wood at Rothamsted) tests indicated no heter-
ogeneity and the data were combined. Of the 30
(population x locus) tests for deviation from H-W
expectations only one deviated significantly.

Allele frequencies for the three polymorphic loci,
Got-f, Pgi and Pgm, were found to be broadly similar
for all populations of E. christyi sampled (Table 5).
Tests for heterogeneity in allele frequency revealed no
significant differences, at any locus, between the two
populations at Rothamsted (Knott Wood and Manor
Wood) in 1990 and 1991. However significant hetero-
geneity was found among populations sampled across
Britain at all three loci (P <0.01) and overall
(P << 0.0001) when the data for Knott Wood (1990)
were used to represent Rothamsted and the data for
1992 used to represent Potton Wood. Among British
populations of E. christyi F,, was 0.0226 (values for
individual loci were 0.0149 for Got-f, 0.0274 for Pgi
and 0.0378 for Pgm).

For the three populations sampled in more than one
year temporal heterogeneity was detected at the Pgi
and Pgm loci in Knott Wood and Potton Wood, respec-
tively. However, overall the results indicate little tem-
poral variation over the period studied.

DISCUSSION

SPECIES DIFFERENCES

The low genetic distance (0.156 +0.006) found
between E. dilutata and E. christyi accords with the
morphological similarity between the species, and is
an indication of their close relationship. Compared
with other Lepidoptera, this value is lower than the

genetic distance among species of Speyeria spp.
(0.182) (Brittnacher, Sims & Ayala, 1978) and Helio-
this spp. (0.340) (Daly & Gregg, 1985); (0.870) (Sluss
et al., 1978), but higher than that found between two
Xestia species (0.104) (Hudson & Lefkovitch, 1982).

The taxonomy of the genus Epirrita has, in the past,
proved difficult due to the morphological variability
found within each species. Epirrita christyi was origi-
nally described as a form of E. dilutata Prout but even
after it was assigned specific status (Allen, 1906),
some authorities (e.g. Harrison, 1920) argued that
E. dilutata and E. christyi were not true ’Linnaean’
species. In the present study, no fixed allele differences
were found for the 12 enzyme loci that could be
resolved. However, marked allele frequency differ-
ences between the species were consistent across dif-
ferent sites (Rothamsted, Potton Wood and Tregaron)
where both species were present. The largest differ-
ence occurred with G6pd, which was fixed for allele
G6pd, in E. christyi and nearly fixed for allele G6pd,,
in E. dilutata (with G6pd, and G6pd, occurring at low
frequency). This difference together with the absence,
in E. christyi, of several alleles (at Go¢-f and Pgi) found
in E. dilutata, strongly suggest that interspecies gene
flow, from E. dilutata to E. christyi, is not occurring. It
is possible the reverse occasionally occurs (i.e. gene
flow from E. christyi to E. dilutata) because E. christyi
does not possess any alleles additional to those found
in E. dilutata. However this must be rare because of
the strong frequency differences at G6pd. Overall
therefore, the electrophoretic evidence strongly sup-
ports the specific status of the two species.

The lower heterozygosity and fewer alleles per locus
in E. christyi accord with a lower average population
size compared with E. dilutata (indicating that the
former may have gone through a population bottle-
neck either during or since speciation). A preliminary
investigation has shown that E.autumnata
(Borkhausen) (which has fixed allele differences at
two PEP loci with respect to E. dilutata/christyi)
shares some of the alleles found in E. dilutata (Got-f,
and Pgi.) that are absent from E. christyi (LR. Wynne,
unpubl. data). If identical by decent, then these alleles
would appear to have been lost by E. christyi during or
after speciation with E. dilutata.

GENETIC STRUCTURE OF E. DILUTATA AND
E. CHRISTYI POPULATIONS

Allele frequencies for the variable loci (£95% crite-
rion), Got-f, Pgi and Pgm, were similar in the four
woodland populations of E. dilutata sampled on the
Rothamsted farm estate. Estimates of F,, were low
(Table 3), indicating low levels of differentiation
between populations. However, although frequency
differences were slight, significant heterogeneity was
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Table 5. Allele frequencies at three polymorphic and one discriminatory enzyme loci in British populations of Epirrita
christyi: Knott Wood (KW); Manor Wood (MW); Potton Wood (POT); Tregaron (TREG); White Parish Common (WPC); Bently
Wood (BENT). Also provided are observed (Obs.) and expected (Exp.) heterozygosity (Het.) frequencies. (* indicates a
significant deviation from Hardy—Weinberg equilibrium at P < 0.05). Allelic nomenclature is the same as for E. dilutata

KW KW KW MW MW POT POT
Locus 1990 1991 1992 1990 1991 1992 1993 TREG WPC BENT
Got-f
N) 326 535 481 42 33 144 50 62 22 33
a
b 0.695 0.685 0.678 0.726 0.652 0.781 0.830 0.806 0.659 0.803
c 0.305 0.315 0.322 0.274 0.348 0.219 0.170 0.194 0.341 0.197
d
Het:
Obs 0.439 0.398 0.412 0.452 0.576 0.368 0.260 0.387 0.409 0.333
Exp 0.424 0.432 0.437 0.398 0.454 0.342 0.282 0.312 0.449 0.316
Pgi
N) 350 536 486 42 31 144 59 62 23 33
a
b
c
d 0.913 0.893 0.876 0.833 0.871 0.802 0.847 0.871 0.891 0.909
e 0.087 0.107 0.124 0.155 0.129 0.198 0.153 0.129 0.109 0.091
f 0.012
Het:
Obs 0.151 0.192 0.208 0.333 0.194 0.313 0.271 0.161 0.217 0.121
Exp 0.159 0.192 0.218 0.281 0.225 0.317 0.259 0.225 0.194 0.165
Pgm
(N) 352 537 486 41 33 144 59 62 23 33
a 0.014 0.012 0.006 0.024 0.030 0.007 0.017 0.016 0.022 0.045
b 0.911 0.914 0.925 0.951 0.955 0.993 0.949 0.984 0.891 0.848
c 0.075 0.074 0.069 0.024 0.015 0.034 0.087 0.106
Het:
Obs 0.165 0.151 0.142 0.098 0.091 0.014 0.068 0.032 0.217 0.182*
Exp 0.165 0.158 0.140 0.094 0.088 0.014 0.098 0.032 0.198 0.267
Gé6pd
(N) 341 491 413 42 33 140 56 60 23 31
a 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b
¢
Het:
Obs 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Exp 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

found among the four sites indicating that the total
population at Rothamsted is subdivided. For all three
years, most of the heterogeneity observed could be
attributed to the differences between Geescroft
Wilderness (GW) and the other three sites. Very few
significant differences occurred between White Horse
Spinney (WHS), Knott Wood (KW) and Manor Wood
(MW). WHS and KW are connected by a hedgerow and
a well-wooded disused railway line, which may func-
tion as ‘corridors’ (as well as breeding sites) by which
individuals may be exchanged. MW is separated from

KW by only 300 m and historically (before the 1930s)
these two woods were continuous (Anon, 1946; Salter
& Tinsley, 1993). However, GW is separated from MW
(the nearest wood to GW) by some 700 m with no suit-
able corridors between them. The higher level of dif-
ferentiation between the more isolated population at
GW and the other three sites may therefore reflect a
restriction of gene flow. Only two sites at Rothamsted
provided enough individuals to examine population
structure of E. christyi at the local level (KW and MW)
and no heterogeneity was detected between them.
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Although significant allele frequency heterogeneity
was observed among and between geographically dis-
tant populations, the level of differentiation was low in
both E. dilutata and E. christyi. Estimates of F,, were
low in both species, although greater for E. christyi
(0.0226) than for E. dilutata (0.0051-0.0114), indicat-
ing little geographical substructure. F-statistics have
been used for many species to assess the geographical
structure of populations and estimate the level of gene
flow between them (e.g. Pashley, Johnson & Sparks,
1985; Daly, 1989). Species of Lepidoptera, believed to
be highly mobile, for which F,, has been estimated
include Plutella xylostella (L.) (0.028-0.038) (Caprio &
Tabashnik, 1992), Heliothis armigera (Hiibner)
(0.023) (Daly & Gregg, 1985), Heliothis virescens (F.)
(0.002) (Korman et al., 1993), Anticarsia gemmatalis
(Hiibner) (0.021) and Pieris rapae (L.) (0.014) (Pashley
et al., 1985). Fewer F,, estimates are available for
Lepidoptera species where lower levels of gene flow
are inferred, but include Euphydryas editha (Boisdu-
val) (0.118) (Pashley et al., 1985), Euphydryas gillettii
(Barnes) (0.325) (Debinski, 1994), Parnassius mnemo-
syne (L.) (0.135) (Napolitano & Descimon, 1994) and
Operophtera brumata (L.) (0.171) (Van San & Sula,
1993).

Due to the sensitivity of F; to the number of popu-
lations sampled, sample size and heterozygote fre-
quencies, Weir & Cockerham (1984) point out that
comparisons between species should be treated with
caution. Daly (1989) suggests that while the levels of
mobility (Nm) derived from F; can be crudely catego-
rized (as low, medium and high rates of gene flow), the
relative rankings within each category may not be
very meaningful. Interestingly, the estimates of F, for
E. dilutata and E. christyi are more comparable to
species which exhibit high, rather than low, rates of
gene flow. The population structure is not panmictic,
however, as it has already here been demonstrated
that population substructuring can even occur at the
local level.

One of the main problems in studies of population
genetic structure is the uncertainty concerning the
relative contributions of selection, drift and mutation
to allelic variation. One view is that the observed poly-
morphisms represent the equilibrium distribution of
selectively neutral or slightly deleterious alleles main-
tained by genetic drift and mutation (e.g. Kimura &
Crow, 1964; Kimura, 1968; Nei & Graur, 1984).
Another view is that in a large proportion of cases the
polymorphism is under the influence of some form of
balancing selection (e.g. Ayala et al., 1972). Slatkin
(1987) points out that while genetic drift affects all loci
in the same way, natural selection does not. Thus the
fact that our estimates of F,, for each of the polymor-
phic loci (£95% criterion) are similar in both species
means that they at least consistent with neutrality.

Another constraint of using F-statistics as an indi-
rect measure of gene flow is the assumption that the
populations under study are in equilibrium with
respect to gene flow and genetic drift. For many
populations this may not be the case (Slatkin, 1987;
Harrison & Taylor, 1997). Where gene flow is
restricted or absent between populations occupying
isolated habitat patches that were formally contigu-
ous, allele frequencies may still remain similar, so long
as the long-term effective population size is large to
prevent substantial genetic drift (Woiwod & Wynne,
1994). Because equilibrium is reached most quickly
when population size is small and migration rate high,
F,, amongst local populations will approach equilib-
rium faster than among those that are geographically
distant. In such circumstances estimates of F; pertain
more to historical patterns of gene flow than that
occurring currently between the fragmented popula-
tions. The low values of F,; found among geographi-
cally distant populations of E. dilutata may therefore
reflect the historical connectivity of deciduous wood-
land in the past, rather than recurrent gene flow. The
pattern of variation may even reflect that established
during the postglacial range expansion. As these spe-
cies only have one generation a year, the number of
generations since the recolonization of Northern
Europe is small (around 10 000). Furthermore, popu-
lations occupying even small patches of woodland can
be large (>300 ha™), as indicated by a mark-release—
recapture experiment (Wynne, 1997) and long-term
monitoring by the Rothamsted Insect Survey (Taylor,
Kempton & Woiwod, 1976). The level of differentia-
tion, due to genetic drift, is therefore likely to be low
even if gene flow is absent between contemporary
populations. If this is the case, equilibrium between
gene flow and genetic drift will not have been reached
between geographically distant populations of
E. dilutata and E. christyi. Indeed, populations of
many insect species in northern Europe (perhaps the
majority) may not be in equilibrium, particularly
where fragmentation events, due to human activity,
are recent. This possibility must be taken into account
when genetic markers are used to assess gene flow
between populations of conservation interest. If the
populations have not had sufficient time since isola-
tion, estimates of Nm based on F,, will always over
estimate gene flow and under estimate the degree to
which such species are vulnerable to local and/or
regional extinction.
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