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Summary

 

A novel methodology is described in which transcriptomics is combined with the 

measurement of bread-making quality and other agronomic traits for wheat genotypes 

grown in different environments (wet and cool or hot and dry conditions) to identify 

transcripts associated with these traits. Seven doubled haploid lines from the Spark 

 

×

 

 Rialto 

mapping population were selected to be matched for development and known alleles 

affecting quality. These were grown in polytunnels with different environments applied 

14 days post-anthesis, and the whole experiment was repeated over 2 years. 

Transcriptomics using the wheat Affymetrix chip was carried out on whole caryopsis 

samples at two stages during grain filling. Transcript abundance was correlated with the 

traits for approximately 400 transcripts. About 30 of these were selected as being of most 

interest, and markers were derived from them and mapped using the population. 

Expression was identified as being under 

 

cis

 

 control for 11 of these and under 

 

trans

 

 control 

for 18. These transcripts are candidates for involvement in the biological processes which 

 

underlie genotypic variation in these traits.
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Introduction

 

It has been estimated that wheat currently feeds about 35%

of the Earth’s population, being grown on over 205 million

hectares with a total annual harvest of over 600 million

tonnes (Food and Agriculture Organization: http://

www.fao.org/statistics/). It is only consumed by humans after

processing into bread, noodles and other foods, and so

processing quality is an important target for breeders.

Substantial genetic variation exists in grain quality, and

breeders routinely select for ‘high-quality’ protein alleles in

their breeding programmes (reviewed by Payne, 1987;

Shewry 

 

et

 

 

 

al

 

., 2003; Cornish 

 

et

 

 

 

al

 

., 2006). However, there are

also significant environmental and genotype 

 

×

 

 environment

(G 

 

×

 

 E) effects which limit the stability of grain processing

characteristics and are poorly understood. Furthermore,

previous studies of environmental effects have largely focused

on the effects of high temperatures, when the heat shock

response is activated (reviewed by Blumenthal 

 

et

 

 

 

al

 

., 1993;

Dupont and Altenbach, 2003), conditions which are less

relevant to the cool temperate climate in Western Europe.

The stability of crop yield and quality to environmental

fluctuations will also become more important as climate

change is predicted to result in increased year-to-year variation,

as well as long-term changes in the climate (Porter and

Semenov, 2005; Richter and Semenov, 2005).

http://www.fao.org/statistics/
http://www.fao.org/statistics/
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The inability of breeders to select for stability to fluctuations

in climate may be related to two factors. First, it is difficult to

design and implement practical screens to select for stability

in breeding programmes. Second, it is probable that multiple

genes contribute to differences in stability between cultivars,

and these are difficult to select without the ability to discover

and identify specific alleles which can be characterized and

used for molecular marker-assisted selection.

It is clear that the stability of quality in wheat is a complex

trait under multigenic control, and is therefore not amenable

to simple mapping approaches. We therefore adopted a new

strategy to enable the identification of genes contributing to

stability and to facilitate the development of markers by

comparing the transcript profiles of doubled haploid (DH)

lines grown under various environmental conditions with the

processing properties determined by test milling and baking.

This identified a number of candidate genes whose expression

was correlated with quality traits which were stable over

multiple years and environments.

 

Results

 

Characteristics of the DH lines

 

The Spark 

 

×

 

 Rialto DH population comprises 144 lines (Snape

 

et

 

 

 

al

 

., 2007). Test baking of 60 lines selected to lack the

1BL/1RS translocation and grown in a field at the John Innes

Centre (Norwich, UK) in 2001 showed wide variation in

functional properties, with the loaves ranging from 1231 to

1675 mL in volume, 98 to 133 cm in height and 1 to 6 in

texture score (data not shown). Some of this variation was

clearly related to allelic differences in high molecular weight

(HMW) subunit composition. Spark has the HMW subunit

composition 1Ax null, 1Bx7, 1By8, 1Dx5 and 1Dy10, whereas

Rialto has the composition 1Ax1, 1Bx17, 1By18, 1Dx5 and

1Dy10. The presence of subunit 1Ax1 relative to the null

allele and of subunits 1Bx17 and 1By18 would be expected

to confer greater dough strength to Rialto (Payne, 1987), but

this effect is offset by the 1BL/1RS translocation which has

detrimental effects on quality (Graybosch, 2001). The

detrimental effects of the translocation are at least partly a

result of the replacement of the gluten proteins [gliadins

and low molecular weight (LMW) subunits] encoded by

loci on 1BS with the secalin proteins encoded by genes on

1RS.

In order to eliminate differences in functional properties as

a result of known differences in protein composition, we

selected DH lines which lacked the translocation and were

matched for HMW subunit alleles. From the Mahalanobis

distances derived during near-infrared (NIR) spectroscopy,

the relative position of the progeny to their parents was seen

to agree well with estimates based on their genetic similarity.

Using these data, lines which were spectroscopically ‘Spark-

like’ (S), ‘Rialto-like’ (R) and in a central region distinct from

either parent (S/R) were identified (Table 1). Initially eight

lines were selected, all with subunits 1Bx7 and 1By8 and with

six having the 1Ax null allele and two the 1Ax1 allele. These

lines also differed at four quantitative trait loci (QTLs) which

determined differences in processing properties (J. Snape 

 

et al

 

.,

unpubl. data). Subsequently one of the two lines expressing

subunit 1Ax1 was discarded because of an asynchronous

flowering time, leaving the seven lines listed in Table 1.

Table 1 Characteristics of the seven selected doubled haploid (DH) lines from the Spark × Rialto cross, showing high molecular weight (HMW) 
subunit alleles and alleles at four quality quantitative trait loci (QTLs) (S, Spark; R, Rialto). The allele confering good quality is indicated

Line Near-infrared

HMW subunit alleles QTLs

1A 1B 1D 3A

Loaf volume 

and height

S = good

3B

Loaf height

S = good

4B

Loaf volume R = good

Dough stability S = good

6A

Dough stability 

and development

S = good

SR41 R 1 7 + 8 5 + 10 S R R R

SR3 R Null 7 + 8 5 + 10 S R R R

SR7 S/R Null 7 + 8 5 + 10 R S R S

SR92 R Null 7 + 8 5 + 10 R R S S

SR5 S/R Null 7 + 8 5 + 10 S R R S

SR13 S/R Null 7 + 8 5 + 10 S S S S

SR107 S/R Null 7 + 8 5 + 10 S S R S

Includes unpublished data on QTLs from J. Snape et al.
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Grain development, yield and quality

 

Genotype 

 

×

 

 year 

 

×

 

 environment means for grain development,

yield and quality are described in Tables S2–S11 (see Sup-

porting Information).

Most of the quality parameters showed environmental

effects which were attributable largely to changes in the

duration of grain filling. In addition, some showed consistent

additive effects of genotype, whereas others showed highly

significant G 

 

×

 

 E interactions. In particular, loaf volume, which

is probably the single most important quality parameter for

breadmaking, showed effects of genotype and environment,

but no significant G 

 

×

 

 E interactions, the ranking of genotypes

being consistent with SR3 being the best and SR107 the

worst in the four environments (Figure 1). In contrast, the

grain sodium dodecylsulphate (SDS) sedimentation volume,

which is often used as a rapid indirect measure of potential

breadmaking performance, showed significant G 

 

×

 

 E interac-

tions (Table S4, see Supporting Information).

 

Transcriptome analysis

 

In order to identify genotype-dependent transcripts that related

to stable differences in functional properties, we decided to

combine transcript data for the stages of development,

environmental regimes and years into a single dataset for

analysis. This comprised data from 56 Affymetrix Genechip

 

®

 

arrays, with single arrays being carried out on each develop-

mental stage 

 

×

 

 environmental regime 

 

×

 

 year combination. A

set of 1905 probesets from the array was identified as showing

significant differences in expression between the seven geno-

types. Hierarchical clustering for this set showed completely

consistent separation of samples by genotype, and the SR41

line differed most in its expression pattern compared with the

other lines (Figure 2).

From this set, a subset of 468 probesets was identified

which showed correlation with the genotypic variation in

quality parameters (see Experimental procedures). Fifty of

these probesets were prioritized as of greatest interest, and

34 of these were mapped successfully within the Spark 

 

×

 

 Rialto

population (J. Snape 

 

et al

 

., unpubl. data). Mapping of the

transcripts allowed the pattern of alleles among the seven DH

lines to be compared with the expression patterns of the

transcripts. If the patterns are the same, with either parental

allele corresponding to high expression, the allele controlling

expression is a 

 

cis

 

 factor. If the patterns differ, it is a 

 

trans

 

 factor.

(The probability of a 

 

trans

 

 factor appearing to be 

 

cis

 

 by

chance for seven lines is 1/2

 

6

 

 = 1.6%.) The 

 

cis

 

 factors are

more informative as the causative sequence is likely to be

close to the transcript itself, e.g. the promoter of the gene

encoding the transcript.

An example of expression data for three mapped transcripts

is shown in Figure 3. These three transcripts had the same

pattern of alleles across the seven genotypes, as indicated at

the top of the figure. Two of the transcripts showed similar

patterns of variation, being associated with high expression

(red lines) or low expression (blue lines). This shows that the

abundance of these two transcripts was determined by 

 

cis

Figure 1 Loaf volumes of the seven 
Spark × Rialto doubled haploid lines grown 
in polytunnels in 2004 and 2005, showing 
consistent genotype effects across 
environments. No data are available for SR107, 
SR92 and SR5 grown under hot and dry 
conditions in 2004 as insufficient grain was 
produced for milling.
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factors. The third transcript (yellow lines) did not correspond

to the expression pattern of the alleles, and the expression of

this transcript was therefore controlled by a 

 

trans

 

 factor.

From these analyses, 15 of the mapped transcript sequences

were identified as possibly under the control of 

 

cis

 

 factors.

The pattern of expression between the seven DH lines and

the parents was independently examined using quantitative

reverse transcriptase-polymerase chain reaction (qRT-PCR)

(Figure 4). This supported the hypothesis of 

 

cis

 

 control for 11

of the 15 transcript sequences; the other four exhibited low

absolute expression on the Affymetrix chip.

Thus, 11 of the 29 mapped transcript sequences (38%)

were shown to be controlled by 

 

cis

 

 factors and 18 (62%) by

 

trans

 

 factors. The probeset identifiers for these 29 transcripts,

the traits with which their expression was correlated and the

significance of the correlations are shown in Table 2.

It is possible that some of the apparent differences in

expression of the transcripts which appear to be controlled

by 

 

cis

 

 factors actually result from sequence polymorphisms

which affect the hybridization to the Affymetrix 25-mer

probes. As most probes are designed to the 3

 

′

 

 untranslated

region of the transcript, such polymorphisms are unlikely to

have functional effects. Although such polymorphisms are

unlikely to affect the trait of interest, they could nevertheless

be useful markers. Inspection of the individual probe signals

showed that this explanation would require the presence of

Figure 2 Hierarchical clustering of 
transcriptome data for the 1905 probesets 
showing significant genotype-related 
differences in expression between the seven 
Spark × Rialto doubled haploid lines.

Figure 3 Expression signals for three probesets 
across 56 arrays. Lines connect the eight values 
(2 years × 2 stages × 2 tunnels) within each 
genotype. Markers derived from the transcript 
sequences were shown to have the same pattern 
of alleles across the seven genotypes, as 
indicated at the top (S, Spark allele; R, Rialto 
allele). The expression patterns indicate that two 
of the transcripts had cis factors controlling 
expression (red lines, blue lines) and one had a 
trans factor controlling expression (yellow lines).
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Figure 4 Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) determination of expression for 15 transcripts identified as probably 
under cis control from Affymetrix data and mapping. Alleles from mapping are indicated. Cis control was supported by the qRT-PCR results for all but 
four of the transcripts; these exceptions were Ta.10548.1, Ta.13283.1, TaAffx.117155.2 and Ta.26175.1.
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Table 2

 

Transcripts showing significant genotype-dependent expression in the seven doubled haploid (DH) lines combining data from 2004 and 2005, both sets of growth conditions (hot and dry, 
cool and wet) and both developmental stages [14 and 23 days post-anthesis (dpa)]

 

Identity Putative function

 

cis

 

/

 

trans

 

Minimum number

SNPs required resp1

 

P

 

-val1 resp2

 

P

 

-val2 resp3

 

P

 

-val3

TaAffx.44224.1.A1_at Acetyl transferase involved in gene silencing

 

trans

 

7 TOTAL_N + 1.8E-04 YIELD15 + 4.3E-03

Ta.18870.1.S1_at AP2 transcription factor

 

cis

 

4 PWA + 8.7E-04 PWA + 1.0E-03 PROT + 3.7E-03

Ta.27780.1.S1_at

 

β

 

-Amylase-like

 

trans

 

4 EXTRACT – 7.9E-03 TOTAL_N – 8.2E-03 CSTICK – 8.6E-03

Ta.8640.1.S1_a_at Oxidoreductase

 

trans

 

6 GRAIN + 5.5E-04 TOTAL_N + 2.6E-03 TOTAL_S + 3.3E-03

Ta.131.1.S1_at Low molecular weight glutenin storage protein

 

trans

 

5 FALLING – 8.5E-04 PWA – 9.5E-04 LOAF_V + 1.3E-03

Ta.9938.1.S1_at Bifunctional 

 

α

 

-amylase

 

cis

 

8 TOTAL_N + 3.6E-03

Ta.6984.1.A1_at PHD finger transcription factor

 

trans

 

4 PWA + 2.1E-04 FALLING + 2.2E-04 PWA + 4.9E-04

Ta.9223.1.A1_at Unknown

 

trans

 

3 FALLING + 1.9E-04 GRAIN + 9.0E-04

Ta.25954.1.S1_at Zn finger in ubiquitin-hydrolases

 

cis

 

3 TOTAL_N + 7.2E-04 YIELD15 + 1.3E-03 SULPHUR – 9.4E-03

Ta.9814.1.S1_at Zinc finger protein

 

trans

 

8 LOAF_V + 9.2E-05 PWA – 2.6E-04 LOAF_H + 1.4E-03

Ta.13283.1.A1_s_at Myb-like DNA-binding

 

trans

 

6 PWA – 8.9E-05 PWA – 3.5E-03 PROT – 4.9E-03

TaAffx.128836.1.S1_at Transcription factor X1

 

cis

 

4 B – 5.6E-05 B – 9.7E-05

Ta.6412.2.A1_a_at CBL-interacting protein kinase 9

 

cis

 

8 TOTAL_N – 9.7E-04 TOTAL_N – 1.8E-03 GRAIN – 3.8E-03

TaAffx.121758.1.S1_at Phospholipid hydroperoxide glutathione peroxidase

 

cis

 

6 SULPHUR + 1.2E-04 YIELD15 – 8.8E-04 NITROGEN + 1.2E-03

Ta.25981.1.A1_at Disease resistance protein

 

trans

 

10 LOAF_V – 2.7E-04 PWA + 4.4E-04 LOAF_H – 7.7E-04

Ta.14246.1.S1_at Unknown

 

cis 8 B + 3.4E-06 LOAF_V + 2.0E-03 LOAF_V + 3.2E-03

TaAffx.29938.1.S1_at Unknown cis 8 B + 1.1E-05 B + 5.3E-05 LOAF_V + 2.8E-03

Ta.9698.1.S1_at ATP-dependent Clp protease trans 9 PWA + 3.0E-04 PWA + 4.2E-04 PROT + 2.1E-03

Ta.6572.1.S1_at Peroxiredoxin Q (Prx1) trans 7 GRAIN + 4.2E-04 FALLING + 1.6E-03 GRAIN + 2.4E-03

Ta.28263.1.S1_at Proline-rich protein trans 5 SULPHUR + 1.7E-03 SULPHUR + 4.4E-03 PROT + 6.5E-03

Ta.25205.1.A1_at Serine protease trans 6 CSTICK + 3.0E-03 TOTAL_N + 3.3E-03 TOTAL_N + 3.4E-03

Ta.10144.1.S1_at Histidine-containing phosphotransfer protein cis 7 TOTAL_N + 4.3E-05 TOTAL_S + 1.2E-03 SDS – 5.0E-03

Ta.28235.1.A1_s_at SHD (SHEPHERD) unfolded protein binding trans 4 B + 6.2E-05 B + 1.1E-04

Ta.21022.1.S1_at Proline-rich cell wall protein-like trans 3 FALLING + 4.8E-04 GRAIN + 5.2E-04 GRAIN + 1.2E-03

TaAffx.58820.2.S1_at Wound-induced protein cis 2 TOTAL_N + 2.2E-03 CSTICK + 3.4E-03 CSTICK + 4.3E-03

Ta.21557.1.A1_at Senescence/dehydration-associated protein trans 9 TOTAL_N – 1.6E-03 TOTAL_S – 6.1E-03 TOTAL_N – 6.3E-03

Ta.617.2.S1_at Dolichyl-phosphate β-D-mannosyltransferase cis 3 PWA – 1.0E-04 PROT – 7.9E-03

Ta.8017.1.S1_at Embryo-abundant protein EMB cis 2 LOAF_H – 4.3E-03 LOAF_V – 8.0E-03 PWA + 8.2E-03

SNP, single nucleotide polymorphism; resp1/2/3 are the response variates correlated with transcript abundance with significance indicated by P-val1/2/3, respectively. Response variate abbreviations: B flour colour, CSTICK 

dough stickiness, EXTRACT extraction rate, FALLING falling number, GRAIN, 1000 grain weight, LOAF_H loaf height, LOAF_V loaf volume, NITROGEN N content per grain, PWA water availability, PROT protein content per 

grain, SDS SDS sedementation, SULFUR S content per grain, TOTAL_N N content per m2, TOTAL_S S content per m2, YIELD grain yield per m2.
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between two and eight single nucleotide polymorphisms

(SNPs), depending on the probeset.

Discussion

We have demonstrated a novel methodology for the identi-

fication of transcripts which show correlation with yield and

quality traits in selected lines from a mapping population. As

we were interested in traits that were stable across widely

varying environments, a full expression QTL study of a whole

population would have required hundreds of arrays and huge

resources. Furthermore, confounding effects of segregation

for development and known alleles with major effects in the

population would make analysis of such a study problematic.

We therefore used an alternative approach in which selected

lines that showed considerable variation in traits were

compared at two stages of caryopsis development and were

grown in multiple environments. Furthermore, these lines

were matched for known determinants of quality (HMW

subunits and the 1BL/1RS translocation), allowing novel

quality-related transcripts and loci to be identified. The use

of multiple environments and years should also ensure that

the transcripts identified are robust and not affected by

changes in environment. This approach identified almost

470 transcripts which were correlated with genotypic variation

in traits, 50 of which were selected to be of greatest relevance

and 32 of which were mapped.

If all, or most, of the variation in a trait between the

selected genotypes is caused by a single locus controlling

expression, we might expect the transcript of the gene to be

identified as a cis factor in the analysis presented here. In

contrast, a trait determined by multiple loci, but associated

with the expression of a single gene, would be identified as

a transcript controlled by a trans factor. In the first case,

the sequence encoding the transcript will be close to the

sequence causing the trait. In the second case, it is not

possible to identify the causative sequence without further

analysis.

Validation of the candidate transcripts identified here

could be achieved by the generation of near-isogenic lines for

one of the traits. If the transcript expression levels continue

to segregate with the trait, the expression, or the transcript

itself in the case of cis factors, could be a valuable marker for

the trait. This would justify further investigation to determine

whether variation in expression is the functional cause of the

trait. Such a finding would also represent a major step forwards

in our understanding of genetic determinants of yield and

quality, and could allow the development of improved

varieties in all backgrounds.

Experimental procedures

Lines

A DH population from the wheat cross Spark × Rialto was used for
all mapping and transcriptome studies. Spark is a hard milling, strong
gluten, Group 1 breadmaking variety from Nickersons Seeds UK Ltd.
(Rothwell, Market Rasen, Lincolnshire, UK), and Rialto is a hard
milling, strong gluten, Group 2 variety containing the 1BL/1RS
translocation from RAGT Seeds (Saffron Walden, Cambridgeshire,
UK). A population of 144 DH lines was developed using the maize
cross technique (Snape et al., 2007). Using initial marker character-
ization, 60 candidate DH lines of the population, all lacking the
1BL/1RS translocation, were taken from a 2001 field experiment at the
John Innes Centre (Norwich, UK) and baking tests were performed
at RHM Technology (High Wycombe, Buckinghamshire, UK). NIR
spectroscopy was carried out for the 60 candidate DH lines using a
Perten DA7000 NIR spectrometer (Calibre Control Ltd., Warrington,
UK). For each measurement, 20 spectra were collected using a
combination of 10 repacks with two repeats each. The parental lines
were measured four times at intervals evenly spaced between
measurements of the progeny, and all samples from harvests from both
years were measured on three separate occasions. The mean spectra
were calculated and the spectral range was truncated to 450–1700 nm.
The four mean measurements for each parental line were used as a
training set to calculate the overall mean spectra, the first principal
component (PC) loadings and scores, and the within-group covariance
matrix. The mean spectra for the progeny were treated as the test
set. They were centred to the mean of the training set, and the PC
scores associated with the training set PC loadings were calculated.
The Mahalanobis distance from each parent was then calculated using
the first PC scores and the inverse of the within-group covariance matrix.
This gave an indication of the relative closeness of the offspring to
the parents. These data, together with statistical analysis of the test
baking data, were subjected to QTL analysis using genotype mapping
data developed in previous projects. This identified lines with comple-
mentary patterns of quality QTL alleles inherited from each parent.

Plant growth

Seeds of the above lines were sown at the Plant Environment Laboratory,
University of Reading on 9–10 December 2003 and 2004 in 18-cm-
diameter pots containing 2 : 1 : 2 : 0.5 of vermiculite : sand : gravel :
compost mixed with Osmocote slow-release granules (2 kg/m3)
containing a ratio of 15 : 11 : 13 : 2 of N : P2O5 : K2O : MgO. The
total fresh weight of the growing medium at sowing was 2.8 kg/pot.
Nine seeds per pot were sown, and later thinned to four seedlings
per pot. The pots were arranged within two polyethylene-covered
tunnels (polytunnels) in a randomized row–column design compris-
ing four replicate ‘blocks’, each containing 10 (2003) or eight
(2004) genotype ‘plots’, and surrounded by spare pots that were
not sampled. Plots comprised 48 and 60 pots in 2003 and 2004,
respectively.

From sowing to 14 days post-anthesis (dpa), the polytunnels were
maintained close to the outside temperature using fan-assisted
ambient air ventilation (with frost protection) with a natural photo-
period and full drip irrigation. Mildewicide and aphicide were
applied as and when required, which was no more than twice in any
1 year. At 14 dpa in each year, the environment in one polytunnel
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was continued at ambient temperature and full irrigation, whilst, in
the second polytunnel, the temperature was controlled at 5–10 °C
above ambient (but below 28 °C) and the soil moisture content was
allowed to fall to 15%, close to the wilting point. A summary of the
temperature and relative humidity measurements during these
periods is provided in Table S1 (see Supporting Information).

Plants were tagged at anthesis and ears were harvested at weekly
intervals until maturity. Grains from two of these ears were counted
before drying at 80 °C for 48 h and determining the mean grain dry
weight and the nitrogen and sulphur contents. Ears were also sampled
for transcriptome analysis (see below). At maturity, the remaining
ears were harvested and threshed. Grain yields were adjusted to an
85% dry matter basis.

Grain filling

Ordinary logistic models (constant omitted) were fitted to genotype
means within a tunnel for quantity of dry matter, nitrogen and sulphur
per grain. These curves were used to deduce the maximum rate of
filling, the fitted value on the final assessment date and the duration
of filling, i.e. the time taken to reach 95% of the final fitted value
(Gooding et al., 2005). The fitted values were then subjected to
analyses of variance (ANOVAs) in which the treatment structure was
G × E and the block structure was year × tunnel × genotype.

Grain testing

Full details of the small-scale tests used to measure grain quality are
available elsewhere (Gooding and Davies, 1997). In summary,
thousand grain weights (TGWs) were measured using an automated
seed counter with a known weight of grain, dried to the above
standard. Specific weight (SWT; bulk packing density) was determined
on fresh grain with a chondrometer and screenings by passing 100 g
of grain over a 2.0-mm-wide grain sieve for 30 s on a sieve shaker,
the weight passing through the sieve being expressed as a percentage
of the original sample weight. Samples were milled using a Laboratory
Mill 3100 (Perten Instruments AB, Huddinge, Sweden) with a screen
of 0.8 mm in diameter. The nitrogen concentration was determined
with an oxidative combustion method using an automated Dumas-
type analyser (Leco FP-528; Leco Instruments (UK) Ltd., Stockport,
Cheshire, UK), and the protein concentration was calculated as N × 5.7.
Grain sulphur content was also determined after oxidative combus-
tion with a Leco SC-144DR. The Hagberg falling number (HFN
Perten Instruments AB, Huddinge, Sweden) was measured with an
apparatus incorporating automatic agitation (HFN apparatus,
Stockholm, Sweden). The SDS sedimentation test was performed as
an indicator of potential baking performance (BSI ISO/CD 309).

Milling and baking

Full baking tests were conducted by RHM Technology for each
genotype × environment × year combination on grain samples bulked
over the four blocks in each tunnel. In summary, the flour extraction
rate was determined after milling in a Buhler (AG Switzerland, Buhler Ltd.,
London, UK) test mill with a target extraction rate of 75%, water absorp-
tion was determined in a Farinograph test, dough rheology was assessed
with a Kieffer (Kieffer, Stable Micro Systems Ltd., Godalming, UK) rig,
and loaf volume and texture were assessed after baking 400-g loaves.

Transcriptomic analysis

Ten developing caryopses from the middle part of each ear were
harvested at 14 and 23 dpa and immediately frozen in liquid nitrogen
before storage at –70 °C for RNA extraction. Each sample comprised
100 caryopses from 10 main stems or first tillers, with single samples
of each year × line × stage × environment combination being used
for transcriptome analysis. This gave a total of 56 Affymetrix datasets.

Methods for RNA isolation are described by Wan et al. (2008).
Hybridization to the public Affymetrix wheat Genechip® microarray
was conducted by Syngenta Inc. (NC, USA), according to the manufac-
turer’s protocol. Data were normalized as described previously
(Wan et al., 2008) using the gcRMA algorithm and GeneSpring GX
7 package (Agilent Technologies, Santa Clara, CA, USA). Probesets
showing significant absolute expression (> 10) under any condition
were selected. This set of 33 000 probesets was then subjected to two-
way ANOVA for effects of developmental stage × genotype, effectively
treating the different years and tunnels as replicates. From this,
probesets which showed significant genotype effects at P < 0.05
with Benjamini–Hochberg false discovery rate multiple-testing
correction were identified. The set of 1905 probesets showing
genotype-dependent expression was then used to look for correla-
tion with quality traits. This is the first step in the identification of
candidate transcripts, as shown in Figure 5.

Identification of transcripts correlated with quality 

traits

There were major environmental effects on nearly all of the traits as
a result of the treatments imposed in the tunnels and, to a lesser extent,
variation between years (Table S2, see Supporting Information).
These were largely explained by effects on the duration of the grain
filling period, which was shorter under the hot and dry treatment
and in 2003–04, which was warmer than 2004–05. These effects
on the grain filling duration would not be expected to be greatly
reflected in the transcriptome, partly as they would apply largely
after the RNA sampling dates used here. The statistical model relating
gene expression to quality traits therefore allowed for separate,
additive effects of environmental treatment (tunnel) and year on the
measured quality parameter.

A filtering of probeset values was performed on the basis of: (i)
quality of measurement; (ii) at least a two-fold change in expression;
and (iii) significant variety gene expression differences (after controlling
by tunnel effects). This was performed for the 14 and 22-dpa
probesets separately. For each selected probeset, a linear regression
model relating the logarithmically transformed gene expression to
each of the breadmaking and harvest traits individually was performed.
Significant F ratios from ANOVA at P < 0.05 were used to identify
related variables.

The process of selecting candidate transcripts involved in deter-
mining traits using the above model is the second step in Figure 5.
This identified 468 probesets in which expression was significantly
correlated (P < 0.05, corresponding to a false discovery rate of 52%)
with one or more of the 23 harvest and quality traits (listed in
Table S12, see Supporting Information). These were then manually
prioritized based on the following criteria: putative gene function
from sequence similarity to known genes and biologically plausible
link to correlated trait; size of the effect on gene expression; strength
of correlation; and importance of trait. This resulted in a set of 50
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transcripts selected as candidates for which allelic differences cause
the genotypic variation in the correlated trait.

Transcript mapping

The mapping of transcripts was based on single-stranded conforma-
tion polymorphism gel technology, and is the subject of a separate
publication (M. Leverington et al., unpubl. data). Of the 50 selected
transcripts, 34 were mapped within the Spark × Rialto population.

qRT-PCR

Variation in expression between lines was determined for 15 of the
mapped transcripts which showed the most promise as candidates by
qRT-PCR. The methodology was as described by Wan et al. (2008).
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Table S1 Temperature and relative humidity in the two

treatments (cool, wet and hot, dry) in 2003–04 and 2004–

05 for the entire crop growing period and from when the

treatments were imposed at 14 days post-anthesis (dpa)

Figure 5 Flow diagram for the identification of candidate transcripts.
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Table S2 The effect of genotype and environment on the

grain yields of dry matter, nitrogen and sulphur

Table S3 Effect of genotype and environment on the

thousand grain weight, screenings, specific weight and grain

Hagberg falling number of winter wheat

Table S4 Effect of genotype and environment on grain

filling with dry matter and nitrogen and sulphur in wheat, as

fitted over time by ordinary logistic models

Table S5 Effect of genotype and environment on the grain

concentrations of nitrogen and sulphur, and the sodium

dodecylsulphate sedimentation volume of winter wheat

Table S6 Effect of genotype and environment on the flour

characteristics of winter wheat

Table S7 Effect of genotype and environment on the colour

of winter wheat

Table S8 Effect of genotype and environment on the

Farinograph test of winter wheat

Table S9 Effect of genotype and environment on dough

data for baking

Table S10 Effect of genotype and environment on dough

measurements from Kieffer rig

Table S11 Effect of genotype and environment on dough

data for baking

Table S12 Harvest and breadmaking varieties analysed

for correlation with transcript abundance. *Corrected for

temperature variation

Please note: Wiley-Blackwell are not responsible for the

content or functionality of any supporting materials supplied

by the authors. Any queries (other than missing material)

should be directed to the corresponding author for the article.
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