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Factorial Design and Abelian Groups 

R. A. Bailey 

Rothamsted Experimental Station 
Harper&en, Herts, AL5 2_lQ, U.K. 

Submitted by George P. H. Styan 

ABSTRACT 

The theory of finite Abelian groups is used to simplify the search for, and 

construction of, factorial designs. 

1. INTRODUCTION 

The classical theory of symmetrical factorial design, where all treatment 
factors have the same, prime number of levels [9, 111, was expressed in terms 
of elementary Abelian groups by Fisher [20,21] and Finney [ 181. Chakravarti 
[13] explicitly used the dual group in the case of 2-level factors. More 
recently, several authors have used general finite Abelian groups to extend 
the classical theory of factorial design to include the cases where not all 
treatment factors have the same number of levels and where the number(s) of 
levels is (are) not necessarily prime: see [l, 4, 7, 16, 17, 25, 26, 30, 311. 

Much of this work is concerned with fractional replicates, or with single 
replicates divided into equal-sized blocks. However, there is increasing inter- 
est in more complicated block structures, such as row-by-column layouts or 
multiply nested structures: some important classes of block structure are 
(ordered by inclusion) the simple orthogonal block structures [32], the poset 
block structures [2, 5, 8, 38, 391, the orthogonal block structures [5, 38, 391, 
and the Tjur block structures [41]. In spite of the statistical overtones of the 
word “block,” both the set of plots and the set of treatments may be 
equipped with a “block structure” of some sort. General block structures 
therefore provide the natural setting for the decomposition of both the 
treatment space and the plot space of a factorial experiment. Use of these 
general block structures makes essential the explicit clarification of the 
associated vector-space theory. This theory has been developed by several 
authors, with conflicting terminology and notation. To avoid confusion in the 
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main part of this paper, the necessary vector-space theory is reviewed in 
Section 2. 

In Section 3 we set some previous design theory in the context of more 
general block structures. We briefly review how the identification of the sets 
of treatments and plots with Abelian groups can, for designs defined by group 
homomorphisms, facilitate the description and examination of confounding 
patterns. Section 4 contains the main results of this paper. It shows how some 
group theory, specifically the decomposition of a finite Abelian group into a 
direct sum of its Sylow subgroups, may be used to simplify many design 
problems. Thus it suffices to consider Abelian groups of prime-power order. 
Section 5 specializes these results to fractional replicates and blocked single 
replicates. For these two cases, it is shown that design problems for general 
finite Abelian groups may be essentially reduced to similar problems for 
elementary Abelian groups. 

Unless otherwise explained, all theory, terminology, and notation for 
groups used in this paper may be found in [23]. A similar reference work 
for factorial design is [27]. 

2. BLOCK STRUCTURES AND VECTOR-SPACE DECOMPOSITIONS 

Let Q be a finite set, let p and u be partitions of Q (that is, equivalence 
relations on Q, or block systems on Q), and let Z be a set of partitions of Q. 
We use the following terminology and notation for concepts given in [2, 4, 5, 
8, 28, 38, 39, 40, 411: 

(1) p is uniform if all classes of p have the same size; 
(2) V, denotes the subspace of the real vector space IX” consisting of 

vectors which are constant on each p-class; 
(3) p nests u, or p is coarser than u, or u is finer than p, if every u-class 

is contained in a p-class (equivalently, if V, < V,); 
(4) p A u and p V u are, respectively, the coarsest partition nested by 

both p and u, and the finest partition which nests both p and a; 
(5) p and u are orthogonal if V, n V,$ (I is orthogonal to V, n V,$ ~ 

[equivalently, if, within each (p V u)-class, the size of each (p A u)class is 
proportional to the product of the sizes of the p-class and u-class containing 
it] ; 

(6) ~1 and E are, respectively, the coarsest and finest partitions of Q; 
(7) if u E C, then W, is the orthogonal complement in V, of all those V, 

for which p E Z, p # u, and p nests a; 
(8) (52, Z) is a Tjur block structure (TBS) if Z contains F, Z is closed 

under V , and every pair of partitions in Z: is orthogonal; 
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(9) (Q, Z) is an orthogonal block structure (OBS) if it is a TBS which is 
closed under A, which contains ~1. and all of whose partitions are uniform. 

THEOREM 1 (see [41]). Zf (Q, Z) is a Tjur block structure, then R a is the 
orthogonal direct sum of the spaces W, for a in Z. 

Three special classes of OBS are of particular interest to us here. The first 
has been implicitly described by almost every author on factorial design. Let 
Q=QIX ... x Q2, for some integer n, and let Z be the set of subsets of 

{I,2,..., n }. If u E Z, we may identify u with a partition of a by putting o 
and w’ in the same u-class if and only if oi = w! for all i in u. In particular, 
0=~ and {1,2,..., n}=&. Then (Q,X) is an OBS, and the decomposition 
@,W, is the usual factorial decomposition of R”, for WC ij is the (space 

corresponding to the) main effect of the i th factor, while W, is the interaction 
of the factors in u for [ul> 2. We call this a complete factorial structure. 

The second special class is a generalization of the first. Suppose that s is 
apartialorderon{1,...,n}.Asubsetuof{1,...,n}issaidtobeancestraZif 
whenever i E u and is j then j E u. Let Z 1. be the set of all ancestral 
subsets of { 1,. . . , n}. Then (8,X,) is an OBS. This is called a poset block 
structure (PBS). 

The third special class consists of the group block structures (GBS). Let G 
be an Abelian group. If K is a subgroup of G, we define the partition uK of G 
to be that whose classes are the cosets of K. Then uK A uL = uK n L, uK V uL 
=u K+Ly a, = p, and a, = E: here we are writing G additively, so that 0 
denotes both the identity element of G and the identity subgroup. If 
Z = { uK: K < G}, then (G, Z) is an OBS. 

It is convenient to describe GBS in another way. Every finite Abelian 
group G has a dual group G* (see [23, §V.S]), consisting of the homomor- 
phisms from G into the multiplicative group of the complex numbers. 
Moreover, G may be expressed (in general, in more than one way) as a direct 
sum of cyclic groups (gl)@(g,)@ .. . CB (g,), and this gives an explicit 
form for G *, as Ledermann [29, 32.41 shows. Let ti be the order of g i, and let 
c be any common multiple of the ti. Then G* = (xl) CB (x2) @ . . . Ed (x,,), 
where 

Xi( g j) = g:,c/tt 

and 17 is a primitive cth root of unity. Thus if z in G and 9 in G* are equal 
to &zigi and Cieixi respectively, where the zi and Bi are integers, then 
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where [ , ] is the bilinear form given in [7], namely 

For a subgroup K of G, we denote by K o the annihilator of K; that is, 
K“= {x~G*:x(k)=l for all ~EK}. By Theorems 6.3 and 6.4 of [23, 
9V.61, we have G** = G and Koo = K. If H is a subgroup of G*, we define 
the partition pH of G as follows: 

z and z’ are in the same p&ass if and only if 

Then pH = uHO so that (G,{ pH: H < G*}) is the same GBS that we de- 
scribed before, except that the partitions are now labeled by subgroups of G * 
rather than subgroups of G. It is more convenient for subsequent work to use 
this second labeling, and we shall write H for pH where no confusion can 
arise: in particular, we write W,, for W,,. 

The group G is sometimes given in the form 52,@ . . . @Cl,,, where the &?, 
are groups and do not necessarily bear any relationship to the (g j). If 
x E G*, then x has a unique expression as Citir where <, E QT. Define the 
subset J(x) of {l,..., n} by J(x)= {i: ti # 0). Thus we have two decom- 
positions of Rc, one given by the group block structure on G and one given 
by the complete factorial structure on G. The results of [7] link these two 
decompositions, and may be stated algebraically as follows. 

THEOREM 2. Let H < G*. Then 

(a) W, = 0 unless H is cyclic; 

(b) if H is cyclic, with generator x, then 

(bl) the dimension of W, is equal to cp(lHj), where ‘p is Euler’s 
function; 

3. FACTORIAL DESIGN AND CONFOUNDING 

Let P be a set of plots with a TBS (P, IY). The subspaces W, of Rp, for y 
in I, are called strata [32]. 
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For reasons given in the discussion in [41], (I’, I’) will usually be an OBS. 
If a randomization argument is used to justify the assumed linear model (see 
[3, 32]), then (P, I’) will almost always be a PBS (see [2,8]). If (P, I?) is a PBS 
with P = P, X . . . x P,,, then P may be given the structure of an Abelian 
group in the following canonical way. Identify each Pi with any Abelian 
group of order IPil, so that P = P,@ . . . @P,. Each y in I is an ancestral 
subset of {I..., n }: for each such y define the subgroup K, of P by 
Ky=@{P~:i4y}.IfwedefineaKl as for the group block structure on P, 
then uK is the partition corresponding to y. 

From now on, we restrict our attention to TBS (P, r) with the property 
that P may be given the structure of an Abelian group in such a way that 
every y in I is equal to some uK for K < P. As just shown, this is always 
possible if (P, r) is a poset block structure: see Example 1. Even for a PBS, 
the subgroups K may not be the canonical ones just given: see Example 2. 
Moreover, we do not exclude other TBS with this property, such as some of 
the Latin-square block structures in [36, 551 (see Example 3) or any subset, 
closed under V , of the partitions in a PBS (see Example 4). 

EXAMPLE 1. Let (P, I?) be the simple orthogonal block structure 
((6 rows~6 columns)/6 subplots) (in the notation of [32]). We may put 

P = (P,> @ (pc> @ (P,>, where P,, P,, and p, have order 6. The subgroups 
corresponding to CL, rows, columns, rows A columns, and E are P, ( pc) @ ( p,), 

(P,) @ (P,), (P,), and 0 respectively. 

EXAMPLE 2. Let (P, I’) be the simple orthogonal block structure 
((2 superblocks/ blocks/4 plots)). We may put P = (pl) CB (p2), where pi 
and p, have order 4, and let P,(2p,) @ (p,),(p,),O be the subgroups 
corresponding to p, superblocks, blocks, E respectively. 

EXAMPLE 3. Let IPI = 81, and let the nontrivial partitions on P be the 
rows, columns, and letters of a Latin square A based on the elementary 
Abelian group G of order 9 (for example, A may be any 9 X 9 square in Table 
XVI of [22]). This structure is an OBS but not a PBS. By suitably labeling 
rows and columns we may put P = G@G and take O@G, G@O and 
{(g, - g ) : g E G } to be the subgroups corresponding to rows, columns, and 
letters respectively. 

EXAMPLE 4. As in [37, §4(d)], let P be an a x b X c 3dimensional array 
whose only nontrivial partitions are the 2dimensional slices corresponding to 
main effects of the three coordinates. This is a TBS but not an OBS. Put 
P = P,@P@P,, where P,, Pz, P3 are Abelian groups of order a, b, c respec- 
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tively. The nontrivial partitions correspond to the subgroups P,@F’,, Pi@&, 
and P,@Ps. 

Let T be the set of treatments to be applied to P. In a factorial 
experiment with n treatment factors, T is naturally T, X . . . X Tn, where Ti 
is the set of levels of the ith factor. If each Ti is given an Abelian group 
structure, then T becomes the Abelian group T,@ . . . @T,,. If ti = IT,j, then 
the most natural choice for Ti is the cyclic group C,, of order ti, and this is the 
approach taken in [ 16,26,30,31]. However, there are other possibilities when 
ti is not square-free, which are discussed at the end of Section 4. 

Any allocation of treatments to plots is simply a function $I : P --, T. A 
design with plot structure (P, l?), treatment structure (T, A), and allocation + 
is defined to be isomorphic to a design ((I”, r’); (T’, A’); +‘)) if there exist 
bijections 8: P + P’, and #: T + T’ such that: 

(1) r’= (O(y): Y E P}, where y is regarded as a subset of P X P and 

O(Y)= {(e(pl),e(p,)):(p,,p,)Ey}; 
(2) A’= {$(8):8~A}; 
(3) +~=~o~oe-~. 

Thus isomorphic designs differ only in the labeling of the plots, the treat- 
ments, and the partitions thereof. 

We restrict attention to designs in which $I is a group homomorphism. 
This includes all design keys as originally defined [7,33, 351; for these designs 
(P, r) is a PBS with canonically chosen subgroups, and $I may be specified as 
a matrix with respect to irredundant generators of T and P. However, more 
general design keys [34] are not included. Moreover, some designs obtained 
from group homomorphisms are not isomorphic to any designs constructed by 
the design-key method. 

EXAMPLE 5. Let T = T,@T,, where T, = (ti) and ti has order 4 for 
i = 1,2. Let (P, r) be as in Example 2. The group homomorphism +: P -+ T 
defined by +(ap, + bps) = (a + b)t, + bt, gives the design in Table 1, where 

TABLE 1 

a b=O 1 2 3 

0 (070) (I,I) (2,2) (393) Block 1 
2 (2,O) (3,l) (08 (1,3) Block 2 

Superblock I 

1 (la (231) (3,2) CO,31 Block 3 

3 (3PO) (0, I> (I,21 (2,3) Block 4 > 
Superblock II 
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the treatment ct, + dt, is shown as (c, d). This design cannot be obtained by 
using a design key. 

When 9 is a group homomorphism the general theory of dual structures 
[14, $8.2; 24, §VII.8] shows that there is a dual homomorphism +* : T* + P* 
defined by 

(G*(X))(P) = x(4(~)) for p in P and x in T*, 

and a dual-type linear transformation $I * : R T + IF8 ’ defined by 

(G*(4), = Q+(p) for p in P and 0 in KIT. 

For any subgroup H of T *, and any y in I’, the treatment effect W, is said 
to be confounded with y if $I,( W,) < W,, and to be superconfounded [ 11 
with y if +,( W,) < V,. Define the subset L, of T * by L, = {x E T * : WCx, 
is superconfounded with y }. Although previously stated only for simple 
orthogonal block structures (P, r), the results of [l, 71 apply to the more 
general structures considered here and may be summarized as follows. 

THEOREMS. If + is a group h omomorphism and H is a subgroup of T *, 
then 

(c) if y E r and K, is the subgroup of P such that y = uK,. then Ly is the 
subgroup +*-‘(K;) of T*, and the treatments occurring on any y-class of P 
consist of one or more copies of a coset of Ly in T. 

Parts (a) and (b) of Theorem 3 show the power and simplicity of the 
group homomorphism method of constructing designs and justify the stratum 
identification rule stated in [35]. However, not all designs based on Abelian 
groups can be constructed by a design key: those in [17] cannot, in general. 
The group-theoretical ideas of the present paper may be extended to these 
more general designs by using the finer decomposition of the W, mentioned 
at the end of [4], and this is done in a subsequent paper. 

Theorem 3(c) shows that the group homomorphism itself may be bypassed, 
and the design constructed by choosing suitable, and compatible, subgroups 
L, and calculating their annihilators. This is the approach given in [l] and the 
discussion of [41], and the one that will be followed in much of the remainder 
of this paper. 
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4. PSEUDOFACTORS AND SYLOW SUBGROUPS 

Many authors (for example, Yates [43] and Patterson [33]) have advocated 
the use of pseudofactors in constructing factorial designs where any t, is not 
prime. Suppose that ti = TiSi, where T, and si are positive integers greater 
than 1. Then the ith factor may be replaced by a pair of pseudofactors with 7; 

and s, levels. The set T, is identified with RI x Si, where (R i 1 = 1; and 
(Si] = si: any convenient one-one correspondence between the levels of the i th 
factor and the pairs of levels in Ri X Si may be chosen. 

The simplest way of reconciling the straightforward convention of [ 16, 261 
(that each T, is identified with a cyclic group) with the flexibility of allowing 
each T, to be an arbitrary Abelian group of order t,, is to permit use of 
pseudofactors, with the convention that each pseudofactor or unchanged 
factor is represented by a cyclic group. Does such use of pseudofactors make 
any difference to the designs which may be constructed? 

If there are no pseudofactors, T and T * are both isomorphic to Ct, 
@ . . . @Ct,,. Replacement of the ith pseudofactor by two pseudofactors with 
T, and s, levels (where T,S, = tj) has the effect of replacing the direct 
summand C,, by C, @C,,. If T, and si are coprime, these two groups are 
isomorphic [23, Theorem 1.13.9; and 14, 09.61 and so there is no change in the 
group structure, and hence no change in the designs produced by the group 
homomorphism or annihilator methods. 

Repeated application of this argument gives the following result. 

THEOREMS. Zf each treatment factor is replaced by pseudofactors, each 
of which has a prime-power number of levels, there being one pseudofactor 
for each prime which divides the original number of levels, then there is rw 
change in the designs constructed by the group homomo rphism OT annihilator 
methods. 

Let Q be the set of primes dividing IT(. By Theorems 7.3, 7.5, 9.5, and 
13.9 of [23, §I], or Proposition 9.7.4 of [14], T * has a unique Sylow 
q-subgroup T,* for each q in Q, and T * is the direct sum Qy E (,T,*. 
Moreover, if H is any subgroup of T *, then H = CBQ E QH,, where H, < T,*. 
Similar results hold for T, P, P*, and their subgroups [since duals of direct 
sums are the direct sums of the duals, there is no ambiguity about the 
notation T,* for (T4)* = (T *),I. F or each prime q in Q the Sylow q-sub- 
groups of T and T * correspond to the treatment q-quotient structure consist - 
ing of those factors and pseudofactors whose numbers of levels are powers of 
q (see [ 15, $41 for why the term “quotient structure” is more appropriate than 
the term “substructure” used by some authors). 
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If y E r, then y corresponds to some subgroup of P. Hence we obtain a 
partition y, of the plot qquotient structure. If y and S are distinct elements 
of r, then y, and S, may be equal for some (but not all) values of 9: in 
particular, y, may be equal to p, or to .sy for some values of 9. Thus the 
block structure (P,, r,) may be less rich than (P, I?): technically, it is a 
quotient block structure of (P, r). 

Suppose that, for each 9, we have a design for treatment set T, on plot set 
Pq. In the case that each design is a fractional or single replicate, with no 
blocking, Chakravarti [12] suggested combining the separate designs by 
taking the direct product of the sets of treatments which occur in the separate 
designs. We may generalize this idea to more complicated designs. For 9 in 
Q, suppose that +q : P, -+ T, is a treatment allocation (not necessarily a group 
homomorphism). Since, as sets, P = rIq 6 uPq and T = rIq E uTq, there is a 
natural way of defining the function + as the direct product of the ~~4: 

(G(P)), = cp,(P,) for P E p. 

Equivalently, the y-classes of P are all the possible direct products 114 E o B,, 

where B, is a y,-class of Pq, and the treatments on nBq are all combinations 
(allowing for multiplicities) of the treatments on the constituents B,. 

An immediate consequence of Theorem V.6.4 of [23] is that the annihila- 
tor of a direct sum is the direct sum of the annihilators: thus if H < T * then 
H o = eQ Ht. This gives our main result. 

THEOREM 5. Constructing a design for treatment set T on block structure 

(P, r) by the group homomorp hism UT annihilator methods is equivalent to 

constructing such a design for T, on (P,, I?,) for each 9 in Q and then 

combining these designs. 

This shows that, in any search for suitable designs with the complete 
confounding guaranteed by the group homomorphism method, we may 
essentially restrict our attention to qdesigns, those in which 1 PI and IT 1 are 
both powers of the same prime 9. Thus any given treatment structure may be 
decomposed into its constituent q-quotient structures (which are usually 
easier to deal with), for any investigation of which fractions, block designs, 
etc. are possible by the annihilator method. This decomposition was advoc- 
ated in [35, 571, and could have been used to facilitate the searches for 
designs in [16, 311. 

For fractional designs, we use the definition of resolution given in [27, 
$8.21, so that a resolution-w fraction also has resolution w - 1. Define the 
weight of x in T* to be I.&x)], w h ere J(x) is defined with respect to the 
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decomposition I’,@ . . . @ T,, as in Section 2; and define a subgroup H of T * 
to be w-heavy if all its nonzero elements have weight at least w. Since the 
defining contrasts of a fractional replicate are precisely the elements of Lp, a 
fraction has resolution w if and only if L, is w-heavy. Chakravarti [12] 
pointed out that a fraction has resolution w if and only if each of its 
constituent qdesigns has resolution w. 

The concept of resolution may be usefully generalized to other block 
structures, because requirements such as “no main effect or twofactor 
interactinn should be confounded with blocks” are quite common. If w is any 
function from I to the positive integers E + , we say that a design has 
resolution w if, for all y in I, the group Ly is WY-heavy. An easy generali- 
zation of Chakravarti’s result is: 

THEOREMS. Let w be a function fiorn r to H +. A design on (P, l’) has 
resolution w if and only if each constituent qdesign has resolution w. 

The notation used so far is convenient for general theory, but cumbersome 
for examples. Thus for the remaining examples we denote the treatment 
factors by A, B, C, . . as usual: there is no harm in identifying these with 

Xl> x2> x37... . Pseudofactors are shown by appending subscripts to the 
corresponding genuine factors. Since T and T * are written additively, it is 
logical to write generalized factors in the form exemplified by A +2B + C, 
rather than the classical AB’C: although this notation is different from that in 
most of the literature, and takes more space, it has the advantages that it is 
more consistent with the remaining notation, and that generalized factors 
such as A + B + C are clearly distinguished from interactions such as W,,,:; 
my students ‘lave certainly found the additive notation easier to follow. As in 
[6], the space WcX, is written as [xl. 

EXAMPLE 6. Consider a single-replicate 63 design in the block structure 
((6 rows X 6 columns)/6 subplots) discussed in Example 1. Let A,, B,, C, and 
A,, B,, C, be the pseudofactors with 2 and 3 levels respectively. The con- 
stituent 2design is for 23 treatments in (2 X 2)/2. In this, the onedimensional 
space [A, + B, + C,] is the whole of the 3-factor interaction. For a single 
replicate, the two one-dimensional spaces +; ‘( W,,,,) and +; ‘( Wcolumnr ) must 
be different. Hence there can be no single replicate 6” design in (6 x 6)/6 in 
which the effects confounded with rows or with columns belong entirely to 
the Sfactor interaction. 

A design with minimal confounding of 2-factor interactions with rows or 
columns has [A, + B, + C,] and [A, + C,] confounded with rows and col- 
umns respectively in the edesign, and [A, + B, + C,] and [A, + R, + ZC,] 
confounded with rows and columns respectively in the 3design. However, 



FACTORIAL DESIGN AND ABELIAN GROUPS 359 

[B,] and [C,], which are parts of main effects, are then confounded with 
rows ~columns. In order to have all main effects estimated in the subplots 
stratum, one would have to use a design with a confounding pattern such as 

rows columns rows A columns 

2design [A, + %I LB, + C,l [A, + G21 
3design [A, + B, + Csl [A, +%I [A3+%31~[4+2C,1 

Table 1 of [16] is a list of resolution-II single-replicate block designs for 
asymmetrical factorial structures, with IT I< 56, max(t,) < 7, and n < 5. Table 
1 of [31] lists resolution-III fractions (or single-replicate block designs) for 
asymmetrical factorial structures with IT 1 d 206, max( ti) < 7, and n < 7. In all 
but three cases, every design with a factor (or factors) at 6 levels may be 
obtained from another design in the same table by using pseudofactors. The 
three exceptions are interesting. The i-replicate 23~4x6 and 24~3~4 
designs in [31] are not isomorphic, because their 2-quotient structures are not 
isomorphic. As we show in Section 5, a resolution-III a-replicate 24 X 4 design 
may essentially have defining contrasts A + B + C, A + D +2E, B + C + D 
+2EorA+B+C+D,A+B+2E,C+D+2E. 

[16] contains designs for (a) 23 X 6, (b) 24 X 3, (c) 2’ X 3 X 4, (d) 2 X 4 X 6 
in 2 blocks of 24 plots. Design (a), with defining contrast B + C +3D, is not 
obtainable from design (b), whose defining contrast is A + B + C + D: use of 
design @) and pseudofactors gives a 23 X 6 design with defining contrast 
A + B + C +3D, which is of higher resolution than design (a), contrary to the 
authors’ claims. Similarly, designs (c) and (d) have defining contrasts B + 20 
and A + 2 B + 3C respectively: the 22 X 3 X 4 design corresponding to design 
(d) has defining contrast A + B + 20, and so is better than design (c). The 
design given for 23 X 4 in 2 blocks of 16 plots is also not of highest possible 
resolution. However, these mistakes are all corrected in [31]. 

The question posed at the beginning of this section has not yet been 
answered for the case when r, and si are not coprime. Then C,, is not 
isomorphic to C,.,@ C,, , so the use of pseudofactors may lead to designs which 
are not isomorphic to those obtained without pseudofactors, except when 
q n Ly = 0 or Ti for every y. Since an elementary Abelian group has more 
subgroups, of all orders, than any other group of the same order, replacement 
of a factor with 9’ levels (where 4 is prime) by r pseudofactors gives more 
flexibility in choice of design, and may make possible designs which cannot be 
obtained without pseudofactors. 

EXAMPLE 7. Suppose that we require a resolution-III a-replicate of a 43 
treatment structure. Without pseudofactors, there are only 4 possible defining 
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contrasts subgroups L,; one is (A + B + C), confounding [A + B + C] and 
[2A + 2B + 2C] with I*. The corresponding designs are isomorphic, each 
comprising the 16 (row, column, letter>triplets of the cyclic 4 x 4 Latin square. 
With pseudofactors, there are 36 distinct, but isomorphic, fractions; one of the 
possible defining contrasts subgroups is (0, A, + B, + C, + C,, A, + B, + 
C,, A, + A, + B, + B, + C,}. These fractions correspond to the other species 
of 4 x 4 Latin squares, and so are not isomorphic to the previous fractions. 

EXAMPLE 8. The list in [31] shows no a-replicate 2’ X 42 design, because 
no such resolution-III fraction is available without pseudofactors. Using 
pseudofactors, there is a resolution-III ;-replicate with defining contrasts 
A + C, + D,, B + C, + I&., A + B + C, + C, + D, + D,. 

EXAMPLE 9. For a 4’ treatment structure, suppose that a resolvable 
design [27, 511.41 is required in 3 replicates of 4 blocks of 4 plots. Using 
pseudofactors, and a separate group homomorphism in each replicate, we 
may take the group Lblocks to be as follows in the 3 replicates: 

(I) (6, A, + B,, A, + B,, A, + A, + B, + B,}, 
(2) {O,A,+B,,A,+B,+Bs,A,+A,+B,}, 
(3) (9, A, + B, + B,, A, + B,, A, + A, + Bz}> 

thus obtaining factorial balance [42]. (This design is isomorphic to one 
obtainable by the methods of Bose [9] using the finite field of order 4.) 
Without pseudofactors, 2A + 2B would have to be confounded in every 
replicate, making its estimation in the plots stratum impossible. 

The only disadvantage of using pseudofactors with the same number of 
levels is one not of practicality but of enumeration: there are no longer 
straightforward rules, such as those given in Section 5, to determine which 
structures have fractions of given size and resolution. Likewise, they do not 
readily lend themselves to the sort of computer search undertaken in [31]. 
However, if, in any particular practical case, the published tables give no 
suitable design, it is always worth a little ad hoc investigation to see if 
pseudofactors can give better designs, as in Examples 8 and 9. 

5. HEAVY SUBGROUPS AND DESIGNS OF 
SPECIFIED RESOLUTION 

In this section we characterize all factorial structures T with 2-, 3-, and 
4heavy subgroups, and make some progress for w-heavy subgroups for 
w > 5. By Theorems 5 and 6, it suffices to do this for q-designs. The concept 
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of weight makes sense only because, of the many possible ways of expressing 
T as a direct sum of cyclic groups, one such expression is distinguished, 
corresponding to the treatment factors. We shall call such a group a named 
group. Correspondingly, if T and T’ are two named groups, with dis- 
tinguished direct-sum decompositions T,@ . . . CB T, and T{@ . . . @ TL, re- 
spectively, we shall call a group homomorphism $ from T to T’ a name 
homomorphism if, for i = 1,. . . , n, $(T,) is contained in some Tj’ and, for 
i # k, $(Ti)n $(Tk)= 0. If Ic/ is also a surjection, we call 4 a name epimor- 
phism, T’ a name-homomwp hit image of T, and T a name extension of T’; 
if 4 is an injection, we call T a name subgroup of T’. (This terminology is 
consistent with general algebraic usage: see [15].) In factorial terms, if T has 
factors with t,, . . . , t, levels and T’ has factors with t;, . . . , t,’ levels respec- 
tively, this means that T is a name extension of T’ if n > n’ and there is a 
permutation m of (1,. .., n } such that t[ divides t,cij for i = 1,. . . , n’. For 
example, the factorial structures 4 X 4 X 8 X 8, 2 X 4 X 4 X 8, and 4 X 8 X 16 are 
all name extensions of 4 X4 X8, but 2 X4 X4 and 8 X 16 are not. To save 
cumbersome notation, we write (oj)N for a structure with N factors at qi 
levels. 

THEOREM 7. Let q be a prime number. Then there is a function 
f4:z+xz++z+ such that T * has a w-heavy subgroup isomorphic to 
(C,)” = c4w$B . . 
(q)f,(we)* 

. @C, (e factors) if and only if T is a name extension of 

Proof. If (C,)” has a *heavy subgroup isomorphic to (Cq)e, then so 
does (C )N+l. Moreover, the wheavy subgroup of (Cq)We generated by 

E 1;’ where 5j=X,cjPr,+r r,..., e, + Xw(jP1)+2 + . ’ ’ + Xwj and xk generates 
the kth C,, is isomorphic to (Cq)e. Thus there is a least integer fq(w, e) such 

that (C,)” has a w-heavy subgroup isomorphic to (C,)” if and only if 

N> fq(w, e). 
Now let T = T,@ . . . @T,, where q is cyclic of order qel. Then T is a 

name extension of (q)N if and only if n 2 N. All elementary Abelian sub- 
groups of T * are subgroups of a,( T *), which is equal to ei (q ‘,-‘x i); 
hence T* has a *heavy subgroup isomorphic to (C,)” if and only if 

n 2 f,(w, e). n 

To find explicit forms for f,, it suffices to consider the case when T is 
elementary Abelian; that is, all factors have q levels. The existence of a 
w-heavy subgroup H of T * of order q” is equivalent to the existence of a 
resolution-w fraction for n factors on q”-” plots. Bose [9] defined m,_ 1(r, q) 
to be the maximum number of factors with q levels that can be accommod- 
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ated in a resolution-w fraction on qr plots. It is immediate that f,( w, e) is the 
smallest value of N such that N < m,_ r( N - e, q). 

THEOREM 8. 

(i) &(2, e) = e + 1; 
(ii) f,(3, e) is the least integer N satisfying N < (q”-” - I)/( q - 1); 
(iii) fa(4, e) is the least integer N satisfying N < 2K-v-1; 
(iv) f,(w,l)=w andf,(w,2)= w+/w/qj, where [w/q] is the least 

integer not less than w/q; 

6) f,(w,e+l)~f,(w,e)+[to/21. 

Proof. (i): Since T * is not itself 2-heavy, f,(2, e) > e + 1. However, let 
g = C,g,, where gi generates Pi, and put H= (g)“. Then (N( = (T(/l(g)] = 

q”/q = q*-i, so H E (Cq)n-l; and H is 2-heavy, because [ oixi, g] z 0 unless 
Bixi=O. Hence&(2,e)=e+l. 

(ii): By Fisher’s result ([20, 211, quoted in this form by Finney [19, 94.10]), 

m,(r, q) = (qr- l)/(q - 1). 
(iii): Bose [9, 351 showed that mJr,2) = 2’-‘. 
(iv): Put y = &(w,2). Let H be any w-heavy subgroup of (C,)y of order 

q ‘. If H is also (w + I)-heavy, we could delete one of the named generators, 
contrary to the minimahty of y. Hence H contains an element x of weight w: 
we may suppose that J(x)= {l,...,w} and x=x1+x2+ ... +x,,. Now 
let~beanyelementofH\(~)andput~=C~,~i.Forj~{O,1,...,q-1}, 
let h j = I{ i : 1 < i < w and Ei = j } 1. The minimahty of y shows that .$, f 0 for 
w + 1< i ,< y. Hence the elements k( jx - 5) of H \ (x > have weights y - hi 
for jG {O,l,..., q - 1) and ke {1,2,..., q - 1). Thus y - Xj B w for all j, 
so that y - w 2 max{ A,:0 < j < q - l}, with equality for those families 
{X,:0< j<q-1) which minimize this maximum. Since X,X, = w, the 
minimum value of the maximum is [ w/q 1. 

(v): Put y = f,(w, e) and x = y + [w/2]. Let H be any w-heavy sub- 
group of (C,)X of order q” which involves only the first y generators. Put 
.$= ~~_~+r+ ~~_~+a+ ... +x,, where xk generates the kth C,. Then 
(H, 5) is a w-heavy subgroup of (C,)” of order q”+ ‘. n 

Explicit forms for f seem much harder to obtain for w > 4 and e > 3 (see 
[lo]), although values of f,( 20, e) for small e may be calculated by exhaustive 
methods. 

Every Abehan q-group is a direct sum of cyclic q-groups [23, Theorem 
1.13.101. Theorem 7 not only gives a necessary and sufficient condition for an 
Abehan q-group to contain a w-heavy subgroup isomorphic to a given 
elementary Abelian q-group; it also gives us enough information to deduce a 
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necessary condition for an Abehan q-group to contain a wheavy subgroup 
isomorphic to any given Abelian q-group. This is contained in Theorem 9(a). 
The sufficiency of this condition in some circumstances [Theorem 9(b)] is 
obtained by using the following lemma. 

LEMMA. Let e,,e,,..., ek be positive integers with e, < e2 < . . . < ek. 
Put yj = f,(w, ej) for 1< j <k. Let T 3 (C,)yk, with T* = @,!&(xi). For 
H<T*, define Hi to be {~EH:J(x)~{~,...,~~}}. Zf (i) w=2 or (ii) 
w = 3 or (iii) w = 4 and q = 2 or (iv) ek = 2, then there exists a w-heavy 
subgroup H of T * such that Hj is wheavy of order 4’~ for 1~ j < k. 

Proof It suffices to assume that ej = j for 1~ j < k. Then the proof of 
Theorem 8(iv) deals with the case ek = 2. For the other three cases we give an 
explicit countable sequence Ei, 5s’. . . such that El,. . . , ck are elements of T * 
and Hj=(~l,...,~j). 

(i): Put tj = x1 + x j+ i. 
(ii): Using the work of Fisher [20, 211, put z, = (q” - l)/(q - l)+ 1 and 

- n - 1, for positive integers n. Let G, = (xi) and G, = 
‘;c:_::;(;. 
elements of ‘G, as ni for 1~ i < q” 

) for n 2 2. To define_5,i,,r[,“+,,.. . , Exn+,, label the nonzero 

n+l-Xn. Then put 

5xn+i = 4i + Xzn+ Xz”+i 

for l<igrn+i-r,. 
(iii): This is similar to (ii), using the work of Bose [9, 55.41. For n > 2 put 
=2”-’ +l and X, =x, -n - 1. Let G, = (xr,xs) and G, = 

;& Xt,_ > for n > 3. Label the nonzero elements of G, for which /J(n)] is 
even as ni for 1 ,( i < 2”-l - 1 = X,+i - x,. Then define [,“+, as in (ii). w 

This lemma may be true in other cases, but a general proof seems hard to 
find. 

THEOREM 9. Let q be a prime number; w, k, and ek positive integers; 

el,e2,‘..,ek_I nonnegative integers; and 

fi= c$ (c,,)? 
j=l 
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Cull T a (w, Z?)-candidate if T is a name extension of 

Tt= fi (qj)"("‘.j), 

j=l 

where 

F(w, k) = f,(w, Ek). 

for j < k, and E, = ek + ekPl + . . . 

Then 

+ ej. (Zn particular, F(2, j) = ei + Sjk.) 

(a) T * has a w-heavy subgroup H isomorphic to fi only if T is a 

( w , fi )-candidate; 

(b) if T is a (w, fi)-candidate and either (i) w E {2,3} or (ii) w = 4 und 
q = 2 or (iii) IJr = 2 or (iv) k = 1, then T * has a w-heavy subgroup H 

isonwrphic to H. 

Proof. (a): Let j E {l,..., k }. Then H contains a subgroup D isomor- 
phic to (C,,)“J. Let L = {qj-lx: x E D}. Then L = (C,)“J, so Theorem 7 
shows that T * has a subgroup isomorphic to (C,) f,(I”, Ed). Since each element 
of this subgroup has the form qjP1x for some x in T *, it follows that T is a 
name extension of (qj)f”( t”,E~) This is true for all j: hence the values of F . 
given in the statement of the theorem. 

(b): Put yj= f,(w,Ej) for j= l,... k. Let U= @y;,(u,), where each U, 
has order q, and let TJ~ be a generator of (ui)*. When any of conditions 
(i)-(iv) holds, the lemma shows that we can find a w-heavy subgroup K of 
U* such that Kj=(C,)“~ for j=l,...,k, where Kj={q~K:J(n)~ 

{l>...>yj}}. Ch oose a minimal set Dj of generators for Kj such that 

D,zD k_l c . . . c .D1. Thus ID,\ = ek and IDj \ Dj+ll = ej for 1~ j < k. 

Putm(i)=kfor1~i~y,and,forl~j~k-l,putm(i)=jifyj+,< 
i < yj. Then T’ has elements gi (1 <i < yl) such that T’= cBtYLl(gi) and g, 
has order q . m(i) Let xi be a generator of (g,)*. For 5 in Dj \ Dj+l, if 

E=Ci5jVj put X(5)=Ci5iq m(i)pjxi: thus ~(5) is an element of T * of order 
q j. Let H’ be t_he subgroup of T’* generated by { x(E) : 5 E D, }; then H’ is 
isomorphic to H. Consider the name homomorphism 8 : T’* + U * defined by 
O( x i) = vi. Since O( H ‘) = K and name homomorphisms do not increase 
weight, H’ is w-heavy. Finally, if 4 : T + T’ is a name epimorphism, then 
#*(H ‘) is a w-heavy subgroup of T * isomorphic to fi. n 
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EXAMPLE 10. Let l? = C4@C2 and w = 3. When 9 = 2 we have f,(3,1) 
=3andf,(3,2)=5,~oT’=(4)~X(2)‘.If U=(2)5wemaytakeK,=(A+ 
B + C), K = K, = (A + B + C, A + D + E); pulling A, B, and C back to 
4level factors (still called A, B, C), we obtain H’ = (A + B + C, 2A + D + 
E), so that 

H’= (0, A + B + C,2A +2B +2C,3A +3B +3C,2A + D + E, 

If T = (8) X (4)4 with factors A,. . . , 2, then if 4 maps the generators of T to 
th_oseof T’ inorder,wehave +*(A)=2A, +*(B)=B, #*(C)=c, q*(D)= 
20, G*(E) = 2E, so that 

A single replicate block design in 8 blocks with Lblocks = H confounds the 
following effects: 

[2A+B+C], [6A+B+C+2B+2z] (dimension 2 each), 

[4A+2B +2c], [4x+25+2@, [23 +2Cf2D +2E] 

(dimension 1 each). 

Subgroups H, and H, of T * wiU be called essentially the same if there is 
a name isomorphism 4 of T such that #*(HI) = H,. Even when T = T’ in 
Theorem 9, there may be essentially different choices of H. For example, 
&(3,5) = 9, and there are 5 essentially different 3-heavy subgroups of T * 
isomorphic to (C,)5 when T = (2)‘. When T z T’ there are often name 
epimorphisms I/J~ and 4s from T to T’ such that IC/T( H’) and +g( H’) are 
essentially different. In Example 10, because every name isomorphism of U 
which fixes K must fix (A), we obtain an essentially different subgroup of 
T * by allowing 4 to transpose the first two generators: that is, interchange 
2x and B in H. For the same reason, there are two essentially different 
3heavy subgroups of T * isomorphic to C@ C, when T = (2)4 X (4). 

Theorems 5-9 show that, if pseudofactors are not used, all resolution-II 
single-replicate block designs, resolution-III fractions, and resolution-IV frac- 
tions may be obtained from such designs in which all factors have the same, 
prime number of levels. Designs with this last property will be called 
elementary, by analogy with the corresponding groups. Thus all the informa- 
tion in Dean and John’s [16] list of 51 resolution-II block designs is contained 
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in the 17 constituent 2designs, 3 constituent 3designs, and 1 constituent 
5-design (not counting unblocked single replicates): moreover, 6 elementary 
2designs give all the information in the 17 2designs. This way of summariz- 
ing the list, in addition to being an easy method of finding it, shows that it 
omits a 2 X 4 X5 design in 2 blocks of 20. Similarly, the 77 resolution-III 
fractional designs given by Lewis [31] are obtained from 23 2designs, 3 
3designs, and other unblocked single replicates; no fewer than 12 designs 
listed are simply the combination of the unique resolution-III i-replicate of 2” 
with an unblocked single replicate. Again, 7 elementary 2designs and 3 
elementary 3designs contain all the information in the list. 

If the lemma is not true for w 2 5, or for w = 4 when 4 is odd, then such 
dramatic simplifications may not be possible in general. However, Theorem 9 
and its proof still give a good strategy for trying to construct designs from 
quotient elementary designs. Moreover, the first case not covered by Theo- 
rems 7 and 9(b) has k = 2 and E, = 3, and w = 5 (if q = 2) or w = 4 (if 4 is 
odd). For any given prime 9, the corresponding group H of smallest order is 
C,Z @ (C,)“. Theorem 9(a) shows that if T has a w-heavy subgroup isomorphic 
to J%, then ITI is divisible by 9N, where N=2f,(w,l)+[f,(w,3)-fJw,l)] 
= f,( w, 3) + f,( w, 1) = f,( w, 3) + w. Calculation shows that f2(5, 3) = 10, while 
the results of Bose [9, 555.3, 5.51 show that f,(4,3) = 7 and f,(4,3) = 6 for 
9 >, 5. Hence IT\ is divisible by 2l”, 311, or 91° for 9 > 5. Thus Theorems 7 
and 9(b) suffice for up to 32,767 treatments, which is enough for most 
practical purposes. 

Part of this work was done while the author held a Science Research 
Council Research Fellowship at the University of Edinburgh. 

The author is grateful to H. D. Patterson for his encouragement of this 
work, and to the referees fm their carefil reading and helpful comments. 

REFERENCES 

1 R. A. Bailey, Patterns of confounding in factorial designs, Biometrika 64:597-603 

(1977). 

2 R. A. Bailey, Distributive block structures and their automorphisms, in Co&Gnu- 

torial Mathematics VIII (K. L. McAvaney, Ed.), Lecture Notes in Mathematics 

884, Springer, Berlin, 1981, pp. 115-124. 

3 R. A. Bailey, A unified approach to design of experiments, J. Aoy. Statist. Sot. 
Ser. A 144:214-223 (1981). 

4 R. A. Bailey, Dual abelian groups in the design of experiments, in Algebraic 

Structures and Applications (P. Schultz, C. E. Praeger, and R. P. Sullivan, Eds.), 

Marcel Dekker, New York, 1982, pp. 45-54. 



FACTORIAL DESIGN AND ABELIAN GROUPS 367 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
15 
16 

17 

18 

19 

20 

21 

22 

23 
24 
25 

26 

It. A. Bailey, Block structures for designed experiments, in Applications of 
Combinatorics (R. J. Wilson, Ed.), Shiva, Nantwich, 1982, pp. 1-18. 
R. A. Bailey, The decomposition of treatment degrees of freedom in quantitative 
factorial experiments, I. Roy. Statist. Sec. Ser. B 44:63-70 (1982). 
R. A. Bailey, F. H. L. Cilchrist, and H. D. Patterson, Identification of effects and 
confounding patterns in factorial designs, Biometrika 64:347-354 (1977). 
R. A. Bailey, C. E. Praeger, C. A. Rowley, and T. P. Speed, Generalized wreath 
products of permutation groups, Proc. London Math. Sot. 47:69-82 (1983). 
R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhya 
8: 107- 166 (1947). 
R. C. Bose, Combinatorial problems of experimental design II: Factorial designs, 
in Combinatorial Mathematics, Optimal Designs and their Applications (J. N. 
Srivastava, Ed.), North Holland, Amsterdam, 1980. 
R. C. Bose and K. Kishen, On the problem of confounding in general symmetrical 
factorial design, Sankhya 5:21-36 (1940). 
I. M. Chakravarti, Fractional replication in asymmetrical factorial designs and 
partially balanced arrays, Sankhya 17: 143-164 (1956). 
I. M. Chakravarti, Optimal linear mapping of a Bumside group and its applica- 
tions, Atii o!ei Conoegni Lincei 17:171-181 (1976). 
P. M. Cohn, Algebra, Vol. 1, Wiley, Chichester, 1974. 
P. M. Cohn, Algebra, Vol. 2, Wiley, Chichester, 1977. 
A. M. Dean and J. A. John, Single replicate factorial experiments in generalized 
cyclic designs: II. Asymmetrical arrangements, J. Roy. Statist. Sot. Ser. B 
37:72-76 (1975). 
A. M. Dean and S. M. Lewis, A unified theory for generalized cyclic designs, J. 
Statist. Plann. Inference 4~13-23 (1980). 
D. J. Finney, The fractional replication of factorial arrangements, Ann. Eugen. 
12:291-301 (1945). 
D. J. Finney, An introduction to the Theory of ExperimentaE Design, Univ. of 
Chicago Press, Chicago, 1960. 
R. A. Fisher, The theory of confounding in factorial experiments in relation to the 
theory of groups, Ann. Eugen. 11:341-353 (1942). 
R. A. Fisher, A system of confounding for factors with more than two altema- 
tives, giving completely orthogonal cubes and higher powers, Ann. Evgen. 
12:28.%290 (1945). 
R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and 
Medical Research, 6th ed., Oliver and Boyd, Edinburgh, 1963. 
B. Huppert, End&he Gruppen I, Springer, Berlin, 1967. 
B. Huppert and N. Blackbum, Finite Groups II, Springer, Berlin, 1982. 
J. A. John, Generalized cyclic designs in factorial experiments, Biometrika 
69:55-63 (1973). 
J. A. John and A. M. Dean, Single replicate factorial experiments in generalized 
cyclic designs: I. Symmetrical arrangements, J. Roy. Statist. Sot. Ser. B, 
37:63-71 (1975). 



368 R. A. BAILEY 

27 P. W. M. John, Statistical Design and Analysis of Experiments, Macmillan, New 
York, 1971. 

28 0. Kempthome, Classificatory data structures and associated linear models, in 
Statistics and Probability: Essays in Honor of C. R. Rao (G. Kalhanpur, P. R. 
Krishna& and J. K. Ghosh, Eds.), North Holland, New York, 1982, pp. 
397-410. 

29 W. Ledermann, Introduction to Group Characters, Cambridge U.P., Cambridge, 
1977. 

30 S. M. Lewis, The construction of resolution III fractions from generalized cyclic 
designs, J. Roy. Statist. Sot. Ser. B 41:352-357 (1979). 

31 S. M. Lewis, Generators for asymmetrical factorial experiments, J. Statist. Plann. 

Inference 6:59-64 (1982). 
32 J. A. Nelder, The analysis of randomized experiments with orthogonal block 

structure. I. Block structure and the null analysis of variance, Proc. Roy. Sot. 

Ser. A 283:147-162 (1965). 
33 H. D. Patterson, The factorial combination of treatments in rotation experiments, 

I. A&c. Sci. 65:171-182 (1965). 
34 H. D. Patterson, Generation of factorial designs, J. Roy. Statist. Sot. Ser. B. 

38: 175- 179 (1976). 
35 H. D. Patterson and R. A. Bailey, Design keys for factorial experiments, Appl. 

Statist. 27:335-343 (1978). 
36 D. A. Preece, R. A. Bailey, and H. D. Patterson, A randomization problem in 

forming designs with superimposed treatments, Austral. J. Statist. 20:111-125 

(1978). 
37 D. A. Preece, S. C. Pearce, and J. R. Kerr, Orthogonal designs for threedimen- 

sional experiments, Biometrika 60:349-358 (1973). 
38 T. P. Speed and R. A. Bailey, On a class of association schemes derived from 

lattices of equivalence relations, in Algebraic Structures and Applications 

(P. Schultz, C. E. Praeger, and R. P. Sullivan, Eds.), Marcel Dekker, New York, 
1982, pp. 55-74. 

39 T. P. Speed, R. A. Bailey, C. E. Praeger, and D. E. Taylor, The Analysis of 

Variance, to appear. 
40 T. N. Throckmorton, Structures of classificatory data, Ph.D. Thesis, Iowa State 

Univ., 1961. 
41 T. Tjur, Analysis of variance models in orthogonal designs (with discussion), 

Internat. Statist. Reo. 5233-81 (1984). 
42 F. Yates, Complex experiments, 1. Roy. Statist. Sot. Suppl. 2:181-247 (1935). 
43 F. Yates, The Design and Analysis of Factorial Experiments, Imperial Bureau of 

Soil Science, Technical Communication 35, 1937. 

Received 19 November 1964; revised 6 June 1965 


