	[image: image37.jpg]defra

Department for Environment
Food and Rural Affairs



General enquiries on this form should be made to:

Defra, Science Directorate, Management Support and Finance Team,

Telephone No.
020 7238 1612
E-mail:
research.competitions@defra.gsi.gov.uk

	SID 5
	Research Project Final Report



Note

In line with the Freedom of Information Act 2000, Defra aims to place the results of its completed research projects in the public domain wherever possible. The SID 5 (Research Project Final Report) is designed to capture the information on the results and outputs of Defra-funded research in a format that is easily publishable through the Defra website.  A SID 5 must be completed for all projects.


A SID 5A form must be completed where a project is paid on a monthly basis or against quarterly invoices. No SID 5A is required where payments are made at milestone points. When a SID 5A is required, no SID 5 form will be accepted without the accompanying SID 5A.

· This form is in Word format and the boxes may be expanded or reduced, as appropriate.

ACCESS TO INFORMATION

The information collected on this form will be stored electronically and may be sent to any part of Defra, or to individual researchers or organisations outside Defra for the purposes of reviewing the project.  Defra may also disclose the information to any outside organisation acting as an agent authorised by Defra to process final research reports on its behalf.  Defra intends to publish this form on its website, unless there are strong reasons not to, which fully comply with exemptions under the Environmental Information Regulations or the Freedom of Information Act 2000.


Defra may be required to release information, including personal data and commercial information, on request under the Environmental Information Regulations or the Freedom of Information Act 2000. However, Defra will not permit any unwarranted breach of confidentiality or act in contravention of its  obligations under the Data Protection Act 1998. Defra or its appointed agents may use the name, address or other details on your form to contact you in connection with occasional customer research aimed at improving the processes through which Defra works with its contractors.

	
	Project identification


	1.
Defra Project code
	AR0909


2.
Project title

	Assessing predictive skill of models to optimise crop management and design


	3.
Contractor
organisation(s) 
	ADAS
ADAS Boxworth
Battlegate Road
Boxworth
Cambridge
CB3 8NN


	

	54.
Total Defra project costs
	£
251,648


	
	5.
Project:
start date

	01 October 2001


	
	

end date

	30 September 2004


6.
It is Defra’s intention to publish this form. 


Please confirm your agreement to do so.
YES  FORMCHECKBOX 
  NO  FORMCHECKBOX 

(a)
When preparing SID 5s contractors should bear in mind that Defra intends that they be made public. They should be written in a clear and concise manner and represent a full account of the research project which someone not closely associated with the project can follow.


Defra recognises that in a small minority of cases there may be information, such as intellectual property or commercially confidential data, used in or generated by the research project, which should not be disclosed. In these cases, such information should be detailed in a separate annex (not to be published) so that the SID 5 can be placed in the public domain. Where it is impossible to complete the Final Report without including references to any sensitive or confidential data, the information should be included and section (b) completed. NB: only in exceptional circumstances will Defra expect contractors to give a "No" answer.


In all cases, reasons for withholding information must be fully in line with exemptions under the Environmental Information Regulations or the Freedom of Information Act 2000.

(b)
If you have answered NO, please explain why the Final report should not be released into public domain

	


	
	Executive Summary


7.
The executive summary must not exceed 2 sides in total of A4 and should be understandable to the intelligent non-scientist.  It should cover the main objectives, methods and findings of the research, together with any other significant events and options for new work.

	Crop models are vital to many Defra activities: scenario testing for policy work, anticipating annual productivity for European negotiations, anticipating impacts of climate change, and supporting rational decision-making in agriculture.  Crop models have been developed widely for academic purposes, but they are not used widely by industry; their adoption is sparse and haphazard.  Defra is supporting development of models for use by industry through Arable Decision Support (ex. DESSAC).  However, in this context, the skill of crop models has not been well explored, so the project reported here was set up to assess levels of accuracy, certainty, credibility and usability of crop models.  Defra and other model users will then be better able to set the aims and contexts of model application, and crop research should also be improved.  

Two crop models were studied: Sirius, a representative simulation model of wheat, registered with the GCTE International Wheat Network, and the Broom’s Barn model of sugar beet, which is more widely used by industry.  Both models use daily weather, soil and husbandry information to predict crop growth and yield.  They could both be used to support husbandry decisions on time of sowing, soil suitability, and irrigation; Sirius is also applicable to decisions on N nutrition.  However, as yet, neither model can deal with effects of pests, weeds, diseases or lodging.  Sirius was studied in detail.  Two datasets, independent of model development, were collated, one to allow Sirius to be calibrated for differences in phenology between varieties, and the other to assess skill in predicting crop development, growth and grain yield.  Results on each aspect of model skill were as follows.

Accuracy.  Imprecision and inaccuracy are inevitable in both observation and in modelling.  However, this project found larger inaccuracies in measuring grain yield (>1 t/ha) than are normally recognised, and because these were general and unexplained, they restricted the assessment of model skills.  

Some variety-dependent parameters of Sirius, e.g. the thermal interval of leaf appearance (phyllochron), were found to be also affected by environment.  Other parameters needed special conditions for measurement, e.g. the maximum area of a leaf layer, unrestricted by nitrogen or water supplies.  The model was also shown to be sensitive to the parameter that defines the rate at which organic nitrogen mineralises in soil.  By way of contrast, the Broom’s Barn model of sugar beet, which does not address reproductive development and N nutrition, did not require calibration for varieties.  In a test in which simulations were constrained (by adjusting soil data) to best match observed yields (r=0.73), Sirius over-estimated production of above-ground biomass by ~3 t/ha (~19%) and maximum canopy size by ~3 (~60%).  It is suggested that, until genetic variation has been well characterised, calibration requirements of crop models should be minimised.  

Eventually models of crops such as wheat, which have an active breeding programme and rapid turnover of varieties, must incur costs necessary for calibration, and these must be exceeded by the value of their predictions, if the models are to be successfully taken up.  Parameterisation for genetic variation is essential for models aiming to support genetic improvement of productivity and other resource-driven traits.  In future, if genetic improvement is to occur by design e.g. to exploit genomics, it will be essential that crop models become parameterised more in terms of their genetic constitution, rather than in terms of phenotypic traits. 

Certainty.  Difficulties in assessing accuracy also affected assessments of precision.  However, Sirius was clearly sensitive to soil description.  Available soil descriptions were largely qualitative, and translation into quantitative information was so imprecise that certainty in model outcomes was markedly compromised.  This was particularly so where nitrogen or water limited growth.  Although no direct comparison was made, sensitivity of the Broom’s Barn model to soil variation was felt to be less, probably because it does not address N limitation.  Additional experiments are required to clarify whether the sensitivity of Sirius reflects a real feature of wheat crops in the UK, or is an artefact of the model.  Available soil moisture is generally understood to be adequate for wheat production, but wheat production is nevertheless not well predicted in practice.  In a test constrained to give accurate yield estimates, Sirius did not predict measured responses to fertiliser N well.  This was partly due to measurement errors.  Predictive skill of Sirius for farmers’ wheat crops in New Zealand was less than that of the Broom’s Barn model for sugar beet yields in the UK.  Uncertainty in grain yield was >1 t/ha so, where yield variation is relatively small, Sirius (in its current state) was thought to be more useful for comparing strategies for growing wheat, than in tactical management.

Credibility.  Sirius and the Broom’s Barn model took similar approaches to simulation of crop function, although Sirius included more detail of crop phenology and nitrogen nutrition.  Both models clearly involve considerably greater physiological detail than is currently used for field-by-field decision-making.  In particular, both models calculate several criteria of development and growth in daily time-steps throughout the growing season.  It is suggested that crop models might achieve greater uptake by the industry if they involved less radical changes to current decision systems, even if this entailed less finesse or more empiricism.  An empirical analysis of national wheat yields indicated that success in explaining variation in the UK might depend on addressing different processes than are currently emphasised in Sirius. 

Usability of crop models in terms of user requirements has been thoroughly assessed through development of the Arable Support System (http://www.dessac.iacr.ac.uk/public/FinalReport.pdf).  Issues tested in this project were the extent to which weather uncertainty affected end of season model predictions, and the extent to which in-season updating (with crop data) improved predictions.  In a theoretical exercise, based on an analysis of historical weather, the approximate dates when predictions were successful (i.e. predicted within +/-5% of true value) in 80% seasons, were November for final leaf number, March for anthesis date, late May for final biomass, June for grain yield, and July for maturity date (which was at the end of August).  Updating of sugar yield predictions according to satellite-sensed canopy data did not prove useful. Overall the analysis indicated ample scope for crop models to inform and improve decision making, especially if they are developed to accommodate current observations (of crop or weather) and if they indicate current certainty in their outputs. 

Conclusions and further research.  Formal quantitative modelling is an essential part of effective connection between research and practice in crop production.  However, inadequate rigour in both measurement accuracy and in assessing model performance has led to misunderstandings about the potential value of crop models in practice.  There are many potential opportunities for formal crop modelling to support practical decision-making, but initially these will involve small improvements, not large advances.  More specific conclusions are that:

· Accuracy, as well as precision, is a vital criterion by which crop data should be assessed before use in modelling and before publication in scientific journals.  Modelling is inexpensive, compared to acquisition of good data.  Datasets for model development and assessment should be highly valued, and husbanded accordingly.

· Close interaction between modellers and experimenters should be encouraged.  Experiments should more often be designed so that data are suitable for developing or testing specific aspects of a model.

· Most predictions in current crop production are quite empirical, whereas crop models are physiological.  There will be value in compromising, combining the strengths of both empiricism (simplicity) and mechanism (credibility).  Modellers should seek to avoid unnecessary complexity.  Parsimony will lead to greater clarity about uncertainties, so that decisions and research are both better informed.  

· If used in decision support systems, models should be closely tailored to their purposes, perhaps involving major modifications of existing models.  Successful model use is more likely to arise when the use defines the model, rather than when the model defines the use.  The short purview and constrained aims of many crop decisions make them amply suited to support by crop modelling, despite the evident uncertainties surrounding long-range predictions.

· Under-use of crop models constrains their thorough, independent analysis and testing.  Models should be put into use at an early stage so that their qualities can be recognised and improved more quickly.   

Whilst no formal comparison has been undertaken between the models studied here and those used within extant decision support systems designed for the UK cropping industry, it would seem likely that their skill is affected by many of the same issues as those identified here.
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8.
As a guide this report should be no longer than 20 sides of A4. This report is to provide Defra with details of the outputs of the research project for internal purposes; to meet the terms of the contract; and to allow Defra to publish details of the outputs to meet Environmental Information Regulation or Freedom of Information obligations. This short report to Defra does not preclude contractors from also seeking to publish a full, formal scientific report/paper in an appropriate scientific or other journal/publication. Indeed, Defra actively encourages such publications as part of the contract terms. The report to Defra should include:


the scientific objectives as set out in the contract;


the extent to which the objectives set out in the contract have been met;


details of methods used and the results obtained, including statistical analysis (if appropriate);


a discussion of the results and their reliability; 


the main implications of the findings; 


possible future work; and


any action resulting from the research (e.g. IP, Knowledge Transfer).

1. INTRODUCTION

1.1. Rationale and objectives

Government, management and improvement of agricultural systems all depend upon an ability to anticipate how primary production (both outputs and impacts of crops) will react to interventions.  For example (i) policy-makers seek to anticipate the effects of climate change on cropping and its productivity (ii) EU negotiators (as well as farm suppliers, crop traders and food and feed manufacturers) must anticipate national crop production, (iii) breeders must judge the value of particular genetic changes to crops, and (iv) farmers seek to anticipate levels of investment in fertilisers, agro-chemicals and the like that a crop can justify.  Good predictions should enable policy-makers, breeders and the food chain to achieve their objectives with high efficiency.  Thus good predictions of crop performance are fundamental to Defra’s aims of supporting competitively priced and safe food, through sustainable systems.

In agriculture, predictions in practice still largely depend upon simple, often empirical, associations with observations.  They are over short timescales, and are often only qualitative, being set out in words rather than equations e.g. “this bright June weather should increase crop yields”, or “this lush crop is likely to need more fungicide”.  Such predictions are used to inform and adjust practical decisions, particularly those made after sowing, such as agrochemical use.  On the other hand, the international research community, for whom explanation has been an important goal, and for whom the computer first became a working tool, has developed much more sophisticated models that amalgamate current understanding of many crop processes in quantitative terms.  The admitted purposes of crop models range from the purely academic ‘research modelling’ (e.g. Thornley & Johnson 1986) to direct application (e.g. IRRIGUIDE, Bailey 1996), however, their uptake by industry is largely restricted to irrigation management. 

On an international scale, process-based models have shown some success in accounting for the wide variation in crop performance (e.g. Porter et al 1993), especially when they have embraced environments where yield variation is large.  But yield variation due to growing conditions within the UK is small compared to global variation (crop failures are almost absent), so there is a larger challenge for physiological modelling here.  Although at present models are rarely used by the industry, formal models have recently been introduced through decision support systems (DSSs; e.g. Milne et al. 2003), on the assumption that they can do better than cruder, more empirical approaches.  However, it must be noted that DSSs have not been widely adopted internationally (Plant 1997) and simple models (e.g. French & Schultz, 1984, in Australia) have generally been preferred.  If Defra, and those concerned with cropping, were provided with guidance in choosing between crop models on the basis of factors shown to govern their predictive skill, progress in meeting Defra’s objectives would be significantly enhanced, both in the short term, and in the longer term.

The project reported here was conceived specifically to consider the main factors affecting predictive skill of crop simulation models.  ‘Skill’ was considered to embrace accuracy, precision, credibility and usability.  The project was set up to test each aspect of predictive skill of one typical model using existing independent experimental datasets addressing the main causes of variation in growth and performance of the most important crop in the UK, winter wheat.  The project then aimed to compare its findings with those for an analogous crop model that is used widely for yield prediction in the UK, on sugar beet.  

This work is particularly relevant to current research initiatives funded by Defra.  Simulation models are currently being developed to support decisions on fungicide use (e.g. the Wheat Disease Manager within the Arable Support System), fertiliser decisions (e.g. SUNDIAL), breeding objectives (e.g. Project AR0906), and climate change impacts (e.g. Semenov et al. 1996).  It will be important to recognise and avoid the sources of poor predictive performance that may compromise these activities.

1.2. Scientific Objective of this project

To quantify how different features of crop models affect their predictive skill in informing both tactical and strategic decision-making.  In particular, to indicate levels of complexity, spatial and temporal scales, levels of mechanism, and dependence on observations that maximise the skill of models in predicting crop performance.
Technical Objectives were (1) To establish an integrated dataset (IDS) which relates variation in wheat growth and yield  to variety, solar radiation, moisture availability, N nutrition, lodging, foliar disease and root disease.  (2) To calibrate and validate two models: Sirius using the IDS and the Broom’s Barn model for sugar beet, and report on their skill in predicting yield variation.  (3) To investigate, which model features affect the skill in predicting crop growth in the UK.

2. The Models

The project examined in detail the performance of a simulation model of wheat, and referenced this against the performance of a simpler model of sugar beet that was in current use. 

2.1 Simulation model (wheat)

The crop simulation model Sirius was selected from those that have been developed to predict wheat yields: Ceres (Ritchie & Otter 1985), Sucros (van Laar et al. 1992), ARCWHEAT (Porter 1993), Sirius (Jamieson et al. 1998b) and APSIM (Keating et al. 2001).  Sirius has been the wheat model most actively developed in the UK during the last decade, and addresses the crop’s physiology most comprehensively (Jamieson et al. 1998a&b; Jamieson & Semenov, 2000), particularly with respect to nitrogen effects. 

Table 1.
Data requirements and parameters of Sirius 2003, a simulation model describing growth and yield formation of wheat.  Soils are described as several layers, not necessarily distributed evenly.

	Variety 
units
	Soil
units

	Wheat type (VERNY) 
1=winter, 0=spring
	For each soil layer 

	Vernalization rate at 0ºC (VBEE)
1/days
	Depth
cm

	Response of vernalization rate to temp. (VAI)
days/oC
	Moisture at saturation (SSAT)
% v/v

	Response to daylength (SLDL)
leaf no. h‑1 d‑1
	Moisture at drained upper limit (SDUL)
% v/v

	Min. no. leaves (AMNLFNO)
leaf no. mainshoot‑1
	Moisture at lower limit – wilting point (SLL)
% v/v

	Max. no. leaves (AMXLFNO)
leaf no. mainshoot‑1
	For the whole profile

	Phyllochron (PHYLL)
ºCd leaf‑1
	Mean percolation coefficient (Kq)
day-1

	Maximum size leaf layer (AreaMax)
m2 culm-1
	Mean mineralisation (Ko)
kgmin.N  t-1org.N  ha-1 day-1

	Canopy light extinction coefficient (EXTINC)
(none)
	Organic N in 0-30 cm layer (No)
t ha‑1

	Period: sowing to emergence (TTSOWEM)
ºCd
	Minimum mineral N (minNirr)
kg ha‑1

	Period: anthesis to start of grainfill (TTANBGF)
ºCd
	Denitrification pulse (Ndp)
kg ha‑1

	Period: start to end grainfill (TTBGEG)
ºCd
	Maximum depth for rooting
m

	Period: end grain fill to maturity (TTEGFMAT)
ºCd
	

	Maximum grain protein (GenProt)
% DM
	

	Management 
	Weather (daily)

	Radiation use efficiency (RUE)
g MJ‑1
	Minimum temperature
ºC

	Sowing 
date
	Maximum temperature
ºC

	Initial moisture deficit
mm
	Total precipitation
mm d‑1

	Irrigation, dates and quantities
mm
	Tot. photosynthetic. active radiation (PAR)
MJ m‑2 d‑1

	Amount of inorganic N at sowing (TotalNi)
kg ha‑1
	Vapour pressure*, daily mean
mbar

	Ni in the Top (33%) (TopNi)
%
	Wind*
km d‑1

	Ni in the Mid (33%) soil (MidNi)
%
	CO2 concentration
ppm

	N applications, dates and quantities 
kg ha‑1
	

	*
Vapour pressure and wind are optional. In their absence potential evapo-transpiration is calculated using the Priestley-Taylor equation, instead of the Penman equation.


Development of Sirius (Jamieson et al. 1998b) was continuing throughout the period of the project (under separate funding).  The version chosen for assessment here was Sirius 2003 (Lawless et al. 2005), prepared through Defra project AR0906 to have an improved description of the leaf canopy.  Sirius 2003 calculates on a daily time-step above-ground biomass from intercepted photosynthetically active radiation (PAR).  Grain growth and yield are calculated according to rules for internal partitioning of assimilates.  Phenological development is calculated from the mainstem leaf appearance rate in thermal time and final leaf number, the latter being determined by responses to daylength and vernalisation.  PAR interception is dictated by Leaf Area Index (LAI) according to Beer’s Law, properties of the leaf canopy being summarised by an extinction coefficient (K).  LAI is developed for a series of leaf layers determined by leaf appearance and nitrogen (N) sub-models.  The N uptake and N redistribution sub-models incorporate effects of N shortages through variation in leaf area on the basis that (i) N in green tissue is constant per unit leaf area, (ii) excess N is stored in non-green tissue, and (iii) N-demand by the grain is set mainly by total N content in the crop.  Effects of water deficits are calculated through their influences on LAI development and radiation-use efficiency (RUE).  The model treats the crop as spatially amorphous; it does not describe individual plants or shoots.  The model only gives tacit recognition of sink effects (Borras et al. 2004)) through RUE; the values used for RUE are likely to reflect feedback effects of sinks on net photosynthesis (Evans & Wardlaw, 1996).  Input requirements of the model and parameters by which varieties are differentiated are listed in Table 1.  

The model has been developed using experimental data collected in widely different environments.  The model simulates the effect of variations in water and N supply on leaf area, biomass accumulation, grain growth, grain yield and N uptake and distribution.  There is no provision for damage by diseases, pests, lodging, or competition from weeds.  The model has been used by farmers in New Zealand (Armour et al. 2002) and it has been used to predict consequences of climate change in the UK (Richter & Semenov, 2005).

2.2 Reference model (sugar beet)

At the outset of the project the performance of Sirius was to have been compared with a meta-model developed by Brooks et al. (2001) and the Broom’s Barn sugar beet model.  In the event, the Broom’s Barn sugar beet model was preferred because:

· it is in current use by the industry, whereas the meta-model is not.

· it was independent of Sirius, whereas the meta-model had been developed from Sirius 2000.

The Broom’s Barn sugar beet model (Jaggard & Werker 1999; Qi et al., 2005) represents a good contrast in approach to that of Sirius because it does not address: 

· reproductive development: sugar beet remains vegetative throughout its cropping season and accumulates sugar yield from a very early stage until the harvesting date.

· effects of varying N nutrition: N requirements of sugar beet are smaller than those of wheat, so N nutrition is less crucial for sugar beet than for wheat.

· genetic effects: sugar beet is produced for only one market, so the range of variety characteristics is much smaller than for wheat.  Differences between sugar beet varieties are smaller and less well analysed than for wheat.

It is therefore significantly simpler.  However, in its approach to growth, the Broom’s Barn sugar beet model is largely similar to Sirius: it calculates daily values of foliage cover, solar radiation intercepted by the canopy and total dry matter produced, based upon potential RUE, with a proportion of dry matter growth being partitioned to sugar yield.  Differences from Sirius are that potential RUE decreases as total dry matter increases and the canopy ages, potential RUE also changes according to the proportion of daily radiation which is diffuse, and potential RUE is reduced in proportion to the ratio of actual over potential crop evapo-transpiration.  Actual evapo-transpiration may be less than potential according to the daily amounts of soil water available within the rooting zone, estimated through a simple soil water balance sub-model for a free draining soil.  Input requirements and paramaterisation of the Broom’s Barn growth model are shown in Annex 1.

3. The Datasets

It became clear during the project (as is discussed more fully later) that datasets used for model calibration and for model assessment should be as independent of each other as possible.  Thus (i) a dataset relating to phenology of wheat different varieties was obtained specifically to test some aspects of model calibration, and (ii) a separate ‘Integrated DataSet’ was collated from experiments conducted on wheat growth and yield during the 1990s for model assessment.  Both datasets were entirely independent of data used for model development.

3.1 Data for Model Calibration (wheat)

Of the 21 varieties represented in the model assessment dataset, data on leaf appearance were provided by Allan Lock (crop consultant from Bedfordshire) for 7 varieties.  These were represented by sowings over a wide range of dates, in harvest years from 1996-2000.  Varieties, with numbers of sowings (in brackets) were as follows: Avalon (3), Consort (2), Equinox (4), Mercia (17), Riband (16), Soissons (17) & Spark (15).  Four varieties had sufficient data for calibration, or re-calibration.  Sirius 2000 had previously been calibrated for all of these varieties except Spark; hence data were available for checking previous calibrations of 3 varieties: Mercia, Riband and Soissons.  The 95% confidence interval for observed final leaf number was ((0.5 leaves.
3.2 Data for Model Assessment (wheat)

The ‘Integrated DataSet’ (IDS) was collated from experiments conducted by the University of Nottingham & ADAS Centre for Research in Agronomy during the 1990s.  It comprised 205 sets of observations (each one representing a replicated husbandry treatment for which soil, weather, husbandry, growth and yield were observed through one growing season) as set out in Annex 2.  Each set of observations of crop growth and grain yield is termed a ‘treatment’ here.

Daily observations of weather variables were collated from meteorological stations on the same farm.  Except for Sutton Bonington (where direct observations were made) total solar radiation was estimated from sunshine hours by the method of Gay (1998).  Soil series names and topsoil and subsoil textures were reported, as was soil mineral N to 90 cm depth once in spring (before application of fertiliser N) (Annex 3).  In Experiment Sets 3 & 8, soil mineral N and soil moisture to 90 cm depth were also measured during summer growth.  However, direct measures of the upper and lower limits of moisture availability were not available from any site. 

There were replicated measurements of crop growth associated with all observations of grain yield.  Growth measurements were always focussed on the summer period with a frequency from weekly to three times only.  Commonly, grain yield was measured both by hand (using a quadrat to define crop area) and by combine harvester.  Comparisons of these measures show that, despite all efforts to the contrary, significant errors and biases occurred, experiment by experiment.  Examples are shown in Fig. 1.  Methods of measuring growth are the same or similar to methods for measuring yield components of wheat, thus the elements of inaccuracy not associated with the combine harvester must underlie all measurements of growth.  Errors in data used for model validation inevitably place a limit on the accuracy of any wheat model.  The validation work described here relates to hand harvested yields to maintain consistency with growth measurements. 
	Fig. 1.

Relationship between the mean grain yield of individual treatments determined by hand harvest and those determined by combine harvester for experimental sets listed in Annex 2.  

Set 1 ((), Set 4 ’97 ((), ‘98 (x), ’99 ((), Set 7 ((), Set 8 (+).  The dotted line represents parity.  
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3.3 Data for reference model (sugar beet)

Data on sugar beet growth and yield were available from Broom’s Barn for irrigated and rain-fed crops since 1969.  Between 1978 and 1991 the observations of growth and the aerial and soil environments were especially detailed and were made using only two standard seed-lots and in relation to a wide range of husbandry factors and, in two seasons, at 3 and 5 sites.  Data on commercial yields were also available from various sugar factories.  In addition, over 30 sets of experimental data were available from sites in USA, Germany and Sweden, with different varieties grown under rain-fed and irrigated conditions. 

4. Results: Model Assessment

Description of the results of the model assessments in this project will be set out in four sections: (i) calibration, (ii) sensitivity and validation, (iii) complexity and mechanism, and (iv) model updating.

4.1 Calibration

Real variation in crop performance has either genetic (G) or environmental (E) origins, or both, with genotypes and environments often interacting (GxE).  Most crop models have primarily addressed environmental variation, which is seen to be larger than genetic variation.  Simulation models commonly accommodate genetic variation through parameters regarded as being cultivar-specific.  Clearly part of the skill of a model depends on the ease and success with which genetic variation can be accommodated.  In contrast to Sirius, the Sugar Beet model tested here has no cultivar-specific parameters, so it needs no genetic calibration. 

Due to the effects of GxE, choice and determination of cultivar-specific parameters involve compromise.  Cultivar-specific parameters can only be determined objectively by experiment, and in case there are also environment effects, calibration experiments generally need to (i) include one or more reference variety for which calibration is already complete, and (ii) be conducted independently of other model assessments.  Some cultivar-specific parameters tend to be subtle, so they are expensive to measure.  Unfortunately good, detailed, segregated experimental data are seldom available.  The data available here were more directly useful for model assessment, rather than cultivar-parameter calibration.  Crops which are actively bred, such as cereals and oilseeds, have numerous cultivars and cultivars in commercial use are replaced frequently (Boyce, 1994).  Thus in practice, opportunity for thorough variety characterisation is limited.  At the outset of this project it was proposed that wheat datasets would be divided into subsets for (i) calibration and (ii) validation, but it became clear that this would confound environmental variation between subsets, and would exaggerate model skill.  We therefore acquired independent data with which to calibrate phenology parameters of Sirius. 

4.1.1 Sirius (wheat)

Sirius considers that cultivar-specific differences in wheat performance largely originate in the plant’s phenology.  Leaf emergence rate and final leaf number are the key descriptors, together controlling timing of canopy expansion, anthesis, beginning of grain-fill and canopy senescence.  In turn, these events dictate the weather experienced between different growth stages, hence the resources available for biomass formation and ultimately for determination of grain yield.

Sirius 2003 has 14 parameters deemed to be cultivar-specific (Table 1).  However only seven of these were calibrated: PHYLL, VERNY, VAI, VBEE, SLDL, AreaMax and GenProt.  There was insufficient data to support differential calibration of TTSOWEM, AMNLFNO, AMXLFNO, TTANBGF, TTEGFMAT, TTBGEG or EXTINC so the same values were used for all cultivars.  It should be noted that TTANBGF and TTBGEG have very strong effects on final grain yield so some of the significant known variation in variety performance (e.g. in the Recommended List; HGCA 2004) could be attributed to these.  VAI & VBEE (which control vernalisation) and SLDL (controlling daylength response) cannot be observed independently.  They must be optimised jointly so that the model predictions fit observed flowering dates.  AreaMax describes the maximum achievable area for a layer of the leaf canopy, which is seen to depend on leaf size and tillering capacity (Lawless et al., 2005).  

In describing the calibration process here, we use three example calibrations of the cv. Mercia, two where segregated, independent experimental data were available (phyllochron and final leaf number), and one where they were not (AreaMax).  
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Fig. 2.
Leaf number related to accumulated air temperature for wheat cv Mercia sown on four dates.  
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Fig. 3.
Relationships between emergence date and phyllochron for wheat cv. Mercia.  Phyllochrons were calculated from air temperatures (red), from estimated temperatures at the stem apex (using sub-models in Sirius; blue), and allowing empirical adjustment for sowing-date (green).


4.1.1.1 Phyllochron

Phyllochron is defined as the reciprocal of average rate of leaf appearance expressed in degree days measured 2m above ground, with base 0ºC.  Jamieson et al. (1995) proposed that the widely observed dependence of phyllochron on sowing date (Baker et al., 1980; Hay & Delécolle, 1989; Cao & Moss, 1991) is artificial, and that phyllochron is stable if it is based on temperatures of the apical meristem, rather than 2m above ground.  This theory was incorporated into Sirius (Jamieson et al., 1998) by including a physical temperature sub-model which estimates apex temperature (soil or canopy temperature, depending on position of the apex) from daily air temperatures, radiation, evapotranspiration, etc. 

Fig. 2 shows that, as expected, the rates of leaf appearance per day and per degree day (air) in the calibration dataset increased with later sowing.  However, the calibrated Sirius parameter based on estimated temperatures at the shoot apex was not constant but also increased with delayed sowing.  This may have arisen because an empirical element of the sub-model used to estimate apex temperature was derived and tested in Australia and NZ (Jamieson et al., 1995) and is not applicable to UK conditions.  This difficulty was overcome by applying an empirical sowing-date adjustment, already included in Sirius, to stabilise the phyllochron for the UK calibration data.  The low R2 value for the green points (x) in Fig. 3, and the low slope, indicate no correlation between adjusted phyllochron and emergence date; the adjusted phyllochron was 107ºCd for cv. Mercia.

4.1.1.2 Final Leaf Number

Sirius holds that final leaf number (all leaves produced on the primary axis) in wheat is dependent on vernalisation and daylength, with an indirect effect of phyllochron (since the rate of leaf emergence affects the number of leaves to emerge before floral initiation).  Thus, phyllochron must be calibrated independently of, and previous to, ‘final leaf number’.  Vernalisation and daylength parameters were then fitted simultaneously to the aggregate of their effects (final leaf number).  Of the five vernalisation parameters, VERNY is set (as 0 or 1) according to whether a cultivar shows any vernalisation requirement, AMNLFNO and AMXLFNO were set at 8 and 24 respectively, then VAI, VBEE and SLDL were fitted to the calibration data by constrained optimisation
, giving values for Mercia of 0.0012, 0.01087 and 0.53 respectively.  

Calibration of Sirius for final leaf number did not confer a capacity for accurate prediction (Figs. 4&5), and this has significant implications for simulation of further phenology, e.g. date of final (flag) leaf emergence, anthesis date, and the timing of grain-fill.  In conclusion, it seems that the overall final leaf number model is unduly complex compared to the data against which it has been calibrated here.  It seems likely that the approach could be simplified, giving probable improvements in accuracy and predictive precision. 
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	Fig. 4.
Relationship between final leaf number and germination date. Observations, years in blue, and simulation (S) years in red, after VAI, VBEE and SLDL were fitted to the observed values.
	Fig. 5.
Observed final leaf numbers (FLN) for Mercia, and those simulated by Sirius, after calibration against observed values.


4.1.1.3 Canopy Expansion

AreaMax is defined as the maximum green area of the topmost leaf layer (which includes flag leaf and ear) achievable by a particular cultivar, assuming water and nutrients never limit canopy expansion.  Maximum areas of four lower leaf layers (culm leaves) are assumed to decrease linearly from this.  Thus AreaMax sets the rate of canopy expansion in non-limiting conditions.  AreaMax was calibrated by taking one of the largest observed GAI maxima for Mercia from the IDS (Crop Development, Rosemaund, 1993, maximum GAI = 9.39), and fitting (result = 0.0075 m2 culm‑1) so that the asymptotic simulated maximum GAI was 9.39 with unlimited N supply (from simulations based on the observed data for Rosemaund 1993 but with organic N in the simulated soil increasing up to 45 t/ha, fertiliser N being set at nil).  This approach involved the assumption that this particular crop at Rosemaund was N-saturated and free of water stress.  Data available were judged unsuitable to calibrate cultivars other than Mercia.  

Table 2.
Calibration of Sirius 2003 for Mercia in the UK, compared to calibration of Sirius 2000 for Mercia in New Zealand.

	
units
	Sirius 2000 NZ1
	Sirius 2003 UK

	Wheat type (VERNY) 
1=winter, 0=spring
	1
	N/A

	Vernalization rate at 0ºC (VBEE)
1/days
	0.00230
	0.01087

	Response of vernalization rate to temp.(VAI)
days/oC
	0.0035
	0.0012

	Response to daylength (SLDL)
leaf no. h‑1 d‑1
	0.50
	0.53

	Min. no. leaves (AMNLFNO)
leaf no. mainshoot‑1
	8.0
	8.0

	Max. no. leaves (AMXLFNO)
leaf no. mainshoot‑1
	24.0
	24.0

	Phyllochron (PHYLL)
ºCd leaf‑1
	114
	107

	Maximum size final leaf layer (AreaMax)
m2 culm-1
	N/A
	0.00751

	Canopy light extinction coefficient (EXTINC)
(none)
	0.45
	0.45

	Period: sowing to emergence (TTSOWEM)
ºCd
	150
	150

	Period: anthesis to start of grainfill (TTANBGF)
ºCd
	100
	160

	Period: start to end grainfill (TTBGEG)
ºCd
	650
	650

	Period: end grain fill to maturity (TTEGFMAT)
ºCd
	200
	200

	Maximum grain protein (GenProt)
% DM
	12
	152


1 600 shoots m‑2 is assumed, so this equates to GAI 4.5 for the topmost leaf layer, which includes the ear.
2 Set according to information on UK varieties in HGCA (2004), as suggested by P Jamieson, personal communication.
4.1.2 Brooms Barn (sugar beet)

Parameters in the Brooms Barn sugar beet model are not deemed to be genotype dependent.  Despite differences in genotype, the sugar beet model was extended successfully from the UK to North Dakota, Germany and Sweden, without the need to account for differences in genotype.  Under German conditions where the soils are often loess and retain a lot of water, the model is modified so that canopy decay rate is slower, canopy aging is less pronounced and more of the dry matter is partitioned to foliage late in summer; the same modifications are used for all very water-retentive soils.  In the Red River Valley of North Dakota, USA, the model is adjusted to take into account the high soil water table through the growing season, and the 55cm row spacing.  This is 5cm wider than is conventional in England, so makes it necessary to adjust the rate of foliage cover in relation to thermal time.

4.1.3 Conclusions on calibration

Although parameters had been set for Mercia before this project, for example in the dataset attached to Sirius 2000, their origin was unclear.  Since it was possible that these were poorly calibrated, perhaps by analogy with another cultivar, we attempted to calibrate for Mercia using independent data that we could gather from the IDS, or elsewhere to recalibrate some parameters, particularly those concerned with phenology.  Results in Table 2 show some changes, but these are not necessarily substantial, since values fitted jointly can show mutual compensation. 

The calibration work in this project shows that data requirements for calibration of Sirius exceed data currently available in commercial agriculture.  The issue concerning model skill is whether appropriate additional data could be collected without undue expense.  Eight of the 14 cultivar-specific parameters in Sirius are unlikely to vary detectably amongst UK winter wheat varieties, and should not require calibration.  These are VERNY, AMNLFNO, AMXLFNO, TTSOWEM, AreaMax, EXTINC, TTANBGF and TTEGFMAT.  One parameter, GenProt, can be calibrated from data currently collected in National List (NL) and Recommended List (RL) trials, as was done here (Table 2).  This leaves just five parameters that would require additional measurements to be taken in NL & RL trials specifically for model calibration; these are VBEE, VAI, SLDL, PHYLL and TTBGEG.  About ten new varieties are introduced into these trials every year (Macleod 1993; HGCA, 2004) so, if each was tested over two years, about 25 varieties, including 5 controls, would have to be monitored annually, and these would need to be grown at contrasting latitudes and/or sowing dates.  The procedures would involve tracking leaf emergence on mainshoots, observing crop and flag leaf emergence dates and heading or flowering dates, and monitoring of grain filling on a weekly basis.  Stem extension, final leaf emergence and flowering dates are currently observed at one site on three sowings per year (J. McVittie, personal communication).  It may prove possible to monitor grain filling using surrogate measures of whole-ear moisture content (D. Kindred, personal communication).  The expense therefore appears significant, but not prohibitive, assuming that significant benefits from modelling can be shown.  

It must be recognised that, given that parameters to be calibrated must all be observed directly or indirectly through the phenotype, successful calibration will depend on the extent to which parameters have been identified with high heritability and little environmental influence.  Environmental effects are certainly known for most of the model parameters, both ‘cultivar-specific’ and other.  For example, TTSOWEM is affected by seed depth (Kirby, 1993), and RUE, EXTINC and AreaMax are affected by plant population density (Whaley et al. 2001) and RUE and EXTINC are affected by nitrogen nutrition (Gillet et al. 2001).  Also the apex temperature sub-model of Sirius, which relates to variety parameters, has yet to be adjusted for UK conditions.  In New Zealand, where Sirius has been developed for use in commercial agriculture (Armour et al. 2002), most of these difficulties have been overcome by (i) conducting more calibration experiments, (ii) varying fewer parameters between cultivars, and (iii) using local knowledge of analogies between cultivars, where a particular cultivar has not been calibrated (P.D. Jamieson, personal communication).  It would seem that a similar approach could be adopted in the UK, with acceptable additional expense, assuming the value of model use could be shown to be significant.

4.2 Sensitivity & Validation

To the extent that calibration for genetic differences is successful, it should be possible to assess the skill of a model in accounting for environmental variation.  Sirius was calibrated for cv. Mercia, and Mercia accounted for most treatments in the IDS (127 out of 205), but success in calibration was limited.  Thus, validation was attempted on only a subset of Mercia treatments, whilst an additional theoretical exercise was conducted to test the sensitivity of this model to environmental inputs.  Direct validation is presented for the sugar beet model.

4.2.1 Sirius (wheat)

The IDS provided acceptable input data for cultivar, weather, and crop management (sowing date, fertiliser nitrogen, and irrigation) but soil information was qualitative, not quantitative, as required by Sirius (Table 1, Annex 4).  Examples of soil descriptions in the IDS are as follows: alluvium and clay loam over Keuper marl; 0-30 cm coarse angular blocky structure, brown clay loam. 30-90 cm prismatic coarse peds, red brown clay.  In commercial agriculture, this reflects the normal way in which soils are described.  Procedures are available for conversion of measurements of sand-clay-silt fractions into quantitative estimates as required by Sirius (Hall et al. 1977; Nemes et al. 2001) but such schemes create imprecision and possibly inaccuracy.  In particular, qualitative descriptions are, by definition, coarse and so give a range of feasible quantitative descriptions (not associated with any model error) which blur the estimation of soil processes and may widen the range of yields, for example, predicted by the model.  

Given that this appears to be a significant mismatch between the data requirements of Sirius and the commercial data currently available it is important that the implications of imprecision in soil data are known.  If the cost of providing these input data is larger than the economic advantage of having a crop simulation model with predictive skill, then that is a serious issue for the usefulness of the model.  This issue was addressed by generating a range of 10,000 synthetic soils, constrained to represent those on which wheat is typically grown in the UK (as described in Annex 4).  These were summarised in terms of available water capacity to 1.6m depth, and Sirius was run for each of the synthetic soils for cv. Mercia with the meteorological data, management data and cultivar parameters for each of six treatments from the IDS.  As a result, a cloud, representing the uncertainty in prediction caused by uncertainty in the soil description, was produced for simulated peak GAI (maximum Green Area Index through the growing season), final above ground biomass, and grain yield, for each of six crop circumstances.  

4.2.1.1 Results

Considering the simulated results without reference to measured values, there was a positive correlation between grain yield (and biomass) and AWC, for total AWCs below a critical value ((; Fig. 6).  ( is strongly dependent on weather.  This is as expected from the principle that soil and rain can both provide moisture for crop growth, and that any crop has a maximum requirement for moisture.  In moist conditions (e.g. Sutton Bonington, 1993) ( was about 175mm, but in drier conditions (e.g. Boxworth, 1994; Fig. 6) ( was about 250mm.  Similarly, in the un-irrigated treatments at Gleadthorpe, ( was about 190mm in the dry year of 1994 and about 230mm in the even drier year of 1995, whereas for irrigated treatments, correlations between yield (and biomass) and AWC were absent, even at low AWCs.

Certainty in predicted yields and biomass is generally greater (uncertainty clouds get thinner) if fertiliser N was applied (e.g. Fig. 6).  For treatments with nil fertiliser N, almost a 2 tonne range of grain yields can be observed for a single value of AWC.  This is likely to be because, at nil fertiliser N, small perturbations in soil N availability brought about by variation in soil moisture retention have relatively large effects on crop growth.  It implies that, with nil N, simulations are only satisfactory if more is known about soil moisture retention than just AWC.  For fertilised treatments at Sutton Bonington and Boxworth (e.g. Fig. 6a) uncertainties tended to diminish at AWC>(.  However, this was not the case for the fully fertilised treatments at Gleadthorpe, especially in 1995; the uncertainty clouds were large and they did not diminish at high AWC or with irrigation.  It is therefore clear that, whilst soil knowledge is going to be more important at sites with low fertility and poor moisture retention, good soil knowledge will always be necessary, even at sites such as Boxworth (where fertiliser was used and soil AWC was 250mm) because simulations in seasons such as 1994 show the estimated AWC to be less than or equal to ( (Fig. 6a).  Summarising this analysis of model sensitivity to soil data, it appears that knowledge of AWC would be required in any practical situation, and that more detailed knowledge of soil moisture retention is probably necessary where N supplies are also limiting.  Overall, this work seems to show that subtle variations in soil result in more yield variation than has previously been recognised.  
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Fig. 6.
Uncertainty clouds indicating how simulated crop performance varies with soil moisture retention within the rooted soil at the same AWC.  Data from Boxworth in 1994 with high residual N and normal fertiliser N (a), and low residual N and nil fertiliser N (b).  Dashed horizontal and vertical lines represent observed values; dotted vertical lines mark (. 

Although we cannot make definitive statements about the modelled N responses, due to incomplete soil data, the small response in GAI and biomass to fertiliser N (e.g. compare Figs. 6a & 6b) and the consistent over-prediction of peak GAI (Fig. 7a) suggest that Sirius may not have simulated N nutrition satisfactorily.  This could arise if the rates of mineralisation of soil organic N predicted by Sirius are significantly larger than were measured (Sylvester-Bradley et al., 2001).  Sirius accommodates most variation in mineralisation through its dependence on soil organic matter levels.  However, Jamieson et al. (1998) noted significantly lower rates of mineralisation per unit of organic matter in the UK (at Rothamsted) than in New Zealand (at Lincoln) and they accounted for this by halving the value taken for Sirius’s mineralisation constant (Ko) in the UK.  Ko was halved here, but further reduction in Ko would be required to accommodate these UK data, and there was no basis on which to do this.  It is thought that changes in Ko may relate to age of soil organic matter; New Zealand soils being generally younger than UK soils.  Mineralisation rates have conventionally been explained in terms of the C:N ratios of soil organic matter, which tend to relate (positively) to soil age.  These ratios varied widely in the IDS, between 7.8 and 16.3, but they were only available for a minority of treatments.  The results here therefore raise concerns that it may not be satisfactory to consider Ko as a constant.  There has been much recent research (Defra funded and other) into characterising soil organic matter in order to explain mineralisation.  Whilst it is not feasible for Sirius to address the full complexities of this recent knowledge, it is clear that Sirius must be developed to incorporate the most dominant features of N mineralisation.  Significant improvements in Sirius’s skill in the UK are possible if the dependencies of Ko can be resolved.

Uncertainty clouds for peak GAI were larger than for biomass or grain yield, in part because GAI depends directly on N supply, and in part because peak GAI was markedly over-estimated.  The maximum peak GAI estimated for these Mercia crops was ~11.5; larger than the peak GAI (9.39) for the treatment used for its calibration.  Over-estimation of peak GAI tends to cause over-estimation of biomass and grain yield, but not in proportion; effects on growth are relatively small and come mainly through over-rapid canopy expansion in spring and delayed senescence during grain-fill.  The parameter on which peak GAI largely depends, AreaMax, was necessarily calibrated in a provisional way here (see above).  It appears that either the definition of AreaMax, hence it’s requirement for calibration, must be improved if the skill of Sirius 2003 in modelling GAI is to become satisfactory. 
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Fig. 7.
Sirius simulated values for (a) green area index, (b) final above-ground biomass and (c) grain yield of winter wheat cv. Mercia, as related to values measured for fertiliser experiments conducted in 1993 and 1994 by Stokes et al. (1998).  Open symbols are without fertiliser N and closed symbols are with fertiliser N.
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Fig. 8.
Relationships between Sirius simulated and measured responses of winter wheat to applied nitrogen for experiments reported by Stokes et al. (1998).  Circles are for responses to nitrogen applied normally and triangles are for responses with some nitrogen applications delayed (for canopy management).  Correlation coefficients (r, d.f.=31) were 0.51 for green area index (a), 0.36 for final above-ground biomass (b) and 0.73 for grain yield (c).  

Having considered the sensitivities of Sirius 2003 as far as is possible, given the uncertainties in Ko and AreaMax, it is now necessary to consider whether soil knowledge extant in commercial agriculture is satisfactory, or whether it compromises model skill.  Qualitative soil descriptions, similar to those currently available on the best-managed farms, where available for all sites described by the IDS (Annex 3).  These comprised the textures, depths and organic N contents of topsoil and subsoils, and often a Soil Series name.  Sand, silt and clay fractions were derived from textures, then AWCs and soil moisture release characteristics were estimated for each treatment using relationships derived from Hall et al. (1977; Annex 3).  An exercise was then conducted to identify the soil description that gave the best simulation of grain yield.  Soil parameters giving the best fit generally did not relate well to parameters estimated from soil descriptions (although analyses of the error associated with the estimates were not performed).  Also, although the method inherently provided reasonable agreement between simulated and measured yields (Fig. 7c), the relationships between simulated and observed canopy size (Fig. 7a) and total biomass (Fig. 7b) showed considerably larger values for simulated than observed.  Also, it appeared that the model was accounting for variation in canopy size due to nitrogen supply, but not canopy variation due to other factors (sowing dates, sites and seasons) (Fig. 7a), and this was translated through to the relationship for biomass (Fig. 7b).  Since the grain yields had been constrained to agree as closely as possible (Fig. 7c), it would appear that there were significant inaccuracies in the simulation of dry matter generation or partitioning of dry matter in these simulations.  However, the inaccuracies could also be attributed to forcing the model to fit the yields; this may have under-represented the influences of information other than on soil description.

At present, the evidence presented here indicates that neither direct measurements (by hand-harvesting), nor use of a model such as Sirius, could be expected to account reliably for yield differences between fields of less than 1-2 t/ha.  This level of precision would be adequate only for rather crude strategic decision taking, for instance when estimating the yield potential of land.  However, it is clear that supporting husbandry decisions do not necessarily require precise prediction of yields field by field, as long as predictions of responses to inputs are precise and moderately accurate.  The responses to nitrogen applications from Fig. 7 are therefore shown in Fig. 8.  Here again the results are disappointing; the responses in grain yield are apparent, in part because soil type was set to provide the best fit to yields.  However, the response in canopy size was only weakly correlated, and simulated and measured responses in biomass were not significantly related.

4.2.1.2 Conclusions on the applicability of Sirius to UK conditions

There are a number of issues that have been revealed through this project, which will require attention in Sirius.  Firstly we have shown unsatisfactory inaccuracies in the measurements of grain yield, and we must accept that these may apply also to pre-harvest crop measures, including shoot counts, total biomass, green area index, and sub-components or derivatives of these, such as radiation use efficiency (RUE).  The inaccuracies occurred despite every care being taken to eliminate them, and it appears that similar inaccuracies affect most research groups concerned with measurement of cereal yields (Bloom, 1985).  Inevitably, models must be developed from such measurements, and it is unreasonable to expect models to perform better than the measures on which they are based.  (Scientific journals almost always provide estimates of precision of crop measures; we suggest that there should be a further requirement in crop work, to demonstrate accuracy of the more important crop measures, especially yield.)  Secondly, as far as Sirius itself is concerned, the difficulties in obtaining satisfactory calibrations for UK varieties and conditions must inevitably constrain use of the model in the UK unless or until experimental effort is put into this.  Thirdly, in practice, soils are described with insufficient precision for the description of crop growth responses to environment, according to the hypotheses of nutrient and water assimilation inherent in Sirius. 

	Figs. 9.
Simulated and measured grain yields from use of Sirius 2000 in three seasons (2001 diamonds; 2002 squares; 2003 triangles) on farms in New Zealand (Jamieson, personal communication).
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Perhaps the best demonstration of potential uses of simulation models by the wheat industry comes from work in New Zealand with Sirius 2000 (Jamieson, personal communication) where there has been greater funding to transfer the model onto farms.  In this exercise, information on variety, soil and husbandry provided by farmers were interpreted and combined with local information on weather to allow simulation of farm yields over three seasons, both with and without fertiliser N (Fig. 9).  There was a wide range of yields in all three seasons, and a clear demonstration that the model is accommodating major components of yield variation.  In 2001 there was close agreement between simulated and measured yields; in 2002 and 2003 the model generally predicted larger yields than were measured, possibly because of less than complete control of diseases (e.g. take all).  Low outliers in this exercise showed discrepancies of up to 2 t/ha (simulated less than observed); these can be interpreted as showing either that the measures of grain yield were exaggerated, or that inputs (e.g. rainfall) for the simulation were not accurate.  Use of the model at a national level would clearly have led to unrealistically high yield expectations in 2002 and 2003.

Current work in Australia and New Zealand to develop Apsim (Keating et al., 2001) and Sirius (respectively) is approaching the difficulty of defining soil parameters by using in situ measurements of soil water contents when fully wetted and fully extracted (by a crop which was droughted).  This is a significant expense at the set-up stage of model adoption, but because it can be applied over many years, it can be deemed economically justifiable, especially if one assessment can be applied to a large area of similar soil.

4.2.2 Brooms Barn (sugar beet)

Similar assessments to those discussed above for Sirius have been carried out with the Brooms Barn model in relation to simulation of soil water balance.  Comparing a one layer soil water balance model with a 15-layer model, both approaches gave good predictions of sugar yield, and more detailed soil knowledge did not necessarily improve the precision of the predictions (Fig. 10).

	Fig. 10.
The relationship between the simulated and the observed sugar yield when a simple one layer and a complex 15-layer soil water balance model is used. The calculated root mean square error is 0.96 for the simple model and 1.52 for the complex soil water balance model.
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The Broom’s Barn growth model has been well validated, and is now used to forecast national sugar yield for British Sugar plc and it has been used for regional yield forecasting in USA for the past three years.  Its operation is being further refined for yield forecasting at a smaller scale and for benchmarking purposes.  

4.2.3 Conclusions on validation

Before fully objective tests can be made against the UK data made available here, further data must be found for calibration of Sirius 2003 for varieties other than Mercia, and resolutions must be found for the way qualitative soil data can be translated into quantitative soil descriptions (Gijsman et al., 2003).  In comparison with the more advanced state of validation for the Brooms Barn model, these obstacles appear to arise in part because Sirius seeks to accommodate genetic and nutritional variation for a reproductive (and thus inherently more complex) crop.  In addition, it appears that qualitative soil information, as would normally be available on farms, cannot provide acceptable levels of precision when translated into ranges of quantitative moisture retention parameters for use in predicting crop performance.  This contrasts with the situation for sugar beet, where crude soil descriptions appear adequate for prediction of sugar yield (Fig. 10).  It is possible that grain formation in wheat is more susceptible to soil moisture conditions than is sugar formation in beet, particularly given that beet is less sensitive to N additions than wheat.  (Note that soil moisture in Sirius affects both water and N availability for the simulated crop.)  But this would seem unlikely, given that wheat is grown on more moisture retentive soils than beet, and that wheat does not have a reputation for responding to summer rainfall in the UK.  It thus remains possible that Sirius is showing wheat yields to be unrealistically sensitive to soil moisture conditions.  We conclude that Sirius in its present state may be suitable to address more strategic issues (if there is reasonable confidence that the factor being studied has a dominant effect on model outcomes, and its interactions with other factors are relatively small), but the model requires further work before it could be advocated for support of decision-taking in UK agriculture.  

4.3 Complexity and mechanism

Underlying all crop modelling is a compromise between minimising complexity (parsimony) and recognising knowledge.  The compromise is examined here in relation to weather effects on UK national average wheat yields.  A new statistical (‘Window pane’) analysis of UK yields was undertaken to determine the number of effects that can be justified in accounting for seasonal variation in average UK yields.  The weather factors identified by this exercise were then compared in terms of number and physiological explanations with the weather factors used to drive crop simulation models. 

4.3.1 Windowpane analysis of UK wheat yields

Annual deviations from the linear trend in national average wheat yields between 1978 and 2002 were explored in relation to weather data for each season (September to August) obtained from Marham, Norfolk.  Note that the subsequent analysis assumes weather at this single site represented well the weather in all wheat growing areas of the UK.  This is probably satisfactory for temperatures, sunshine and wind speed, but less so for rainfall, especially summer rainfall.  

The ‘Window Pane’ data-mining approach of Coakley and Line (1978), developed by Pietraville et al. (2003), was used to calculate correlations iteratively between the deviations in yield and a series of weather parameters (minimum, maximum and mean air temperatures, rainfall, sun hours, total solar radiation, photo-thermal quotient, wind-speed, and potential soil moisture deficit).  Correlations were calculated for series of dates from 1 September to 31 July in 5 day increments, and for periods of 10, 20 and 30 days.  Deviations in grain yield were initially taken for the 25 years since 1977, when semi-dwarf varieties were grown, fungicides were widely used, and there was no sign of any short term pattern in the deviations.  The analysis was subsequently repeated for the 40-year period over which data were available.  This approach identified 12 weather variables as being individually correlated with seasonal deviations in grain yield (Table 3).  None of these explained more than 30% of the variation, but the best combinations of parameters in a multiple regression explained about 70% of variation for the 25 year period (Fig. 10) and 60% of variation for the 40-year period.  Only four or five variables were required to maximise the proportion of variation explained in either the 25‑ or the 40‑year dataset. 

Table 3.
Weather parameters from Window-Pane analysis of wheat yields which showed significant individual correlations with deviations from the linear trend in average yields from 1978-2002 for the UK (when related to weather data from Marham, Norfolk) and results of the same analysis for ADAS Boxworth (using both yields and weather data from the farm).

	Weather parameter and summary period
	Correlation coefficients (r) 

	
	
	Start 
	Duration 
	UK
	Boxworth

	a
	minimum temperature (grass)
	15 September
	30
	0.39
	0.48

	b
	photo-thermal quotient (PTQ)
	20 October
	10
	0.55
	ns  0.33

	c
	wind-speed
	25 October
	30
	-0.49
	-0.43

	d
	rainfall
	4 November
	20
	-0.51
	ns -0.31

	e
	sun
	8 January
	20
	0.24
	0.61

	f
	wind-speed
	8 January
	20
	0.47
	ns  0.09

	g
	minimum temperature (grass)
	2 April
	30
	-0.47
	-0.70

	h
	wind-speed
	2 April
	30
	-0.40
	ns  0.01

	I
	photo-thermal quotient (PTQ)
	2 April
	30
	0.53
	0.64

	j
	mean temperature
	1 May
	30
	-0.39
	-0.40

	k
	minimum temperature (air)
	21 June
	20
	-0.26
	-0.39

	l
	wind-speed
	16 July
	10
	-0.49
	ns  0.05


ns = not significant

Of course it is almost inevitable that this empirical approach will account for significant variation; and because it is empirical some factors identified might well be spurious or the relationships may be unique to the years chosen.  However, the results were largely corroborated by parallel examination of data from ADAS Boxworth (Table 3), and physiological responses could be ascribed to all parameters in the combined analysis (Fig. 11).  

	Fig. 11.
Best empirical prediction of annual deviations from the linear trend in national wheat yields for harvests in 1978-2002 based on five aspects of weather listed in Table 3: 4.35 + 1.905*b ‑ 0.326*d ‑ 0.123*j ‑ 0.081*k ‑ 0.2876*l. (r2=0.73). 
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Given the high AWC on which most UK wheat crops are grown, it was not surprising that there was no relationship with potential SMD (range at the end of July 76‑421 mm).  However, neither was there a relationship with sunshine hours or solar radiation in summer (ranges for May 256‑586 MJ/m2, and June 358‑638 MJ/m2).  The only significant and interpretable parameter involving radiation was the photo-thermal quotient (PTQ; incident radiation per unit of thermal time), but surprisingly it was the spring period rather than the summer which proved significant.  PTQ during April may work by affecting initial sink size for the period of stem extension, hence increasing the rate of grand growth (Green et al., 1983).  Five parameters from Table 1, listed as b, d, j, k and l, were included in the combined prediction, on the grounds that they were independent and explicable.  The negative influence of rainfall during November (range 8‑87 mm) was assumed to arise through reducing plant establishment.  The negative effect of mean temperatures during May (range 9‑14ºC) was taken to be concerned with prolonging the crucial phase when shoot numbers, spikelet fertility, soluble stem carbohydrates and nodal rooting are all being determined.  Low minimum temperatures in late June (range 8.6 to 14.2) were thought likely to signify reduced dark (maintenance) respiration (Pearman et al., 1981) at a time when crop biomass is reaching a maximum; this was a particular feature of 1984, the year giving the greatest positive deviation in yield.  Lastly the negative effect of wind-speed in late July (range 2.7‑5.3 m/s) was clearly concerned with lodging: widespread lodging was observed in almost all years with high mean wind-speeds. 

4.3.2 Conclusions on complexity

It is pertinent to compare this approach with national yield prediction by simulation modelling.  Clearly Sirius has been primarily intended to explain yield effects on a single field basis, rather than for the whole UK.  If it were to be modified to address yield on a national scale, Sirius must ignore aspects of yield determination, such as dates of sowing and N nutrition, that may vary but for which there are no suitable input data.  It must also ignore any interactions between varieties and seasons.  It is useful to note from the Window-pane analysis that neither moisture nor solar radiation appeared particularly crucial.  The existing function of Sirius that may be most useful in modelling national yields appears to be its capacity to model effects of temperature on phenological development.  Issues that appear to need incorporating, over-and-above the processes addressed by Sirius, are effects of autumn rainfall on crop establishment (these might be accommodated through knowledge of sowing dates), effects of temperature on respiration during late stages of growth, and effects of wind on lodging.  There may also be a need to estimate effects in May and June on potential ear fertility, hence the sink capacity for grain dry matter.

4.4 Up-dating model runs with ‘live’ observations 

Weather is a crucial input to crop models.  Given the short range of precise weather forecasts, weather uncertainty is bound to be a constraint on model skill, not only in predicting final yield but also within-season growth.  Clearly model predictions can be updated as the season progresses by (1) using additional observed weather data, or (2) using real observations of crop growth.  The first approach is examined here using Sirius, assessing how uncertainties diminish through the growing season, and the second is examined using the Broom’s Barn model.  Key issues in updating predictions are the timeliness and geographic scale of available real-time data.  For example, the Brooms Barn model uses rain data from 34 gauges scattered across the beet growing areas, but radiation, ET and temperature are obtained from one site.  The latter appear to be sufficiently representative of all areas, but the 34 sets of rainfall observations are almost certainly not.

4.4.1 Sirius (wheat)

The LARS-WG weather generator (Semenov and Barrow, 1997) was used to generate ensembles of synthetic weather.  LARS-WG takes observed weather data for a given site and, after statistical analysis of observed time-series, it produces a set of model parameters representing weather at this site.  LARS-WG can then generate stochastically, synthetic weather time-series for this site, that match distributions estimated from the original data.

Starting from 1 October, 100 years of synthetic weather were generated for Rothamsted.  For each year, yield, biomass, anthesis date, maturity date, etc. were estimated with Sirius (assuming sowing was on 10 October) giving a distribution of these outputs.  Distributions of the estimates were found to be non-normal; skewness of all distributions was found to be small because the means and medians deviated by less than 1%.  Then the means, 95% confidence intervals and 95-percentile ranges, taken from the range of predictions over 100 years of stochastically generated weather data, were calculated for each output.  
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Fig. 12.
Mean predicted model outputs (solid black), 95% confidence intervals (dashed black), 95-percentile range for 100 predictions (dashed blue), output predicted with 100% observed weather (solid red) and the acceptable tolerance-range for predicting this (dashed red) using a mix of observed and synthetic weather for Rothamsted in 1962-3.

This procedure was repeated with increments of observed weather data for the growing season 1962-3 in 10-day steps until all data for the season were ‘observed’ (Fig. 12).  In all cases, the 95-percentile ranges diminish as more data are observed.  The point at which predictions become acceptable is taken as being the time when the 95% confidence intervals (on the mean prediction) move within a presumed tolerance of the final prediction (i.e. that with 100% ‘observed’ weather) and remain within that tolerance.  Tolerances are ±5% (or 500 kg/ha, whichever is larger) for yields, ±5% for biomass and final leaf number, and ±5 days for anthesis and maturity dates.  Since the number of observed days was increased in relatively large increments (10 days), the number of observed days at which this occurred was estimated by linear interpolation between the last point to fall outside the range of tolerance, and the point following it.  For biomass, 237 days of observed data (starting 10 days before sowing) are required to achieve the required precision; for final grain yield, 261 days are required.

	Fig. 13.
Cumulative distribution functions for Rothamsted, UK showing the proportion of 30 harvest years (1961–1990; 1970 & 1983 missing) in which Sirius made acceptable predictions (as defined in the text), according to the period before maturity for which observed weather data were not available. Variables shown: final leaf number (FinLN), anthesis date (AnthD), maturity date (MatD), final above ground biomass (Biomass) and final grain yield (Yield).
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The results from this procedure are strongly dependant on the observed year chosen, and on the chosen site, so the analysis was repeated for all available observed years (Fig. 13) and at contrasting sites throughout Europe and in New Zealand (Annex 5).  It is inherent in Sirius that outputs such as final leaf number will become certain before anthesis date (Fig. 13), and anthesis date will become certain before final biomass or grain yield (Annex 5).  Probabilities of ‘correct’ prediction (within the limits defined) always increased as time progressed.  They were generally very small at the outset, indicating that seasonal weather variation is very influential on all the chosen predictions.  Probabilities increased rapidly to a low probability (25-40%) by the time all crops had emerged.  (Note that sowing date was held constant, so variation in days to maturity arises only from weather variation after sowing).  Although it is not possible to convert precisely days before maturity to dates, the approximate dates on which 80% correct prediction was achieved were November for final leaf number, March for anthesis date, late May for biomass, June for grain yield, and July for maturity date.  Most major husbandry decisions are made during April. At that time (~130 days before maturity) the probabilities of successful exact predictions of biomass and grain yield were only 50-60%, nevertheless we can still use the approach described above to compare management options by comparing predicted distributions for biomass and grain yield.  Predictions would have particular value if they successfully account for major departures from published ‘norms’ (HGCA 2004; Sylvester-Bradley et al. 1997) that have been determined empirically, and which currently form the basis for decision-making.  Further analysis would be required to test whether the largest deviations are accounted for by earlier or later weather variation.  Note that criteria for ‘successful ’ prediction set here were fairly fine (±5%) for yield, but fairly coarse for dates: ±5 days would embrace most of the observed variation in flowering date at any site, even including that caused by variation in sowing date (Sylvester-Bradley et al., 1998).  Probabilities of successful prediction would increase considerably if criteria for ‘success’ were relaxed.
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	Fig. 14a.
The mean difference between the harvested final sugar yield and the forecast final sugar yield during the growing season at Broom’s Barn for years 1976-2003.
	Fig. 14b.
Sugar yield through the growing season predicted for the whole UK in 2004, compared to sugar yield estimated from samples dug in 250 fields.


4.4.2 Brooms Barn model (sugar beet)

A similar exercise was conducted for sugar beet.  Using the Broom’s Barn model, replacement of mean weather data by real time data through the growing season showed over-estimation of farm scale sugar yield up to late August (~Jday 235), and over-estimation thereafter (Fig. 14a).  This implied that there is either a feature of the model that under-estimated early growth but over-estimated late growth or that there is a feature of the weather that has a biased effect on growth.  A comparison of sugar accumulation through a growing season for the whole UK crop showed good agreement throughout (Fig. 14b).  During summer average rainfall and average ET are just sufficient to prevent serious water stress in much of the beet crop.  When average weather is used instead of real but dry weather early in summer, then the simulations overestimate the eventual yield.  This tendency reduces as more real weather is used to replace the long-term averages.  When average weather is used instead of real wet weather in early summer, then the simulations are close to the eventual yield.  Thus the tendency is for early forecasts of yield to be overestimates.   

A test was made to check whether images of crop cover and canopy health derived from satellites could be used to improve yield predictions in the UK, replacing estimates of crop cover made by the model.  No improvement was found; the root mean square error was 0.44 for the default model compared to 0.71 for the ‘image-trained‘ model.  In general, the errors involved in using average future weather and in assuming (rather than observing) canopy sizes appeared to be acceptably small; they did not compromise the main purposes of the sugar yield model.

5. Discussion

Of the many factors associated with variation in growth and yield of wheat within the UK, the most important are generally understood by agronomists to include: variety, solar radiation and temperature (as affected by season, location and sowing date), nitrogen nutrition (as affected by previous field management and fertiliser use), moisture availability (as affected by soil type, rainfall and irrigation), lodging (as affected by plant density, nutrition and plant growth regulator use), foliar diseases (as affected by varietal resistance and fungicide use) and take-all (as affected by place in rotation, rainfall and fungicides).  In addition there are effects of pests and weeds.  Few models address all of these issues, so model use must be constrained to a purpose.  At the individual crop level, models such as Sirius (in New Zealand) and the Brooms Barn model have mainly been used to illustrate to growers the potential of their environments and likely crop responses to different managements. For the future, there is an aspiration to predict crop responses to disease, weeds and lodging, hence to underpin decision making. 

There has been much research on all the factors understood to affect yield, but the associated data are seldom ideal for model analysis.  Their use is mainly to compare the effects of treatments (varieties or husbandry effects), and it is not well recognised that yield data can (and often do) have significant inaccuracies (Fig. 1), as well as imprecision, and that these inaccuracies vary from trail to trial.  Also, although typical coefficients of variation are only 3‑5% for combine harvested yields, they are commonly 10% or greater for growth measures and for yields determined from yield components.  These levels of accuracy and precision inherently restrict skills in calibration and validation of growth models.

As exemplified by the wheat work in this project, data provision and modelling often involve separate staff, in separate organisations, with different skills.  This can cause inefficiencies particularly in resolving procedures and approaches.  For example, experimenters and modellers here held different views about soil quantification, so data were provided for wheat but were deemed unusable.  Generally, modellers lack confidence in available soil data (Gijsman et al., 2002), and experimenters have inadequate resources and techniques to take direct measures.  It was shown that wheat model predictions are sensitive to quite fine differences in soil data (Section 5.2.1.1), but minimum data requirements remain uncertain.  

The general point to make from this is that separation of theoretical and practical work has serious implications for progress in both cropping and crop science, and it threatens to undermine Defra’s objective set out for its R&D Programme on the Physiology, Nutrition and Management of Arable Crops (AR09), “to further the development of more efficient crops and more rational crop management practices, particularly in relation to applied inputs, by improving understanding of the underlying mechanisms determining crop performance”.  

Calibration.  Clearly the purpose of crop modelling dictates what emphasis should be placed on description of genotype (G).  In agronomy, although GxE interactions (E=environment) are expected in many circumstances, they are only regarded as important with disease and lodging control, rather than with variables currently addressed by models, such as soil type and fertiliser use.  In general, G is assessed in multiple variety trials, and E is assessed through multiple husbandry trials.  Practitioners then extrapolate, and with apparent success, assuming that the variety results apply across most Es, and the husbandry results apply across Gs.  So, with simulation models intended for agronomic purposes, it would seem sensible for initial applications to have little or no variety dependence, as with the Broom’s Barn model.  Calibration for varietal differences could then be introduced subsequently, after a model has become accepted in support of husbandry. 

Plant breeding, on the other hand, depends crucially on identifying and inter-relating traits that confer different outcomes on a variety: yield, quality, disease, lodging and pest resistance (HGCA, 2004).  In addition, there are extensive aspirations in the scientific community to apply a burgeoning appreciation of genetics to plant breeding and commercial crop production.  Very few current crop models incorporate knowledge derived from genetical studies.  Cultivar parameters have generally been inferred from phenotypic characteristics measured in different environments.  Success in using crop models to support genetical research and breeding depends on developing an ability to derive genetical parameters that can be resolved in terms of highly-heritable traits, QTLs or groups of genes.  Thus far, the ‘traits’ identified in crop models predominantly concern variation in phenology (progress through the life cycle).  However, phenological parameters, as in Sirius, have not been observable independently (e.g. vernalisation and photoperiod responses are fitted by joint optimisation), and it cannot be said that that this was wholly successful.  The approach could possibly be simplified without reducing accuracy and predictive precision; perhaps the way forward is to model the known effects of Vrn and Ppd genes (Law & Worland, 1997), before introducing additional complexity.

With models in their current state, perhaps the most important way that modelling can support plant breeding is through providing, in plant growth terms, a description of E in test conditions.  As an example, sugar beet modellers are currently working with plant breeders to estimate drought stress at their test sites, in the hopes that different ranking of their materials can be explained across sites and seasons.  To do this the model must integrate weather through the season, but it need not describe the physiological reaction of each genotype to drought.

Sensitivity, precision and accuracy.  In striving to represent crop knowledge simply, most modellers have adopted a deterministic (as opposed to a stochastic or probabilistic) approach.  Consequently there is an inherent tendency for crop models to imply certainty in outcomes.  Passioura (1996) developed the idea that certainty increases with complexity only to an optimum level; beyond this, uncertainty (i.e. imprecision) increases because of compounding of errors associated with additional parameters. Even with linear models, errors at successive stages in a sequence of calculations tend to multiply, so that uncertainty in an outcome can be much greater than in any of the inputs (Hakanson 1999).  Most crop processes are non-linear, so error propagation may be unpredictable. 

In the work reported here with Sirius, imprecision in crop responses (Fig. 8) and consistent over-prediction of peak GAI and biomass (Fig. 7) were major concerns.  Conclusions on soil data requirements for Sirius were rather different from the Broom’s Barn model.  In both cases soil knowledge (at least AWC) was important but, especially at sites with low fertility and poor moisture retention, it seems that Sirius is particularly sensitive to soil moisture description, more so than is appreciated in practice.  We did not identify the origins of this sensitivity, but in any case, it is clear that Sirius 2003, using known weather (weather uncertainty is discussed below), is more sensitive to soil input data than the Broom’s Barn model and, given an inability to provide detailed data, it can only account for yield effects considerably larger than 1 t/ha.  

The general conclusion here must be to guard against any presumption of undue certainty in outputs of crop models.  Users should be made aware of the likely influences of uncertainties in inputs, just as they are about precision of data from experiments.  Without this care, there is a danger of misinterpreting crop model results  leading to incorrect decisions, and possibly also to inappropriate experimentation. 

Scales for modelling. Time-scales were not examined directly here, because plans to work with the Meta-model were set aside.  At the outset of the work, we suggested that precision might be improved by adopting time-steps for model calculations of longer than a day.  But there is also an argument for using shorter than daily time steps while modelling, because the light response is curved and because energy inputs vary greatly during every day. As it is, meteorological data are provided on a daily basis, and extant crop models are designed to use these, so it would be a large task to re-parameterise models for longer time-steps.  Although, in the Window-pane analysis it was noticed that 30 day periods were more often successful as empirical predictors of yield variation than 20 or 10 day periods (Table 3), this may have arisen because met. data from just one site would represent the country’s weather better over longer periods.

Spatial scaling is also a concern for model skill.  Crop growth data come from quadrats of about 1 m2, whereas most yield data come from experimental plots of 10‑50 m2, and crop decisions are made on fields of several hectares.  This project showed that not only were there significant discrepancies in measurements of growth and yield between quadrats and plots (Fig. 1), but high sensitivity to soil variation (Fig. 6) could also imply a high requirement for soil data.  Also, from experience in trying to represent the whole sugar beet industry with the Broom’s Barn model, it was found that meteorological data are not available (in real time) in anything like enough detail to represent even a county, let alone the whole industry.  

Credibility versus simplicity.  Simple models tend towards empiricism (e.g. ‘high yields follow dry springs’) and have poor credibility for prediction if they invoke no plausible inter-linking process (e.g. ‘dry springs allow deep root development, so they increase capture of water during subsequent yield formation’).  Crop simulation models invoke a considerable degree of mechanism – many plant processes are simulated – but they must eventually depend upon empiricism at some level.  Thus the issue here is in setting a degree of mechanism (tending also to be associated with complexity) that will support belief, whilst accounting for the observed variation.  It is noteworthy that crop producers are often content with an empirical basis for decisions.  Thus, in constructing models for use by a crop industry, the requirement for mechanism would not seem to be high. 

Sirius has been designed mainly to account for variation in grain yield field-by-field and year-by-year.  Undoubtedly it involves more complexity (e.g. daily calculations of phenology and growth), yet embraces fewer factors, than agronomists would normally invoke to explain yields (see the first paragraph of this Discussion).  The task of developing models into forms that would be useful in practice would thus appear to involve 

(a) tailoring, so that models address more directly the main factors seen to be important in practice (e.g. establishment, N mineralisation, diseases, and lodging), 

(b) simplifying, so that parameters become more accessible and testable (e.g. those determining phenology), even if this also renders them more empirical, and less mechanistic in their interactions. 

The need for models to deal comprehensively with the crop’s life-cycle and physiology and to be fully integrative is perhaps over-played at present.  It is almost inevitable that skill in modelling sub-components of the crop would exceed skill in modelling the whole crop.  There would be opportunities and benefits (in terms of simplicity) from dealing with smaller facets of the crop’s life (e.g. the establishment phase, the grain filling phase) or the crop’s functions (e.g. water uptake, lodging).  Indeed, the uses of quantitative models have been for quite restricted elements of the crop system: irrigation planning (Bailey, 1996), yield forecasting in droughted environments (French & Schulz, 1984), and growth stage forecasting (Mitchell et al., 1990).  Thus, if models are to become more used in support of field-by-field decision-making it may prove more effective to aim for a few more discrete models, or sub-models, to support specific decisions, rather than one all-embracing model.  This approach could also more easily enable updating according to in-season observations (see below).  

Turning to prediction of national yields, the Window pane analysis conducted here was instructive in identifying, empirically, that (a) only a few explanatory variables need be used to account for much of the seasonal variation, (b) several key components of crop simulation models appear to be unimportant in national yield variation, and (c) several processes other than those incorporated in crop simulation models appear to be associated with national yield variation (crop establishment, ear formation, respiration during grain filling, lodging and harvest conditions).  Perhaps a quicker route to effective forecasting of national yields might be through a simpler approach: eliminate the simulation of phenology, nutrition and maybe water relations, that appear unimportant, and modify simulation of other processes, such as radiation conversion, so that respiration and sink effects are better recognised.

Updating. Weather uncertainty inevitably leads to deviations between crop observations and earlier model predictions.  However, the crop manager’s purview is commonly quite short; they are focussed on intermediary targets, say a certain shoot number or canopy size, rather than a final yield.  And they currently rely on in-season observations to guide their husbandry decisions.  There would appear to be ample scope for crop models to inform and improve these decisions, as long as they can be adapted to be (a) easily conditioned according to recent observations (of crop and weather) and (b) constrained to outputs that have useful certainty.  In Australia, long-runs of weather data have been used to augment the APSIM model so that uncertainties in yield outcomes (at least those due to weather) are explicit (http://www.apsim.info/apsim/).  

It should be noted that some observations, e.g. of phenology, can be made easily, whereas others, e.g. biomass, cannot.  Also, the accuracy of crop observations is often poor, depending particularly on the time and effort expended by the observer, and their training.  This can be a real problem for predictions at a regional or national scale.  Satellite observations might help to overcome this problem; whilst satellite estimates of foliage cover did not improve yield predictions of sugar beet here, this was largely because significant changes in foliage development were not detected in the satellite images.

6. Conclusions and recommendations:

Recommendations concerning Defra’s requirements from the project are based on specific findings of the research and also on the general experience of the project participants. 

We are unanimous in the belief that formal quantitative modelling is an essential part of effective connection between research and practice in crop production.  However, we are concerned that rigour in both measurement accuracy and in assessing model performance has been too lax, and has led to unrealistically ambitious visions of potential predictive skill.  There are many potential opportunities for formal crop modelling to support practical decision-making, but initially these unlikely deliver large advances.  More specific conclusions are that:

· Close interaction between modellers and experimenters should be encouraged.  Experiments should more often be designed so that data are suitable for developing or testing specific aspects of a model.  Protocols for minimum datasets should be specified by modellers, and their importance should be recognised when research funders are commissioning crop experimentation.  

· Accuracy, as well as precision, is a vital criterion by which crop data should be assessed before use in modelling and before publication in scientific journals.  Modelling is inexpensive, compared to acquisition of good data.  Datasets for model development and assessment should be highly valued and husbanded accordingly.

· Most predictions in commercial crop production are quite empirical, whereas crop models are physiological.  There will be value in compromising, combining the strengths of both empiricism (simplicity) and mechanism (credibility).  Modellers should seek to avoid unnecessary complexity.  Parsimony will lead to greater clarity about uncertainties, so that decisions and research are both better informed.  

· There should be more models in use, but each should be closely tailored to its purpose, perhaps involving modifications of existing models.  Successful model use is more likely to arise when the use defines the model, rather than when the model defines the use.  The short purview and constrained aims of many crop decisions make them amply suited to support by crop modelling, despite the evident uncertainties surrounding long-range predictions.

· Under-use of crop models constrains their thorough, independent analysis and testing.  Models should be put into use at an early stage so that their qualities can be recognised and improved more quickly.

Whilst no formal comparison has been undertaken between the models studied here and those used within extant decision support systems designed for the UK cropping industry, it would seem likely that their skill is affected by many of the same issues as those identified here.
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ANNEX ONE
Data requirements and parameters of the Broom’s Barn sugar beet model
	Variables
	Description
	Units
	Type/value

	Total dry matter and sugar yield 
	
	

	ΔW
W
ΔY
Y
f
S
(0
k
γ
	Daily increase in total dry matter
Total dry matter
Daily increase in sugar yield
Total sugar yield
Foliage cover per unit area of ground
Global solar radiation
Potential radiation conversion coefficient 
Sugar partitioning coefficient
Decaying coefficient of radiation conversion coefficient
	g m-2 d-1
g m-2
g m-2 d-1
g m-2
m2 m-2
MJ m-2 d-1
g MJ-1
g-1 m2
g-1 m2
	Variable
Variable
Variable
Variable
Variable
Variable
1.78
0.00148
0.00014

	Foliage cover 

	T
T0
f0
μ0
μmin0
μmin
(0
(
	Accumulated temperature > 3oC from sowing
Accumulated temperature from sowing to 50% crop emergence
Initial foliage cover when T = T0
Rate of foliage cover expansion at T = T0
Rate of foliage cover decay with T
μmin0 as affected by crop water stress
Rate of change of μ, from μ0 to μmin0
(0 as affected by crop water stress
	oC d
oC d
m2 m-2
d-1
d-1
d-1
d-1
d-1
	Variable
120
0.0015
0.06556
-0.000169
0.005866

	Rooting depth 

	D
Dsowing
l0
β0
δ
	Rooting depth as a function of T
Initial rooting depth or sowing depth
Length of epicotyl when T = T0
Rate of increase of D when T = T0
Rate of change from β0 to 0
	m
m
m
d-1
d-1
	Variable
0.02
0.0491
0.00935
0.002715

	Evapotranspiration 

	Ep
Ea
Ψsoil
ψcrop
Q
Qfc
SMD
R
 b
 a1
a2
c1
c2
	Potential crop evapotranspiration 
Actual crop evapotranspiration
Water potential in the rooting zone
Water potential of the canopy 
Water content of soil within the rooting zone
Soil texture related water content at field capacity
Soil moisture deficit
Rainfall
Soil texture related values (2-18)
Regression coefficient
Regression coefficient
Regression coefficient
Regression coefficient
	mm d-1
mm d-1
kPa
kPa
kg m-3
kg m-3
mm
mm d-1
-
kg-1m4s-1
(s d-1)-1
kg-1m5s-1 
(s d-1)-1
	Variable
Variable
Variable
-1500
variable
parameter
variable
data
parameter
0.4
0.6
378.8
8.0


ANNEX TWO
Experimental data for wheat collated in the Integrated DataSet (IDS): sources
	Set No.
	Short project title / subject
	Funder
	Funder’s project code
	Year(s)
	Sites and treatment combinations:
	Variety(ies)
	No. treat-ments
	No. sampling dates
	Final biomass range (t ha‑1)
	Yield range (t ha‑1)

	1
	Crop Development & Growth
	HGCA
	0023/1/93
	1993-6
	6 sites1 (3 in 1996)
	Mercia
	21
	
	
	+4

	2
	Crop Intelligence 
	HGCA
	1608
	1997-8
	RM, BW & SB.
	Consort
	6
	
	
	

	3
	Growth & N Recovery 
	MAFF
	NT1207
	1993-6
	ST; 6 N levels from nil to 300 kg/ha
	22
	24
	
	
	+4

	4
	Seed Rates & Sowing dates
	HGCA
	1814
	1998-9
	RM; 3 sowings (Sep., Oct., Nov.)
	43
	8
	
	
	+3

	5
	Variety breeding trends
	MAFF
	AE9044 
	1997-8
	Sutton B.
	104
	20
	
	
	+4

	6
	Varieties suited to drought
	HGCA
	0037/1/91
	1994-6
	Gleadthorpe; ± irrigation
	65
	36
	
	
	+5

	7
	Shading on growth & disease
	MAFF
	CE0512
	1994-6
	Terrington; shade timings
	Slejpner
	18
	
	
	-1½

	8
	Canopy Management with N
	LINK / HGCA
	CSA2164 / 0070/1/91
	1993-5
	BW & SB; 2 sowings x 2 soil N levels x 3 fertiliser N treats. incl. nil
	Mercia
	72
	
	
	+4

	
	
	
	
	
	
	
	205
	
	
	


1
Boxworth, Rosemaund, Gleadthorpe, Harper Adams, Sutton B. & Edinburgh.  Sutton B. is the Sutton Bonington Campus of the University of Nottingham, near Loughborough, Leicestershire.
2
Beaver in 1993-4; Riband in 1995-6.
3
Spark, Soissons, Haven, Cadenza.
4
Maris Widgeon, Maris Huntsman, Avalon, Norman, Galahad, Riband, Haven, Briagdier, Rialto, Drake.
5
Haven, Maris Huntsman, Mercia, Rialto, Riband, Soissons.
ANNEX THREE
Example soil descriptions provided in the integrated dataset for model validation of Sirius 2003.
	Observations
	
	Calculated estimates

	Season
	Site
	Soil series
	texture
	OM
	
	No
	
	bulk density
	
	SSAT
	
	SDUL
	
	SLL
	AWC

	
	
	
	top
	sub
	top
	
	top
	
	top
	sub
	
	top
	sub
	
	top
	sub
	
	top
	sub
	total*

	
	
	
	code
	code
	% w/w
	
	t ha‑1
	
	g l‑1
	g l‑1
	
	
	
	
	
	
	
	
	
	mm

	1992-3
	Boxworth
	Hanslope
	CL
	C
	3.4
	
	8.0
	
	1.27
	1.25
	
	52%
	53%
	
	49%
	50%
	
	31%
	35%
	249

	
	Edinburgh
	NA
	SL
	SCL
	3.1
	
	7.2
	
	1.51
	1.38
	
	43%
	48%
	
	40%
	45%
	
	23%
	30%
	246

	
	Gleadthorpe
	Cuckney
	SL
	S
	2.3
	
	5.4
	
	1.51
	1.72
	
	43%
	35%
	
	40%
	32%
	
	23%
	27%
	116

	
	Harper Adams
	Newport
	LS
	S
	3.3
	
	8.2
	
	1.62
	1.72
	
	39%
	35%
	
	36%
	32%
	
	24%
	27%
	101

	
	Rosemaund
	Bromyard
	ZCL
	ZCL
	2.8
	
	5.6
	
	1.25
	1.30
	
	53%
	51%
	
	50%
	48%
	
	32%
	33%
	249

	
	Sutton Bonington
	NA
	SCL
	LS
	NA
	
	7.2
	
	1.33
	1.67
	
	50%
	37%
	
	47%
	34%
	
	30%
	25%
	168

	1993-4
	Boxworth
	Hanslope
	CL
	C
	3.7
	
	8.4
	
	1.27
	1.25
	
	52%
	53%
	
	49%
	50%
	
	31%
	35%
	249

	
	Edinburgh
	NA
	SL
	SCL
	3.1
	
	7.2
	
	1.51
	1.38
	
	43%
	48%
	
	40%
	45%
	
	23%
	30%
	246

	
	Gleadthorpe
	Cuckney
	LS
	LS
	2.2
	
	5.5
	
	1.62
	1.67
	
	39%
	37%
	
	36%
	34%
	
	24%
	25%
	153

	
	Harper Adams
	Newport
	SL
	ZL
	2.3
	
	7.7
	
	1.51
	1.46
	
	43%
	45%
	
	40%
	42%
	
	23%
	21%
	324

	
	Rosemaund
	Bromyard
	SCL
	ZCL
	3.4
	
	5.6
	
	1.33
	1.30
	
	50%
	51%
	
	47%
	48%
	
	30%
	33%
	246

	
	Sutton Bonington
	NA
	CL
	SCL
	NA
	
	10.7
	
	1.27
	1.38
	
	52%
	48%
	
	49%
	45%
	
	31%
	30%
	249

	1994-5
	Boxworth
	Hanslope
	CL
	C
	3.1
	
	9.9
	
	1.27
	1.25
	
	52%
	53%
	
	49%
	50%
	
	31%
	35%
	249

	
	Edinburgh
	NA
	SL
	SC
	NA
	
	9.1
	
	1.51
	1.72
	
	43%
	35%
	
	40%
	32%
	
	23%
	27%
	116

	
	Gleadthorpe
	Cuckney
	LS
	LS
	2.0
	
	5.0
	
	1.62
	1.67
	
	39%
	37%
	
	36%
	34%
	
	24%
	25%
	153

	
	Harper Adams
	NA
	SL
	ZL
	3.4
	
	5.4
	
	1.51
	1.46
	
	43%
	45%
	
	40%
	42%
	
	23%
	21%
	324

	
	Rosemaund
	Bromyard
	ZCL
	ZCL
	2.8
	
	4.1
	
	1.25
	1.30
	
	53%
	51%
	
	50%
	48%
	
	32%
	33%
	249

	
	Sutton Bonington
	NA
	CL
	C
	NA
	
	11.4
	
	1.27
	1.25
	
	52%
	53%
	
	49%
	50%
	
	31%
	35%
	249

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


*
to 1.6m depth
ANNEX FOUR
Synthetic Soils
Sirius can accept a soil data for multiple layers but the analysis of sensitivity to soil description was restricted to two homogenous soil layers: topsoil (arbitrarily defined as having a depth of 0.3m) and subsoil (0.3m – 1.6m).  The three soil moisture retention parameters (Table 1) were defined as SATTop, ULTop, LLTop for the topsoil, and SATSub, ULSub, LLSub for the subsoil.  Regression equations from Appendix 1 of Hall et al. (1977) were used to determine LL and UL from % clay (C), % silt (Z), % organic C (X) and soil bulk density (BD, g/cm3) for both the topsoil and subsoil.  SAT was calculated directly from bulk density.  A realistic set of soil moisture retention parameters was derived from these regressions by constraining the soil composition values and by introducing relationships between them.
Since saturation occurs when all the void spaces in the soil are completely filled with water:
[image: image19.wmf]1100

1100

Top

Top

P

Sub

Sub

P

BD

SAT

BD

SAT

r

r

æö

=-´

ç÷

èø

æö

=-´

ç÷

èø


2.1
Where the density of soil particles, ρp = 2.65 g/cm3.  From Hall et al. (1977), Appendix 1:
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2.2
Note that XSub = 0.
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2.3
Total available water capacity (TAWC) was constrained within the observable range of available water capacities in UK soils:
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2.4
For available water capacities of individual soil layers to be realistic (Klocke and Hergert, 1990):
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2.5
Bulk densities were constrained between 1.0 and 1.9 to ensure that the mineral soils were aerobic, and to ensure that the parameters are logically consistent:
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2.6
In the UK, normal mineral soils lie within the ranges (Addiscott, 2004):
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2.7
Since the clay, silt, sand and organic C contents must add to 100%
[image: image26.wmf]0100,,

jjj

CXZjTopSub

£++£"=


2.8
Since organic C has a strong effect on the bulk density, a regression equation from (Sorokina and Thomas, 1996) was used to set the topsoil bulk density given XTop:
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2.9
Also, aregression from Six et al. (2002) was used to constrain the range of allowable XTop given CTop.  
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2.10
Finally, clay in subsoils was constrained to be greater than that of the corresponding topsoil (Addiscott, 2004).
Since BDTop is given directly by XTop, and XSub = 0, there were 6 soil parameters used to generate the moisture retention parameters.  Both sets of parameters were then tested to see if they meet all the specified constraints and a 6-dimensional Sobol sequence (Sobol, 1967;

 ADDIN EN.CITE <EndNote><Cite><Author>Press</Author><Year>1988</Year><RecNum>59</RecNum><MDL><REFERENCE_TYPE>1</REFERENCE_TYPE><AUTHORS><AUTHOR>Press, William H</AUTHOR><AUTHOR>Teukolsky, Saul A</AUTHOR><AUTHOR>Vetterling William T</AUTHOR><AUTHOR>Flannery Brian P</AUTHOR></AUTHORS><YEAR>1988</YEAR><TITLE>Numerical Recipies in C++</TITLE><PUBLISHER>Cambridge University Press</PUBLISHER><EDITION>Second</EDITION></MDL></Cite></EndNote> Press et al., 1988) was used to explore the constrained soil composition space.  The sequence generates sets of quasi-random numbers (S1,…S6) between 0 and 1 which progressively fill a 6-dimensional volume.  Where appropriate, direct composition constraints were applied:
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2.11
BDTop was then calculated using equation 2.9, the soil moisture retention parameters were calculated using equations at 2.2, and the validity of above constraints 2.4 – 2.10 were tested.  10,000 synthetic soils satisfying the constraints were generated. 
ANNEX FIVE
Cumulative distribution functions for periods leading up to maturity in which Sirius made acceptable predictions (as defined in the text), of various model outputs, for Tylstrup in north Denmark, Debrecen in east Hungary, Toulouse in southern France, Lincoln in New Zealand (South Island), Munich in south Germany, and Rothamsted in the UK. 
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	[image: image36.emf]Tylstrup Debrecen Toulouse Lincoln Munich Rothamsted Tylstrup Debrecen Toulouse Lincoln Munich Rothamsted




�











� The 3-dimensional parameter space (defined by VAI, VBEE and SLDL) was explored using a Sobol sequence of quasi-random numbers (avoiding random clustering) between zero and unity.  VAI and VBEE were varied between 0.001 and 0.01, and SLDL between 0 and 0.9.  The sum of the squares of the difference between Sirius estimated final leaf number and experimentally measured values from 15 Mercia experiments was taken as the defined objective function.  Constrained optimisation of the objective function was carried out with 1,000 initial function evaluations, evenly spread over the parameter space.  The parameter constraints were magnified to explore the sub-space with the lowest function value in more detail.  1,000 more function evaluations were carried out within this sub-space and so on, until the difference between the minimum found in successive iterations achieved an acceptable level of tolerance (for Mercia, 4 iterations were required).  





�Is “21” not a bit too small for the maximum TAWC for wheat crops in UK? If “21” is assumed, it will not be possible to have TAWC to reach 450 mm as specified in equation 2.4.
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