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Summary

• It has frequently been hypothesized that quantitative resistance increases the

durability of qualitative (R-gene mediated) resistance but supporting experimental

evidence is rare. To test this hypothesis, near-isogenic lines with ⁄ without the R-

gene Rlm6 introduced into two Brassica napus cultivars differing in quantitative

resistance to Leptosphaeria maculans were used in a 5-yr field experiment.

• Recurrent selection of natural fungal populations was done annually on each of

the four plant genotypes, using crop residues from each genotype to inoculate sep-

arately the four series of field trials for five consecutive cropping seasons. Severity

of phoma stem canker was measured on each genotype and frequencies of aviru-

lence alleles in L. maculans populations were estimated.

• Recurrent selection of virulent isolates by Rlm6 in a susceptible background

rendered the resistance ineffective by the third cropping season. By contrast, the

resistance was still effective after 5 yr of selection by the genotype combining this

gene with quantitative resistance. No significant variation in the performance of

quantitative resistance alone was noted over the course of the experiment.

• We conclude that quantitative resistance can increase the durability of Rlm6.

We recommend combining quantitative resistance with R-gene mediated resis-

tance to enhance disease control and crop production.

Introduction

Crop protection against pathogens that cause epidemic dis-
eases is a major asset for global food security and sustainable
crop production. Using resistant cultivars remains the best
method to grow a crop with limited pesticide applications
and low production costs. Two main types of resistance are
generally described. Quantitative resistance (QR) is usually
controlled by multiple genetic factors (quantitative trait loci
or QTL) (Lindhout, 2002; Stuthman et al., 2007). It leads
to a reduction in symptom severity and ⁄ or epidemic pro-
gress over time, which can sometimes result in high levels of
protection. Quantitative resistance is usually less effective
when environmental or plant tissue conditions are favour-
able to disease (Geiger & Heun, 1989; Zadoks, 1993). By

contrast, R-gene mediated resistance is often total and con-
ferred by single dominant R gene. R-gene mediated resis-
tance is under gene-for-gene recognition mechanisms (Flor,
1955) that trigger hypersensitive response (HR). Both types
of resistance coexist according to the pathosystem in a num-
ber of crops, as well as in the corresponding wild genetic
resources (Stuthman et al., 2007).

Many breeding programs and strategies have been devel-
oped to improve cultivar resistance with the objective of
resistance durability (Delourme et al., 2006; Rimmer,
2006; Stuthman et al., 2007) because genetic resistance is
most useful for growers if it is durable. Johnson (1981)
defined durable resistance as ‘a resistance that remains effec-
tive during its prolonged and widespread use in an environ-
ment favourable to the disease’. This definition implies that
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resistance durability can only be assessed retrospectively (i.e.
after commercial use of resistant genotypes). Therefore, it
does not allow predictive inferences, which are important to
manage the construction and deployment of resistant culti-
vars. Resistance type (quantitative resistance vs R-gene med-
iated resistance) is often used as a surrogate – but not
entirely adequate – predictor for durability. Indeed, R-gene
mediated resistance is often isolate-specific and thus exerts a
strong selection pressure on pathogen populations that
adapt rapidly through selection and multiplication of viru-
lent isolates. Pathogens with high evolutionary potential
thus give the highest risk of sudden resistance breakdown
(McDonald & Linde, 2002), resulting in a succession of
‘boom and bust’ cycles (Vanderplank, 1968), which has
been observed in various agricultural pathosystems (e.g.
Sprague et al., 2006). Quantitative resistance is most often
regarded as isolate-non specific and thus postulated to be
more durable than R-gene mediated resistance (Lindhout,
2002; Stuthman et al., 2007; Poland et al., 2008). How-
ever, a number of examples demonstrate that R-gene medi-
ated resistance can sometimes be long-lasting (Christ et al.,
1987), but also that quantitative resistance can be eroded by
increased aggressiveness (i.e. quantitative pathogenicity; see
Vanderplank, 1968) in pathogen populations faced for long
periods with quantitative resistance (Andrivon et al., 2007;
Stuthman et al., 2007). A recurrent concern for plant
breeders and plant pathologists is thus to identify the best
way to use resistance factors to construct cultivars with the
highest resistance level and the best possible intrinsic dura-
bility, and deployment strategies for such resistant cultivars
in space and time to maximize durability.

The question of resistance durability can be approached
as a problem of adaptive response in pathogen populations
to selection exerted by resistant hosts (McDonald & Linde,
2002). Strategies to maximize durability should therefore
both limit the selection of the more pathogenic variants of
the pathogen and reduce pathogen population sizes (Mundt
et al., 2002). We postulate that one of the strategies likely
to achieve this is to introduce major resistance gene (R
genes) into cultivars with high levels of quantitative resis-
tance, with a triple expected effect: to enhance the disease
control provided by quantitative resistance by using R genes
to control all avirulent fractions of the pathogen popula-
tion; to limit selection for virulent isolates, as quantitative
resistance slows down the rate of epidemic development
and thus decreases the severity of the disease and the effec-
tive population size; and to maintain a satisfactory level of
protection when the R gene is finally overcome.

The expected benefits of combining R-gene mediated
resistance and quantitative resistance in a single cultivar
have been investigated using mathematical models of patho-
gen evolution (Kiyosawa, 1982; Pietravalle et al., 2006) but
rarely confirmed experimentally. A recent paper, using suc-
cessive artificial reinoculations of known viral isolates under

controlled conditions, showed delayed emergence of viru-
lent variants on hosts combining R-gene mediated resistance
and quantitative resistance relative to hosts with R-gene
mediated resistance alone (Palloix et al., 2009). This paper
describes work to investigate experimentally the ability of a
combination of an R gene and quantitative resistance in a
single cultivar to increase the durability of the R gene by
delaying the selection of virulent isolates in natural fungal
populations under field conditions. We also compared the
potential for evolution of pathogen populations to render
ineffective the resistance conferred by an R gene or by
quantitative resistance alone. The Brassica napus–Leptosp-
haeria maculans pathosystem and the multiyear recurrent
scheme described by Brun et al. (2000) were used to test
the hypothesis.

Materials and Methods

The pathosystem Brassica napus–Leptosphaeria
maculans

Leptosphaeria maculans is a heterothallic ascomycete causing
phoma stem canker of oilseed rape, a disease of worldwide
importance (Fitt et al., 2006). The fungus survives on
infected crop residues for several years and produces both
sexual and asexual fruiting bodies (pseudothecia and pycni-
dia, respectively). Ascospores are discharged over several
months (mainly in autumn and winter in Europe) from
pseudothecia formed on residues, and can spread the patho-
gen from field to field (West et al., 2001; Fitt et al., 2006).
Conidia constitute the secondary inoculum, which contam-
inates neighbouring plants by rain splash (Travadon et al.,
2007). Infection by either ascospores or conidia causes leaf
lesions, from which the fungus systemically reaches the stem
base where it initiates crown canker (Hammond & Lewis,
1987). The predominance of ascospores produced on resi-
dues every year in the primary inoculum explains the high
genetic variability observed in most populations of L. macu-
lans (Hayden & Howlett, 2005).

Two kinds of resistance are described in Brassica napus.
There is R-gene mediated resistance, caused by a set of Rlm
genes (Delourme et al., 2006; Huang et al., 2006a). Lep-
tosphaeria maculans populations adapt rapidly to such a
resistance, so that newly deployed resistant cultivars lose
their effectiveness only 3–4 yr after their release (Rouxel
et al., 2003; Sprague et al., 2006). By contrast, quantitative
resistance operates during the symptomless growth of the
pathogen along leaf petioles and in stem tissues (Huang
et al., 2009) and cannot be assessed before spring, when it
decreases the severity of stem base cankers (Delourme et al.,
2006). While both major gene-mediated and quantitative
resistance against L. maculans may operate in a similar man-
ner at the molecular level (Staal et al., 2008; Persson et al.,
2009), in Brassica napus, at the phenotype level, they appear
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to operate in different tissues at different stages during the
process of disease development (Huang et al., 2006a,
2009).

Near-isogenic lines of Brassica napus with ⁄ without
Rlm6

A highly effective resistance introgressed from Brassica
juncea into B. napus through interspecific crosses (Chèvre
et al., 1997) segregates as a single gene called Rlm6 and
operates against many European isolates of L. maculans in
both controlled and field conditions (Somda et al., 1996).
Nevertheless, a multiyear field experiment has demonstrated
that this resistance is not durable when introgressed into a
highly susceptible background: recurrent selection of natu-
ral L. maculans populations on this genotype, called ‘MX’,
leads to a rapid increase in the frequency of virulent isolates
(Somda et al., 1999; Brun et al., 2000). The French
National Institute for Agricultural Research (INRA) has
thus decided not to release for commercial use the improved
lines carrying Rlm6, but to keep them as research tools.
Consequently, a large proportion of L. maculans popula-
tions in France and the rest of Europe still contain avirulent
AvrLm6 isolates (Balesdent et al., 2006; Stachowiak et al.,
2006), which allows work to study the selection exerted on
L. maculans populations by Rlm6 in different genetic back-
grounds. There is evidence that Rlm6 operates in B. napus
against L. maculans soon after penetration of leaf stomata
by the pathogen, preventing growth from leaf to stem
tissues (Huang et al., 2006a).

The ‘MX’ line (spring type) was used as the progenitor to
introduce Rlm6 into winter-type oilseed rape cultivars Sam-
ouraı̈ giving the Samouraı̈MX line (Chèvre et al., 1997), cv.
Darmor, which carries several quantitative trait loci (QTLs)
that give it good quantitative resistance to L. maculans (Pilet
et al., 1998) and the susceptible cv. Eurol, to generate the
DarmorMX and EurolMX lines, respectively. ‘Eurol’ carries
the resistance genes Rlm2 and Rlm3 and ‘Darmor’ carries
Rlm9; L. maculans populations in France are 100% virulent
against these three genes (Balesdent et al., 2006). ‘Eur-
olMX’ was obtained by crossing ‘Samouraı̈MX’ with
‘Eurol’, followed by five backcrosses to ‘Eurol’ and nine
selfing generations. Similarly, ‘DarmorMX’ was obtained
by crossing ‘Samouraı̈MX’ with ‘Darmor’, three backcrosses
to ‘Darmor’ and two to four selfing generations. Both
‘DarmorMX’ and ‘EurolMX’ were selected using molecular
assisted selection on backcross and selfing generations
(Chèvre et al., 1997); homozygous lines were confirmed by
cotyledon tests before seed multiplication. There is evidence
that the QTL associated with quantitative resistance against
L. maculans that are present in ‘Darmor’ and not ‘Eurol’
operate in B. napus stem tissues to slow down colonization
and stem canker formation (Huang et al., 2009). Therefore,
for the purposes of this paper, ‘Eurol’ and ‘Darmor’ will be

regarded as providing a susceptible background and a
quantitative resistant background, respectively, for the
Rlm6-mediated resistance.

Design of the 5-yr field experiment

Two pairs of near-isogenic lines (NILs), ‘Eurol’ ⁄ ’EurolMX’
and ‘Darmor’ ⁄ ’DarmorMX’ were included in all field trials.
The susceptible cv. Eurol was useful as a common control,
to compare severity of stem canker epidemics between trials.
The durability experiment was established in Brittany (wes-
tern France) during five consecutive cropping seasons
(2002 ⁄ 2003 to 2006 ⁄ 2007). It began with an initial trial
inoculated with a local pathogen population, which simu-
lates the first year of cultivation of cultivars with a new
resistance gene. It was followed by four separate 4-yr field
trials (PHO1, PHO2, PHO3 and PHO4), each corre-
sponding to recurrent selection of the L. maculans popula-
tions by one of the four genotypes (Fig. 1). Each series of
trials simulates consecutive years of commercial cultivation
of one oilseed rape genotype in adjacent fields. Temperature
and rainfall data were recorded daily at the INRA Le Rheu
site, within 10 km of the trials.

Inoculum production One oilseed rape stem base includ-
ing tap root (c. 30 cm long) was the unit of inoculum and
was described as a residue. Residues were uprooted at
random from plots in June before harvest and 40 plants
per genotype taken from three central rows of each plot
(i.e. 80 plants per genotype per block) were scored for
stem canker severity. Residues of each genotype were then
stored separately outdoors on permeable canvas sheets
during July and August to allow maturation of L. maculans
pseudothecia and favour ascospore production.

Field plot design and inoculation All four genotypes were
sown in early September, in all trials in a randomized block
design with four blocks, with 2 m-wide paths between
blocks. Each NIL was sown in two adjacent plots per block
to ensure that there were enough stem base residues to inoc-
ulate the trials in the following cropping season. Individual
plots measured 1.5 · 4 m and included five rows of plants.
In the initial trial (2002 ⁄ 2003), all plots were inoculated
with two residues m)2 of oilseed rape comprising, in equal
proportions, residues of susceptible cultivars Samouraı̈,
Shogun, Glacier and Lirabon highly infected in the previous
cropping season by a natural local L. maculans population.

The PHO1, PHO2, PHO3 and PHO4 series were done
from harvest years 2004 to 2007 at sites at least 1 km away
from each other to avoid cross-contamination. Each trial
was inoculated 2–3 wk after sowing by scattering two resi-
dues m)2 collected from plots of the appropriate genotype
in the corresponding series at the end of the previous season
(Fig. 1):
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PHO1: ‘Eurol’ residues – evolution of a local pathogen
population with little selection by host resistance;
PHO2: ‘EurolMX’ residues – evolution of the same popu-
lation under selection by a major gene (Rlm6) introduced
into a susceptible background;
PHO3: ‘Darmor’ residues – evolution of that population
under selection by quantitative resistance;
PHO4: ‘DarmorMX’ residues, evolution of the population
under joint selection by a major gene (Rlm6) and quantita-
tive resistance.

To prevent an increase in isolates virulent against Rlm6
in local L. maculans populations (and hence interference by
virulent external inoculum), all remaining residues from
plots sown to genotypes with Rlm6 or from plots inoculated
with ‘EurolMX’ or ‘DarmorMX’ residues were uprooted at
the end of each cropping season and burned before the for-
mation of pseudothecia.

Trials in the same series could be sown on a neighbouring
part of the same piece of field but residues from the previous
trial were always ploughed in before sowing the following
one. All trials were surrounded by crops of winter barley.

Assessment of leaf lesions Disease incidence (% plants
with at least one leaf lesion) and severity (number of leaf

lesions per plant scored) were assessed in each trial once in
each cropping season, with the date of assessment (normally
in November) depending on the development of leaf
lesions. Leaf lesions were counted on both pairs of NILs, on
all leaves of each individual plant assessed in a sample of 30
plants per block per genotype. To obtain representative
samples from each plot, three samples of 10 consecutive
plants were taken from sites evenly distributed across each
plot. Whenever possible, three blocks were assessed (90
plants in total) but sometimes two (2005: 60 plants in total)
or all four blocks (2002: 120 plants in total) were assessed.

Stem canker assessment Stem canker incidence (% plants
with stem base canker) and severity (DI, disease index) were
assessed 2–3 wk before harvest (mid June). Eighty plants
per genotype and per block were uprooted, and scored on a
1–6 scale (Aubertot et al., 2004) for stem canker presence
and severity, based on the extent of internal symptoms at
the stem base of each plant. Stem canker incidence was
calculated as the proportion of plants in classes 2–6 (i.e.
including those showing even minute symptoms), and
disease severity was assessed as DI, computed as a sum
of weighted proportions of plants in each class:
DI ¼ Riðni � ciÞ=N [ni, number of plants in class

2003/04

2004/05

2005/06

PHO 1 PHO 2 PHO 3 PHO 4 

2006/07

2002/03 

Trial comprising 
four blocks

Residues of susceptible oilseed 
rape cultivars from local crops 

Cropping 
season 

‘Darmor’ 
residues

‘Eurol’ 
residues 

‘DarmorMX’ 
residues

‘EurolMX’ 
residues 

Fig. 1 Diagram illustrating the arrangement of a 5-yr experiment to assess the durability of Rlm6 (MX) resistance gene to Leptosphaeria
maculans (phoma stem canker) introduced into winter oilseed rape cultivars either with susceptible (‘Eurol’) or with quantitative resistance
(‘Darmor’) backgrounds over the period 2002–2007. The experiment started in the autumn of the 2002 ⁄ 2003 cropping season with a field
trial infested with highly infected residues of four susceptible cultivars uprooted from nearby crops. In subsequent cropping seasons it was
subdivided into PHO1, PHO2, PHO3 and PHO4, each comprising a series of trials, separated each cropping season by c. 1 km from each other
and done from the 2003 ⁄ 2004 until the 2006 ⁄ 2007 cropping season. Each series was inoculated each autumn with residues of ‘Eurol’ (PHO1)
or ‘EurolMX’ (PHO2) or ‘Darmor’ (PHO3) or ‘DarmorMX’ (PHO4) taken randomly from the specific previous trial in the same series. Every trial
was inoculated in the beginning of autumn with two pieces of stem base residue m)2 scattered over the soil surface. All lines (‘Eurol’,
‘EurolMX’, ‘Darmor’ and ‘DarmorMX’) were sown in each trial in a randomized block design comprising four blocks.
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(i = 1….6); ci, weighting coefficient (0 for class 1, 1 for
class 2, 3 for class 3, 5 for class 4, 7 for class 5 and 9 for class
6); N, total number of plants scored]. The temperature and
rainfall data were fitted to the weather-based model of
Evans et al. (2008) to predict the development of epidem-
ics, including severity of canker at harvest, on cultivars with
or without quantitative resistance to L. maculans in each
cropping season.

Seedling pathogenicity tests to determine virulence
frequencies in L. maculans populations

Isolates In autumn 2002, 50 single-ascospore isolates
were obtained from the four susceptible cultivars used as
inoculum in the initial trial. In the following cropping
seasons, 25 single-ascospore isolates per genotype were
recovered every autumn (2003–2005) from ‘Eurol’, ‘Eur-
olMX’, ‘Darmor’ or ‘DarmorMX’ residues used as inocu-
lum. Single ascospores were obtained by placing a small
piece of stem tissue bearing pseudothecia on the cover of
a Petri dish, over water agar (20%) supplemented with
streptomycin sulphate (0.1 g l)1), for 12–18 h. Single as-
cospores deposited onto the medium were cut out indi-
vidually, under a binocular microscope, with a very sharp
glass needle and transferred to malt agar (20%, 20%)
supplemented with streptomycin sulphate (0.1 g l)1).
Only one isolate per residue (plant) was assessed for viru-
lence at seven Avr loci using cotyledon tests in controlled
conditions. Sometimes it proved difficult to obtain resi-
dues of ‘EurolMX’ or ‘DarmorMX’ with pseudothecia. In
2003, there were only 14 and 10 residues with pseudo-
thecia for ‘EurolMX’ and ‘DarmorMX’, respectively, from
> 50 residues assessed per genotype. For ‘DarmorMX’,
there were nine and seven isolates collected in the
autumn of 2004 and 2005, respectively. Moreover, pseu-
dothecia of other species, mainly Leptosphaeria biglobosa
(Shoemaker & Brun, 2001) and Fusarium spp., and py-
cnidia (visually similar to pseudothecia) were also present
on these ‘MX’ lines, further reducing the number of iso-
lates of L. maculans recovered from these genotypes.

In 2004 ⁄ 2005, the composition of the overall inoculum
received by PHO1 and PHO2 trials was assessed. This was
the inoculum from residues of either ‘Eurol’ or ‘EurolMX’
and from external airborne ascospores. Thus, ‘Drakkar’
(without any known major resistance genes) was sown in
autumn 2004 in PHO1 and in PHO2 trials. Ten leaves of
‘Drakkar’ with leaf lesions were sampled on 10 separated
plants per block from three blocks each of PHO1 and
PHO2. One pycnidial isolate per leaf lesion and per plant
(i.e. 30 isolates per trial) was transferred to malt agar and
included in the seedling pathogenicity tests. In 2004 ⁄ 2005
natural inoculum (i.e. from external airborne ascospores)
was also investigated in a trial sown with ‘Drakkar’ without
using any crop residue inoculum. This trial was established

at least 4 km away from any of the four trial series. Isolates
were obtained and assessed according to the same procedure.

Seedling pathogenicity tests The differential host set com-
prised seven genotypes: ‘MT29’ (Rlm1, 9), ‘Eurol’ (Rlm2,
3), line ‘22.1.1’ (Rlm3), ‘Falcon’ (Rlm4), line ‘150.2.1’
(Rlm5), ‘EurolMX’ (Rlm2, 3, 6), ‘Darmor’ (Rlm9), to iden-
tify virulence ⁄ avirulence alleles at Avr loci (AvrLm1 to
AvrLm6 and AvrLm9) in each isolate. The protocol
described in Chèvre et al. (2008) was then used for pro-
duction of inoculum and assessment of avirulence profiles.
Frequencies of the avirulence alleles and of different races
(combinations of AvrLm genes) were calculated.

Statistical analysis

For each series and trial, for data inspection and presenta-
tion, the mean number of leaf lesions (severity) obtained
per plant, the mean percentage (incidence) of plants with
leaf lesions, the mean stem canker severity (DI), and the
mean percentage (incidence) of plants with stem canker
were calculated across the blocks sampled for each geno-
type. The data per cropping season and per trial were sub-
mitted to ANOVA including the effect of the genotypes and
taking account of the blocks. Following ANOVA, the standard
error of the difference (SED) between means was output
and selected means for the genotypes were compared using
the least significant difference (LSD) between means at the
5% level of significance.

A position and parallelism regression analysis was used to
examine the trends in three variables (incidence and severity
of leaf lesions, and stem DI) over cropping season. For each
variable, this assessed the statistical significance of an overall
linear trend and whether this trend was the same (i.e. paral-
lel) but differently positioned (shifted) for the background
(‘Eurol’ or ‘Darmor’) or the MX status (without ⁄ with
Rlm6) or for both these factors (which would result in four
parallel lines). Finally, the analysis was used to assess the
significance of the trend being different for each or both of
the factors, the latter situation resulting in four separate
lines. The best (most parsimonious) model is found using
F-tests to assess the additional variance accounted for by
changing from a single line to parallel lines and then, if nec-
essary, from parallel lines to separate lines.

The relationship between (DI) and the number of leaf
lesions preceding this for ‘Eurol’ and ‘EurolMX’ and taking
data from the initial trial (2002 ⁄ 2003) and PHO1 and
PHO2 (2003 ⁄ 2004 to 2006 ⁄ 2007) was examined using a
non-linear least squares regression, including assessment (F-
tests) of whether separate curves were statistically significant
for the two cultivars. The GENSTAT (11th edition; Lawes
Agricultural Trust (Rothamsted Research) VSN Interna-
tional Ltd., Hemel Hempstead, UK) statistical system was
used for all statistical analyses.
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Results

Effects of quantitative and qualitative resistance on
seasonal changes in composition of L. maculans
populations

The avirulence alleles present in the natural L. maculans
populations near Rennes, detected on ‘Drakkar’ in autumn
2004, were similar to those in the population in autumn
2002, at the start of the experiment, except for Avrlm4
(Table 1). The alleles AvrLm2, AvrLm3 and AvrLm9 were
never observed in L. maculans isolates. There was little dif-
ference between populations from different sources of deb-
ris in the frequencies of AvrLm4 and AvrLm5, except for
natural inoculum sampled from ‘Drakkar’ (Table 1).
Isolates carried three or four AvrLm alleles out of the seven
AvrLm alleles that could be detected with this differential
host set. The greatest number of races per population was
11, in the initial inoculum (Table 2); the most frequent
race was Av5–6.

There was no effect of quantitative resistance on the com-
position of L. maculans populations, with similar frequen-
cies of avirulence ⁄ virulence alleles in L. maculans
populations selected on ‘Eurol’ or ‘Darmor’ in PHO1 or
PHO3 series. These frequencies fluctuated a little seasonally
but were similar to those observed in the initial inoculum
and in natural inoculum sampled with ‘Drakkar’ in 2004.
By contrast, and as expected, the qualitative Rlm6 resistance
greatly affected the composition of L. maculans populations.
Although few pseudothecia were observed on ‘EurolMX’
residues in autumn 2003 in PHO2, single ascospore isolates
obtained from these residues were all virulent (avrLm6) to
Rlm6 and the residues with pseudothecia increased thereaf-
ter. Similarly, few single ascospore isolates (7–10) could be
recovered from ‘DarmorMX’ residues in PHO4. Frequen-
cies of avirulence ⁄ virulence alleles were otherwise similar in
populations collected from ‘EurolMX’ residues (PHO2)
and from ‘DarmorMX’ residues (PHO4) (Table 1).

Surprisingly, the frequency of the avirulence allele
AvrLm1 had greatly increased at the same time as the fre-
quency of the virulence allele avrLm6 increased in autumn
2003 in PHO2 and PHO4 compared with PHO1 and
PHO3. For example, its frequency increased from 31% in
the initial population in autumn 2002 to 92% on ‘Eur-
olMX’ residues, and remained high thereafter. The number
of L. maculans races detected ranged from two to eight
(Table 2). The most frequent races were Av5–6 in PHO1
and PHO3 and Av1–5 in PHO2 and PHO4. This reflects
the selection against AvrLm6 and for AvrLm1 by the pres-
ence of Rlm6. Based on the expected proportion of recom-
bination given a linkage distance between AvrLm1 and
AvrLm6 of 6 cM (Fudal et al., 2007), v2 tests on the
observed frequencies of isolates having neither or both
AvrLm1 and AvrLm6 compared with frequencies of isolates

having one or other allele suggested a highly significant dif-
ference between observed and expected frequencies in all
cases (P < 0.001, Table 2), with more isolates having one
or the other allele than expected.

Less than 1% of leaf lesions on ‘Eurol’ were caused by
isolates virulent against Rlm6 in PHO1 and PHO3, what-
ever the cropping season, the genotype used as inoculum
and the severity of stem canker (Table 3). By contrast,
almost all leaf lesions on ‘Eurol’ were caused by virulent
isolates in autumn 2003 in PHO2 and PHO4 with residues
carrying Rlm6, indicating that few isolates came from exter-
nal inoculum. During the period 2003–2006, the mean
number of leaf lesions per plant on ‘EurolMX’ caused by
virulent isolates remained stable in PHO4 compared with
PHO2. It is surprising that the proportion of virulent
isolates in the L. maculans population required to render
Rlm6 resistance ineffective at harvest 2005 was similar in
autumn 2004, whether it was assessed by counting numbers
of leaf lesions on ‘EurolMX’ ⁄ ’Eurol’ (34.7%) or by
obtaining 23 isolates from leaf lesions on ‘Drakkar’ sown in
PHO2 and analysing them in cotyledon pathogenicity tests
(39.1%) (data not shown).

Development of leaf lesions and stem canker in the
initial trial (2002 ⁄ 2003)

In the initial trial, there were large numbers of leaf lesions in
autumn on ‘Eurol’ and ‘Darmor’, with 96% and 98% of
plants with at least one leaf lesion and averages of 7.6 and 8.9
leaf lesions per plant, respectively. By contrast, ‘EurolMX’
and ‘DarmorMX’ had only 8% and 4% of plants with leaf
lesions and averages of 0.1 and 0.04 leaf lesions per plant,
respectively. These differences in leaf lesions between lines
with Rlm6 resistance against L. maculans and cultivars
without it were reflected in differences in the incidence (data
not presented) and severity of stem base cankers in June
2003. Stem cankers were severe on ‘Eurol’ (DI = 7.64) but
very slight on ‘EurolMX’ and ‘DarmorMX’ (DI = 0.70 and
0.39, respectively). The severity of canker on ‘Darmor’ was
intermediate (DI = 3.67).

Effects of quantitative resistance on seasonal changes
in leaf lesions and stem canker (‘Darmor’ vs ‘Eurol’)

There was a clear relationship between the severity of stem
canker shortly before harvest and the severity of leaf lesions
in the previous autumn over the period 2002 ⁄ 2003 to
2006 ⁄ 2007 in ‘Eurol’ and ‘EurolMX’, with an increasing
number of leaf lesions, up to four per plant, associated with
increasing severity of stem canker (Fig 2). Above this
threshold of four leaf lesions per plant in November, an
increase in severity of phoma leaf lesions did not result in
increased severity of stem canker; the relation was best
described by an asymptotic exponential curve, with an
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asymptote of 4.95 for DI as leaf lesions increased. By con-
trast, for ‘Darmor’ there was no relationship between sever-
ity of leaf lesions and stem base canker severity (data not
presented).

By contrast with autumn 2002, the overall conditions in
2003 were less favourable for the development of leaf
lesions and although the incidence of leaf lesions was similar
(Fig. 3a), there were fewer lesions per plant on ‘Eurol’ and
‘Darmor’ (Fig. 4a) in PHO1 than in 2002. The position
and parallelism regression analyses suggested that there was
little effect of quantitative resistance on the incidence
(Fig. 3) or severity (Fig. 4) of leaf lesions in autumn. The
data for ‘Eurol’ and ‘Darmor’ were fitted by common lines
within MX status (i.e. without ⁄ with Rlm6) for all four series
over the period 2003–2006 for incidence (Fig. 3), and for
three of the four series of trials for severity (Fig. 4). There
was a trend towards a greater number of leaf lesions on
‘Darmor’ than ‘Eurol’ but the difference was significant
(P = 0.005, F-test) only in PHO3 (Fig. 4c). However, the
regressions showed a seasonal increase with time in the inci-
dence and severity of leaf lesions on ‘Eurol’ and ‘Darmor’ in
all four series over the period 2003–2006. For example, in
PHO1 the incidence of leaf lesions on ‘Eurol’ increased
from 71% (autumn 2004) to 100% (autumn 2005), and
the average number of leaf lesions per plant increased from
2.2 in autumn 2004 to 15.5 in autumn 2005.

By contrast, the regression analyses showed significant
(P < 0.05, F-tests) effects of quantitative resistance on sever-
ity of stem canker, with more severe canker on ‘Eurol’ than
on ‘Darmor’ in all four series (Fig. 5). However, there was
no difference between ‘Eurol’ and ‘Darmor’ in incidence of
stem base canker except in the 2004 ⁄ 2005 cropping season
(data not presented). The 2003 ⁄ 2004 cropping season was
less favourable for the development of stem canker than the
2002 ⁄ 2003 season, with the severity of stem canker on
‘Eurol’ in (PHO1) half that in the previous season (Fig. 5a).
These differences between the two cropping seasons were
confirmed by the predictions for severity of stem cankers
made from the weather data using the model of Evans et al.
(2008) (data not presented). The regression analysis shows a
seasonal increase with time in the severity of stem canker on
‘Eurol’ and ‘Darmor’ over the period 2003–2006 in
(PHO1, Fig. 5a), (PHO2, Fig. 5b) and (PHO3, Fig. 5c).
By contrast, there was no increase with time in DI in the
series with ‘DarmorMX’ inoculum, with some canker on
‘Eurol’ and little on ‘Darmor’ (PHO4, Fig. 5d). ‘Darmor’
resistance was more effective against stem canker develop-
ment when inoculum concentration was low, as in the crop-
ping seasons 2003 ⁄ 2004 and 2004 ⁄ 2005, with DI = 3.63
and DI = 3.29 for ‘Eurol’ compared with DI = 1.51 and
DI = 1.30 for ‘Darmor’ in PHO1. In addition, ‘Darmor’
resistance was effective against virulent populations selected

Table 3 Seasonal changes in the percentage of leaf lesions caused by virulent (avrLm6) isolates of L. maculans assessed in autumn as the
number of leaf lesions per oilseed rape plant on ‘EurolMX’ divided by the number on ‘Eurol’ in each trial

Trial

Genotype
used as
inoculum Autumn

No. of leaf
lesions per
plant on
EurolMX

No. of leaf
lesions per
plant on
‘Eurol’

Leaf lesions
EurolMX ⁄
[no. of lesions
Eurol] ·1001

Initial Susceptible 2002 0.12 7.58 1.55
PHO1 Eurol 2003 0.01 4.46 0.22

2004 0.00 2.21 0.00
2005 0.00 15.52 0.00
2006 – – –2

PHO2 EurolMX 2003 0.46 0.41 113.11
2004 1.52 4.38 34.70
2005 2.34 4.95 47.17
2006 5.62 9.00 62.48

PHO3 Darmor 2003 0.01 3.94 0.25
2004 0.01 4.06 0.25
2005 0.02 4.29 0.35
2006 – – –

PHO4 DarmorMX 2003 1.28 1.36 93.89
2004 0.29 0.44 65.41
2005 0.15 2.04 7.37
2006 0.35 8.96 3.94

Seasonal changes in the percentage of leaf lesions caused by virulent (avrLm6) isolates of Leptosphaeria maculans.
1The mean numbers of leaf lesions per plant assessed once in autumn on at least 60 plants of ‘EurolMX’ (leaf lesions due to only virulent
isolates avrLm6) and of ‘Eurol’ (leaf lesions caused by avirulent AvrLm6 plus avrLm6 isolates) in each trial were used to estimate the
percentage (%) of leaf lesions caused by virulent isolates.
2Not assessed.
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on ‘EurolMX’ residues in PHO2, as its DI was less than
those of the other lines. Although canker severity was always
less on ‘Darmor’ than on ‘Eurol’, the production of ascosp-
ores on residues of both cultivars caused similar seasonal
patterns of disease in their respective series of trials PHO1
(Fig. 5a) and PHO3 (Fig. 5c). All lines assessed developed
similar DI in the two series of trials. Moreover, DI on ‘Dar-
mor’ in PHO3 increased similarly with time to that in
PHO1.

Effects of qualitative resistance on seasonal changes in
leaf lesions and stem canker (‘EurolMX’ vs ‘Eurol’;
‘DarmorMX’ vs ‘Darmor’)

The regression analyses showed that both ‘EurolMX’ and
‘DarmorMX’ always developed fewer leaf lesions and less
severe stem canker than their recurrent cultivars ‘Eurol’ and
‘Darmor’ in PHO1 (Figs 3a,4a,5a) and PHO3
(Figs 3c,4c,5c) series. This was also the case for the initial
2002 ⁄ 2003 trial (P < 0.05, LSD test). Moreover, there was
no difference in severity of leaf lesions or stem canker
between the genotypes with Rlm6 ‘EurolMX’ and ‘Dar-
morMX’ in PHO1 and PHO3 series. However, a few leaf
lesions were observed on these Rlm6 lines in the 2002 ⁄ 2003

trial and subsequently in the PHO1 and PHO3 series, sug-
gesting that isolates virulent against Rlm6 existed at a low
frequency in the local population. When ‘EurolMX’ or
‘DarmorMX’ residues were used as inoculum in the PHO2
and PHO4 series, respectively, there was a low incidence
(Fig. 3b,d) and severity (Fig. 4b,d) of leaf lesions on plants
assessed in autumn 2003, compared with those inoculated
with ‘Eurol’ residues (PHO1, Figs 3a,4a). However, the DI
had increased greatly on ‘EurolMX’ by the third year
(2004 ⁄ 2005) of the PHO2 series, showing that the Rlm6
resistance in this line was no longer effective. The incidence
of plants with leaf lesions on ‘Eurol’, ‘Darmor’ and, to a les-
ser extent, on ‘EurolMX’ and ‘DarmorMX in autumn from
2004 onwards was much greater than in autumn 2003
(Fig. 3b). As a consequence, there was little difference in DI
the following summer between ‘EurolMX’ and ‘Eurol’ in
this series from the 2004 ⁄ 2005 cropping season onwards
(Fig. 5b). Although the epidemic was not severe in PHO2
in 2004 ⁄ 2005 because of the use of ‘EurolMX’ residues as
inoculum, the severity of epidemics increased in subsequent
seasons.

Effects of combining quantitative and qualitative resis-
tance on seasonal changes in leaf lesions and stem
canker (‘DarmorMX’ vs ‘EurolMX’)

The combination of quantitative and qualitative resistance
in ‘DarmorMX’ was effective in control of leaf lesions and
stem canker. For example, in PHO1 in the autumn of 2005,
leaf lesions were abundant on all plants of ‘Darmor’ whereas
only 1.7% of ‘DarmorMX’ plants had leaf lesions (Fig. 4a).
Similarly, in that year, the incidence and severity of stem
canker were considerably less on ‘DarmorMX’ (27% of
plants with symptoms, DI = 0.27) than on ‘Eurol’ (inci-
dence 86%, DI = 5.87) (P < 0.05, LSD test, for both
incidence and severity). ‘DarmorMX’ resistance remained
effective throughout the PHO4 series with few leaf lesions
and little stem canker developing at least until the 5th year
of the experiment (Figs 3d,4d,5d). It was difficult to find
pseudothecia of L. maculans on ‘DarmorMX’ residues over
the 4 yr of its use as inoculum, and most of the pseudothecia
found on this line were of L. biglobosa (data not shown).

Discussion

This work provides experimental evidence, for an arable
crop grown in successive seasons, that the combination of
qualitative effective major gene and quantitative polygenic
resistance to a pathogen both improves control of the dis-
ease and increases durability of the qualitative resistance.
When combined with quantitative resistance in ‘Darmor-
MX’, the qualitative Rlm6 resistance provided effective
control of phoma stem canker until at least the 5th year,
2 yr longer than when it was deployed in a susceptible

Mean number of phoma leaf lesions per plant
0 4 8 12 16

S
te

m
 c

an
ke

r 
se

ve
rit

y

0

2

4

6

Fig. 2 Relationship between severity of stem canker assessed in June
before harvest using a disease index (DI) (y) and severity of leaf
lesions assessed the previous autumn (generally November) (x)
caused by Leptosphaeria maculans, including data for ‘Eurol’ and
‘EurolMX’ Brassica napus lines from the initial trial in 2002 ⁄ 2003
and two subsequent series of trials PHO1 and PHO2, over the
cropping seasons 2003 ⁄ 2004 to 2006 ⁄ 2007 (see Fig. 1). The DI
ranges from 0 (all plants healthy) to 9 (all plants dead). The
fitted curve is an asymptotic exponential equation
y = 4.95(1 ) 0.88exp()0.394x)) (SE 0.240, 0.032, 0.069),
R2 = 79.9%, s2 = 0.706, df = 79. There was no significant differ-
ence between the two cultivars (Eurol (open squares) and EurolMX
(closed squares)) for the estimated parameters in the asymptotic
exponential model (P > 0.05, F-tests), so a common model
was used. There was no equivalent relationship found with
‘Darmor’ ⁄ ’Darmor MX’ data, which are not presented.
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background ‘EurolMX’. This conclusion, based on direct
experimental evidence for a field crop attacked by a fungal
disease, is consistent with both theoretical predictions
(Pietravalle et al., 2006) and glasshouse work with a virus
disease (Palloix et al., 2009). Moreover, an effect of quanti-
tative resistance has been suggested by Brun et al. (2000) to
explain the superior durability of the R gene from B. nigra
compared with that from B. juncea, introgressed into
B. napus lines either with or without quantitative resistance,
respectively. The benefit of this combination of R-gene
mediated resistance and quantitative resistance may have
involved a decrease in airborne inoculum concentration
because the quantitative resistance limited the number of
pseudothecia formed, and a decrease in number of leaf
lesions because operation of Rlm6 eliminated leaf lesions
caused by the avirulent fraction of the pathogen population.
This interpretation is supported by the small numbers of
pseudothecia on residues and of leaf lesions observed on
‘DarmorMX’ throughout the years in PHO4 whereas no
such restriction occurred on ‘EurolMX’ in PHO2. The

results of this experiment, in which only c. 40% of the
L. maculans population was virulent in the third season
when severe epidemics occurred on ‘EurolMX’ in PHO2,
suggests that population size of virulent isolates is more
important in determining the effectiveness of qualitative
resistance than the frequency of virulent isolates. The con-
siderable decrease (by comparison with 2002 ⁄ 2003) in
severity of stem canker on all host genotypes (including the
susceptible ‘Eurol’) in trials inoculated in 2003 and 2004
with inoculum from the ‘MX’ lines provides good evidence
that R genes act by reducing pathogen population sizes. The
rate of loss in effectiveness of resistance in ‘EurolMX’ in
PHO2 was comparable to that of other major genes in
susceptible backgrounds in commercial agricultural crops.
Resistance derived from Brassica rapa var. sylvestris intro-
duced into ‘Surpass’ was ineffective and associated with
devastating epidemics within 2 yr after its cultivation over
large areas in Australia (Sprague et al., 2006). Resistance
conferred by Rlm1 introduced into several commercial cul-
tivars in France was also rendered ineffective after 2–3 yr
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Fig. 3 Seasonal changes in the incidence (%) of winter oilseed rape plants with at least one leaf lesion (y) caused by Leptosphaeria maculans

in autumn (generally November) over the period from 2002 to 2006 (x) on two pairs of Brassica napus near-isogenic lines (NILs) (‘Eurol’ ⁄
’EurolMX’ and ‘Darmor’ ⁄ ’DarmorMX’) without or with the Rlm6 resistance gene (MX lines) in different genetic backgrounds (‘Eurol’, suscepti-
ble; ‘Darmor’, quantitative polygenic resistance). Data are from the initial 2002 ⁄ 2003 trial and then from 2003 ⁄ 2004 to 2006 ⁄ 2007, from four
series of trials each recurrently inoculated in autumn either with stem residues of ‘Eurol’ (a, PHO1), ‘EurolMX’ (b, PHO2), ‘Darmor’ (c, PHO3)
or ‘DarmorMX’ (d, PHO4) (see Fig. 1). Results for 2002 ⁄ 2003 are shown as means (SED = 3.73, df = 9, LSD (5%) = 8.43). Lines of best fit
from a parallel lines regression analysis for 2003 ⁄ 2004 to 2006 ⁄ 2007 using the factors background (Eurol or Darmor) and MX status (with-
out ⁄ with Rlm6) are shown with solid lines for ‘Eurol’ (open squares) and ‘Darmor’ (open triangles), and with dashed lines for ‘EurolMX’ (closed
squares) and ‘DarmorMX’ (closed triangles); (a) two parallel lines, y = 78.5 + 3.24x (SE. 6.17, 1.66) (‘Eurol’ and ‘Darmor’), y = )7.25 + 3.24x
(SE 5.45, 1.66) (‘EurolMX’ and ‘DarmorMX’), R2 = 94.7%, s2 = 108.7, df = 35; (b) two parallel lines y = 6.79 + 19.22x (SE 2.17, 8.30)
(‘Eurol’ and ‘Darmor’), y = )5.79 + 19.22x (SE 2.17, 8.30) (‘EurolMX’ and ‘DarmorMX’), R2 = 65.8%, s2 = 277.6, df = 41; (c) two non-
parallel lines y = 57.7 + 8.64x (SE 6.81, 1.87) (‘Eurol’ and ‘Darmor’), y = 3.72 ) 0.64x (SE 3.25, 9.68) (‘EurolMX’ and ‘DarmorMX’),
R2 = 94.8%, s2 = 102.9, df = 34; (d) two non-parallel lines y = 4.0 + 16.88x (SE 3.82, 13.9) (‘Eurol’ and ‘Darmor’), y = 41.5 ) 4.88x (SE
3.82, 13.9) (‘EurolMX’ and ‘DarmorMX’), R2 = 55.8%, s2 = 429.3, df = 40.
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(Rouxel et al., 2003). This indicates that the results
obtained in small field experiments can adequately reflect
the mechanisms acting over large geographical scales during
the commercial use of resistant cultivars.

There was no evidence that quantitative background
resistance affected the surprising increase in the frequency
of isolates avirulent (AvrLm1) against Rlm1 associated with
the increase in frequency of isolates that were virulent (av-
rLm6) against Rlm6; similar phenomena were observed in
both PHO2 and PHO4. One explanation may be that
selection for virulence at the AvrLm6 locus was indirectly
linked to selection against virulence at the AvrLm1 locus
(if selection for virulence avrlm6 occurred in Avrlm1 iso-
lates, which represented 30% of the initial population).
Another explanation might be that there is a greater fitness
cost of virulence at both loci (avrLm1 ⁄ avrLm6 isolates)
than of virulence at only the AvrLm6 locus (AvrLm1 ⁄ av-
rLm6 isolates). It is likely that selection at the two loci
may be linked, since they are located within 6 cM of each
other on the L. maculans genome (Fudal et al., 2007).

Furthermore, there is evidence of a fitness cost of virulence
at the AvrLm1 locus (Huang et al., in press), as at the
AvrLm4 locus (Huang et al., 2006b). Like evolution for
virulence at the AvrLm1 locus, evolution for virulence at
the AvrLm6 locus often involves deletion of the gene (Fu-
dal et al., 2007, 2009). It is important to understand
which mechanism is responsible for the link between Av-
rLm1 and avrLm6, because either mechanism can be
exploited in the management of resistance against L. macu-
lans but they require different breeding and cultivar
deployment strategies. Negatively linked indirect selection
offers the possibility of ‘recycling’ ineffective resistance
genes in successive cycles of selection but requires that dif-
ferent R genes are kept separate in different cultivars for
them to be effective (Andrivon & de Vallavieille-Pope,
1993). By contrast, fitness costs that favour monovirulent
isolates against multivirulent isolates would suggest that
pyramiding of several R genes in a single cultivar should
be an effective strategy to control the disease (Stukenbrock
& McDonald, 2008).
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Fig. 4 Seasonal changes in the number of leaf lesions caused by Leptosphaeria maculans per plant (y) in autumn (generally November) over
the period from 2002 to 2006 (x) on two pairs of Brassica napus near-isogenic lines (NILs) (‘Eurol’ ⁄ ’EurolMX’ and ‘Darmor’ ⁄ ’DarmorMX’)
without or with the Rlm6 resistance gene (MX lines) in different genetic backgrounds (‘Eurol’, susceptible; ‘Darmor’, quantitative polygenic
resistance). Data are from the initial 2002 ⁄ 2003 trial and then from 2003 ⁄ 2004 to 2006 ⁄ 2007 from four series of trials recurrently inoculated
in autumn either with stem residues of ‘Eurol’ (a, PHO1), ‘EurolMX’ (b, PHO2), ‘Darmor’ (c, PHO3) or ‘DarmorMX’ (d, PHO4) (see Fig. 1).
Results for 2002 ⁄ 2003 are shown as means (SED 0.384, df = 9, LSD(5%) = 0.869). Lines of best fit from a parallel lines regression analysis for
2003 ⁄ 2004 to 2006 ⁄ 2007 using the factors background (Eurol or Darmor) and MX status (without ⁄ with Rlm6) are shown with solid lines for
‘Eurol’ (open squares) and ‘Darmor’ (open triangles), and with dashed lines for ‘EurolMX’ (closed squares) and ‘DarmorMX’ (closed triangles);
(a) two non-parallel lines y = )5.35 + 4.23x (SE 2.21, 0.61) (‘Eurol’ and ‘Darmor’), y = )0.44 + 0.22x (SE 3.14, 1.05) (‘EurolMX’ and
‘DarmorMX’), R2 = 75.9%, s2 = 10.82, df = 34; (b) two non-parallel lines y = )3.98 + 2.67x (SE 1.17, 0.32) (‘Eurol’ and ‘Darmor’),
y = )3.07 + 1.67x (SE 1.17, 0.32) (‘EurolMX’ and ‘DarmorMX’), R2 = 73.1%, s2 = 3.02, df = 40; (c) four non-parallel lines
y = )2.50 + 2.52x (SE 2.44, 0.67) (‘Eurol’), y = )11.74 + 6.41x (SE 2.44, 0.67) (‘Darmor’), y = 0.0 + 0.01x (SE 3.47, 1.17) (‘EurolMX’),
y = )0.39 + 0.24x (SE 3.47, 1.17) (‘DarmorMX’), R2 = 84.4%, s2 = 6.62, df = 30; (d) two non-parallel lines y = )6.99 + 3.15x (SE 1.38,
0.38) (‘Eurol’ and ‘Darmor’), y = 1.28 ) 0.20x (SE 1.38, 0.378) (‘EurolMX’ and ‘DarmorMX’) R2 = 68.9%, s2 = 4.22, df = 40.
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These results suggest that the quantitative resistance in
‘Darmor’ did not exert selection for specific virulence in the
pathogen population, as the frequency of avirulence ⁄ viru-
lence alleles in isolates from ‘Darmor’ residues did not
change over the years. It was similar to that of the initial L.
maculans population and to that recovered from the suscep-
tible cultivar ‘Eurol’. This may be explained by the fact that,
while qualitative R-gene resistance operates in the leaf tis-
sues (Huang et al., 2006a), the quantitative resistance
against L. maculans operates later in disease development, in
leaf petiole and stem tissues (Fitt et al., 2006; Huang et al.,
2009). Whereas quantitative resistance is generally consid-
ered to be durable (Poland et al., 2008), there is experimen-
tal data to show that some pathogens can adapt to gradually
erode such polygenic resistance and render it ineffective
(Andrivon et al., 2007). However, in our field experiment,
the ‘Darmor’ resistance was still effective after 5 yr of recur-
rent selection on L. maculans populations. Nevertheless, it
is important to widen the genetic base of quantitative

resistance against L. maculans in oilseed rape, as the quanti-
tative resistance in European oilseed rape is mainly based on
‘Jet Neuf’ resistance. ‘Jet Neuf’ was cultivated as the only
cultivar in France and the rest of Europe from 1977–1983,
without erosion of its resistance (Delourme et al., 2006).
This lasting performance of resistance fits well with John-
son’s (1981) definition of durable resistance. Nevertheless,
‘Jet Neuf’ also carries Rlm4 and there are some avirulent Av-
rLm4 isolates currently found in European populations of
L. maculans (Stachowiak et al., 2006). Therefore, the dura-
bility of ‘Jet Neuf’ resistance may have been derived from a
combination of an efficient qualitative major gene with
quantitative resistance.

Breeders may be reluctant to put in extra effort required
to combine polygenic quantitative resistance with an
effective major gene resistance in new cultivars, as there is
no immediate benefit in breeding cultivars with only an
effective major resistance gene. However, our results clearly
show that this strategy benefits yields in the long-term by
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Fig. 5 Seasonal changes in the severity of stem canker caused by Leptosphaeria maculans assessed in June using a disease index (DI) (y) over
the period from 2002 to 2006 (x) on two pairs of Brassica napus near-isogenic lines (NILs) (‘Eurol’ ⁄ ’EurolMX’ and ‘Darmor’ ⁄ ’DarmorMX’)
without or with the Rlm6 resistance gene (MX lines) in different genetic backgrounds (‘Eurol’, susceptible;‘Darmor’, quantitative polygenic
resistance). Data are from the initial 2002 ⁄ 2003 trial and then from 2003 ⁄ 2004 to 2006 ⁄ 2007 from four series of trials recurrently inoculated
in autumn either with stem residues of ‘Eurol’ (a, PHO1), ‘EurolMX’ (b, PHO2), ‘Darmor’ (c, PHO3) or ‘DarmorMX’ (d, PHO4) (see Fig. 1).
The DI ranges from 0 (all plants healthy) to 9 (all plants broken down). Results for 2002 ⁄ 2003 are shown as means (SED 0.336, df = 9, LSD
(5%) = 0.761). Lines of best fit from a parallel lines regression analysis for 2003 ⁄ 2004 to 2006 ⁄ 2007 using the factors background (‘Eurol’ or
‘Darmor’) and MX status (without ⁄ with Rlm6) are shown with solid lines for ‘Eurol’ (open squares) and ‘Darmor’ (open triangles), and with
dashed lines for ‘EurolMX’ (closed squares) and ‘DarmorMX’ (closed triangles); (a) two pairs of parallel lines y = 2.95 + 0.44x (SE 0.440,
0.115) (‘Eurol’), y = 0.35 + 0.44x (SE 0.440, 0.115) (‘Darmor’), y = 0.30 + 0.019x (SE 0.440, 0.115) (‘EurolMX’), y = 0.169 + 0.019x (SE
0.440, 0.115) (‘DarmorMX’) R2 = 85.3%, s2 = 0.53, df = 58; (b) two pairs of parallel lines y = )0.73 + 1.13x (SE 0.566, 0.151) (‘Eurol’),
y = )0.061 + 0.47x (SE 0.566, 0.151) (‘Darmor’), y = )0.26 + 1.13x (SE 0.566, 0.151) (‘EurolMX’), y = 0.41 + 0.47x (SE 0.566, 0.151)
(‘DarmorMX’), R2 = 64.3%, s2 = 0.91, df = 59; (c) four non-parallel lines y = 1.99 + 0.62x (SE 0.640, 0.172) (‘Eurol’), y = 0.86 + 0.27x (SE
0.640, 0.172) (‘Darmor’), y = )0.13 + 0.27x (SE 0.640, 0.172) (‘EurolMX’), y = 0.76 ) 0.08x (SE 0.640, 0.172) (‘DarmorMX’), R2 = 73.4%,
s2 = 0.79, df = 57; (d) four parallel lines y = 2.48 (SE 0.182) (‘Eurol’), y = 1.03 (SE 0.182) (‘Darmor’), y = 0.95 (SE 0.182) (‘EurolMX’),
y = 0.74 (‘DarmorMX’) (SE 0.182), R2 = 46.3%, s2 = 0.53, df = 60.
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extending the durability of resistance, so that new resistance
genes can be effectively deployed for longer periods. Such
durable resistance to crop diseases provided by combining
quantitative and qualitative resistance can help to avoid the
devastating ‘boom and bust’ cycles (Stukenbrock &
McDonald, 2008) and hence make an essential contribu-
tion to global food security.
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