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FACTOR ANALYTIC MULTIPLICATIVE MIXED MODELS IN THE 
ANALYSIS OF MULTIPLE EXPERIMENTS 

 
Marcos Deon Vilela de RESENDE1  

Robin THOMPSON2 

��ABSTRACT: Analysis of groups of experiments or multi-environment trials (MET) has 
been traditionally based on simple models assuming error variance homogeneity between 
trials, independent error within trials, genotype x environment (g x e) effects as a set of 
independent random effects. The combined analysis of MET data through realistic models is 
a complex statistical problem which requires extensions to the standard linear mixed model. 
The relaxation of the assumption concerning the independence of g x e effects can be 
achieved with the use of multiplicative models. Such models have been popularised as 
additive main effects and multiplicative interaction effects (AMMI) and a number of 
applications have been found. However, AMMI analysis presents at least five great 
limitations: it considers the genotype and g x e effects as fixed; it is suitable only for 
balanced data sets; it does not consider spatial variation within trials; it does not consider the 
heterogeneity of variance between trials; it does not consider the different number of 
replications across sites. These features are not realistic in analysing field data. In a mixed 
model setting, Piepho (1998) presented a factor analytic multiplicative mixed (FAMM) 
model with random genotype and g x e effects which is conceptually and functionally better 
than AMMI. In the same context, Smith et al. (2001) presented a general class of FAMM 
models that encompass the approach of Piepho (1998) and include separate spatial errors for 
each environment (FAMMS). Such general class of models provides a full realistic approach 
for analysing MET data. The present paper deals with the application of FAMM and 
FAMMS models in two large unbalanced data sets (on eucalypt and tea plant) aiming at 
emphasising their advantages over AMMI models in terms of the assumptions of error 
variance homogeneity between trials and independent error within trials. Also, the ability of 
FAMM models in providing parsimonious models is also stressed. Parsimonious FAMM 
models were found for the two data sets. There were great advantages of heterogeneous 
variance FAMM models over homogeneous variance FAMM models. This reveals the 
superiority of FAMM models over AMMI models. It was noted that there was heterogeneity 
among the specific variances in individual environments; therefore, factor analytic models 
with common specific variances for all sites were not suitable. FAMM models provided 
estimates of the full correlation structure, facilitating practical decisions to be made. FAMM 
models with heterogeneous variance among traits and spatial errors within traits were 
advantageous over FAMM models with variance homogeneity and non-spatial error. This 
also shows the superiority of FAMM models over AMMI models, which do not allow for 
dependent or spatial errors. For analysing multi-environment data sets with longitudinal data, 
FAMMS models proved to be a very useful tool. 
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��KEYWORDS: Factor analytic multiplicative mixed models; factor analytic multiplicative 
mixed spatial models; additive main effects and multiplicative interaction effects; restricted 
maximum likelihood; best linear unbiased prediction; multi-environment trials; stability 
analysis.  

1 Introduction 

Analysis of experiments repeated on several sites or environments are very 
common and important in agriculture. Such trials aim at providing inferences 
concerning for responses on both broad (in the average of all sites) and specific 
environments. To attain this, all the information should be analysed simultaneously. 
Traditional analysis of these multi-environment trials (MET) has been made through 
joint analysis of variance (ANOVA) and linear regression techniques. In general, 
stability and adaptability approaches (Finlay and Wilkinson, 1963; Eberhart and 
Russell, 1966) have been used to study treatment x environment interaction, mainly 
referred to as genotype x environment interaction or g x e. In spite of their generalised 
use, these regression-based methods present limitations that have been reported in the 
literature, such as inefficiency in the presence of non-linearity, generating simplified 
response models (Crossa, 1990; Duarte and Vencovsky, 1999). Some proposed 
models (Cruz et al., 1989; Toler and Burrows, 1998) correct this inefficiency, but the 
g x e component has been estimated but not decomposed into the pattern (tendency) 
and noise components. 

A first attempt to circumvent these limitations was the proposed technique called 
AMMI (Additive Main Effects and Multiplicative Interaction Analysis). This 
technique was well described by Gauch (1988; 1992) and attributed to Fisher and 
Mackenzie (1923) and Gollob (1968). Another denomination of the method is PCA 
(Doubled Centred Principal Components Analysis). AMMI may be viewed as a 
procedure to separate pattern (the g x e interaction) from noise (mean error of 
treatment mean within trials). This is achieved by PCA, where the first axes (i.e. the 
axes with the largest eigenvalues) recover most of the pattern, whilst most of the noise 
ends up in later axes. The pattern can be viewed as the whole g x e effect weighed by 
an estimate of the pattern-to-noise ratio associated with the respective effect. This 
pattern-to-noise ratio is a variance component ratio analogue to a repeatability or 
heritability coefficient (Piepho, 1994). Multiplicative models AMMI have been 
popularised in a fixed model context and a number of applications have been found 
(Gauch, 1988; 1992; Crossa et al., 1990). AMMI analysis combines, in a model, 
additive components for main effects (treatments and environments) and 
multiplicative components for g x e effects. It combines a univariate technique 
(ANOVA) for the main effects and a multivariate technique (PCA-principal 
component analysis) for g x e effects. Crossa (1990) suggests that the use of 
multivariate techniques permits a better use of information than the traditional 
regression methods.  

 Although useful, AMMI models present at least five great limitations: they 
consider genotype and g x e effects as fixed; they are suitable only for balanced data 
sets; they do not consider spatial variation within trials; they do not consider 
heterogeneity of variance between trials; they do not consider different number of 
replications across sites. These features are not realistic in analysing field data, where 
the data are generally unbalanced and many of treatments (genotypes) do not support 
the assumption of fixed genotype effects (implicit heritability at mean level equal to 
1). The AMMI model estimates phenotypic and non-genotypic values. If genotypes 
are considered as random, effects can be predicted by the best linear unbiased 
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prediction (BLUP). Hill and Rosenberger (1985) and Stroup and Mulitze (1991) 
showed that assuming random genotypes may be preferable in terms of predictive 
accuracy even when genotypes would be considered fixed by conventional standards. 
Assuming genotype as random effects, it is possible to obtain shrinkage predictions of 
the random interaction g x e terms and thus separate pattern and noise as do AMMI 
models. In this sense, BLUP and AMMI can be seen as two approaches to achieve the 
same goal, namely to separate pattern from noise. The BLUP procedure produces the 
generalised least square (GLS) estimates of interaction effects and then weighs them 
by an estimate of the correspondent pattern-to-noise ratios. However, the BLUP 
procedure has a number of advantages that circumvent all the limitations of AMMI. It 
has also been shown that BLUP can be predictively more accurate than AMMI 
models (Piepho, 1994).  

The full multivariate BLUP model is the best approach for analysing data on 
multiple experiments. This model provides response on each environment through the 
use of all information and also considers variance heterogeneity. However, with a 
large number of experiments the mixed model analysis is unlikely to converge. The 
variance-covariance matrix in this case is completely unstructured, which means a 
large number of parameters to be estimated. So, the parsimonious model behind 
AMMI is an interesting feature. Van Eeuwijk et al. (1995) suggested obtaining a 
genotype by environment BLUP and then subject this table to AMMI analysis, using 
a single value decomposition procedure. A better approach was found by Piepho 
(1998). In a mixed model setting, he presented a multiplicative factor analytic model 
with random genotype and g x e effects which is conceptually and functionally better 
than AMMI. In the same context, Smith et al. (2001) presented a general class of 
factor analytic multiplicative mixed models that encompasses the approach of Piepho 
(1998) and includes separate spatial errors for each environment. Such general class 
of models provides a full realistic approach for analysing MET data (Thompson et al., 
2003). 

The multivariate technique of factor analysis (Lawley and Maxwell, 1971; 
Mardia et al. 1988) provides simplification of correlated multivariate data as do other 
multivariate methods such as principal components analysis and canonical 
transformation. These techniques consider the correlation between variables and 
generate a new set of independent (non-correlated) variables. The factor analysis 
technique can be considered as an extension of the principal component analysis. The 
factor analytic variance-covariance structure may be regarded as an approximation to 
the completely unstructured variance-covariance matrix and can provide 
parsimonious models. 

Analysis of multi-environment trials (MET) has also been traditionally based on 
simple models assuming error variance homogeneity between trials, independent error 
within trials, genotype x environment (g x e) effects as a set of independent random 
effects. The combined analysis of MET data through realistic models is a complex 
statistical problem which requires extensions to the standard linear mixed model. 
Such extensions have been done recently. Cullis et al. (1998) presented a spatial 
mixed model analysis for MET data, which fits a separate error structure for each site, 
circumventing the assumptions of error variance homogeneity among trials and 
independent error within trials. The relaxation of the assumption concerning the 
independence of g x e effects can be achieved with the use of multiplicative models.  

In a mixed model setting, multiplicative models for random g x e interaction 
terms induce correlations between the interactions. Mixed models with multiplicative 
terms are closely related to the so-called factor analytic variance-covariance structure 
advocated by Jennrich and Schluchter (1986). Piepho (1997) proposed multiplicative 
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mixed models for multi-environment analysis but assumed random environment 
rather than random genotype effects. The same author proposed the use of factor 
analytic multiplicative mixed (FAMM) models with random genotype effects 
(Piepho, 1998). Smith et al. (2001) presented a general class of FAMM models that 
encompass the approach of Piepho (1998) and provides: accounting of heterogeneity 
of g x e variance; accounting of correlation among g x e interactions; appropriate 
spatial error variance structures for individual trials. This factor analytic 
multiplicative mixed spatial (FAMMS) model provides parsimonious models for large 
multivariate data sets and a better conceptual approach for interaction effects based on 
the multiplicative model. The model can be regarded as a random effects analogue of 
AMMI. Smith et al. (2001) reported that the advantages of FAMMS models are 
numerous and include: (i) within trial spatial variation can be accommodated; (ii) 
between trial error variance heterogeneity can be accommodated; (iii) unbalanced 
data are easily handled; (iv) genotype effects and g x e interactions can be regarded as 
random, leading to better predictions; (v) the goodness of fit of the model, i.e., 
number of multiplicative terms needed, can be formally tested through residual 
maximum likelihood ratio tests (REMLRT). Through a unified mixed model approach 
stability and adaptability parameters are integrated into broad (selection for an 
average environment), specific (selection for specific environments) and new-
environment (selection for a non-tested environment) inferences.  

The present paper deals with the application of FAMM and FAMMS models in 
two large unbalanced data sets aiming at emphasising their advantages over AMMI 
models in terms of the assumptions of error variance homogeneity between trials and 
independent error within trials. Also, the ability of FAMM models in providing 
parsimonious models is stressed. 

2 Material and methods 

2.1 Factor analytic models   

A model concerning the evaluation of several treatments or genotypes in several 
environments is given by: 

ijijjiij geegY εµ ++++= , 

where: µ, g, e, ge and ε are the fixed constant, genotype, environment, genotype x 
environment interaction and within environment error effects, respectively. The µ and 
e effects can be regarded as fixed and the others as random. A model referring to 
random genotype effects in each environment can be written as: 

ijjijij egY εµ +++= . 

In the context of MET data, the factor analysis approach can be used to provide 
a class of structures for the variance-covariance matrix of ijg (G). The model is 

postulated in terms of the unobservable genotype effects in different environments: 

ijir

k

r
jrij fg δλ +=�

=1

, 

where: 
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ijg : effect of genotype i in environment j; 

jrλ : loading for factor r in environment j; 

irf : score for genotype i in factor r; 

ijδ : error representing the lack of fit of the model. 

The FAMM model is presented according to Smith et al. (2001). Applied to g 
genotype effects on s environments, the factor analytic model postulates dependence 
on a set of random hypothetical factors )....1(,)1( skrf xg

r <= . In vector notation, the 
factor analytic model for these effects is 

δλλ +⊗++⊗= kgkgs fIfIg )(....)( 11 ,  

where: 
)1( xs

rλ : loadings or weights of the factors in environments; 
)1( xgsδ : vector of residuals or lack of fit for the model (also called vector of specific 

factors). 
In a compact way, the model is: 

δ+⊗Λ= fIg gs )( ,  

where: 
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where: 
).....(diag 1 pψψ=Ψ ; 

iψ : specific variance for the ith trial.  
The variance matrix for genotype effects on environments is given by 

.)()var()()var()()var( ''
gggs IIfIg ⊗Ψ+ΛΛ=+⊗Λ⊗Λ= δ  

The model for genotype effects in each environment leads to a model for G in 
which: 
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The equation for sg has the form of a (random) regression on k environmental 

covariates kλλ ....1 in which all regressions pass through the origin. It may be more 
appropriate to allow a separate (non-zero) intercept for each genotype. This is 
equivalent to the model with genotype main effects, g, and a k-factor analytic model 
for g x e interaction. Then, the expression for sg turns to 

.)()1()1( δ+⊗Λ+⊗=+⊗= fIgIgegIg ggsgss  

Vector g has mean zero and variance Ig
2σ or Ag

2σ , where A is a genetic 

relationship matrix. The model can be written as 

,)()()1( 0 δδσ +⊗Λ=+⊗Λ+⊗= gggggsgs fIfIfIg  

where: 

).(;/];1[ ''
0

'
0

)1( fffgf ggsg
ks

g ==Λ=Λ + σσ  
Thus the model with genotype main effects and a k-factor analytic model for g x 

e interactions is a special case of a (k+1)-factor analytic genotype effects in each 
environment, in which the loadings in the first set are constrained to be equal. 

The feature that distinguishes equations for g, from standard random 
multivariate regression problems is that both the covariates and the regression 
coefficients are unknown and therefore must be estimated from the data. The model is 
then a multiplicative model of environment and genotypes coefficients (known as 
loadings and factorial scores, respectively). Here lies the analogy with AMMI models. 
However, a key difference is that the multiplicative model in equation for 

sg accommodates random effects, whereas AMMI is a fixed-effects model. FAMM 
models are also called random AMMI. 

2.2 General linear mixed model and REML estimation of factor 
analytic, multivariate and spatial models 

A general linear mixed model has the form (Henderson, 1984; Thompson et al., 
2003): 

ετβ ++= ZXy , (1) 

with the following distributions and structures of means and variances: 

RZGZVyVarRN

XyEGN

+==

=

')(),0(~

)(),0(~

ε

βτ
 

where: 
y: known vector of observations. 
β: parametric vector of fixed effects, with incidence matrix X. 
τ: parametric vector of random effects, with incidence matrix Z. 
ε: unknown vector of errors. 
G: variance-covariance matrix of random effects. 
R: variance-covariance matrix of errors. 
0: null vector. 



Rev. Mat. Estat., São Paulo, v.22, n.2, p.31-52, 2004 37 

Assuming G and R as known, the simultaneous estimation of fixed effects and 
the prediction of the random effects can be obtained through the mixed model 
equations given by: 
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The solution to this system of equations for β̂  and τ~  leads to identical results 
as that obtained by:  

yVXXVX 11 ')'(ˆ −−−=β  : generalised least square estimator (GLS) or best linear 
unbiased estimator (BLUE) of β;  

)ˆ(')ˆ('~ 11 ββτ XyVCXyVGZ −=−= −− : best linear unbiased predictor (BLUP) of τ; 
where C’ = GZ’: covariance matrix between τ and y. 

When G and R are not known, the variance components associated can be 
estimated efficiently through the REML procedure (Patterson & Thompson, 1971; 
Thompson and Welham, 2003). Except for a constant, the residual likelihood function 
(in terms of its log) to be maximised is given by: 

)/'logloglog*(log
2
1

)/'loglog'(log
2
1

22

221

εε

εε

σσ

σσ

PyyvGRC

PyyvVXVXL

++++−=

+++−= −

 

where: 
11111 ')'(;' −−−−− −=+= VXXVXXVVPZGZRV . 

v = N-r(x): degrees of freedom, where N is the total number of data and r(x) is the 
rank of matrix X. 
C*: Coefficient matrix of the mixed model equations. 
Being general, the model (1) encompasses several models inherent to different 
situations, such as:  

Multivariate models  

In the bivariate case: 
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12τσ : random treatment effects covariance between variables 1 and 2. 

12εσ : residual covariance between variables 1 and 2. 
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 Spatial models (time series or geostatistical)  

R = Σ: non-diagonal matrix that considers the correlation between residuals through 
ARIMA models or covariance based on adjusted semivariance. 

In the context of agricultural experiments, the general spatial model developed 
by Martin (1990) and Cullis and Gleeson (1991) has the following form: 
y = Xβ + Zτ + ξ + η, where: 
y: known vector of data, ordered as columns and rows within columns; 
τ: unknown vector of treatment effects; 
β: unknown vector representing spatial variation at large scale or global tendency 
(block effects, polynomial tendency); 
ξ: unknown vector representing spatial variation at small scale (within blocks) or 
local tendency, modelled as a random vector with zero mean and spatially dependent 
variance; 
η: unknown vector of independent and identically distributed errors.  

Through ARIMA models, the error is modelled as a function of a tendency 
effect (ξ) plus a non correlated random residual (η). So, the vector of errors is 
partitioned into ε = ξ + η, where ξ and η refer to spatially correlated and independent 
errors, respectively. Traditional models of analysis do not include the ξ component. 

Considering an experiment with rectangular shape in a grid of c columns and r 
rows, the residuals can be arranged in a matrix in a way that they can be considered as 
correlated within columns and rows. Writing these residuals in a vector following the 
field order (by putting each column beneath another), the variance of residuals is 
given by Var(ε) = Var (ξ + η)= R = Σ = 22 )]()([ ηξ σσ �� +Φ⊗Φ

r
r

c
c I  , where 2

ξσ  is the 

variance due to local tendency and 2
ησ  is the variance of the independent residuals. 

Matrices 
�� ΦΦ
r

r
c

c and )()( refer to first order autoregressive correlation matrices 

with auto-correlation parameters cΦ  and rΦ  and order equal to the number of 
columns and rows, respectively. In this case, ξ is modelled as a separable first order 
auto-regressive process (AR1 x AR1) with covariance matrix  

�� Φ⊗Φ=
r

r
c

cVar )]()([)( 2
ξσξ .  

The mixed model equations and variance structure for spatial factor analytic 
models can be given by 
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β and κ: vectors of fixed effects and random plot effects, respectively.; 
�� Φ⊗Φ=
1

1
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cH : spatial correlation matrix for environment 1; 

�� Φ⊗Φ=
sr
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scsH )]()([ : spatial correlation matrix for environment s; 
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In this case, the genotype main effects are fitted implicitly in ]'~...~[~
1 ss ggg = . 

The explicit fitting of genotype main effects term is achieved by including another 
random vector for these main effects in the mixed model equations. After that, the 

sg~ effects in the mixed model equations will represent g x e interactions. 
Solving the mixed model equations above provides BLUPs of genotype effects 

in individual environments. The BLUPs of the genotype’s factorial scores f can then 
be obtained from sg~ as 

.~])ˆ'ˆˆ('ˆ[ˆ)]'ˆ()[r(âv
~ 1

sggs gIyPIZff ⊗Ψ+ΛΛΛ=⊗Λ= −  

The estimates are: 
Λ̂ : matrix of estimated loadings; 

Ψ̂ : matrix of estimated specific variances. 
The BLUPs of the residuals of the g x e interactions can be obtained by 

.~])ˆ'ˆˆ(ˆ[
~ 1

sg gI⊗Ψ+ΛΛΨ= −δ  

It can be seen that the factor analytic model requires calculations of parameters 
Λ and Ψ which compose the variance-covariance matrix G0, and can be estimated by 
REML (Patterson and Thompson, 1971) through the algorithm average information 
(Gilmour et al., 1995; Johnson and Thompson, 1995). A specific REML algorithm for 
factor analytic models was developed by Thompson et al. (2003).  

With assumption of model εδβ ++⊗Λ+= ])[( fIZXy g , the predicted 

effects of genotypes in an average environment ( sg~ ) can be given by the formula: 

fIg gks

~
])ˆ.....ˆˆ[(ˆ~

21 ⊗+= λλλβ . 

Quantities rλ̂ and f
~

are the mean across environments of the estimated loadings 
for the rth factor, and the estimated factorial scores for genotypes, respectively. This 
is a prediction at the average values of the loadings. By definition of the loadings, 
these are predictions of genotype means for an environment that is average in the 
sense of having average covariance with all other environments. The prediction of 
overall genotype performance is the same irrespective of the inclusion of genotype 
main effects on the model. The question concerning the interpretation of the genotype 
main effects included is important. These are not main effects in the usual sense, 
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namely a measure of overall genotype performance, but merely intercepts in the 
regression. They, therefore, reflect genotype performance in an environment that has 
zero values of the loadings. That inclusion would provide results of genotype main 
effects which are identical to the predicted values for an average environment ( sg~ ) 
(Smith et al. 2001). 

One form of obtaining the overall performance of genotypes is by forming the 
two-way table of predicted genotype means for each environment and then averaging 
across environments to obtain the overall genotype means. These predicted means are 
also given by the formula: 

δλλλβ ˆ~
])ˆ.....ˆˆ[(ˆ~

21 +⊗+= fIg gkms  

This formula differs from sg~ only by the addition of the unexplained g x e 
effects, which refer to the lack of fit from the factor analysis. This overall 
performance is only likely to be a good predictor if  the correlation of genotype in 
different environments is high. 

2.3 Constraints and rotation on loadings and interpretation of 
environmental loadings and factorial scores 

When the number k of factors is greater than 1, constraints must be imposed on 
the factor analytic parameters in order to ensure identifiability. This arises because the 
distribution of fI g )( ⊗Λ is singular. It can be shown that k(k-1)/2 independent 

constraints must be imposed on the elements of Λ. According to Mardia et al. (1988), 
the factor analytic model is not unique under rotation so the constraints must be 
chosen to ensure uniqueness. A set of constraints that fulfils this requirement is to set 
all k(k-1)/2 elements in the upper triangle of Λ are zero, i.e., 

krjforjr ...20 =<=λ (Jennrich and Schluchter, 1986). The implication of the 
constraints is that the number of variance parameters in the factor analytic model with 
k terms is given by pk+p-k(k-1)/2 (Smith et al., 2001). 

The nonuniqueness of Λ when k > 1 introduces ambiguity in the interpretation of 
the environmental loadings and genotype scores. The constrained form of Λ is merely 
for computational ease and has no biological basis. So, rotation of loadings is 
advocated for generating meaningful results. Lawley and Maxwell (1971) describe a 
number of useful rotations. In MET data the required rotation is TΛ=Λ* ,where T is 
an orthogonal matrix. According to Johnson and Wichern (1988), the axes can then be 
rotated in a certain angle φ and the rotated loadings can be given by TΛ=Λ* , with 

�
�

�
�
�

�

−
=

φφ
φφ

cos
cos

sen

sen
T .  

The loadings from factor analytic models are useful for clustering environments 
in terms of genetic correlations. The graphical display of loadings from a model with 
k > 1 can be very informative in this respect.  

In factor analysis, the main interest is centred on the parameters of the factor 
model. Nevertheless, the predicted values of the common factors, named factor 
scores, are particularly useful in cluster analysis. Besides their utility in predicting 
genotype averages, the genotype’s factorial scores can also be plotted for factors 1 
and 2 for example, allowing for inference about the grouping of genotypes based on 
their similarity.  
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2.4 Selection of FAMM models 

In a search for parsimonious models the adequacy of the FAMM models of 
several k orders can be formally tested, as it is fitted within a mixed model 
framework. The model with k factors, denoted FAk, is nested within the model with k 
+ 1 factors. Models including the main genotype effect (g) are intermediate between 
the factor analytic models of order k (FAk) and of order FAk+1. Model FA1 + g is 
intermediate to models FA1 and FA2. Residual maximum likelihood ratio tests 
(REMLRT) can be used to compare such models. Other approaches for testing the 
goodness-of-fit of factor analytic models involve comparisons with the unstructured 
covariance matrix (Mardia et al., 1988), which is very hard to obtain with a great 
number of environments. All models were fitted using the ASREML software 
(Gilmour and Thompson, 1998, Gilmour et al., 2002) which uses the REML 
procedure through the average information algorithm (Gilmour et al., 1995; Johnson 
and Thompson, 1995; Thompson et al., 2003).  

2.5 Application 

Two large unbalanced data sets were used. The first one concerned 200 eucalypt 
treatments (progenies) evaluated for trunk circumference on six sites in lattice designs 
with different replication numbers in each trial. The total number of plants evaluated 
was 65000. The second data set concerned 60 tea plant treatments (progenies) 
evaluated in complete block designs for leaf weight in three consecutive years and in 
two trials. Trial 1 provided 5400 observations (60 treatments x 5 replications x 6 
plants per plot x 3 annual measures) and trial 2 provided 4050 observations (45 
treatments, 5 replications, 6 plants per plot and 3 annual measures). The 45 treatments 
in trial 2 are also in trial 1.  

3 Results and discussion 

3.1 Eucalypt data set 

Results concerning several models applied to the eucalypt data set on six 
environments are presented in Table 1. 

The first part of Table 1 contains only models (1 to 6) fitted with assumption of 
homogeneous error variance. Model 1 fitted treatment effects on each environment 
and considered a common error variance for all environments. Model 2 fitted 
treatment effects on an average environment and considered a common error variance 
for all environments. Model 3 fitted treatment effects on an average environment plus 
g x e interaction and considered a common error variance for all environments. Model 
4 fitted a factor analytic structure of order 1 for treatment effects and considered a 
common error variance for all environments. Model 5 fitted a factor analytic structure 
of order 2 for treatment effects and considered a common error variance for all 
environments. Model 6 fitted a full multivariate unstructured for treatment effects and 
considered a common error variance for all environments. The second part of the 
same table contains only models (7 to 10) with assumption of heterogeneous error 
variance. Models 7 and 9 fitted a factor analytic structure of order 1 and 2, 
respectively, for treatment effects. Model 8 fitted a factor analytic structure of order 1 
for treatment effects plus treatment main effects. Model 10 fitted a full multivariate 
unstructured for treatment effects. 



 

42 Rev. Mat. Estat., São Paulo, v.22, n.2, p.31-52, 2004 

Table 1 - Residual log-likelihoods (Log L) and likelihood ratio statistic (LRT) for the 
sequence models fitted to the eucalypt data 

Model for G Log L 

LRT in 
relation to 

the previous 
model 

Number of 
Variance 

parameters 
in G 

Total number 
of variance 
parameters 

1.Uniform for g in e 
2.Uniform for g 
3.Uniform for g + g x e 
4.FA1, var. homog. 
5.FA2, var. homog. 
6.Multiv.var. homog. 

-151100 
-149228 
-147892 
-147619 
-147562 
-147556 

- 
- 

2672 
546 
114 
12 

1 
1 
2 

12 
17 
21 

3 
3 
4 

14 
19 
23 

7.FA1, var. heterog. 
8.FA1+g, var.heterog. 
9.FA2, var. heterog. 
10.Multiv. var. heterog. 

-146381 
-146381 
-146325 
-146318 

- 
0 

112 
14 

12 
13 
17 
21 

19 
20 
24 
28 

 
Contrasting the two parts in terms of Log L, it can be seen that the models 

allowing error variance heterogeneity are far better than the models assuming 
variance homogeneity. This shows the superiority of FAMM models over AMMI 
models, which do not consider the error variance heterogeneity. Common error 
variance for all trials is implicit in the AMMI approach. Even the full multivariate 
model (6) for G0 (21 parameters) with homogeneous variance is worse than the FA1 
model (7) for G0 (12 parameters) with heterogeneous variance. This confirms the 
great importance of considering error variance heterogeneity in MET analysis. And 
this can only be done in the mixed modelling framework. So, the factor analytic 
models being embedded in this framework, is a great advantage. 

Another important feature of the FAMM models is the provision of 
parsimonious models in relation to the full unconstrained multivariate approach. The 
multivariate approach is prohibitive with a large (usually > 5) number of 
environments, generating over-parameterised and hard-to-converge models. Results 
from Table 1 reveal that model FAMM with two factors (FA2) is close (REMLRT of 
14 and 12 on 4 degrees of freedom) to the full multivariate model in both situations, 
with and without allowing for variance heterogeneity. So, in practice, a model with 
four less parameters can be used. It is worth mentioning that all the FAMM models 
converged without a need for constraining the G0 matrix. 

Model including the main genotype effect (g) is intermediate between the factor 
analytic models of order k (FAk) and of order FAk+1, as it is FAk+1 with constraints. 
Model FA1 + g is intermediate to models FA1 and FA2. In the present data set 
models FA1 and FA1 + g were equivalent, giving the same Log L. In fact, the 
estimate of the variance component for genotype effects was on the boundary; that is, 
it was estimated as zero. The role of genotype main effects in an FA model is purely 
in terms of the search for a parsimonious variance structure between a given FAk 
model and a FAk+1 model. The approach for prediction of overall genotype means 
across environments is the same irrespective of the inclusion of genotype main effects 
(Smith et al., 2001). In a factor analytic context, the model without genotype main 
effects is equivalent to a model for genotype effects in each environment.    



Rev. Mat. Estat., São Paulo, v.22, n.2, p.31-52, 2004 43 

Overall, the best parsimonious model was FA2 with heterogeneous variance for 
errors (model 9 in Table 1). Results concerning loadings, common, specific and error 
variances provided by this model are presented in Table 2. 

It can be seen that the FA2 model explained a large amount (almost 90%) of the 
total genotypic variance. The first factor explained 77.3% of the variation and the 
second factor added 11.9%. The specific variances (in percentage of the total) were 
low, except for environments 2 and 6, which were 22% and 16%, respectively. The 
high values of the common variance (or communality) show that the two factors 
explained a great percentage of the variance of each environment and that the FA2 
model fitted well to the data set (Table 2).   

Table 2 - Estimated loadings (on the correlation scale), common (communality), 
specific and error variances for model FA2 fitted to the eucalypt data 

 Original Loadings and (Rotated) 
Location Factor 1 Factor 2 

Common 
Variance 

Specific. 
Variance 

Error 
Variance  

 1. L1                    0.845  (0.433)            0.498  (0.880)             0.962                0.038              20.0422      
 2. L2                    0.791  (0.443)            0.398  (0.767)             0.784                0.216              20.5270 
 3. L3                    0.837  (0.450)            0.454  (0.839)             0.907                0.093              22.6041 
 4. L4                    0.907  (0.596)            0.295  (0.745)             0.910                0.090              44.5751 
 5. L5                    0.979  (0.761)            0.104  (0.624)             0.969                0.031              38.0380 
 6. L6                    0.904  (0.837)           -0.149  (0.372)             0.839                0.161              28.9856    
Eigenvalues                4.639                         0.710  
Accu. Var. Explained 0.773                         0.892  

 
The genotypic variance-covariance matrix and the correlations (obtained 

by Ψ+ΛΛ' from model FA2 on the correlation scale) involving the several 
environments are presented in Table 3.  

Table 3 - Estimated genotypic covariance (below the diagonal), variance (diagonal) 
and correlation (above the diagonal) matrix associated to model FA2 applied 
to eucalypt data set 

 L1 L2 L3 L4 L5 L6 
L1 6.312 0.867 0.933 0.914 0.879 0.689 
L2 6.964 10.225 0.843 0.835 0.812 0.655 
L3 7.375 8.481 9.905 0.893 0.867 0.689 
L4 8.132 9.463 9.959 12.555 0.919 0.776 
L5 6.566 7.754 8.108 9.682 8.837 0.869 
L6 5.135 6.207 6.425 8.148 7.659 8.784 

 
It can be observed that there is heterogeneity among the specific variances 

concerning several environments (diagonal of Table 3). This justifies the use of 
models with heterogeneous specific variances. Piepho (1997, 1998) proposed the use 
of a factor analytic model with common specific variance for all sites. However, 
Smith et al. (2001) noted that models with heterogeneous specific variances were 
significantly better. It can be seen that there is also heterogeneity of covariance 
between the several combinations of environments. These covariances represent the 
genotypic variance free from interaction effects between every two sites. This 
heterogeneity explains the better fit of FAk and multivariate models over model 3, 
which includes g + g x e. When there are only two environments, the bivariate and 
model 3 tend to give the same fitting (see results from the tea plant data set). 

Correlations results reveal that the first four environments have smaller 
correlations with the environment 6, which has higher correlations with environment 
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5 (Table 3). It can be observed that factor analysis put greater emphasis on 
environments 5 and 6 in factor 1 (rotated loadings higher than 0.76) and higher 
emphasis on sites 1, 2, 3 and 4 in factor 2 (rotated loadings higher than 0.74) (Table 
2). This is the logic of factor analysis: to separate groups of traits with high 
correlations between them in each group and then put higher weights in traits of a 
group in one factor (factor 1) and higher weights in traits of another group in another 
factor (factor 2). Plotting the first set of loadings against the second will show the 
clustering of environments: L1, L2, L3 and L4 close together in one group and L5 and 
L6 in a second group. Another advantage of FAMM models over AMMI is that they 
provide an estimate of the full correlation structure, facilitating practical decisions to 
be made.  

FAMM and AMMI models are also useful for the clustering of environments 
based on their similarity in terms of genetic correlations. This can be done through 
biplots (AMMI) or plot of loadings from the first factor against the loadings from the 
second factor (FAMM). The full structure of correlation provided by FAMM models 
can be also subjected to methods of cluster analysis or other multivariate methods. 
Such methods traditionally operate on correlations estimated by pairs of environments 
through balanced ANOVA. FAMM models use the information on all environments 
simultaneously to give the correlation for pairs of environments, thus providing more 
precise estimates.  

3.2 Tea plant data set 

Multi-environment spatial analysis for each trait  

The two trials contained 45 treatments in common, so it was possible to analyse 
all data simultaneously. Although not all progenies were represented in the two 
environments, FAMM models were applied. An important remark is that the factor 
analysis under the mixed model can be done with incomplete data sets. 

Firstly, multi-environment spatial analyses were made for each trait in a 
combination of the two trials. Three objectives pursued by breeders were considered: 
selection for specific environments (multivariate multi-environment spatial model), 
selection for an average environment (univariate multi-environment spatial model), 
selection for a non-tested environment (univariate multi-environment spatial models, 
including genotype x environment interaction effects).  

Results concerning the first objective are presented in Table 4. The plot effect 
was not fitted because it was non-significant with spatial analysis. 

The genetic correlations between environments were about 0.48, 0.57 and 0.57 
for leaf yield in years 1, 2 and 3, respectively. The magnitudes of these correlations 
reveal a need for specific selection for each site. The bivariate model involving the 
two sites was fitted also assuming variance homogeneity across sites and independent 
errors. The deviance values obtained were –3756.5, 1127.04 and 6883.92, for the 
three traits, respectively. These are much higher than the -3966.24, 833.70 and 
6393.74 obtained with the model allowing heterogeneity of variance and spatial 
errors. Such results reinforce that FAMM models could be more adequate than AMMI 
models, which do not allow for heterogeneity of variance and spatial errors. The 
residual auto-correlation coefficients were very high for the site 2 and spatial analysis 
could be abdicated for this site without efficiency loss. 
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Table 4 - Estimates of the variance parameters: genetic among treatments (progenies) 
in environment 1 ( 2

1
ˆτσ ) and in environment 2 ( 2

2
ˆτσ ), genetic covariance 

among treatments across sites (
12

ˆτσ ), correlated residual in site 1 ( 2
1

ˆξσ ) and 

in site 2 ( 2
2

ˆξσ ), non-correlated residual in site 1 ( 2
1

ˆησ ) and in site 2 ( 2
2

ˆησ ), 

narrow sense heritability in site 1 ( 2
1̂h ) and in site 2 ( 2

2ĥ ), respective adjusted 

heritabilities ( 2
1

ˆ
adjh and 2

2

ˆ
adjh ) and residual auto-correlation coefficients 

between columns (AR Column i ) and rows (AR Row i ), in the specific trial 
or site i 

Parameters estimates First year Second year Third year 
2
1

ˆτσ  0.0157 ± 0.004 0.1074 ±0.02 0.3573 ±0.08 
2

2
ˆτσ  0.0214 ± 0.005 0.0978 ±0.02 1.1526±0.27 

12
ˆτσ  0.0087± 0.003 0.0585±0.02 0.3669 ±0.12 

2
1

ˆξσ  0.0296± 0.006 0.1439±0.03 0.9032±0.18 
2

2
ˆξσ  0.0183 ± 0.018 0.1286±0.04 1.9108 ±0.62 

2
1

ˆησ  0.0948±0.004 0.4326±0.02 1.7135±0.07 
2

2
ˆησ  0.0797±0.003 0.3531±0.02 3.2352±0.14 

2
1̂h  0.4492 0.6283 0.4806 

2
2̂h  0.7163 0.7017 0.7261 

AR Column 1 0.8073±0.05 0.8463±0.04 0.8875±0.03 

AR Row 1 0.8000±0.05 0.7967±0.05 0.8137±0.05 

AR Column 2 0.9816±0.03 0.9192±0.04 0.9603±0.02 

AR Row 2 0.9960±0.01 0.9482±0.02 0.9100±0.03 

Deviance -3966.24 829.13 6393.20 

)ˆˆ/()ˆ4(ˆ 2222
1111 ησσσ += ggadjh  0.5683 0.7956 0.6902 

)ˆˆ/()ˆ4(ˆ 2222
2222 ησσσ += ggadjh  0.8466 0.8676 1.04 

 
 Results concerning the second objective are presented in Table 5. 
This model (Table 5), albeit more parsimonious than the full multivariate 

(Table 4), gave a significant higher deviance and higher AIC value. So, the 
multivariate is preferred and selection for an average environment can be made by 
taking means of predicted genetic values in each environment. The superiority of the 
multivariate model can be explained by the heterogeneity of genetic variance across 
sites (Table 4). Data standardisation should correct this and make the univariate (for 
an average environment) model suitable. 
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Table 5 - Estimates of the variance parameters: genetic among treatments (progenies) 
in an average environment ( 2ˆτσ ), correlated residual in site 1 ( 2

1
ˆξσ ) and in 

site 2 ( 2
2

ˆξσ ), non-correlated residual in site 1 ( 2
1

ˆησ ) and in site 2 ( 2
2

ˆησ ) and 

respective residual auto-correlation coefficients between columns (AR 
Column i ) and rows (AR Row i ), in the specific trial or site i 

Parameters estimates First year Second year Third year 

2ˆτσ  0.01397±0.003 0.0797±0.02  0.4310 ±0.09 

2
1

ˆξσ  0.0338± 0.007 0.1606±0.03 0.9470±0.18 

2
2

ˆξσ  0.0182 ± 0.005 0.1350±0.04 1.9259±0.62 

2
1

ˆησ  0.09757±0.004 0.4423±0.02 1.7335±0.07 

2
2

ˆησ  0.07531±0.004 0.3580±0.02 3.4773±0.15 

AR Column 1 0.8049±0.05 0.8154±0.05 0.8766±0.03 

AR Row 1 0.8365±0.05 0.8094±0.05 0.8169±0.05 

AR Column 2 0.8893±0.05 0.9000±0.04 0.9487±0.02 

AR Row 2 0.7336±0.08 0.9290±0.03 0.9103±0.03 

Deviance -3917.40 883.21 6483.50 

 
Results concerning the third objective are presented in Table 6. 
By comparing results from Tables 5 and 6, it can be seen by the deviance values 

that the model with interaction (Table 6) fits to the data better, revealing the 
significance of the g x e interaction effects.  

This model gave approximately the same deviance and smaller AIC values in 
relation to the full multivariate (Table 4). Then it should be preferred. The g x e 
component encompassed all the heterogeneity of genetic variance. From this model, 
predicted genetic values can be derived for each treatment (parent or individual) in 
each environment by summing the correspondent g and g x e predicted effects. Then, 
the mean of predicted genetic values of each treatment over several environments can 
be taken aiming at the selection of an average environment.  

Another alternative is to obtain treatment effects in each environment directly by 
fitting only the g x e component, i.e., overlooking g main effects. Applying this 
approach for the measure in the first year, the variance component for g x e obtained 
was 0.01858, which is approximately equivalent to the sum of the variance 
component for g and g x e presented in Table 6, as expected. The deviance obtained 
was –3957.20, which is significantly (by LRT) higher then the –3965.28 reported in 
Table 6. This shows that the model with g is better.  

 
 



Rev. Mat. Estat., São Paulo, v.22, n.2, p.31-52, 2004 47 

Table 6 - Estimates of the variance parameters: genetic among treatments (progenies) 
free of g x e interaction effects ( 2ˆτσ ), g x e interaction effects ( 2ˆ geσ ), 

correlated residual in site 1 ( 2
1

ˆξσ ) and in site 2 ( 2
2

ˆξσ ), non-correlated residual 

in site 1 ( 2
1

ˆησ ) and in site 2 ( 2
2

ˆησ ) and respective residual auto-correlation 

coefficients between columns (AR Column i ) and rows (AR Row i ), in the 
specific trial or site i 

Parameters estimates First year Second year Third year 

2ˆτσ  0.00865±0.003 0.0588±0.02 0.3305±0.12 
2ˆ geσ  0.00976±0.003 0.0442±0.01 0.3412±0.09 
2
1

ˆξσ  0.0298± 0.007 0.1437±0.03 0.9047±0.18 
2

2
ˆξσ  0.0183 ± 0.02 0.1286±0.04 1.8799±0.64 

2
1

ˆησ  0.09469±0.004 0.4327±0.02 1.7111±0.07 
2

2
ˆησ  0.07979±0.003 0.3505±0.01 3.2502±0.14 

AR Column 1 0.8078±0.05 0.8466±0.04 0.8888±0.03 

AR Row 1 0.8004±0.06 0.7968±0.05 0.8144±0.05 

AR Column 2 0.9817±0.03 0.9187±0.04 0.9591±0.02 

AR Row 2 0.9959±0.09 0.9485±0.02 0.9161±0.04 

Deviance -3965.28 829.22 6409.64 

 

Factor analytic models (spatial and non-spatial) for multivariate and 
multi-environment data 

Although the univariate model with g and g x e for treatment effects is sufficient 
for the multi-site analysis of individual traits, the univariate approach is not 
appropriate for all six measures together due to the great variance heterogeneity 
between measures in each site. So, a multivariate approach for the six traits together 
with fit of individual permanent effects in each site was adopted. The fit of permanent 
effects aimed at the elimination of the residual covariance between measures in each 
site. The model is an extension (increasing the number of traits to six and including 
permanent effects) of that concerning selection for specific environments. 

However, the fit of this model not converged with spatial errors and a non-
spatial model was fitted. Results are presented in the sequence together with the factor 
analytic models, which were fitted as alternative parsimonious models. 

Results concerning factor analytic models for the six repeated measures in two 
environments in comparison with the multivariate model are presented in Table 7. In 
all models the individual permanent effects were fitted as a mean of eliminating the 
residual correlation between repeated measures in each site. 
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Table 7 - Log-REML (Log L) and REMLRT (LRT) for comparing models of fitting 
covariances structures involving six traits. Models fitted were multivariate for 
treatments and non-spatial for residuals (MNS), factor analytic of order 1 for 
treatments and non spatial for residuals (FA1NS), factor analytic of order 1 
for treatments and spatial (including both the correlated and independent 
term) for residuals (FA1S) 

Number of Variance parameters 
Model for G        G               Total             LogL           LRT(P value)       %Variance 
MNS 
FA1NS 
FA1S 

21 
12 
12 

28 
19 
37 

-2335.67 
-1848.10 
-585.31 

        - 
 975.14(0.001) 
 2525.58(0.001) 

 
 

71.5 
 

It can be seen that the best model was the factor analytic with spatial error 
(FA1S). This model was superior to that with non-spatial error (FA1NS). This fact is 
sufficient to show the superiority of factor analytic multiplicative mixed models 
(FAMM) over the additive main and multiplicative interaction effects (AMMI), which 
assumes fixed treatment effects and do not permit to model separate spatial errors. 
The proportion of genetic variance explained by FA1S was 71.5%. This value is 
sufficient for the purpose of the analysis, i.e., genetic selection. 

The non-spatial factor analytic model showed to be superior to the non-spatial 
multivariate model (MNS), revealing the advantages of the factor analytic models in 
terms of parsimony and ability of fitting. The MNS model, although with more 
parameters, showed a smaller Log L and was hard to converge demanding restriction 
on G to be positively definite. Even so, the convergence was not so reliable, as 
ASREML fixed some variance components on the boundaries. In fact, it might have 
not converged to a maximum likelihood solution. Other models like the full 
multivariate model with spatial error and factor analytic of order 2 did not converge. 

Results concerning genetic correlation for the best model (FA1S) are presented 
in Table 8. 

Table 8 - Estimated genetic correlations obtained from the FA1S modelling 

Trait 1 2 3 4 5 6 
1 1 0.982 0.999 0.665 0.852 0.745 
2  1 0.982 0.585 0.794 0.653 
3   1 0.664 0.851 0.744 
4    1 0.870 0.862 
5     1 0.935 
6      1 

 
The estimated correlations are relatively coherent with previous estimates and 

expectation: higher correlation between repeated measures within sites and lower 
correlations across sites. This, together with the suitable proportion of genetic 
variance explained by the FA1S model reveals the adequacy of the factor analytic 
model for analysis of this sort of data. Otherwise, the whole data set could not be 
analysed simultaneously. The variograms showed adequate behavior. 

Gilmour and Thompson (2002) reported the computational aspects of analysing 
six traits in an animal breeding context, when some traits are highly correlated. They 
conclude that the Factor Analytic and Cholesky models appear best in this situation. 
We confirm the adequacy of FA models. The Cholesky appear to be inadequate for 
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our data set with errors non-correlated across traits, as we fit the permanent effect to 
account the correlation across traits within sites and the errors are non-correlated 
across sites. 

Practical experiments with several perennial plants annually generate, a large 
amount of data on repeated measures throughout the world. These measures are 
usually taken only three or four times before selection, since more than that, leads to 
less genetic gain per unit of time (Resende, 2002). Suitable models should be found 
for application in such type of data in one or several experiments simultaneously. For 
analysing multi-environment data sets with longitudinal data, the factor analytic 
multiplicative mixed model proved to be a very useful tool, mainly when applied 
together with spatial analysis. Software ASReml showed to be essential for modeling 
the complex data structure involving repeated measures, spatial dependency and 
multi-environment data sets in perennial plants. FAMM and FAMMS models can also 
be used for studies concerning QTL (quantitative trait loci) x environment interaction. 
This approach can be better than that advocated by Romagosa et al. (1996), based on 
AMMI analysis. 

Conclusions 

• Parsimonious FAMM models were selected for the two data sets: FA2 for an 
eucalyptus data set and FA1 for a tea plant data set. 

• There were great advantages of heterogeneous variance FAMM models over 
homogeneous variance FAMM models. This reveals the superiority of FAMM 
models over AMMI models for the data sets considered in this study. 

•  Heterogeneity was noted among the specific variances in individual environments, 
so factor analytic models with common specific variances for all sites were not 
suitable. 

• FAMM models provided estimates of the full correlation structure, facilitating 
practical decisions to be made. 

• FAMM models with heterogeneous variance among traits and spatial errors within 
traits were advantageous over FAMM models with variance homogeneity and non-
spatial error. This also shows the superiority of FAMM models over AMMI 
models, which do not allow for dependent or spatial errors. 

• For analysing multi-environment data sets with longitudinal data, FAMM models 
proved to be a very useful tool, mainly when applied together with spatial analysis. 

 
RESENDE, M. D. V. de; THOMPSON, R. Modelos mistos multiplicativos “fator-
analítico” na análise de múltiplos experimentos. Rev. Mat. Est., São Paulo, v.22, n.2, 
p.31-52, 2004. 

 
��RESUMO: A análise de grupos de experimentos ou de experimentos  conduzidos em 

múltiplos ambientes (MET) tem sido tradicionalmente baseada em modelos simples, os quais 
assumem homogeneidade de variância residual entre os ensaios, independência de erros 
dentro de ensaio, efeitos da interação genótipo x ambiente (g x e) como um grupo de efeitos 
aleatórios independentes. A análise de dados de grupos de experimentos por meio de 
modelos realísticos é um problema estatístico complexo que demanda extensões ao modelo 
linear misto padrão. A suposição referente a independência dos efeitos de g x e pode ser 
eliminada através do uso de modelos multiplicativos. Tais modelos foram popularizados 
como modelos aditivos para os efeitos principais e multiplicativos para os efeitos da 
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interação (AMMI) e tiveram grande aplicação. Entretanto, a análise AMMI apresenta pelo 
menos cinco grandes limitações: considera os efeitos de genótipo e de g x e como fixos; é 
adequado apenas para dados balanceados; não considera a variação espacial dentro de 
ensaios; não considera a heterogeneidade de variância entre ensaios; não considera o 
diferente número de repetições através dos ensaios. Estas características não são realísticas 
na análise de experimentos de campo. No contexto dos modelos mistos, Piepho (1998) 
apresentou um modelo misto multiplicativo fator - analítico (FAMM) com efeitos aleatórios 
de genótipo e de g x e, o qual é conceitualmente e funcionalmente melhor que o AMMI. No 
mesmo contexto, Smith et al. (2001) apresentou uma classe geral de modelos FAMM que 
abrange a abordagem de Piepho (1998) e inclui erros espaciais para cada ensaio 
(FAMMS). Esta classe geral de modelos propicia uma abordagem realística completa para 
análise de dados de múltiplos experimentos. Este trabalho lida com a aplicação dos modelos 
FAMM e FAMMS em dois grandes conjuntos de dados desbalanceados (de eucalipto e de 
erva-mate) visando enfatizar suas vantagens sobre os modelos AMMI em termos das 
suposições de homogeneidade de variâncias entre ensaios e independência de erros dentro 
de ensaios. Adicionalmente, enfatiza-se a capacidade dos modelos FAMM em propiciar 
modelos parcimoniosos. Modelos parcimoniosos foram selecionados para os dois conjuntos 
de dados. Foram constatadas grandes vantagens dos modelos FAMM com variâncias 
heterogêneas sobre modelos FAMM com variâncias homogêneas. Isto revela a 
superioridade dos modelos FAMM sobre os modelos AMMI. Grande heterogeneidade entre 
variâncias específicas entre ambientes individuais foi observada. Assim, modelos fator - 
analíticos com variâncias específicas comuns a todos os ensaios não foram adequados. Os 
modelos FAMM propiciaram estimativas da completa estrutura de correlação, facilitando a 
tomada de decisões práticas. Modelos FAMM com heterogeneidade de variâncias entre 
caracteres e erros espaciais dentro de caracteres mostraram-se vantajosos sobre modelos 
FAMM com homogeneidade de variância e erros não espaciais. Isto revela a superioridade 
de modelos FAMM sobre modelos AMMI, os quais não permitem o ajuste de erros com 
dependência espacial. Para a análise de múltiplos experimentos com dados longitudinais, os 
modelos FAMMS mostraram ser uma ferramenta muito útil. 

��PALAVRAS-CHAVE: Modelos mistos multiplicativos fator-analíticos; modelos mistos 
multiplicativos fator - analíticos espaciais;  modelos AMMI, máxima  verossimilhança 
restrita; melhor predição linear não viciada;, experimentos em múltiplos ambientes; análise 
de estabilidade. 
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