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ABSTRACT 

Pietravalle, S., Shaw, M. W., Parker, S. R., and van den Bosch, F. 2003. 
Modeling of relationships between weather and Septoria tritici epidemics 
on winter wheat: A critical approach. Phytopathology 93:1329-1339.  

Two models for predicting Septoria tritici on winter wheat (cv. Ri-
band) were developed using a program based on an iterative search of 
correlations between disease severity and weather. Data from four con-
secutive cropping seasons (1993/94 until 1996/97) at nine sites through-
out England were used. A qualitative model predicted the presence or 
absence of Septoria tritici (at a 5% severity threshold within the top three 
leaf layers) using winter temperature (January/February) and wind speed 
to about the first node detectable growth stage. For sites above the 

disease threshold, a quantitative model predicted severity of Septoria 
tritici using rainfall during stem elongation. A test statistic was derived to 
test the validity of the iterative search used to obtain both models. This 
statistic was used in combination with bootstrap analyses in which the 
search program was rerun using weather data from previous years, 
therefore uncorrelated with the disease data, to investigate how likely 
correlations such as the ones found in our models would have been in the 
absence of genuine relationships.  

Additional keywords: binary data, data mining, discriminant analysis, 
Window Pane. 

 
When developing weather-based predictive models for plant 

diseases, two main approaches can be followed. First, mechanistic 
models have been used to improve understanding of the spread of 
disease (20). These models are generally based on physical 
properties of the observed phenomenon and therefore mirror it 
quite closely. However, they may sometimes be very complex, in-
volving many parameters, and may be of limited use to growers to 
predict disease severity. Alternatively, empirical models have been 
derived from data mining. Their main advantage is that they are 
usually simpler to use at a field scale. 

In 1982, a program (Window Pane) using a data mining algo-
rithm was developed (7) in the United States. Because of its large 
range of possible applications and the fairly simple theory behind 
it, it has been used by some authors to derive predictive models in 
plant pathology. Its range of applications has included arable crops 
(5,8,9,14), papaya (28), and banana (6). Similar data mining algo-
rithms have been developed and used for disease (16,17) and pests 
(34). However, the statistical validity of the data mining method 
used by this type of statistical program has not been addressed 
adequately. Its validity has been criticized because a potential 
problem of using an exhaustive iterative search is that it is likely 
to detect some significant but spurious relationships. Therefore, 
such models are often seen as unreliable and are not being used in 
the field. 

In the United Kingdom, and more generally in Europe, there 
has been overapplication of fungicide to control Septoria tritici for 
many years (19). The top three leaf layers contribute a large per-

centage of the photosynthate accumulated in kernels, and growers 
therefore aim to protect these leaves from disease. Fungicide 
applications at first node detectable (growth stage [GS] 31) (41) 
and flag leaf ligule just visible (GS 39) provide good control on 
the upper three leaves. However, depending on disease risk, the 
appropriate fungicide dose applied at these timings ranges from 
zero to the maximum permitted. In the United Kingdom, fungicide 
doses do not appear to be adjusted in response to risk. Because 
growers need early indication of the risk of Septoria tritici in or-
der to purchase products and prioritize farm activity, any model 
likely to be widely adopted would need to provide accurate pre-
dictions of Septoria tritici prior to first node detectable (GS 31). 

This paper has two main objectives. First, we develop an im-
proved version of the algorithm in order to look for predictive 
models. In past studies, disease severity has been studied as a con-
tinuous variable (between 0 and 100%). However, severe occur-
rences of disease are relatively rare in wheat (18) so observations 
taken from crops are commonly skewed toward low disease sever-
ity. As a result, the number of degrees of freedom of the regres-
sion is artificially increased and so may be the goodness of the fit. 
We therefore developed a new approach to this problem by 
introducing a two-step analysis. It first predicts the occurrence of 
an epidemic (qualitative approach), and when an epidemic occurs, 
it predicts its severity (quantitative approach). We also address the 
problem of the validity of the method using bootstrap techniques 
and explain why results from Window Pane are not straightfor-
ward to analyze. The second objective of this work is to improve 
predictive precision for Septoria tritici which is the most impor-
tant foliar disease of winter wheat in the United Kingdom (18). In 
the past, research focused on understanding the summer spread of 
splash-dispersed conidiospores, but recent work (15,29) has high-
lighted the importance of the winter epidemic. In this work, we 
confirm this pattern and discuss the splash-driven part of the 
epidemic.  
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MATERIALS AND METHODS 

Crop and site details. Because it was the most commonly 
grown wheat cultivar in the United Kingdom at the time of the 
work (20 to 30% of wheat area throughout the United Kingdom), 
observations used in this study were obtained from plots (2 ×  
18 m) of cv. Riband. It is a cultivar highly susceptible to Septoria 
tritici; good levels of resistance were not available for commercial 
cultivars at the time of the study. The observations were made as 
part of a multisite experiment conducted in four crop seasons 
(1993/94 to 1996/97) throughout England (Fig. 1). All field sites 
had at least a 1-year break from cereals. Plots were sown by a plot 
drill between early October and early November according to 
sites. The average of four replicate plots was used as a measure of 
the disease at the site. Weeds and insect pests were controlled 
with pesticides, in accordance with normal farm practice, but no 
fungicides were applied. Data from four combinations of sites and 
years were missing. First, no trial was run at Wye in 1996/97 be-
cause of poor weather conditions. Second, problems of labeling 
occurred when collecting the data at Bridgets in 1993/94 and 
made them unusable. Finally, poor establishment of the crop 
meant that trials had to be abandoned at Arthur Rickwood in 
1995/96 and Gleadthorpe in 1996/97. A fifth combination of site 
and year (High Mowthorpe in 1993/94) did not have leaf size 
measurements. This meant that disease severity, based on leaf 
area, could not be calculated at that site. 

Meteorological data. Eight meteorological variables were col-
lected daily at the experimental sites during the experiment. They 
were maximum (Tmax; °C) and minimum (Tmin; °C) temperature 
above the canopy (1.25 m), total rainfall (Rain; mm), average 
wind speed (Wind; m s–1), maximum (Hmax; %) and minimum 
(Hmin; %) relative humidity above the canopy, total solar radia-
tion (Rad; mJ m–2 s–1), and surface (leaf) wetness (Wet; %). 
Surface wetness was measured using two sensors (SWS Sensors; 
Delta-T Devices Ltd., Burwell, Cambridge, UK). The sensitive 
part of these sensors consists of three carbon electrodes separated 
by waterproof resin. The surface of the sensing area is ridged to 
increase sensitivity. Records were taken as “wet” or “dry,” and 
leaf wetness was defined as the proportion of time the sensor was 
recorded as wet (using 1-min intervals). Two further weather vari-
ables were derived from these records, average daily temperature 
(Tmean; °C) and average daily relative humidity above the canopy 
(Hmean; %), both were calculated as half the sum of the daily 
minimum and maximum values. Some weather data were missing 
due to logger/sensor failures. To alleviate this problem, minimum 
and maximum temperatures, rainfall, and wind speed from the 
nearest station to each site were used. At most sites, this station 
was located on the same farm. Relative humidity, leaf wetness, 
and solar radiation could not be substituted by this method so 
artificial neural network techniques were used to estimate missing 
values (M. Taylor, personal communication). A total of 49% of 
relative humidity, 41% of leaf wetness, and 46% of solar radi- 
ation observations were estimated in this way. A huge vari- 
ability however was observed, with the proportion of missing  
data varying from 27% (radiation at Starcross) up to 100% 
(radiation at Gleadthorpe). We decided to use weather functions 
derived from these three weather variables in the analysis, 
recognizing that results from them would need to be interpreted 
with caution. 

Disease data. Optimum fungicide dose depends on the level of 
untreated disease. Because cv. Riband is highly susceptible to 
Septoria tritici and has very low potential for disease escape, it 
makes the epidemics largely weather-driven and the setting of the 
inoculum pool during winter crucial. Practical experience shows 
that disease observation at first node detectable (GS 31) is not a 
good predictor of the severity of later epidemics, but disease 
observation at medium milk (GS 75) is a good predictor. At GS 
75, disease severity was assessed on 10 randomly sampled shoots 

per plot on all leaf layers with an average of 25% or greater green 
leaf area. Symptoms of Septoria tritici were estimated as the area 
covered by pycnidia and all associated senescence. Measurements 
of the phenology of the plant (leaf size, growth stage, and leaf 
area index), crop density (number of fertile tillers per square me-
ter), percent green leaf area, and green leaf area index were also 
made. Growth stage and percent green leaf area also were meas-
ured on 10 different plants and averaged for each block. Because 
leaf size is subject to very little variability and measurements are 
very time-consuming, leaf width and length were measured on 
only two plants per plot and averaged. All sampling was destruc-
tive. Leaf area index and green leaf area index were calculated 
from the above measurements. The absolute areas of a subsample 
of the assessed leaves were measured by the method of Bryson et 
al. (4). These measurements, combined with fertile shoot counts, 
allowed green area and disease area to be expressed as index val-
ues (the dimensionless planar area, expressed per unit of ground 
area occupied). 

Because the top three leaves contribute most to wheat yield 
(35,39), final disease severity was calculated on these top leaves. 
Disease severity within the top three leaves was then calculated as 
the percentage of leaf area with symptoms, taking into account the 
differences of leaf size between leaf layers: 
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where Sevi is the percentage of leaf i with symptoms and Areai is 
the area of leaf i. 

Algorithm description: Window Pane. A Genstat 6.1 algo-
rithm (Genstat, VSN International Ltd., Hemel, Hempstead, UK), 
based on the original idea of Coakley et al. (9), was developed to 
find the weather functions that were most related to the observed 
disease severity. The basis of this program is to examine itera-
tively the correlation with disease of a range of functions (46 
weather functions listed in Table 1) of the eight original weather 
variables (Table 1) at different periods of time and for different 
lengths of time (referred to as a window) (Fig. 2). In previous 
implementations of the Window Pane algorithm, the windows to 
calculate all the weather functions were defined with a starting 
date and a window length (9). This approach was inappropriate for 
our data because disease observation dates were different in the 
years and sites that were analyzed. Coakley et al. (9) solved this 
problem by readjusting all years and sites so that the observation 
date (e.g., at GS 75) was on the same adjusted Julian Day across 
all sites and years. In our work, we used a time lag (the number of 
days between the disease observation date and the start of the 
window) to define the windows (Fig. 2) and keep dates un-
changed. This change made interpretation of the results from the 
program easier and made other generalizations that we tried easier 
to implement. For any weather function, the program searched for 
the window in which it was the most highly related to disease 
severity (the “optimum window”) using two nested loops. To start 
the process, a maximum time lag between the disease observation 
date (GS 75) and the start of the window was fixed by the user. In 
the inner loop, the window length was allowed to vary between 
two limits (the maximum and the minimum window lengths) 
according to a step length. Both the maximum and minimum 
window lengths as well as the step length were set by the user. For 
each window thus defined, the value of the weather function 
considered was calculated for each site × year combination and 
correlation between the derived vector and the observed disease 
severity was calculated. For each time lag, the maximum absolute 
value of this correlation across window lengths was found. Then, 
in the outer loop, this process was repeated for a series of time 
lags decremented in steps set by the user, starting from the 
maximum time lag, until the minimum time lag (also set by the 
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user) was reached. At each repeat of the outer loop, the entire 
procedure described in the inner loop was run. Then, the entire 
process, as defined by the inner and outer loops, was repeated for 
the remaining weather functions. 

Disease data as a continuous variable. When locating the best 
disease–weather relationships in time, we first had to find a bal-
ance between the precision of the analysis and the large number of 
windows that could be searched. In order to do so, we started with 
runs using 5-day steps for both the time lag and window length. If 
the correlation at the optimum time lag and window length for a 
given weather function was significant at P = 0.01, a more accu-
rate run of Window Pane was done around the initial optimum 
window in order to refine the results from that first search. Given 
a first best time lag (T1) and window length (L1), the second run 
used 1-day steps and tested lags varying from T1 + 5 down to T1 – 
5, and within each lag, window lengths from L1 + 5 down to L1 – 
5. The final output of this first version of the modified Window 
Pane therefore consisted of tables with weather functions, time 
lags, optimum window lengths for each time lag, correlations, and 
P values testing for the individual significance of the correlations 
(Table 2). 

Disease data as a binary variable. The original version of 
Window Pane could not be used to analyze binary data. However, 
disease is often simply quantified as present or absent. Window 
Pane was therefore amended to allow the analysis of binary data. 
Although the iterative process on which the algorithm is based re-
mained unchanged, the measure of association between disease 
and weather differs. 

The vector of observed severities was first converted into a 
binary vector representing site × year combinations with more (1) or 
less (0) than a defined threshold level of disease (e.g., severity 
greater or equal to 5% within the top three leaf layers). Then, for 
any weather function X (e.g., TminNod;7) and any delay, the opti-
mum value, x0, to separate diseased site × years from healthy  

site × years was found by minimizing the misclassification rate m 
over the n site × year combinations available: 
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where Yi is the observed severity (0 or 1) for site × year combina-
tion i 
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At each site × year combination i, if one of the two terms in the 
right side of equation 2 is equal to 1, the other is equal to 0 by 
definition of ,)(�

iX  ,)(�
iX  and Yi. Therefore, when summing over all 

n site × year combinations, if one of the two terms to minimize in 
the right side of equation 2 is greater than int(n/2), the other is 
smaller. Thus, the misclassification rate m cannot exceed 
int(n/2)/n. The null hypothesis used to test the significance of the 
misclassification was therefore set to 
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and an approximate one-tailed Z test for comparing two propor-
tions (21) was used. 

Bootstrap analysis. As with all statistical questions, two prob-
lems face analyses such as the one used by Window Pane. First, 
chance relationships may be found and, because many possible re-
lationships are investigated, there may be many of these. Second, 
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Fig. 1. Experimental sites in England used from 1994 until 1997 for assessing the severity of Septoria tritici blotch of winter wheat.  
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true relationships may be attributed to chance. We tried to investi-
gate the difficulties these might cause the Window Pane meth-
odology by testing it with data containing or lacking known rela-
tionships. To do so, bootstrap analyses were made to assess the 
validity of the correlations and misclassifications found by 
Window Pane. The idea driving these analyses was to use weather 
variables clearly unrelated to the disease data and rerun the Win-
dow Pane program. To do so, we kept the same disease data at 
each site × year combination and reattributed new weather data to 
each combination. Then, Window Pane was used to calculate cor-
relations or misclassifications and was tested using a given sta-
tistic. In order to keep realistic autocorrelations within the explana-
tory variables but lose the possible relationship between them and 
the disease variable, a new set of meteorological variables was 
derived from data collected at the same sites in six new years 
(1969/70, 1972/73, 1974/75, 1975/76, 1976/77, and 1977/78). 

The test statistic. In the output spreadsheets from Window 
Pane runs, there are often a few time lags around the optimum 
window where the correlation is still highly significant (P � 0.01). 
Because of the autocorrelation within many weather variables 
(e.g., temperature), it would not be surprising to find several such 
high correlations around the optimum. For instance, if TminNod;7 
[135,60] (where 135 is the line lag and 60 is the window length) is 
highly correlated with disease, it is very likely that TminNod;7 
[130,55] will be correlated with disease as well, even if both 
correlations were spurious. However, high correlations extending 
over a long range of lags (Table 2) are likely to be less frequent 
and may be a better indication of genuine relationships than the P 

value alone. Thus, the statistic N chosen when running each 
bootstrap analysis was the number of individually significant 
correlations or misclassifications (at a 1% level) in time lags 
around the optimum window (defined with a time lag T) with a  
5-day step (i.e., T � 5, 10, 15…). When deriving any model, we 
therefore favor weather functions for which the N statistic is large. 

The two types of bootstrap. We needed to define the way to 
reattribute the new weather data to each site × year combination. 
Two methods were used. 

The more stringent method was to keep both the spatial and 
temporal correlations: each site is given new weather data from a 
different year from the same site and each new year is reattributed 
the same way across sites. Because there were 6 years from which 
to choose an ordered subset of 4 years of weather data (the num-
ber of years the experiment was run), the total number of possibil-
ities was more restricted in this case. It was the number of 
permutations of 4 years taken from the 6 years, that is 

360)!46(!64
6 ���P . Selecting subsets by this method implies that 

the new years used are not necessarily consecutive. However, 
weather variables were not correlated between years, so this was 
not a problem. 

The less stringent method was to take n site × year combina-
tions (where n is the total number of site × year combinations in 
the data set) at random within the additional weather data set. 
Here, no account was taken of spatial correlation (i.e., one site 
might always be colder than another) or temporal correlation (i.e., 
1 year might be more rainy than another at every site). In other 
words, the hypothesis was to test the statistic in the case where the 
only condition about the explanatory variables is their autocorrela-
tion. In order to have two comparable analyses, a random subset 
of 360 allocations of disease data to site × years was used in this 
case. 

Complete and partial bootstraps. In addition to choosing the 
randomization method for the bootstrap analysis, we needed to 
choose which weather functions to include. Two different ap-
proaches were used. 

First, the analysis was restricted to the weather functions that 
were found significant and kept within the final models. Second, 
all weather functions used in the runs with the original data set 
were included. 

Because the new years were not part of the original project, 
only rain and minimum, maximum, and average temperature were 
available for this analysis, and the bootstrap was therefore re-
stricted. However, as explained later, this was not a major prob-
lem. In order to compare them later, all four bootstrap possibilities 
(described previously) were tried with all three variants of the 
disease data: first, correlations using the entire quantitative data 
set; second, misclassification using the qualitative data set; and 
third, correlations using the quantitative data with only site × 
years with severe damage. 

Deriving disease–weather relationships and validating the 
models. When disease data was a continuous variable, knowledge 

TABLE 1. Description of the weather functions studied in the analysis 

Weather 
function  

 
Description 

Andd7 Accumulation of negative degree-days below 7°C 
Andd14 Accumulation of negative degree-days below 14°C 
Apdd7 Accumulation of positive degree-days above 7°C 
Apdd14 Accumulation of positive degree-days above 14°C 
HmaxAvg Average maximum relative humidity (%) 
HmaxCnod;99 Number of consecutive days with maximum relative humidity 

   of >99% 
HmaxNod;99 Number of days with maximum relative humidity of >99% 
HmeanAvg Average mean relative humidity (%) 
HminAvg Average minimum relative humidity (%) 
HminCnod;60 Number of consecutive days with minimum relative humidity 

   of <60% 
HminNod;60 Number of days with minimum relative humidity of <60% 
RadAvg Average solar radiation (mJ m–2 s–1) 
RainAvg Average rainfall (mm) 
RainCnod;0– Number of consecutive days without rain 
RainCnod;0+ Number of consecutive days with rain of >0 mm 
RainCnod;1 Number of consecutive days with rain of >1 mm 
RainNod;0 Number of days with rain 
RainNod;0.1 Number of days with rain of >0.1 mm 
RainNod;1 Number of days with rain of >1 mm 
RainNod;i  Number of days with rain of �i mm (i = 1…9) 
TmaxAvg Average maximum temperature (°C) 
TmaxCnod;25 Number of consecutive days with maximum temperature of  

   >25°C 
TmaxNod;25 Number of days with maximum temperature of >25°C 
TmeanAvg Average mean temperature (°C) 
TminAvg Average minimum temperature (°C) 
TminCnod;i  Number of consecutive days with minimum temperature of  

   <i°C (i = –2, 0, 7) 
TminCnod;7+ Number of consecutive days with minimum temperature of  

   �7°C 
TminNod;i  Number of days with minimum temperature of <i°C  

   (i = –2, 0, 7) 
WetAvg Average leaf wetness (%) 
WetCnod;20 Number of consecutive days with leaf wetness of <20% 
WetCnod;80 Number of consecutive days with leaf wetness of >80% 
WetNod;20 Number of days with leaf wetness of <20% 
WetNod;80 Number of days with leaf wetness of >80% 
WindAvg Average wind speed (m s–1) 
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Fig. 2. Example of a window (from middle November until middle February) 
for a given time lag preceding the mid-milk growth stage (GS) of winter 
wheat (GS 75).  
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of the optimum window for correlation between each weather 
function and disease was used to derive linear models involving 
several weather functions. A systematic approach was used with 
the Genstat procedure Rsearch. This calculates several statistics, 
including the adjusted R2, Mallows’ Cp (24), and the Akaike infor-
mation criterion (1,2), and allows the user to systematically 
choose between different subsets of explanatory variables for 
multiple linear regression. The PRESS statistic and variance 
inflation factor (VIF) were calculated for all submodels as 
additional tests. The Cp statistic compares nonnested models. It is 
defined as 

pnC p
p 2

ˆ

RSS
2

��

�

�  

where RSSp is the residual sum of squares of the submodel 
considered (with p parameters), 2

�̂  is an unbiased estimate of the 
variance of the full model, and n is the total number of observa-

tions. Mallows (24) showed that models without significant lack 
of fit lead to points around the line Cp = p, hence providing a first 
guideline for submodel selection. The Akaike information crite-
rion consists in minimizing –2(Lp – p), where Lp is the log-likeli-
hood of the submodel considered (with p parameters). The PRESS 
statistic for one model with p parameters is defined by 

2

1
)ˆ(PRESS ip

n

i
i YY ���
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where ipŶ  is the estimate of Yi from the model derived using the 
original data set out of which the ith observation of the response 
and explanatory variables were deleted. As discussed by Draper 
and Smith (12), the choice of the submodel is then guided by low 
PRESS combined with a reasonably small number of explanatory 
variables. One of the reasons to keep the number of explanatory 
variables low is multicollinearity, an indicator of which is given 
by the VIF. It is defined (26) by 
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where 2
iR  is the multiple correlation coefficient of Xi on the re-

maining predictors in the model and Xi is the ith of the p predic-
tors of the model (3). 

When disease data was a binary variable, after the best window 
and lag had been found for each weather function, we needed, as 
for the continuous data set, a way to combine a subset of weather 
functions to produce an optimum prediction. Discriminant analy-
sis was used to derive a rule to classify each site × year as dis-
eased or not diseased according to the value of discriminant func-
tions (linear combinations of the initial weather variables). As 
with the multiple linear regression, it was important to include 
only useful variables in this analysis. An F test (25) was used on 
the most general model to test and discard the least important 
variables given all the other variables. This test was then repeated 

TABLE 2. Example of a part of the output from a Window Pane run 
Weather 
function 

Time lag 
(days) 

Window 
length (days) 

 
Correlation 

 
P value 

TminNod;7 165 60 –0.41 0.02 
TminNod;7 160 55 –0.46 0.01 
TminNod;7 155 50 –0.48 0.006 
TminNod;7 150 45 –0.48 0.006 
TminNod;7 145 65 –0.59 0.001 
TminNod;7 140 65 –0.67 <0.001 
TminNod;7 135 60 –0.70 <0.001 
TminNod;7 130 55 –0.69 <0.001 
TminNod;7 125 50 –0.63 <0.001 
TminNod;7 120 45 –0.57 0.001 
TminNod;7 115 40 –0.55 0.001 
TminNod;7 110 35 –0.50 0.004 
TminNod;7 105 30 –0.35 0.06 
TminNod;7 100 60 –0.28 0.12 
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Fig. 3. Frequency distribution of the N statistic (number of consecutive significant correlations, P < 0.01, in windows around the optimum one) using 
continuous disease severity for the entire data set.  
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on the new model with one less variable until no further variables 
could be dropped without a significant increase in misclassifi-
cation.  

RESULTS 

Method testing. Before deriving the different predictive mod-
els from our data set, we present the results of the bootstrap analy-
ses for each of the three types of data described previously. The 
first bootstrap analysis used quantitative data from all site × year 
combinations. The frequency distributions of the statistic N when 
spatial and temporal correlations were kept and discarded, respec-
tively, are shown in Figure 3A and B. In these first two cases, 
Window Pane was run using the entire set of meteorological vari-
ables available (full bootstrap). On the other hand, the distri-
butions obtained when only the two weather functions from the 
final model (equation 4) that were available in the new mete-
orological data set (partial bootstrap) are shown in Figure 3C and 
D, and 0.9 and 0.95 quantiles are shown on each frequency distri-
bution plot. Results from the analysis of binary data using mis-
classification and from the linear regression restricted to severely 
infected sites and years are shown in Figures 4 and 5. 

Multiple linear regression. All 31 combinations of sites and 
years were taken together, and disease severity was analyzed as a 
continuous variable. Initially, time lags varied between 225 (late 
November) and 70 days (late April), and within each of those, 
window length varied between 65 and 15 days. Although disease 
activity may be very important in later windows, we decided to re-
strict the analysis to windows early enough to allow the model to 
be used as a predictive tool. For some discrete variables (e.g., the 
number of consecutive days with minimum temperature greater or 
equal to 7°C), sometimes there was more than one optimum 
window. To resolve this, we chose the earliest window because 
one of the aims of our study was to derive predictive models to be 
used by farmers to optimize their use of fungicides, and the 

longest time lag would provide farmers the greatest opportunity to 
adjust treatment decisions. When there was more than one opti-
mum window length for a lag, the longest one was kept in order to 
allow the explanatory variable the maximum range of values. In 
order to reduce the number of possible explanatory variables to 
choose from, only the nine variables with absolute correlation 
strictly greater than or equal to 0.7 (P < 0.001 with this sample 
size) were kept (Table 3). 

The statistics described previously were used to choose among 
the different submodels. When more than four explanatory vari-
ables were included in any model, its VIF was high (larger than 
5), indicating strong multicollinearity (27). The Genstat procedure 
Rsearch therefore was used to compare all possible subsets of one 
up to four explanatory variables. All four statistics used (adjusted 
R2, Mallows’ Cp, Akaike information criteria, and PRESS 
statistic) agreed on the same “best” model (Fig. 6). F tests were 
used on nested models, and no further explanatory variable was 
found to significantly improve the regression. As a result, the 
following model was kept as a first predictor of Septoria tritici se-
verity at GS 75: 

)7.2(4.6]61,81[Rain)26.1(78.2

]70,145[minT)48.1(12.3

]17,62[Wet)01.1(37.4

Nod;9

Cnod;7

Nod;8075GS

�

�

��

�

S

 Adjusted R2 = 0.77 (4) 

where standard errors of the estimates are in parentheses and opti-
mum time lags and window lengths are within square brackets, re-
spectively. The observed growth stages for each of the three 
windows were stem elongation (approximately GS 30/39) for 
WetNod;80, seedling growth and early tillering (approximately GS 
12/26) for TminCnod;7, and tillering until inflorescence (approxi-
mately GS 25/59) for RainNod;9. Because of the slight difference 
between sites and years as well as the frequency of the measure-
ments, all three growth stages are approximate. The N statistics 
for the three weather functions kept in the final model (equation 4) 
were 14 (WetNod;80), 17 (TminCnod;7), and 11 (RainNod;9). Figure 3 
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Fig. 4. Frequency distribution of the N statistic (number of consecutive significant, at a 1% level, misclassifications in windows around the optimum one) for 
binary disease data.  
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shows that, with the more stringent bootstrap, none of the N statis-
tics were significant at a 5% level and only one was significant at 
a 10% level (Fig. 3A). Even when using the two bootstraps with 
intermediate type I and II errors, not all three N statistics were sig-
nificant (Fig. 3B and C). With a full bootstrap when no spatial or 
temporal correlations were kept, two N statistics were significant 
at a 5% level and all three were significant at a 10% level. When 
both spatial and temporal correlations were kept but with a partial 
bootstrap, one N statistic was significant at a 5% level and one at 
a 10% level. Finally, Figure 3D shows that all three N statistics 
were significant at a 5% level in the less stringent bootstrap (omit-
ting spatial and temporal correlations). 

Binary response and discriminant analysis. Although the pre-
vious model explained much of the variability of severity of 
Septoria tritici at GS 75, it can easily be argued that the goodness-
of-fit of this model was overestimated because of the cluster of 
points corresponding to years and sites with very low disease, 
which artificially increases the number of degrees of freedom. The 
weakness of this first model was confirmed by the bootstrap 
analysis. We showed that the N statistic for RainNod;9 was signifi-
cant only at a 5% level when using the less stringent bootstrap, 
therefore raising doubt on the validity of such a relationship. 
Further, it is more useful to determine the conditions driving the 
initial onset and progress of an epidemic. We therefore decided to 
first treat the severity as a binary variable. To do so, a threshold of 
5% severity within the top three leaf layers was used so that sites 
and years with less than 5% severity at GS 75 were considered 
nonepidemic. The same time lags, window lengths, and steps were 
used as described previously. Then, the search was refined using 
1-day steps and the 12 weather variables that lead to a misclas-
sification of less than or equal to five site × year combinations  
(m � 0.16) were kept for further analysis (Table 4). Discriminant 
analysis was then used to derive a model from these weather vari-
ables. However, there was large variability in the N statistic 
among these weather variables (Table 4). Therefore, the bootstrap 

was used to select the variables to include in the first model dur-
ing the discriminant analysis and to discard those that were very 
likely to have been significant by chance. The frequency distribu-
tion of the N statistic when bootstrapping all the meteorological 
data is shown in Figure 4A and B. Although the frequency 
distribution of the N statistic was shifted slightly to the right when 
spatial and temporal correlations were kept (Fig. 4A), 0.5, 0.75, 
and 0.95 quantiles were similar (8, 11, and 15 compared with 8, 
11, and 14, respectively, when keeping and ignoring spatial and 
temporal correlations). Consequently, when the discriminant 
analysis was done, a weather function was ignored when the N 
statistic was smaller than 11 (25% significance level from the 
bootstrap analysis; Fig. 4). Therefore, only 4 of the initial 12 
variables were kept (average wind speed [78,25], average leaf 
wetness [57,22], number of days with minimum temperature less 
or equal to 7°C [190,70], and number of consecutive days with 
minimum temperature less or equal to 7°C [190,70]). In this study, 
the discriminant analysis was restricted to two groups (diseased 
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Fig. 5. Frequency distribution of the N statistic (number of consecutive significant, at a 1% level, correlations in windows around the optimum one) using 
continuous disease severity for sites and years with observed disease severity of Septoria tritici blotch greater than or equal to 5%. 

TABLE 3. The nine “best” weather functions with their respective optimum 
windows (correlation greater than or equal to 0.7, P < 0.001 for single 
correlation) and the statistic N (number of windows with a significant [P < 
0.01] correlation around the optimum one)a  

Weather 
function 

 
Time lag 

Window 
length 

 
Correlation 

 
N 

RainAvg 74 24 0.73 13 
WetNod;80 62 17 0.80 14 
RainCnod;1 56 7 0.79 13 
TminCnod;7+ 145 70 0.76 17 
WetCnod;80 66 22 0.78 13 
RainNod;6 74 70 0.72 7 
RainNod;7 80 70 0.73 14 
RainNod;8 80 70 0.71 13 
RainNod;9 81 61 0.71 11 

a Data includes all years and sites. 
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sites, n1 = 15 and nondiseased sites, n2 = 16). Two variables 
(TminCnod;7 and WetAvg) were dropped from the initial discriminant 
function without any significant increase in misclassification. The 
final discriminant function is as follows: classify sitei × yearj as 
nondiseased if 

h(x) = 2.7WindAvg[78,25] + 0.41TminNod;7[190,70] – 33.7 > 0 (5) 

and diseased otherwise (Fig. 7). 
The two F statistics for the inclusion of these variables in the 

model were 7.9 (P = 0.01) and 4.9 (P = 0.04). Similar to equation 
4, we can translate the lags into approximate growth stages 
corresponding to these windows. These were late tillering and 
early stem elongation (approximately GS 25/35) for WindAvg and 
seedling growth and early tillering (approximately GS 11/25) for 
TminNod;7. The N statistics (equation 5) were 25 for WindAvg and 
14 for TminNod;7. Figure 4 shows that, judged against any of the 
bootstraps, the N statistic of both weather variables was significant 
at a 10% level. The N statistic for temperature was not significant 
at the 5% level with the more stringent bootstrap (Fig. 4A). 

A quantitative approach for high disease sites × years. The 
previous analysis provided a qualitative predictor of Septoria 
tritici severity by distinguishing between severely and non-
severely infected sites × years. The next logical problem to be 
solved was to predict disease severity more accurately in the case 

of diseased years. To do so, the same multiple linear regression 
analysis as that used for all sites was repeated with the 15 site × 
year combinations in which observed severity was greater than 
5%. There were potentially more explanatory variables than de-
grees of freedom. Therefore, when two very similar and highly 
correlated weather variables (e.g., RainNod;8 and RainNod;9) were 
highly correlated with disease severity, only the most correlated 
one was kept, leading to 11 possible explanatory variables to 
choose from (Table 5). As described previously, models with more 
than four explanatory variables were not analyzed further because 
of multicollinearity. A complete search of all subsets with four or 
less variables was done. The adjusted R2 tended to select models 
with many variables (four or five), for which the explanatory vari-
ables were highly correlated. Both the Akaike information crite-
rion and Mallows’ Cp agreed on a simple linear regression (on 
RainNod;9) and the PRESS statistic favored a model with two ex-
planatory variables (TmeanAvg and RainNod;9). When F tests were 
used on nested models, no significant (P > 0.2) improvement 
could be made by adding further weather variables to the simple 
linear regression and the perfected model was therefore as follows 
(Fig. 8): 

)8.2(1.6]37,90[Rain)5.1(8.13 Nod;975GS ��S   Adj. R2 = 0.86 (6) 

TABLE 4. The 12 “best” weather functions with their respective optimum 
windows (misclassification smaller than or equal to 0.16, P < 0.001 for 
misclassification) and the statistic N (number of windows with a significant 
[P < 0.01] misclassification around the optimum one)a 
Weather 
function 

 
Time lag 

Window 
length 

 
Misclassification 

 
N 

RainAvg 225 26 0.16 3 
WindAvg 78 25 0.10 25 
TmaxAvg 89 26 0.16 9 
WetAvg 57 22 0.16 13 
TminNod;7 190 70 0.10 14 
WetNod;80 66 58 0.13 7 
TminCnod;7 190 70 0.10 14 
RainNod;4 130 21 0.16 3 
RainNod;5 135 45 0.06 9 
RainNod;6 143 54 0.13 8 
RainNod;7 151 28 0.16 9 
Apdd7 187 67 0.16 4 

a Data includes all years and sites. 

TABLE 5. The 11 “best” weather functions with their respective optimum 
windows (correlation greater than or equal to 0.7) and the statistic N (number of
windows with a significant [P < 0.01] correlation around the optimum one)a 
Weather 
function 

 
Time lag 

Window 
length 

 
Correlation 

 
P value 

 
N 

RainAvg 89 35 0.85 <0.001 11 
TmeanAvg 67 47 0.74 0.001 1 
WetAvg 90 45 0.83 <0.001 15 
RainCnod;0+ 62 15 0.77 0.001 4 
RainNod;1 87 42 0.88 <0.001 12 
RainCnod;1 95 50 0.88 <0.001 13 
TminCnod;7+ 145 70 0.72 0.003 6 
WetCnod;80 99 54 0.78 0.001 15 
WetCnod;20 162 13 0.74 0.002 1 
RainNod;9 90 37 0.93 <0.001 12 
RainNod;0.1 65 63 0.80 <0.001 3 

a Data were restricted to sites and years with observed severity greater than 
or equal to 5%. 
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Fig. 7. Discriminant function classifying sites as infected or noninfected 
according to the average wind speed from middle April until middle May 
(WindAvg[78,25]) that is after first node detectable (growth stage [GS] 31) 
and the number of cold days (with minimum temperature below 7°C) from 
early January until early March (TminNod;7[190,70]). Circles represent the 
observed noninfected years and sites and crosses represent the observed 
infected years and sites.  
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Fig. 6. Severity of Septoria tritici blotch measured at the mid-milk growth 
stage (GS) of wheat (GS 75) and predicted using the “best” multiple linear 
regression over all sites and years.  
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where standard errors are in parentheses and time lag and window 
length are in square brackets, respectively. In this case, the corre-
sponding growth stages were tillering until early stem elongation 
(approximately GS 20/35). The N statistic for RainNod;9 in equation 
6 was 12. This was significant at a 10% level for all the bootstrap 
methods and was significant at a 5% level with all except the most 
stringent bootstrap (Fig. 5A).  

DISCUSSION 

Window Pane and the bootstrap. Although Rispe et al. (34) 
mentioned the problem of spurious correlations and used Gold-
win’s correlogram to try and solve it, previous studies generally 
have relied entirely on individual P values to determine the sig-
nificance and validity of Window Pane results. Generally, the 
main criticism made of analyses using this method concerns the 
large number of possible relationships screened. It has been ar-
gued (36) that because of the iterative process used to look for 
correlations, some would always be found significantly large, 
even in the absence of genuine relationships. 

First and foremost, it has to be emphasized that the analysis and 
interpretation of the results obtained from Window Pane are not 
straightforward and clear-cut. Figures 3, 4, and 5 clearly show that 
significant correlations (at a 1% level) are extremely likely to oc-
cur. This however does not constitute proof that the Window Pane 
methodology is invalid but rather emphasizes the limitations of 
analyses that only use P values appropriate for testing single, pre-
determined relationships. Instead, a statistic was necessary to test 
and distinguish relationships likely to be spurious from those 
likely to be genuine in the large set of possible relationships in the 
data. On the one hand, because Septoria tritici infection events 
happen over a long duration, it is likely that the relationship be-
tween a weather variable and disease severity at host maturity is 
representative of infection events that happen over a long period 
of time. While a few consecutive time lags with high correlations 
may be expected in the case of spurious relationships because of 
the autocorrelation of many weather variables, they will not be as 
long as those for genuine relationships. This distinction made us 
choose the number of significant correlations or misclassifications 
(at a 1% level) in time lags around the optimum window (with a 
5-day step) as a test statistic. This statistic is only one of the many 
that could have been chosen and its usefulness is to some extent 
justified by the bootstrap results. However, it obviously predis-
poses to finding relationships operating over extended periods and 

its use will tend to make it hard to identify brief specific periods 
in which key biological processes might occur. 

The bootstrap, a nonunique technique. As described previ-
ously, four different methods of bootstrapping were used in this 
study. We shall now discuss the advantages and disadvantages of 
each of these methods. 

Keeping and dropping spatial correlation. It is important to 
account for spatial correlation (using weather data from the same 
sites as the associated disease data) when meteorological factors 
are not the only ones to affect disease severity. For example, 
differences in soil type are important to crop physiology, which 
can have an indirect effect on disease progress. However, by keep-
ing spatial correlation, we are more likely to dismiss genuine 
correlation because disease severity may be correlated with site 
across years. To illustrate this, let us assume that a disease is en-
tirely controlled by temperature. Because of the north/south gradi-
ent in temperature in the United Kingdom, bootstrapping by keep-
ing spatial correlation would consist of running Window Pane 
several times on very similar data sets, giving each time very 
similar outputs; the relationship found between temperature and 
disease would be rejected as spurious. To summarize these first 
two possible ways to bootstrap, keeping spatial correlation re-
duces type I error, i.e., H0 (there is no relationship between 
weather and disease) is rejected when it is true. A type I error 
would lead us to conclude that there is a relationship between the 
weather factors and the disease severity when such a relationship 
does not exist. In contrast, dropping spatial correlation reduces 
type II error, i.e., H0 is accepted when it is false. A type II error 
would make us reject the existence of a genuine relationship be-
tween weather factors and disease severity. 

Full and partial bootstrap. When including as many weather 
variables as possible (full bootstrap), the main disadvantage is that 
differences between those variables (e.g., in terms of autocorrela-
tion, temperature is more autocorrelated than rain) are ignored 
even though different values for judging the significance of the N 
statistic might be appropriate. It is also clear (Figs. 3 to 5) that the 
more weather variables that are included in the bootstrap analysis, 
the larger the N statistic. Read as such, this point could easily be 
seen as supporting the assertion that adding enough weather func-
tions would lead to significant results. This would in fact be true 
only if adding new independent weather functions. In practice, 
this will never be the case because the number of weather vari-
ables available is limited and weather functions will frequently 
turn out to be correlated with one another, leading to similar re-
sults from Window Pane analyses (for instance, TminNod;7 and 
TminCnod;7 in the previous section). The choice of how many vari-
ables to bootstrap depends on the balance found acceptable be-
tween types of error. A full bootstrap emphasizes reduced type I 
error at the expense of type II, whereas a partial bootstrap does the 
opposite. Figure 9 summarizes the four possible bootstrap meth-
ods used. There is a hierarchy between these four ways of boot-
strapping evident by the consistent ordering of the 5 or 10% 
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Fig. 8. Severity of Septoria tritici blotch measured at the mid-milk
growth stage (GS 75) and predicted using the “best” multiple linear 
regression over sites and years where the observed severity was greater than 
or equal to 5%. 
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Fig. 9. Summary of the bootstrap analyses done with their respective effect 
on type I and II errors. 
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significance level across them (Figs. 3 to 5). The choice of the 
bootstrap method therefore depends on what one wants to achieve 
and is consequently related to the type of data that are analyzed. 

The Window Pane technique proved very useful to derive pre-
dictive models, both qualitative and quantitative, for Septoria 
tritici on winter wheat. Further, we have shown that a bootstrap 
analysis can establish a context to help distinguish likely spurious 
from likely genuine correlations or misclassifications. 

Window Pane and field data. Three of the four bootstrap 
analyses suggested that the most general model easily could have 
occurred by chance. The performance of the qualitative and re-
stricted quantitative models stood out more clearly from chance. 
Field observations of disease are highly variable and severity 
scoring may be inaccurate, with large differences between ob-
servers (31). This will contribute to noise in relationships with 
weather deduced from the data and therefore increase type I error. 
It may be more sensible to accept the possibility of dubious 
relationships but not discard any relationship likely to explain the 
variability in disease observed in the field. Accepting only the 
relationships that are strong enough to be absolutely reliable (and 
which would therefore only rarely happen in field experiments) 
could prove too extreme a solution. 

Measuring the epidemic. Before starting the Window Pane 
analysis, it was necessary to decide which leaf layers to include 
for the assessment of disease severity and at what growth stage to 
consider severity final. Although Shaw and Royle (37) found that 
disease severity on leaf three had no significant influence on yield 
loss, other experiments (13,39,42) found a significant positive cor-
relation between the percent leaf area affected by Septoria tritici 
on all three upper leaf layers and the percent yield loss. Because 
an aim of this study was to derive a practical model for predicting 
disease severity on winter wheat in order to minimize yield loss, 
final disease severity was therefore measured across the top three 
leaves. Also, disease assessments become less reliable for leaf se-
nescence over 30 to 40% (31). Therefore, including more leaf lay-
ers to assess severity of Septoria tritici (9,17) would increase the 
effect of problems in distinguishing senescence associated with 
the pathogen from natural senescence. 

The choice of growth stage to measure severity has been widely 
discussed in the literature. Eyal and Ziv (13) compared correla-
tions between percent yield loss and percent severity at three 
growth stages (GS 73/75, 83, and 87) and fitted the best linear re-
gression at GS 73/75 (caryopsis at three quarter of its final stage). 
King et al. (22) also favored assessments at GS 75 (milk develop-
ment to medium milk) because dry matter accumulation by grains 
peaks at this time. Disease severity at later growth stages is 
strongly correlated to severity during grain fill. There is therefore 
no physiologically specific growth stage. However, since we use 
the top three leaf layers (yield forming leaves) to summarize the 
epidemic, it is important to choose a particular growth stage dur-
ing grain filling (e.g., GS 75) when reliable measurements can 
still be made, and severity at this stage is in practice well corre-
lated with integrated measures of disease (37,39). 

Septoria tritici epidemic as a two-step process. The results of 
this study indicate the merit of a two-step process in the prediction 
of Septoria tritici severity. It is interesting to consider whether this 
has a biological basis. The use of a binary variable to classify dis-
ease severity in two categories (epidemic/no epidemic) suggested 
that preconditions for severe epidemics are a warm winter (Janu-
ary until early March; GS 11/25) and a calm spring (middle April 
until middle May; GS 25/35). At sites where a severe epidemic 
was recorded, the actual extent of severity was then best predicted 
by the frequency of heavy rainfalls (more than 9 mm a day) be-
tween April and middle May (GS 20/35). 

Temperature. Infection and development of Septoria tritici are 
much slower at low temperatures (33). Coakley et al. (9), using  
12 years of data, found that the frequency of consecutive days with 
temperature below 7°C at the end of tillering and start of stem 

elongation was negatively correlated with Septoria tritici severity. 
More recently, Parker et al. (30) showed, using a more limited 
data set, a negative correlation between Septoria tritici severity on 
leaf layer two and the frequency of days with temperature below  
–2°C from early November until middle December. Parker et al. 
(30) also found a negative, but less significant, correlation with 
the frequency of days with temperature below 7°C. In a study 
based on a slightly different approach, Gladders et al. (15) found 
that frequent days with temperatures below –2°C in November re-
duced disease the following summer but their analysis did not in-
clude the 7°C threshold. Although our analysis did include three 
temperature thresholds (–2°C, 0, and 7°C), the greatest negative 
correlations were obtained for 7°C. It is therefore possible that, for 
the development of the winter epidemic, infection conditions 
(7°C) are more important than the base temperature of the patho-
gen development (–2°C). A recent study (29) suggests that asco-
spores may be important only in initiating the epidemic. Inoculum 
build-up in the crop prior to GS 31 would then be greatly depend-
ent on the interaction between the crop and the pathogen as medi-
ated by temperature. This part of the epidemic has previously been 
ignored and requires further attention. 

Wind. Unlike temperature and rain, wind has not previously 
been shown to have a significant effect on epidemics of Septoria 
tritici. Equation 5 shows a negative correlation between wind and 
the presence of the epidemic. This negative correlation immedi-
ately rules out the possibility that wind increases disease develop-
ment through dispersal of spores as leaves rub against one another. 
It may, in fact, be due to the influence of wind on leaf wetness. 
Although accurate predictions of dew duration use energy balance 
equations and depend on many variables (23,32), some multiple 
linear models using simple meteorological variables have been 
used in the past. For instance, Crowe et al. (10) derived a predic-
tive model for leaf wetness duration and showed a negative cor-
relation between leaf wetness duration and wind speed. Similarly, 
although wind speed did not appear in their simplest models, 
Djurle et al. (11) found a positive correlation between the number 
of hours with low wind and leaf wetness duration. On this basis, 
however, it is surprising that leaf wetness measured on-site was 
not shown to be a significant variable in the binary model. Two 
explanations may be suggested. First, leaf wetness measurements 
were among the least complete series and gaps had to be filled in 
using the neural network technique. In fact, none of the functions 
derived from any of the three weather variables with many values 
interpolated by neural networks are present in either the qualita-
tive and quantitative models. Second, and more interestingly, 
measurements made by the sensors may not reflect the wetness 
conditions the pathogen requires to infect and develop; wind may 
actually reflect the internal water conditions of the plant better. 
For instance, in totally still air with 50% relative humidity above 
the canopy, conditions may be wetter inside stomata and on the 
leaf surface than in 70% relative humidity with high wind. 

Rain. Previous work in temperate climates consistently has 
shown that after GS 31, disease development is driven by rain 
rather than by temperature (17,38,40). Coakley et al. (9) showed a 
negative correlation between severity of Septoria tritici and the 
frequency of consecutive days without rain between late March 
and early May, but this has not been confirmed by any further 
study. Gladders et al. (15) used high risk Septoria periods (39), 
which are a way of measuring important rain events derived from 
Tyldesley and Thompson (40), and found that their frequency in 
May and June was correlated with Septoria tritici severity on the 
upper two leaves at GS 73 to 75. Hansen et al. (17) pooled data 
from Septoria tritici and Stagonospora nodorum (Septoria spp.) 
and found a good correlation between Septoria severity around 15 
July and the frequency of days with more than 1 mm of rain dur-
ing a 1-month period starting at GS 32. 

In summary, although our results confirm that Septoria tritici 
epidemics are dependent on rain throughout the growing season, 
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they also suggest the existence and importance of winter limits to 
the epidemic. As we have shown, the first part of the epidemic is 
driven by temperature, which may determine the number of dis-
ease cycles that occur in the winter, and therefore the level of dis-
ease before stem elongation (30). We also showed that, provided 
the right conditions for infection have been met during the winter, 
rain at the start of stem elongation is critical. Infection events 
around GS 30/31 (start of stem elongation) can cause young 
leaves to carry inoculum toward the final three leaf layers, which 
are crucial to grain yield.  
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