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Models of population structure have emphasized the importance of sex in maintaining lineages. This is because,
despite the well known ‘two-fold cost of sex’ compared with asex, it is considered that recombination rids the genome
of accumulated mutations and increases its potential for adaptive variation. However, asexual lineages of eukaryotic
organisms can also rapidly gain genetic variance directly by various mutational processes, thereby proving that so-
called ‘clones’ do not have strict genetic fidelity (Lushai & Loxdale, 2002; Loxdale & Lushai, 2003a), whereas the vari-
ation so produced may well have adaptive advantage during the evolutionary process. This being so, obligated asex-
uals or cyclical parthenogens that occasionally indulge in sexual recombination (‘rare sex’) cannot be deemed as
‘evolutionary dead-ends’(Lushai, Loxdale & Allen, 2003a). In addition, the persistence of asexual lineages (i.e. lin-
eage longevity) may also involve the integrity of the telomere region, the physical end of the chromosomes (Loxdale
& Lushai, 2003b). In this earlier study on this topic, we argued that the persistence and ultimate senescence of
eukaryotic cell lineages (based upon the frequency of ‘capped’ and ‘uncapped’ chromosomes related to telomere func-
tionality; Blackburn, 2000) may directly relate to the survival and persistence of lineages of whole asexual organ-
isms. Aphids are a good model system to test this hypothesis because they show a variety of sexual/asexual
reproductive strategies, whereas their mode of asexual reproduction is of the mitotic (

 

=

 

 apomictic) type. We also sug-
gested that many aphid lineages require occasional or even rare sexual recombination to re-set telomere length to
allow lineages to persist. Ample empirical evidence from diverse taxa, lineages, and different developmental stages
now reveals that the telomere states are indeed re-set by recombination (homologous or meiotic), thereby rejuve-
nating the lineage in question. The generational clock element of telomeric functionality has also been successfully
described in artificially-induced mammalian clonal systems. It thus appears that telomere function is a central
molecular mechanism instigating and promoting lineage continuity 

 

per se

 

. By contrast, we hypothesized that other
long-lived asexuals, or the rare category of ancient asexuals such as bdelloid rotifers, have compensatory mecha-
nisms for maintaining chromosome functional integrity, which are somewhat different from conventional telomeric
repeats. In the present study, we carry the analogy between eukaryotic cell functionality and aphid lineages a stage
further. Here, we hypothesize that the changing frequency of capped and uncapped telomeres, progressing to senes-
cence in a stochastic manner, may be an underlying factor that significantly contributes to population dynamics in
asexual lineage evolution. © 2007 The Linnean Society of London, 
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‘An unverified hypothesis is of little or no value; but if any one
should hereafter be led to make observations by which some
such hypothesis could be established, I shall have done good
service, as an astonishing number of isolated facts can be thus

connected together and rendered intelligible’ (Charles Darwin,
1876)

 

INTRODUCTION

 

At the recent joint meeting of the European Science
Foundation (ESF) and Linnean Society entitled ‘The
Paradox of Asexuality: An Evaluation’, 22–24 Septem-
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ber, 2005 (Loxdale, van Dijk & Ricci, 2005; PARTNER
IV), the question was again raised as to ‘why sex?’ or,
more appropriately in this case, ‘why not sex?’ During
the course of the meeting, it was often posited why it is
that sex is lost from some taxa, sometimes and appar-
ently completely (e.g. the bdelloid rotifers and dar-
winulid ostracods; Mark-Welch & Meselson, 2000;
Martens, Rossetti & Horne, 2003), but often main-
tained in many taxa that show cyclical parthenogen-
esis to a greater or lesser degree (e.g. aphids and
nematodes; Loxdale & Lushai, 2003a, b; Simon 

 

et al

 

.,
2003). It appears that very few taxa are in fact totally
obligate asexuals, with the majority retaining some
degree of sexual recombination, even if only periodic
(e.g. aphids with their annual sexual phases found in
many species; Loxdale & Lushai, 2007). However,
other organisms, including some other aphid species
(e.g. the shallot aphid, 

 

Myzus ascalonicus

 

 Doncaster
and aphids of the genus 

 

Trama

 

 [e.g. 

 

Trama troglodytes

 

(von Heyden), in which males have never been found;
Blackman, Spence & Normark, 2000; Blackman &
Eastop, 2000] appear to indulge in sex much more
rarely, if ever, like the bdelloids. The absence of males
in such apparently obligate asexual taxa could be a
sampling effect (i.e. not enough specimens are gath-
ered from enough places to ever completely prove the
absence of rare functional males and, hence, the pos-
sibility of sporadic recombination), whereas it is pos-
sible that some such ‘obligate’ asexual aphids such as

 

Trama

 

 spp. do in fact produce males very rarely, and
that these may be functional (Normark, 1999). Some
aphids species [e.g. the grain aphid 

 

Sitobion avenae

 

(F.)] have complex life cycles. This species displays a
range of life-cycle forms, including anholocyclic (i.e.
obligate asexual females), holocyclic (i.e. facultative
asexual females with an annual sexual phase trig-
gered by abiotic factors: night length and tempera-
ture), androcylic (i.e. asexual females that produce
males), and ‘intermediate’ forms (i.e. asexual females
that produce a few males and sexual females) and, at
the same time, showing the phenomenon of ‘sexual
leakage’. Here, occasional sex occurs between andro-
cyclically-produced males and functional sexual
females from other life-cycle lineages, so that gene
flow persists between these various lineages [Simon,
Rispe & Sunnucks, 2002; in the case of the bird cherry-
oat aphid, 

 

Rhopalosiphum padi

 

 (L.), see also Delmotte

 

et al

 

., 2001]. With 

 

R. padi

 

, such cross-lineage mating
can lead to hybridization events between species and
may be the cause of lineages or even species (Fenton,
Malloch & Germa, 1998; Delmotte 

 

et al

 

., 2003).
Sex appears to be important to many taxa, including

those that only mate but rarely. Only a few groups,
such as the darwinulid ostracods and bdelloids, have
given up sex in favour of total celibacy and, interest-
ingly, evidence is accumulating that bdelloids, which

comprise some 380 species worldwide, have success-
fully adaptively radiated to fill a diverse range of eco-
logical niches (Birky 

 

et al

 

., 2005; Fontaneto, Melone &
Ricci, 2005). With organisms that display sexual and
asexual life-cycle forms, evidence has been sought for
many years to show that there is a geographical basis
to the demographic distributions of life-cycle forms
related to abiotic factors. In aphids, such distributions
have been shown in relation to climate, often latitudi-
nally based, with holocyclic forms (i.e. that produce
cold hardy overwintering eggs) mainly confined to
regions with cold winters, whereas obligate asexuals
occur in regions with milder winters [e.g. 

 

Sitobion ave-
nae

 

; Simon 

 

et al

 

., 1999; Llewellyn 

 

et al

 

., 2003; peach-
potato aphid, 

 

Myzus persicae

 

 (Sulzer); Guillemaud,
Mieuzet & Simon, 2003]. Such adaptive geographical
distributions of sexual-asexual lifecycle forms have
also been found in other cyclically parthenogenetic
animals [e.g. nonmarine cypridoid ostracods, 

 

Eucypris
virens

 

 (Jurine); Horne, Baltanas & Paris, 1998].
Organisms that are hermaphroditic and that often

show levels of polyploidy in relation to sexual/asexual
life-cycle forms, such as the planarian flatworm, 

 

Dug-
esia

 

 (

 

Schmidtea

 

) 

 

polychroa

 

 (Schmidt), appear to dis-
play habitat associations/demographic distributions
related to both ploidy levels as well as abiotic factors
(for further details, see D’Souza 

 

et al

 

., 2004). Simi-
larly, some species of freshwater snail show this type
of trend, affecting the spatial distribution of the ani-
mals in lakes (i.e. depth) in relation to life-cycle form
(sexual or clonal), which is in turn related to biotic fac-
tors; here, infection by parasites (Jokela 

 

et al

 

., 2003).
What was very apparent from the ESF–Linnean meet-
ing is that the entire topic as to ‘why sex’ or ‘why not
sex’ is still far from resolved and, as such, the debate
continues on apace and with vigour.

Classically, sex is thought to have evolved long ago
for the exchange of genes and increase of genetic vari-
ation within natural populations, as is evident in the
conjugation performed in some strains of free-living
bacteria (Kohiyama 

 

et al

 

., 2003). It is also postulated
by some that it perhaps evolved as a necessary means
of expelling the effects of invading transposons in
early recombinant molecules, where they may have
behaved as ‘infecting moieties’ (Hickey, 1982;
Arkhipova & Meselson, 2000; Schön & Martens,
2000). Nowadays, recombination may serve this func-
tion, at the same time as shedding the genome of del-
eterious genes or other DNA regions (Arkhipova,
2005). By so doing, the accumulation of such deleteri-
ous material within asexual lineages (the so-called
Muller’s ratchet; Muller, 1964) is slowed down or even
prevented, and thereby lineages do not become extinct
quickly by a process of ‘mutational meltdown’, as pro-
posed by Lynch and coworkers and experimentally
supported in clonal lineages of Cladocerans [

 

Daphnia

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/90/4/719/2701079 by Periodicals Assistant - Library user on 10 D

ecem
ber 2019



 

POTENTIAL ROLE OF CHROMOSOME TELOMERE RESETTING

 

721

 

© 2007 The Linnean Society of London, 

 

Biological Journal of the Linnean Society, 

 

2007, 

 

90

 

, 719–728

 

pulex

 

 (Leydig)] after approximately 40

 

+

 

 generations in
the wild (Lynch 

 

et al

 

., 1993, 1998; Lynch & Blanchard,
1998).

Sexual recombination has its costs too. Thus, as well
as expelling unfavourable genes and bringing favour-
able ones together, allowing adaptations to new eco-
logical situations, it can also introduce unfavourable
gene combinations. In addition, there is the much
vaunted ‘two-fold cost’ of sex to consider: a sexual
organisms has to find a mate with all that this entails
(including behaviourally in higher animals), whereas
asexuals singly produce offspring in clonal lineages
(West, Lively & Read, 1999). In organisms such as
aphids, the costs of sex may be much more than two-
fold, because of the reduced likelihood of the sexes
meeting and mating, a function both of their modes of
aerial displacement during the autumnal sexual
phase and the necessity of finding suitable host plants
on which to land, perhaps a widely-dispersed and
uncommon primary woody host (Loxdale 

 

et al

 

., 1993;
Ward 

 

et al

 

., 1998). The various arguments and debates
about sex have been considered at length over the
years and have led to ideas of pluralism, which
includes the two main hypotheses: positive benefits
arise from (1) acceleration of adaptation to changing
environments due to increased variance [the result of
novel gene combinations (i.e. environmental models;
Bell, 1982)] and (2) an enhanced ability to rid the
genome of mildly deleterious mutations preventing
meltdown [mutation-based models (i.e. the mutational
deterministic hypothesis of Kondrashov, 1988; for fur-
ther details, see West 

 

et al

 

., 1999)].
Another often overlooked aspect of the evolutionary

sex–asex controversy is the involvement in re-setting
the chromosome telomere lengths in organisms that
have these structures. The telomeres are nucleotide
repeats (commonly TTAGGG in vertebrates, TTAGG
in insects, and TTTAGGG in plants) in association
with various proteins that occur at the end of the func-
tional chromosomes and protect these during recom-
bination events (McEachern, Krauskopf & Blackburn,
2000; Sykorova 

 

et al

 

., 2003; Chan & Blackburn, 2004).
As an individual ages (i.e. at each cell division), the
telomeres become shorter in a stochastic manner (or
so it is hypothesized; Blackburn, 2000) such that par-
ticular cell lineages senesce and eventually die and,
when enough lines have died out, so does the whole
organism. A new born organism’s telomere repeats
may comprise (TTAGGG)

 

N

 

 repeats, where 

 

N

 

 may be
many thousands, but these can decline in a long life-
time (as in humans) to only several hundred repeats
(Jones, 1996). The telomeres are known to be associ-
ated with several bodily malfunctions (besides ageing

 

s.s

 

.), including cancers, whereas they have been shown
to be re-set sometime early in embryogenesis in ver-
tebrate embryos (see below). One of the mechanisms

involved at the genome level may include homologous
recombination, which is argued to be broadly analo-
gous to normal meiotic recombination (Shibata, 2001).

Loxdale & Lushai (2003b) postulated that the
telomere may be re-set by specialist mechanisms of
which recombination was a very important and possi-
bly key factor in the persistence of sexual recombina-
tion in many taxa. We came to this conclusion after
consideration of the bizarre life cycles of aphids, dom-
inated by abiotic factors of temperature and photope-
riod, where there are often have 14 or so asexual
generations in-between a single annual sexual phase
in which the winged migrants return from the sum-
mer herbaceous host and seek out a primary woody
host on which mating occurs, and overwintering eggs
are laid. The life cycle is complete when an asexual
‘stem mother’ hatches from the egg in the spring and
produces a new asexual lineage (Dixon, 1998).

In the present study, we revise our original specu-
lations of the action of telomere re-setting in sexual
recombination, with special reference to aphids as a
model. Of the many orders of insects studied to date,
aphids, which belong to the Homoptera, a suborder of
the Order Hemiptera (Imms, 1970), have telomeric
repeats at the ends of their chromosomes; others,
including the related Heteroptera (also a suborder of
the Hemiptera), do not (Spence 

 

et al

 

., 1998; Frydry-
chova 

 

et al

 

., 2004). Diptera also do not have telomeres
and use instead retrotransposons to maintain chromo-
some length and integrity (Biessmann, Walter &
Mason, 1997). This division into organisms with
telomeres and those without may seem at first to pre-
clude the notion that telomere length re-setting is
indeed important in sexual recombination (for a dis-
cussion of the distribution of the telomeric repeat in
various organisms, see Frydrykhova 

 

et al

 

., 2004). On
the other hand, certainly for aphids, it appears to
account for many aspects of their strange biology,
including the normal periodic sexual phase in holocy-
clic species, and the persistence of rare sex in this
group of animals (Loxdale & Lushai, 2003b).

Interestingly, the individual aphid, which can have
as many as 30–90 asexual progeny within asexual lin-
eages, eventually senesces and dies. But what then
happens to the lineage itself in terms of telomere
length? In our earlier study on this topic, we argued
that a variety of specialist mechanisms, including
recombination, maintain telomeric integrity between
generations in a lineage based on an aphid model
(Loxdale & Lushai, 2003b).

If the decay of telomere function can be correlated
with lineage persistence over historical time, as we
claimed using this model, then, from another shorter-
term perspective, the same suite of telomere-related
mechanisms could have very interesting effects on
population dynamics. Here, we discuss the potential of
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the model to present a new role (which, for clarity, we
term ‘Hypothesis II’) for sexual recombination in con-
junction with the original telomere re-setting hypoth-
esis (‘Hypothesis I’; Loxdale & Lushai, 2003b). We
highlight its relevance to the population trends in
asexual lineages: their maintenance, evolution, popu-
lation surges, and lineage proliferation. This underly-
ing mechanism is affected by interacting mutational
and selective processes.

 

HYPOTHESIS II

 

In the example of asexual aphid species presented in
our earlier study (Loxdale & Lushai, 2003b), we cor-
related asexual lineage propagation with that of
eukaryotic cell lineages. Such cells normally divide up
to 15–60 times 

 

in vitro

 

 leading to senescence and
death (Hayflick, 1965; Rawes 

 

et al

 

., 1997). We there-
after equated such cellular division with finite gener-
ations before asexual lineages decline in functionality
and die out. These short spans of asexual lineage per-
sistence are presently explained by various mutation
(Kondrashov, 1993) and density-dependent (Hamilton,
Axelrod & Tanese, 1990) models, respectively. Fur-
thermore, cancer cells such as He La, which are
uncontrolled in terms of proliferation and are not lim-
ited by a set number of replications as far as is known,
seemingly mirror the state indicated by ancient and
potentially ‘immortal’ asexuals (Normark, Judson &
Moran, 2003).

Previously, we (Loxdale & Lushai, 2003b) applied
the cellular senescence model of Blackburn (2000). In
mammalian and yeast cells, lineage longevity is deter-
mined primarily by a series of complex interactions
involved with the function of telomeres and the asso-
ciated reverse transcriptase enzyme, telomerase
(McEachern 

 

et al

 

., 2000; Chan & Blackburn, 2004). We
correlated this with longevity of asexual aphid lin-
eages. Blackburn’s cellular model describes the sto-
chastic processes involved in switching between
‘capped’ and ‘uncapped’ chromosomes occurring in
populations of cells of differing age (Blackburn, 2000:
figs 1, 2). In general, capping is necessary for preserv-
ing the physical integrity of the chromosome end,
whereas regulated uncapping is a property of dividing
cells. During early cell division, most cells have rela-
tively long telomeres and are capped and therefore
undergo fast proliferation (active cell cycling). As cells
age towards senescence, the ratio of capped to
uncapped telomeres within the cell population
switches over and they tend to have shorter telomeres
which become, in terms of population frequency, pro-
gressively more uncapped before concomitant senes-
cence and death (Blackburn, 2000). Interestingly,
evidence from studies from diverse taxa, including
yeasts (Lundblad, 2002), Tetrahymena (Ciliate proto-

zoan; Kirk 

 

et al

 

., 1997) and birds [tree swallows,

 

Tachycineta bicolor

 

 (Vieillot); Haussmann, Winkler &
Vleck, 2005], reveals how instrumental functional
telomeres are in the proliferation and persistence of
eukaryotic individuals and lineages.

More importantly for our original hypothesis (I),
this empirical evidence also indicated that the telom-
ere states are re-set by recombination, thereby reju-
venating the lineage in question. Such an analogy was
also independently inferred a decade ago by Jones
(1996). However, our hypothesis is now supported by
empirical evidence from artificially cloned cattle,
which show that telomeres are re-set when a new indi-
vidual is formed (Lanza 

 

et al

 

., 2000), and by studies of
early bovine developmental stages (i.e. between
morula and blastocyst), which detail a similar re-
setting event (Schaetzlein 

 

et al

 

., 2004). Additionally,
cloned mice and sheep with shortened or dysfunc-
tional telomeres tend to age prematurely, develop can-
cers and die early (Sedivy, 1998; de Lange & Jacks,
1999; Shiels 

 

et al

 

., 1999; Briggs, 2003; see also Pear-
son, 2003), tree swallows with short telomeres have
reduced survival relative to birds of the same age with
longer telomeres (Haussmann 

 

et al

 

., 2005; for a review
of the empirical evidence linking telomere dynamics
with whole organism lifestyle and lifespan, see Mon-
aghan & Haussmann, 2006), whereas the telomerase/
telomeric age-related phenomenon is also passed
down both generational somatic and germ lines, as
seen in the case of strains of so-called ‘knockout’ mice
lacking functional telomerase activity (Rudolph 

 

et al

 

.,
1999). It thus appears that telomere function is cen-
tral to the general molecular causal event instigating
and promoting lineage continuity, as previously pro-
posed (Loxdale & Lushai, 2003b).

Here, we go further. We propose that sexual recom-
bination not only re-sets telomere functionality, but
also reinstates an asexual lineage’s functionality, pro-
liferation, and ability to effect surges or selective
sweeps in an ecological landscape. The conceptual leap
involves equating a cellular physiological state of a
cell line with the functionality of eukaryotic lineages.
The individual lineage event amplifies and links to the
population dynamics over many generations. In other
words, lineages persist or decline because of an essen-
tial factor other than that of mutational load and
density-dependent selective mechanisms.

A schematic of the extended hypothesis (II) is
described in Figure 1A. This shows trends in capped
telomere frequency (i.e. cell population norms within
assayed individuals; Lanza 

 

et al

 

., 2000; Frydrychova &
Marec, 2002; for details of telomere length assay tech-
niques, see Frydrychova 

 

et al

 

., 2004) that we would
expect for different experimental lineages. Therefore,
the schematic best-fit curves describe (1) ancient
asexuals (Fig. 1Ai) and sexuals maintained over gen-
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Figure 1.

 

A, hypothetical best-fit slopes showing frequency of capped telomeres (cell population norms) measured using
a molecular essay on three classes of lineage: (i) ancient asexuals; (ii) sexuals; and (iii) facultative/obligate asexuals.
Measurements describe essays over generations (1–200 or as necessary). This schematic only aims to show the relative
abundance of capped telomeres between the lineages, and does not suggest that ancient asexuals will necessarily have a
greater capped telomere frequency than sexual lineages. A schematic of the expected curves for telomere frequency in (iii)
a maturing obligate asexual lineage ‘control’ and (iv) a replicate facultative asexual lineage induced to produce sexuals at
point ‘X’, mated and resulting in a new lineage after sexual egg hatch. This test will indicate if recombination can reset
telomere frequency to levels within the population similar to those seen prior to the asexual decline with time. B, best-
fit-slopes, schematically representing the population size fluctuation in a selective and mutative ‘neutral’ environment for
independent ancient asexual, sexual, facultative, and obligate asexual lineages (i–iv). It is most important to note that
the population sizes of both facultative and obligate asexual lineages will begin to diminish in frequency over time in
correlation with a function of their telomeric activity, as seen in Figure 1A (the two slopes being superimposed in theory).
Hence, when telomere function is maintained, population size will remain high. In ancient asexuals and sexuals, it is
considered that, respectively, a compensatory mechanism and sexual recombination will be the causal factors maintaining
population size. In the facultative asexual, we indicate that a re-proliferation of population, or what is routinely considered
a ‘selective sweep’, is effected by a recombination event, ‘X’. The asexual lineage is the ‘control’ if recombination does not
occur. The fuzzy line around the best fit slopes shows miscellaneous fluctuations around a population mean.
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erations (e.g. 1–200) (Fig. 1Aii) and (2) obligate asexual
females and facultative asexual females (the latter can
go through a sexual phase when induced using appro-
priate abiotic cues; Dixon, 1998) (Fig. 1Aiii).

It is considered that the slope for ‘capped telomere
frequency’ in the ancient asexual lineage (Fig. 1Ai)
and continuously sexual lineages (Fig. 1Aii) would be
maintained over the time-frame of the hypothetical
experiment whereas, for the obligate asexual females
and facultative asexual females (Fig. 1Aiii), capped
telomere frequency would diminish noticeably over
generations 1–200. Even so, in all of the aforemen-
tioned life-cycle types, each individual within inter-
spersed generations is born, senesces and eventually
dies.

Figure 1Aiv describes a further important scenario
testable using facultative asexual aphid lineages,
where an ageing facultative asexual lineage with con-
comitant decline in the frequency of capped telomeres,
will be ‘rejuvenated’ after sexual recombination and
this will relate to a restored frequency of capped
telomeres, represented by ‘X’ in Fig. 1A (Loxdale &
Lushai, 2003b).

Figure 1B shows schematically the respective indi-
vidual lineage populations described in Figure 1A
through time and space. Here, lineages are shown in a
given environment and going through generations with
perturbations over time (the fuzzy line represents pop-
ulation size fluctuation over generation times with a
best-fit slope going through a population mean).

Notably, these hypothetical trends indicating popu-
lation fluctuations are shown to be strongly associated
with the envisaged capped telomere frequency
described in Figure 1A. In a simple neutral environ-
ment, the best-fit slopes represent the population
trends for independent ancient asexual, sexual, facul-
tative and obligate asexual lineages (Fig. 1Bi–iv). The
most important element is that the population levels
of both facultative and obligate asexual lineages will
begin to diminish in mean population size over time
and in correlation with the function of their telomeric
activity.

By contrast, where telomere function is maintained
(i.e. in ancient asexuals and sexuals), we consider that
the respective compensatory mechanism(s), along
with recombination which re-sets telomere function,
will be the causal factors in maintaining population
size, vigour, etc. Alternatively, in facultative asexuals,
we suggest that a new proliferation of a population, or
what is described as a ‘selective sweep’, would follow a
‘rare’ recombination event, as in ‘X’. The whole
premise of this model is that sex would synchronously
rejuvenate the declining telomere function as well as
the associated population decline. The obligate asex-
ual lineage would be the ‘control’ indicating the popu-
lation trend were recombination not to occur.

 

DISCUSSION AND CONCLUSIONS

 

In the present study, we argue a case for eukaryotic
asexual lineage evolution that may well be explored
using the multiple life-cycle strategies of aphids. If
some asexual aphid populations persist for long peri-
ods, as indicated in recent studies of cereal aphids
(Delmotte 

 

et al

 

., 2001), a population consisting of
billions of asexual females may produce quite a high
proportion of males (

 

=

 

 androcycly). In the case of

 

S. avenae

 

, this was reported to be as high as 41–54% of
clones collected from Scotland, East Anglia and Hert-
fordshire, UK (Helden & Dixon, 2002). This allows
males from otherwise asexual lineages to mate with
females from other lineages (see below). Alternatively,
some 

 

S. avenae

 

 asexual lines may occasionally pro-
duce sexual females (

 

=

 

 rare sexual female produced in
an asexual lineage 

 

=

 

 intermediates life cycle present
as 0–9% of clones in the same three regions; Helden &
Dixon, 2002). These can also mate with males from
other lines of the same species (for further details of
such complex life-cycle types, see Delmotte 

 

et al

 

.,
2001; Simon 

 

et al

 

., 2002). If rare sex is indeed occur-
ring in supposedly largely asexual populations, are
such asexual lineages perhaps only images of genetic
integrity (fidelity/longevity)? In reality, they may be
frequently rejuvenated lineages resulting from sexual
recombination with concomitant selective sweeps of
associated re-set ‘telomeric genotypes’. This thereby
gives the impression of asexual genetic continuity and
integrity through time.

Besides telomere re-setting with concomitant main-
tenance of chromosome end integrity, the fact that
aphid chromosomes are holocentric (i.e. they lack a
localized centromeric function) may prevent chromo-
some fragments from being lost during cell divisions
should chromosomal break-ups occur (e.g. transloca-
tions) and hence may actually facilitate karyotypic
changes (Blackman, 1980; Blackman, Spence &
Normark, 2000). Furthermore, the maintenance of
meiosis, even very occasionally, may be important in
maintaining diploidy in eukaryotic genomes (Birky,
1996), and that its loss (as apparently found in some
aphids such as 

 

Trama

 

 spp. and 

 

M. ascalonicus

 

) leads
to a decay in the structure of the chromosome (Black-
man 

 

et al

 

., 2000) concerning the loss of rDNA arrays
in 

 

Trama

 

 with various genetic consequences (e.g.
structural heterozygosity) in association with poten-
tial ecological consequences such as host adaptation.
The latter is yet unproven empirically in this group of
aphids, but there is evidence for its existence in 

 

Sito-
bion

 

 species (Sunnucks 

 

et al

 

., 1998).
Linkage between asexual and sexual lineages, often

involving rare males, has been suggested in a growing
number of species, including aphids of the genus

 

Trama

 

 (Normark, 1999) and 

 

R. padi

 

 (Delmotte 

 

et al

 

.,
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2001), water fleas, 

 

Daphnia

 

 spp. (Crease, Stanton &
Herbert, 1989) and nonmarine ostracods (Schön 

 

et al

 

.,
2000; Simon 

 

et al

 

., 2003). Such events need not be lim-
ited to a single species, but can occasionally occur
between closely-related species, in effect, the best
available match (cf. Delmotte 

 

et al

 

., 2003; Lushai

 

et al

 

., 2003b). Changes in adaptive niches may also be
influenced by interspecies introgression, as suggested
between the predominantly asexual 

 

S. avenae

 

 and its
holocyclic sister species, the blackberry-grain aphid,

 

Sitobion fragariae

 

 (Walker) (Sunnucks 

 

et al

 

., 1997; for
ostracods, see Havel, Herbert & Delorme, 1990; Chap-
lin, Havel & Herbert, 1997). Alternatively, and even
more rarely, aphids may have developed, similar to
true ancient asexuals (see also below in the case of
bdelloids), compensatory mechanisms that maintain
telomere function, thereby allowing truly ‘immortal’
asexual lineages to persist and either evolve specific
adaptations (e.g. host) or evolve as special ‘general
purpose genotypes’ (Lynch, 1984; Blackman 

 

et al

 

.,
2000; Van Doninck 

 

et al

 

., 2002).
A presumption with aphids is that sexual recombi-

nation also leads to the production of cold tolerant
eggs and this has been argued as a reason for sex in
aphids (Blackman, 1980), beyond the conventional
proposition for the increase of population genetic vari-
ance and elimination of genome-wide deleterious
mutations. Nevertheless, aphids such as 

 

S. avenae

 

and 

 

M. persicae

 

 can become sexual and produce eggs
even in regions with mild winters when egg pro-
duction cannot be a survival necessity (Helden &
Dixon, 2002; Guillemaud 

 

et al

 

., 2003). This has been
thought to be an ecological ‘bet hedging’ strategy
(Delmotte et al., 2001). In our analogy, however, the
sexual egg is the event allowing for lineage continuity
and proliferation.

Is there more to this persistence of sex in aphids?
The late W. D. Hamilton (1936–2000) described a sce-
nario of diverse, large, migrant asexual populations
colonizing extensive ecological landscapes [e.g. Aspen
forests (Populus tremula L.)], and considered them
suitable to remain apace with pathogen interactions
(i.e. the Red Queen hypothesis). In later models, such
asexual stability could only be maintained if suitable
pockets (‘islands’ of genetically unique individuals, so-
called ‘pacemakers’) were retained that continuously
contributed to the required diversity of the system to
keep apace of selective processes (the ‘Red Queen
pacemaker’; Sasaki, Hamilton & Ubeda, 2002). Molec-
ular studies are already revealing large genetically
heterogeneous asexual populations with genotypes,
some rare, that are apparently maintained in unique
(i.e. host adapted) niches (Haack et al., 2000; Lushai,
Markovitch & Loxdale, 2002). We believe that asexual
lineages persist because of rare recombination events
(as above), and also to exchange genes with rare gen-

otypes as described by Sasaki et al. (2002). Such a sce-
nario produces both increased genetic diversity and
genetically-ecologically fit individuals (in terms of
biotic: predators, parasitoids, pathogens, and perhaps
abiotic factors) with restored telomere function. These
subsequently give rise to proliferating, regenerated
asexual lineages. Meanwhile, the less fit aphid geno-
types with shortened/nonfunctional telomeres decline
in frequency within the population as a result of
antagonistic selection.

Amongst the best candidates for a total abstinence
of sex, even rare sex, and hence our hypothesized
method of re-setting telomere function in asexuals, are
the free-living bdelloid rotifers and darwinulid ostra-
cods. These ancient asexuals have been celibate for
aeons (Mark-Welch & Meselson, 2000; Martens et al.,
2003). We earlier hypothesized (Loxdale & Lushai,
2003b) that these would have compensatory mecha-
nisms to facilitate the control of their chromosomal
ends and empirical evidence has indeed recently
shown that bdelloids at least lack conventional telom-
eres, but compensate with a retroelement thought to
be associated with telomeric functioning (Arkhipova &
Meselson, 2000, 2005). Contrasting with this group,
the protozoan Giardia lamblia (= Lamblia intestina-
lis), one of the earliest branching eukaryotes (Lloyd,
Ralphs & Harris, 2002), not only retains sex, but also
has reverse transcriptases (retrotransposons) that are
only functionally associated with the chromosomal
telomeric regions (Arkhipova & Morrison, 2001).
Thus, an association between telomeres and their
functional integrity, including periodic re-setting,
probably during meiosis or certainly at the early
stages of development following fusion of the zygotes,
is already apparent from the available published stud-
ies of a range of taxa (Lanza et al., 2000; Lundblad,
2002; Schaetzlein et al., 2004). If these trends have
been correctly interpreted, then survival and prolifer-
ation of re-set clonal lineages, as exemplified by aphid
populations and lineages in general, appears to be
plausible.
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