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Summary

 

•

 

Arabidopsis halleri

 

 is a well-known zinc (Zn) hyperaccumulator, but its status as
a cadmium (Cd) hyperaccumulator is less certain. Here, we investigated whether 

 

A.
halleri

 

 can hyperaccumulate Cd and whether Cd is transported via the Zn pathway.
• Growth and Cd and Zn uptake were determined in hydroponic experiments with
different Cd and Zn concentrations. Short-term uptake and root-to-shoot transport
were measured with radioactive 

 

109

 

Cd and 

 

65

 

Zn labelling.
•

 

A. halleri

 

 accumulated 

 

>

 

 1000 mg Cd kg

 

−

 

1

 

 in shoot dry weight at external Cd
concentrations 

 

≥

 

 5 µ

 

M

 

, but the short-term uptake rate of 

 

109

 

Cd was much lower
than that of 

 

65

 

Zn. Zinc inhibited short-term 

 

109

 

Cd uptake kinetics and root-to-shoot
translocation, as well as long-term Cd accumulation in shoots. Uptake of 

 

109

 

Cd and

 

65

 

Zn were up-regulated, respectively, by low iron (Fe) or Zn status. 

 

A. halleri

 

 was
much less tolerant to Cd than to Zn.
• We conclude that 

 

A. halleri

 

 is able to hyperaccumulate Cd partly, at least, through
the Zn pathway, but the mechanisms responsible for cellular Zn tolerance cannot
detoxify Cd effectively.
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Introduction

 

Plant species that hyperaccumulate heavy metals or metalloids
have attracted much attention over the last decade, because
the metal accumulation trait has the potential to be exploited
in phytoremediation of contaminated soils (Salt 

 

et al

 

., 1998;
McGrath & Zhao, 2003). Furthermore, hyperaccumulator
species serve as an interesting model for research into the
mechanisms of metal uptake and homeostasis (Clemens 

 

et al

 

.,
2002; Assunção 

 

et al

 

., 2003b).

 

Arabidopsis halleri

 

 is a Zn hyperaccumulator, occurring
mainly in the Galmei (zinc) floras of central and western
Europe (Ernst, 1974). In hydroponic experiments, 

 

A. halleri

 

was able to accumulate 32 000 mg Zn kg

 

−

 

1

 

 in shoot dry
weight (DW) without suffering from phytotoxicity (Zhao

 

et al

 

., 2000). Studies using both field surveys (Bert 

 

et al

 

.,
2002) and experiments under standardized conditions (Bert

 

et al

 

., 2000; Macnair, 2002) have shown that the ability to
hyperaccumulate Zn is a species-wide constitutive trait in 

 

A.
halleri

 

. Macnair 

 

et al

 

. (1999) performed a genetic analysis on
crosses between 

 

A. halleri

 

 and the nonhyperaccumulating,
nontolerant species 

 

Arabidopsis lyrata

 

 spp. 

 

petraea

 

. Their results
suggest that Zn tolerance and accumulation are genetically
independent, with tolerance possibly being controlled by a
single major gene.

Because of the close relatedness of 

 

A. halleri

 

 to 

 

Arabidopsis
thaliana

 

, 

 

A. thaliana

 

 GeneChips have recently been used to
identify genes that are more active in the root and shoot
tissues of 

 

A. halleri

 

 (Becher 

 

et al

 

., 2004; Weber 

 

et al

 

., 2004).
These studies have shown constitutively high expression of a
number of genes that are possibly involved in metal uptake
and detoxification in 

 

A. halleri

 

. Cellular detoxification of Zn
appears to involve enhanced nicotianamine synthesis (Becher

 

et al

 

., 2004; Weber 

 

et al

 

., 2004), as well as a high expression
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of 

 

AhMTP1

 

 (a member of the CDF (cation diffusion
facilitators) family) that encodes a vacuolar metal transporter
(Dräger 

 

et al

 

., 2004). A number of putative metal transporter
genes, including 

 

AhZIP9

 

 and 

 

AhNramp3

 

 in roots, and 

 

AhZIP6

 

and 

 

AhHMA3

 

 in shoots, are also highly expressed (Becher

 

et al

 

., 2004; Weber 

 

et al

 

., 2004). The encoded transporters
may mediate Zn transport across plasma or tonoplast
membranes, although their exact functions have not been
established.

The Zn hyperaccumulators 

 

Thlaspi caerulescens

 

 and 

 

Sedum
alfredii

 

 are also able to hyperaccumulate Cd (Baker 

 

et al

 

.,
1994; Yang 

 

et al

 

., 2004), suggesting that Zn and Cd hyperac-
cumulation may share a similar pathway. However, recent studies
have shown a large variation among different 

 

T. caerulescens

 

populations in the ratio of Cd to Zn concentrations in the
shoots (Lombi 

 

et al

 

., 2000; Roosens 

 

et al

 

., 2003). The status
of 

 

A. halleri

 

 as a Cd hyperaccumulator is less certain. Bert

 

et al

 

. (2002) surveyed 33 populations of 

 

A. halleri

 

 in
Germany, Czech Republic, Slovakia and Poland and found
only two containing 

 

>

 

 100 mg Cd kg

 

−

 

1

 

 DW in the aerial
parts, the threshold value commonly used to define Cd hyper-
accumulation in the natural habitat (Baker 

 

et al

 

., 2000).
Wenzel & Jockwer (1999) showed that 

 

A. halleri

 

 growing on
the metalliferous sites in the Austrian Alps contained less than
100 mg Cd kg

 

−

 

1

 

 DW, whereas Dahmani-Muller 

 

et al

 

. (2000)
reported up to 280 mg Cd kg

 

−

 

1

 

 DW in 

 

A. halleri

 

 shoots
growing on a heavily contaminated site near a smelter. The
relatively few cases of shoot Cd exceeding 100 mg Cd kg

 

−

 

1

 

DW observed in field samples may be the result of a low
bioavailability of Cd in soil rather than a low ability for
accumulation.

Although significant progress has been made in the
understanding of the physiology (Bert 

 

et al

 

., 2000; Zhao

 

et al

 

., 2000), genetics (Macnair 

 

et al

 

., 1999; Macnair, 2002;
Bert 

 

et al

 

., 2003) and molecular mechanisms (Becher 

 

et al

 

.,
2004; Dräger 

 

et al

 

., 2004; Weber 

 

et al

 

., 2004) of Zn hyper-
accumulation and detoxification in 

 

A. halleri

 

, the physiological
aspects of Cd accumulation by this species are still poorly
understood. The objectives of our study were to investigate
Cd accumulation and tolerance in 

 

A. halleri

 

, and the com-
petitive effect of Zn on Cd uptake and root-to-shoot trans-
location. We focused on the comparison between Cd and Zn,
because of the chemical similarity between the two metals and
the fact that the Zn hyperaccumulation trait in this plant
species is better understood.

 

Materials and Methods

 

Plant culture

 

Seeds of 

 

Arabidopsis halleri

 

 (L) O’Kane & Al-Shehbaz (Brassicaceae;
formerly known as 

 

Cardaminopsis halleri

 

 (L.) Hayek) from a
metallicolous population in Blankenrode, Germany, were sown
in a plastic seed tray filled with a general-purpose compost. Four

weeks after germination, seedlings were transferred to hydroponic
culture after roots had been washed carefully with deionized
water. The basal nutrient solution contained 1 m

 

M

 

 Ca(NO

 

3

 

)

 

2

 

,
0.5 m

 

M

 

 MgSO

 

4

 

, 0.25 m

 

M

 

 K

 

2

 

HPO

 

4

 

, 50 µ

 

M

 

 KCl, 10 µ

 

M

 

H

 

3

 

BO

 

3

 

, 1.8 µ

 

M

 

 MnSO

 

4

 

, 0.2 µ

 

M

 

 Na

 

2

 

MoO

 

4

 

, 0.31 µM CuSO4,
0.5 µM NiSO4, 50 µM Fe(III)-EDDHA (ethylenediamine-
di(o-hydroxyphenylacetic acid)), and 1 µM ZnSO4. Solution
pH was maintained at around 6.0 with 2 mM MES (2-
morpholinoethanesulphonic acid, 50% as potassium salt)
(Zhao et al., 2000). All experiments were carried out in a
controlled environment growth room with the following
conditions: 12 h photo period with a light intensity of
350 µmol photons m−2 s−1 supplied by sodium vapour lamps;
20 : 16°C day : night temperature; and 70 : 80% day : night
relative humidity.

Accumulation of Cd and Zn

Seedlings were transferred to 1 l plastic vessels (two seedlings
per vessel) and grown for 1 wk with the basal nutrient
solution. Plants were then divided into two groups of 20
vessels for two experiments. In experiment 1, plants were
exposed to 0, 5, 15, 50 or 100 µM Cd (as CdSO4) and a
constant 5 µM Zn (as ZnSO4). In experiment 2, plants were
treated with 1, 5, 50 or 500 µM Zn and a constant 5 µM Cd,
plus an additional treatment of 5 µM Zn and 0 µM Cd as
the control. Each treatment was replicated in four vessels.
Nutrient solutions were aerated continuously and renewed
once every week. Plants were harvested after 3 wk in the
treatments. Shoots and roots were separated, washed with
deionized water, blotted dry with tissue paper, and dried at
60°C for 48 h. Dry weights of shoots and roots were recorded.
Dried plant materials were ground using a ball mill. Plant
materials were digested with HNO3/HClO4 (87/13 v/v) and
the total concentrations of Zn and Cd were determined using
inductively coupled plasma atomic emission spectroscopy
(ICP-AES; Fisons ARL Accuris, Ecublens, Switzerland).

Effect of Zn on 109Cd uptake kinetics

The kinetics of 109Cd uptake were determined using intact
seedlings of A. halleri according to the method described by
Lasat et al. (1996) and Lombi et al. (2001). Four- week-old
seedlings were transferred to 55 ml plastic pots (one seedling
per pot) and grown for 10 d in basal nutrient solution, which
was renewed once every 2 d. The nutrient solution was then
replaced with a pretreatment solution containing 2 mM MES
(pH adjusted to 6.0 with KOH) and 0.5 mM CaCl2. After
24 h pretreatment, the seedlings were exposed to seven
concentrations of CdSO4 (0.2–10 µM) labelled with 2 kBq
109Cd per 55 ml pot, with or without 10 µM ZnSO4. The
uptake solutions also contained 0.5 mM CaCl2 and 2 mM

MES (pH 6.0), and were aerated vigorously during the
experiment. Each concentration was replicated five times.
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After 20 min uptake, the seedlings were quickly rinsed with
the unlabelled pretreatment solution, and then transferred
to pots containing an ice-cold desorption solution (2 mM

MES, 5 mM CaCl2, and 50 µM CdSO4) for 15 min. After
desorption, the seedlings were separated into roots and shoots,
blotted dry and weighed. The radioactivities of 109Cd in the
samples were assayed by gamma spectroscopy (Wallac Wizard
1470, PerkinElmer Life and Analytical Sciences, Boston, MA,
USA). Radioactivities were found to be negligible in the
shoots.

Effect of plant Zn and Fe status on 109Cd and 
65Zn uptake

Four-week-old seedlings were transferred to 55 ml plastic pots
(one seedling per pot) and precultured with basal nutrient
solution for 10 d. Plants were divided into three groups of
six pots, each receiving three different pretreatments: full
nutrients (control), Zn supply withheld (–Zn) and Fe supply
withheld (–Fe). Plants were grown in the pretreatments for
7 d. Before the 109Cd and 65Zn uptake assay, roots were rinsed
briefly with a solution containing 0.5 mM CaCl2 and 2 mM

MES (pH 6.0). The uptake solution contained 4 µM CdSO4
and 4 µM ZnSO4, labelled with 2 kBq 109Cd and 4 kBq 65Zn,
as well as 0.5 mM CaCl2 and 2 mM MES (pH 6.0). After
20 min, the roots were rinsed and desorbed as described
above, except that the desorption solution also contained
50 µM ZnSO4. Radioactivities of 109Cd and 65Zn in the roots
were determined by gamma counting.

Effect of Zn on the translocation of 109Cd from roots 
to shoots

Four-week-old seedlings were transferred to 55 ml plastic pots
(one seedling in each pot) and precultured for 1 wk. Plants in
35 pots were then exposed to 1 µM CdSO4 labelled with
2 kBq 109Cd per pot for 24 h, in the basal nutrient solution.
At the end of the 109Cd labelling period, roots were rinsed
with the basal nutrient solution for 10 min to remove 109Cd
from the root surfaces. Five replicates were harvested. The
remaining 30 pots were divided into two groups: one supplied
with 1 µM ZnSO4 and the other 10 µM ZnSO4, both in the
basal nutrient solution. Five replicates per treatment were
harvested 1, 2 and 4 d after the 109Cd labelling period. The
radioactivities of 109Cd in roots and shoots were determined.

Effect of abscisic acid treatment on the translocation of 
109Cd and 65Zn from roots to shoots

Thirty seedlings were transferred to 55 ml pots (one plant per
pot). After preculture for 1 wk, half of the plants were treated
with 100 µM abscisic acid (ABA) for 1 d (Salt et al., 1995).
ABA was dissolved in methanol, and 1 ml of this solution was
added to 54 ml basal nutrient solution. The control treatment

received 1 ml methanol only. After 1 d, plant roots were
rinsed for 10 min with the basal nutrient solution, and
transferred to a nutrient solution labelled with 1 kBq 109Cd
and 2 kBq 65Zn per pot. The concentrations of both CdSO4
and ZnSO4 were 1 µM. After 24 h, roots were rinsed with the
basal nutrient solution for 10 min, and the nutrient solution
was replaced with fresh solution without Zn and Cd. Five
replicates per treatment were harvested immediately after
radioactive labelling, or 2 and 3 d later. Plant roots and shoots
were separated, and the radioactivities of 109Cd and 65Zn were
determined.

Statistical analysis

Analysis of variance (ANOVA) was performed on all data sets.
Where necessary, data were transformed logarithmically
before ANOVA to stabilize the variance. Tukey’s HSD test was
used to compare treatment means. The relationship between
shoot biomass and shoot Cd concentration in the experiments
1 and 2 were fitted with a logistic curve to estimate the Cd
concentration that caused 10 and 50% reduction in shoot
biomass. The software Genstat® (VSN International, Hemel
Hempstead, UK) was used.

The concentrations of free Cd2+ and Zn2+ in the nutrient
or uptake solutions were computed using GEOCHEM-PC
(Parker et al., 1995). In the absence of Zn in the uptake
solution, the 109Cd uptake kinetics showed a saturable
(hyperbolic) component and a nonsaturable linear component.
Therefore, the data were fitted to a model that includes both
the Michaelis-Menten model and a linear component (Eqn
1), as described by Lasat et al. (1996):

V = (VmaxC /(Km + C )) + αC Eqn 1

(C, concentration of free Cd2+; Vmax and Km, Michaelis-
Menten parameters; α, slope of the linear component). This
approach was used by Lasat et al. (1996) and Lombi et al.
(2001) to estimate Vmax and Km of Zn2+ or Cd2+ uptake in the
hyperaccumulator T. caerulescens. Curve-fitting was performed
with the software SIGMAPLOT (Systat Software, Inc., Point
Richmond, CA, USA).

Results

Accumulation of Cd and Zn and tolerance to Cd

The concentrations of free Cd2+ and Zn2+ in the nutrient
solutions in experiments 1 and 2 are shown in Table 1.
Precipitation of cadmium phosphate was predicted for the
treatments 3–5 in experiment 1, and of zinc phosphate
in treatment 5 in experiment 2, even though phosphate
concentration in the nutrient solution was lowered to a
quarter of that in the Hoagland solution. This explains why
the concentrations of free Cd2+ and free Zn2+ did not increase
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proportionally with the total concentrations in the nutrient
solution. The speciation of Fe in the nutrient solution was not
affected by Cd or Zn treatments (data not shown).

In experiment 1, shoot growth was more sensitive to Cd
exposure than root growth (Fig. 1a); the lowest Cd con-
centration (5 µM) decreased shoot growth by 45% (P < 0.05),
whereas 5–50 µM Cd had no significant effect on root
biomass. At the highest Cd concentration (100 µM, 10.5 µM

free Cd2+), both shoot and root growth were inhibited by 82
and 74%, respectively (P < 0.01 compared with the control).
Leaves were chlorotic in the treatments with 15 µM or more
Cd. In experiment 2 with the presence of 5 µM Cd, increasing
Zn concentration from 1 to 5–500 µM increased shoot
growth of A. halleri significantly (P < 0.05), whereas root
biomass was increased significantly (P < 0.05) by the 50 and
500 µM Zn treatments (Fig. 1b).

In experiment 1, shoot Cd concentration reached
> 1000 mg kg−1 DW in the 5 µM Cd treatment (Fig. 2a).
Shoot Cd concentration showed a pattern of saturation in
relation to solution Cd concentration, reaching a maximum
of approximately 4000 mg kg−1 DW in the 50 µM Cd
treatment (Fig. 2a). This pattern is not surprising, considering

that the concentration of free Cd2+ increased only slightly in
the last three treatments (Table 1). In contrast, root Cd con-
centration increased with increasing Cd concentration in the
solution, reaching 12 800 mg kg−1 DW in the 100 µM Cd
treatment (Fig. 2a). The concentrations of Zn in roots and
shoots were similar. Root Zn concentration was not signifi-
cantly affected by the Cd treatments, whereas shoot Zn
concentration was decreased significantly (P < 0.05 based on
log-transformed data) only by the highest Cd treatment
(Fig. 2b), in which the plants were suffering from severe
toxicity of Cd.

Table 1 Concentrations of total and free cadmium (Cd) and zinc (Zn) 
in the nutrient solutions in experiments 1 and 2

Experiment Treatment

Cd (µM) Zn (µM)

Total Free Total Free

1 1 0 0.0 5 4.6
2 5 4.6 5 4.6
3 15 8.9 5 4.6
4 50 9.3 5 4.6
5 100 10.5 5 4.6

2 1 0 0.0 5 4.6
2 5 4.6 1 0.9
3 5 4.6 5 4.6
4 5 4.6 50 45.7
5 5 4.4 500 195.0

Free metal concentrations were computed using GEOCHEM-PC.

Fig. 1 Effect of solution cadmium (Cd) (a) and 
zinc (Zn) (b) on shoot and root biomass of 
Arabidopsis halleri. Biomass is expressed as 
a percentage of the no Cd control. The 
concentration of Zn was 5 µM in experiment 1 
(a), and the concentration of Cd was 5 µM in 
experiment 2 (b). Bars represent ± SE (n = 4).

Fig. 2 Effect of solution cadmium (Cd) on the concentrations of Cd 
(a) and zinc (Zn) (b) in roots and shoots of Arabidopsis halleri in 
experiment 1. Bars represent ± SE (n = 4).
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In experiment 2, the concentrations of Cd in both shoots
and roots were decreased significantly (P < 0.01) by increasing
Zn in the solution (Fig. 3a), with the effect being greater on
shoot Cd than on root Cd concentration. The concentrations
of Zn in shoots and roots increased with increasing Zn in the
solution (Fig. 3b). The concentrations of Zn in shoots and
roots were similar in the low Zn treatments, whereas in the high
Zn treatments (50 and 500 µM Zn), root Zn concentration
was three- to fourfold higher than shoot Zn concentration.

Figure 4 shows the relationship between shoot growth,
expressed as a percentage of the no Cd control, and shoot Cd
concentration in both experiments. Figure 4 also includes
additional data from a pot experiment (see Fig. 4 legend for
more details) to fill the gap of shoot Cd concentration in the
range 1–100 mg kg−1. A log-logistic dose–response curve can
be fitted to the relationship between shoot Cd concentration
and biomass, from which the concentrations of Cd in the
shoot that caused either 10 or 50% reduction in shoot growth
were estimated to be 228 ± 108 and 1720 ± 295 mg kg−1

DW, respectively.

Effect of Zn on 109Cd uptake kinetics

The kinetics of 109Cd uptake showed a curvilinear pattern
when Zn was not present in the uptake solution (Fig. 5a). A

similar pattern has been observed for 65Zn and 109Cd uptake
in T. caerulescens (Lasat et al., 1996; Lombi et al., 2001) and
wheat (Hart et al., 2002). The uptake data could be resolved
into a Michaelis-Menten saturable component and a linear
component (R2 = 0.997). From the fitted model, Vmax and Km
for the saturable component (Fig. 5b) were estimated to be
39.7 ± 7.8 nmol g−1 root FW h−1 and 0.35 ± 0.19 µM,
respectively, and the slope for the linear component was
15.0 ± 1.0 nmol g−1 root FW h−1. Addition of 10 µM Zn
suppressed 109Cd uptake (Fig. 5a). The saturable component
at the low Cd concentration range appeared to be largely
abolished in the presence of Zn, and 109Cd uptake was linear

Fig. 3 Effect of solution zinc (Zn) on the concentrations of cadmium 
(Cd) (a) and Zn (b) in roots and shoots of Arabidopsis halleri in 
experiment 2. Bars represent ± SE (n = 4).

Fig. 4 Relationship between shoot cadmium (Cd) concentration and 
shoot biomass expressed as a percentage of the no Cd control. Data 
are from experiments 1 and 2, as well as an additional pot experiment. 
In the pot experiment, Arabidopsis halleri was grown for 6 wk 
in a general-purpose compost amended with 0, 5, 10, 25 and 
50 mg Cd kg−1 (as CdSO4), and a constant 250 mg Zn kg−1 (as 
ZnSO4), with four replicates for each treatment. Bars represent ± SE 
(n = 4).

Fig. 5 Concentration-dependent uptake kinetics of 109Cd with or 
without the presence of 10 µM Zn. The curve in (b) represents the 
Michaelis-Menten model for the saturable component in the 
treatment without Zn. Bars represent ± SE (n = 5).
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with respect to the free Cd2+ concentration in the solution. A
simple linear equation described the 109Cd uptake data well
(R2 = 0.988), yielding a slope of 16.3 ± 0.7, which was similar
to that of the linear component of 109Cd uptake in the
absence of Zn.

Effects of plant Zn and Fe status on 65Zn and 
65Cd uptake

One week after Fe was withheld from the nutrient solution,
A. halleri plants showed typical symptoms of Fe deficiency
(chlorosis of young leaves). In contrast, no symptoms were
visible in the plants subject to the –Zn pretreatment. Uptake
of 65Zn was significantly (P < 0.05) increased by the –Zn
pretreatment, by 37% compared with the control, but was
not significantly affected by the –Fe pretreatment (Fig. 6a). In
contrast, uptake of 109Cd was not significantly affected by the
–Zn pretreatment, but was increased threefold (P < 0.01) by
the –Fe pretreatment (Fig. 6b).

Effect of Zn on the distribution of 109Cd between roots 
and shoots

At the end of the 24 h labelling period, 56% of the 109Cd
taken up by A. halleri was distributed to the shoots (Fig. 7).

In the following 4 d without further supply of either
radioactive or stable Cd isotopes, the percentage of 109Cd in
the shoots increased gradually to 84% in the 1 µM Zn
treatment. In contrast, with 10 µM Zn in the solution, the
percentage of 109Cd in the shoots increased only in day 2 and
remained at around 70% thereafter (Fig. 7). The difference
between the two Zn treatments was significant (P < 0.01) on
days 3 and 5. The results suggest that Zn inhibited Cd
translocation from roots to shoots.

Effect of ABA treatment on the translocation of 109Cd 
and 65Zn from roots to shoots

The distribution patterns between roots and shoots were
similar for 109Cd and 65Zn (Fig. 8). Pre-treatment with ABA
significantly (P < 0.01) decreased the proportion of 109Cd
and 65Zn distributed to the shoots. For example, at the end of
the radioisotope labelling (day 1), < 5% of the 109Cd and
65Zn taken up was distributed to the shoots in the plants with
ABA pretreatment, compared with 18% in those not treated
with ABA. The percentage of 109Cd or 65Zn distributed to the
shoots increased with time over the following 3 d with or
without ABA pretreatment, but the difference between
the treatments was maintained. The effect of the ABA
pretreatment was not caused by an effect on uptake, as total
uptake of 109Cd and 65Zn was not significantly influenced by
the ABA pretreatment (data not shown). In the absence of
ABA pretreatment, 65Zn concentrations in the shoots were
2.3- to 3.8-fold higher than those of 109Cd (data not shown).

Discussion

Arabidopsis halleri accumulated large concentrations of Cd in
the shoots (> 1000 mg kg−1 DW) when grown hydroponically

Fig. 6 Effects of –Zn or –Fe pretreatments for 7 d on short-term 
(20 min) uptake of 65Zn (a) and 109Cd (b). Bars represent ± SE (n = 6).

Fig. 7 Effect of solution zinc (Zn) on the percentage distribution of 
109Cd to shoots of Arabidopsis halleri. Plants were exposed to 1 µM 
CdSO4 labelled with 109Cd for 1 d, followed by two different Zn 
concentrations (1 and 10 µM ZnSO4). Bars represent ± SE (n = 5).
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for 3 wk with a solution Cd concentration of 5 µM or above
(Fig. 2). Both root and shoot Cd : Zn molar ratios were close
to the initial ratios of free ionic Cd2+ and Zn2+ in the nutrient
solutions in experiments 1 and 2. However, the ratio of free
ionic Cd2+ and Zn2+ in the nutrient solutions would not
remain constant if Cd and Zn were taken up at different rates.
In the short-term (20 min) uptake experiment with an equal
concentration of Zn and Cd (4 µM), uptake of 65Zn by
nutrient-replete plants was eightfold larger than that of 109Cd,
although the difference narrowed to approximately twofold in
the Fe-deficient plants (Fig. 6). The results indicate that,
although A. halleri can hyperaccumulate Cd, the rate of Cd
uptake is considerably slower than that of Zn uptake.

Evidence from the present study also suggests that Cd and
Zn partially share the same transport pathway in A. halleri.
The presence of Zn inhibited short-term 109Cd uptake,
abolishing the saturable component of 109Cd uptake in the
low concentration range (Fig. 5). Michaelis-Menten kinetic
parameters (Vmax and Km) for 109Cd uptake could be obtained

in the absence of Zn, but not in the presence of Zn because
of the dominance of the linear component. Thus, it is difficult
to ascertain the nature of the competition of Zn on Cd
uptake, although a competitive inhibition is plausible and has
been shown in wheat (Hart et al., 2002). With or without Zn,
109Cd uptake showed a similar linear component. This has
been interpreted as the cell-wall-bound 109Cd that was not
completely removed by desorption (Lasat et al., 1996; Hart
et al., 2002). In the long-term (3 wk) hydroponic experiments,
increasing external Zn concentration decreased accumulation
of Cd in roots and shoots (Fig. 3), and alleviated Cd toxicity
(Fig. 1b). Furthermore, increasing external Zn decreased the
translocation of 109Cd from roots to shoots (Fig. 7). Con-
sistent with the physiological data presented here, Bert et al.
(2003) showed evidence of a genetic correlation between Zn
and Cd accumulation in A. halleri shoots. They found a
significant positive correlation (r = 0.50, n = 29, P < 0.01)
between the concentrations of Zn and Cd in the shoots in the
backcross progeny derived from a cross between A. halleri and
a nonaccumulating species A. lyrata ssp. petraea. They suggested
that Cd and Zn accumulation in shoots are genetically
correlated, implying that the two metals may be transported,
at least partly, by the same transporter(s). Competition
between Zn and Cd during root uptake have been reported in
nonhyperaccumulators such as wheat (Hart et al., 2002) and
soybean (Cataldo et al., 1983), and in a low Cd-accumulating
ecotype (Prayon) of T. caerulescens (Lombi et al., 2001; Zhao
et al., 2002). In T. caerulescens (Prayon), it has been shown
that ZNT1, a metal transporter in the ZIP family, can
mediate high-affinity uptake of Zn as well as low-affinity
uptake of Cd, when the gene was expressed in yeast (Pence
et al., 2000). Functional characterization of different ZIP
genes in A. halleri has yet to be performed.

There were clear differences in the regulation of Cd and Zn
uptake by plant Zn and Fe status. Uptake of 65Zn was up-
regulated by a low Zn status, whereas 109Cd uptake only
responded to Fe deficiency (Fig. 6). The results are consistent
with an up-regulation of the expression of Zn transporter
genes by a low Zn status (Pence et al., 2000), which would
lead to an enhanced 65Zn uptake. The fact that 109Cd uptake
was not enhanced by a low Zn status was probably because of
the presence of equal molar concentration of Zn in the
solution, which would out-compete Cd for the transporters
that were up-regulated. In contrast, Fe deficiency leads to
over-expression of Fe transporter genes (such as IRT1), which
can also mediate high-affinity uptake of Cd (Eide et al., 1996;
Korshunova et al., 1999; Connolly et al., 2002; Lombi et al.,
2002; Vert et al., 2002).

A key trait of metal hyperaccumulators is the efficient metal
transport from roots to shoots, characterized by shoot-to-root
concentration ratios of metals being greater than one. In
experiments 1 and 2, the shoot-to-root ratio of Zn and Cd
was around or greater than one only in the low metal
treatments (5 µM) and well below one in other treatments.

Fig. 8 Effect of abscisic acid (ABA) pretreatment on the percentage 
distribution of 109Cd (a) and 65Zn (b) to shoots of Arabidopsis halleri. 
Bars represent ± SE (n = 5).
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Similarly, Bert et al. (2003) obtained a shoot-to-root concen-
tration ratio of Cd of only 0.23 in a hydroponic experiment
with 10 µM Cd, whilst Küpper et al. (2000) reported a ratio
of < 0.2 for both Cd and Zn in treatments with 100 µM Cd
and 500 µM Zn. High concentrations of Zn and Cd in roots,
and consequently small shoot-to-root ratios, in the high metal
treatments were probably a result of a precipitation of zinc or
cadmium phosphate (Table 1), which was difficult to avoid in
hydroponic culture with the need to supply a relatively high
phosphate concentration to compensate for the lack of
buffering capacity. Küpper et al. (2000) and Sarret et al.
(2002) showed clear evidence of zinc phosphate precipitation
on the root surface of A. halleri grown in hydroponic
solutions. In contrast, Zn was predominantly coordinated
with malate in A. halleri roots growing on a Zn-contaminated
soil, with zinc phosphate representing only a minor proportion
of the total Zn in roots (Sarret et al., 2002). In the short-term
experiments with 109Cd and 65Zn labelling, where precipita-
tion with phosphate was not predicted, both metals were
transported to shoots efficiently and in a similar fashion
(Figs 7, 8). Pretreatment with ABA was found to dramatically
decrease the translocation of 109Cd and 65Zn to shoots
(Fig. 8). Salt et al. (1995) reported a similar effect of ABA on
Cd distribution in the nonhyperaccumulator Brassica juncea.
They suggested that the root-to-shoot transport of Cd was
driven mainly by transpiration, because an ABA pretreatment
would cause stomatal closure. Alternatively, ABA has been
shown to inhibit ion channel activities in the stele of maize
(Zea mays) roots (Roberts, 1998; Gilliham & Tester, 2005),
and the expression of a gene encoding a stelar K+ outward
rectifying channel in A. thaliana roots that is probably involved
in the xylem loading of K+ (Gaymard et al., 1998).

Although A. halleri is able to accumulate large concentra-
tions of Cd in shoots, its tolerance to Cd is much lower than
that to Zn. Accumulation of Zn in shoots to 32 000 mg kg−1

DW (= 490 mmol kg−1) did not cause any phytotoxicity
(Zhao et al., 2000). In contrast, shoot Cd concentrations of
228 mg kg−1 DW (= 2 mmol kg−1) and 1720 mg kg−1 DW
(= 15 mmol kg−1), respectively, were associated with 10 and
50% reductions in the shoot biomass in the present study
(Fig. 4). These results indicate that Cd is much more toxic to
A. halleri than Zn, and/or that A. halleri is less able to detoxify
Cd than Zn. For comparison, the Ganges ecotype of
T. caerulescens from southern France is able to tolerate more
than 5000 mg Cd kg−1 DW in shoots without growth reduction
(Lombi et al., 2001; Assunção et al., 2003a; Roosens et al.,
2003). There is strong evidence that vacuolar sequestration
via the tonoplast transporter MTP1 (Dräger et al., 2004) and
a constitutively high expression of nicotianamine synthase
genes (Becher et al., 2004; Weber et al., 2004) play a key role
in the detoxification of Zn in A. halleri. However, there is so
far little evidence that implies a role of either the MTP1
transporter or nicotianamine synthesis in Cd detoxification.
Bert et al. (2003) showed a significant correlation (r = 0.55,

n = 66, P < 0.001) between Zn and Cd tolerance in the back-
cross progeny from the cross between A. halleri and A. lyrata,
suggesting a pleiotropic genetic control over the two characters.
However, in their study, tolerance was assessed according to
the resistance to external Zn and Cd, which is likely to be
different from the tolerance to internal metal concentrations.
Resistance to metals in the external medium may be achieved
by decreased uptake or root-to-shoot translocation, whereas
tolerance to internal metal concentrations has to be realized
through cellular detoxification. Bert et al. (2003) also
suggested that Cd tolerance in A. halleri is a more complex
character than Zn and might be governed by more than one
single major gene.

In conclusion, results from the present study indicate that
A. halleri can hyperaccumulate Cd, although short-term
uptake of Cd was at a lower rate than that of Zn. Both uptake
and root-to-shoot translocation of Cd were inhibited by Zn,
suggesting that Cd enters A. halleri cells partly through the Zn
transport pathway. However, there were also significant
differences between the two metals in their response to the
status of Zn or Fe in plants, suggesting differences in
regulation and/or that multiple transporters differing in the
affinities for Zn and Cd ions are involved. Tolerance of the Cd
accumulated in shoots was much lower than that for Zn,
suggesting that the mechanisms responsible for the high
degree of detoxification of Zn in A. halleri could not detoxify
Cd effectively. Detoxification of Cd may involve mechanisms
distinct from those responsible for Zn detoxification. The
population of A. halleri studied in the present work was
from a metalliferous site. Variation in Cd accumulation and
tolerance among different populations may be expected
(Bert et al., 2002), although comparisons under identical
conditions have yet to been performed.

Acknowledgements

RFJ was funded by a Rothamsted International Fellowship.
We thank Jianping Xing for assistance with growing plants,
and Adrian Crosland for elemental analysis. Rothamsted
Research receives grant-aided support from the Biotechnology
and Biological Sciences Research Council of the UK.

References

Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H, Ernst 
WHO. 2003a. Differential metal-specific tolerance and accumulation 
patterns among Thlaspi caerulescens populations originating from different 
soil types. New Phytologist 159: 411–419.

Assunção AGL, Schat H, Aarts MGM. 2003b. Thlaspi caerulescens, an 
attractive model species to study heavy metal hyperaccumulation in plants. 
New Phytologist 159: 351–360.

Baker AJM, McGrath SP, Reeves RD, Smith JAC. 2000. Metal 
hyperaccumulator plants: A review of the ecology and physiology of a 
biochemical resource for phytoremediation of metal-polluted soils. In: 
Terry N, Bañuelos G, eds. Phytoremediation of contaminated soil and water. 
Boca Raton, FL, USA: Lewis Publishers, 85–107.



New Phytologist (2006) 172: 646–654 www.newphytologist.org © The Authors (2006). Journal compilation © New Phytologist (2006)

Research654

Baker AJM, Reeves RD, Hajar ASM. 1994. Heavy metal accumulation and 
tolerance in British populations of the metallophyte Thlaspi caerulescens J. 
& C Presl (Brassicaceae). New Phytologist 127: 61–68.

Becher M, Talke IN, Krall L, Kramer U. 2004. Cross-species microarray 
transcript profiling reveals high constitutive expression of metal 
homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis 
halleri. Plant Journal 37: 251–268.

Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D. 2002. Do 
Arabidopsis halleri from nonmetallicolous populations accumulate zinc 
and cadmium more effectively than those from metallicolous populations? 
New Phytologist 155: 47–57.

Bert V, Macnair MR, DeLaguerie P, Saumitou-Laprade P, Petit D. 2000. 
Zinc tolerance and accumulation in metallicolous and nonmetallicolous 
populations of Arabidopsis halleri (Brassicaceae). New Phytologist 146: 
225–233.

Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N. 
2003. Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis 
halleri. Plant and Soil 249: 9–18.

Cataldo DA, Garland TR, Wildung RE. 1983. Cadmium uptake kinetics in 
intact soybean plants. Plant Physiology 73: 844–848.

Clemens S, Palmgren MG, Krämer U. 2002. A long way ahead: 
understanding and engineering plant metal accumulation. Trends in 
Plant Science 7: 309–315.

Connolly EL, Fett JP, Guerinot ML. 2002. Expression of the IRT1 metal 
transporter is controlled by metals at the levels of transcript and protein 
accumulation. Plant Cell 14: 1347–1357.

Dahmani-Muller H, van Oort F, Gelie B, Balabane M. 2000. Strategies of 
heavy metal uptake by three plant species growing near a metal smelter. 
Environmental Pollution 109: 231–238.

Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, 
Meyer RC, Saumitou-Laprade P, Krämer U. 2004. Two genes encoding 
Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc 
tolerance and account for high MTP1 transcript levels. Plant Journal 39: 
425–439.

Eide D, Broderius M, Fett J, Guerinot ML. 1996. A novel iron-regulated 
metal transporter from plants identified by functional expression 
in yeast. Proceedings of the National Academy of Sciences, USA 93: 
5624–5628.

Ernst WHO. 1974. Schwermetallvegetation der Erde. Stuttgart, Germany: G. 
Fischer Verlag.

Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, 
Michaux-Ferriere N, Thibaud JB, Sentenac H. 1998. Identification and 
disruption of a plant shaker-like outward channel involved in K+ release 
into the xylem sap. Cell 94: 647–655.

Gilliham M, Tester M. 2005. The regulation of anion loading to the maize 
root xylem. Plant Physiology 137: 819–828.

Hart JJ, Welch RM, Norvell WA, Kochian LV. 2002. Transport interactions 
between cadmium and zinc in roots of bread and durum wheat seedlings. 
Physiologia Plantarum 116: 73–78.

Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB. 1999. The 
IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad 
substrate range. Plant Molecular Biology 40: 37–44.

Küpper H, Lombi E, Zhao FJ, McGrath SP. 2000. Cellular 
compartmentation of cadmium and zinc in relation to other elements 
in the hyperaccumulator Arabidopsis halleri. Planta 212: 75–84.

Lasat MM, Baker AJM, Kochian LV. 1996. Physiological characterization 
of root Zn2+ absorption and translocation to shoots in Zn 
hyperaccumulator and nonaccumulator species of Thlaspi. Plant 
Physiology 112: 1715–1722.

Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP. 
2002. Influence of iron status on cadmium and zinc uptake by different 

ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiology 
128: 1359–1367.

Lombi E, Zhao FJ, Dunham SJ, McGrath SP. 2000. Cadmium 
accumulation in populations of Thlaspi caerulescens and Thlaspi 
goesingense. New Phytologist 145: 11–20.

Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA. 2001. Physiological 
evidence for a high-affinity cadmium transporter highly expressed in a 
Thlaspi caerulescens ecotype. New Phytologist 149: 53–60.

Macnair MR. 2002. Within and between population genetic variation for 
zinc accumulation in Arabidopsis halleri. New Phytologist 155: 59–66.

Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D. 1999. 
Zinc tolerance and hyperaccumulation are genetically independent 
characters. Proceedings of the Royal Society of London Series B – Biology 
Sciences 266: 2175–2179.

McGrath SP, Zhao FJ. 2003. Phytoextraction of metals and metalloids from 
contaminated soils. Current Opinion in Biotechnology 14: 277–282.

Parker DR, Norvell WA, Chaney RL. 1995. GEOCHEM-PC – A chemical 
speciation program for IBM and compatible personal computers. In: 
Loeppert RH, ed. Chemical equilibrium and reaction models. Madison, WI, 
USA: Soil Science Society of America, American Society of Agronomy. 
253–269.

Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, 
Eide D, Kochian LV. 2000. The molecular physiology of heavy metal 
transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings 
of the National Academy of Sciences, USA 97: 4956–4960.

Roberts SK. 1998. Regulation of K+ channels in maize roots by water stress 
and abscisic acid. Plant Physiology 116: 145–153.

Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC. 
2003. Natural variation in cadmium tolerance and its relationship to metal 
hyperaccumulation for seven populations of Thlaspi caerulescens from 
western Europe. Plant, Cell & Environment 26: 1657–1672.

Salt DE, Prince RC, Pickering IJ, Raskin I. 1995. Mechanisms of cadmium 
mobility and accumulation in Indian mustard. Plant Physiology 109: 
1427–1433.

Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annual Review of 
Plant Physiology and Plant Molecular Biology 49: 643–668.

Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse 
AS, Marcus MA, Manceau A. 2002. Forms of zinc accumulated in the 
hyperaccumulator Arabidopsis halleri. Plant Physiology 130: 1815–1826.

Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briata JF, 
Curie C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake 
from the soil and for plant growth. Plant Cell 14: 1223–1233.

Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S. 2004. 
Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis 
halleri roots identifies nicotianamine synthase, a ZIP transporter and other 
genes as potential metal hyperaccumulation factors. Plant Journal 37: 
269–281.

Wenzel WW, Jockwer F. 1999. Accumulation of heavy metals in plants 
grown on mineralised soils of the Austrian Alps. Environmental Pollution 
104: 145–155.

Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ. 2004. 
Cadmium tolerance and hyperaccumulation in a new 
Zn- hyperaccumulating plant species (Sedum alfredii Hance). 
Plant and Soil 259: 181–189.

Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP. 2002. 
Characteristics of cadmium uptake in two contrasting ecotypes of the 
hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 53: 
535–543.

Zhao FJ, Lombi E, Breedon T, McGrath SP. 2000. 
Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. 
Plant, Cell & Environment 23: 507–514.


