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Abstract 

Rhynchosporium secalis is a major fungal pathogen of barley. Fungicides, including triazoles 

and Qols, play an important part in R. secalis control programmes, but can select for 

resistance. Reduced triazole sensitivity had been reported in R. secalis, but the mechanism 

was not known. Qol resistance had not been reported in R. secalis until 2008, when the 

G143A substitution in cytochrome b was reported in two R. secalis isolates from France. 

A high-throughput fungicide sensitivity assay was developed for R. secalis, and isolates were 

screened for Quinone outside Inhibitor (QoI) and triazole sensitivity. Qol sensitivity was 

reduced by over 100-fold in the isolates with G143A. This was not found in any UK isolates, 

but smaller sensitivity shifts were detected. These sensitivity shifts were mostly reversed by 

alternative oxidase (AOX) inhibitors, and there is preliminary evidence of AOXupregulation 

following exposure to azoxystrobin. 

Shifts in triazole sensitivity were not correlated with point mutations or constitutive over- 

expression of the target site encoding gene, CYP51, or reversed by putative efflux inhibitors. 

However, a second CYP51 paralogue, CYPSIA, was sequenced from less-sensitive isolates 

but absent from sensitive isolates. CYP51A was upregulated more than CYP51B following 

exposure to tebuconazole. Pyrosequencing analysis of the Hoosfield archive showed that 

levels of CYP51A were low until 1998, then rapidly increased. Phylogenetic analysis suggests 

a CYP51 gene duplication event basal to the filamentous ascomycetes, followed by multiple 
losses of CYP51A. Therefore it appears that CYP51A was almost lost from the R. secalis 

population, but re-emerged due to selection by triazoles. 

This project has identified the mechanism responsible for an initial shift in R. secalis 

sensitivity that compromised the effectiveness of some older triazoles, and reported further 

variation in sensitivity to newer triazoles that currently provide control in the field. 

Furthermore, the G143A cytochrome b substitution can confer QoI resistance in R. secalis. 
Therefore resistance management is important for sustainable R. secalis control. 
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Chapter 1 

Introduction 

1.1 Rhynchosporium secalis 
Rhynchosporium secalis (Oud. ) Davis sensu lato (s. L) is a phytopathogenic fungus, causing 

barley leaf blotch or scald. This foliar disease can cause serious reductions in grain yield. If 

untreated, yield losses within affected crops may be as high as 30% (Mayfield and Clare 

1991). Rhynchosporium secalis infection can also reduce grain quality characters such as 

specific weight and protein content (Khan and Crosbie 1988). 

Rhynchosporium secalis is found in barley-growing areas worldwide. When the last 

Commonwealth Mycological Institute Disease Distribution Map for R. secalis was published 

in 1986, it had been reported in over 50 countries, including across Europe, the Middle East 

and North America, Northern and Eastern coastal parts of Africa, North-western and South- 

eastern areas of South America, New Zealand and Southern coastal regions of Australia, the 

West coast of India and across South East Asia (CMI 1986). 

In the U. K., R. secalis is especially problematic on winter barley. The Defra 2003 Cereal 

Disease Database Report estimated that of £4.95 million in yield losses caused by foliar 

pathogens, £2.57 million was due to R. secalis, making it the most economically-damaging 
foliar pathogen of barley. This represents a total yield loss of 1.39% nationally, even with 

£24.8 million, an average of £55/ha, spent on fungicide use, and 96.4% of crops receiving at 

least one spray (DEFRA 2003). Data after 2003 are more limited, but 2005 figures estimate 

that with increased grain prices, yield losses amounted to £4.8 million (Blake et al. 2011). 

Rhynchosporium secalis s. l. also affects rye and various wild grass species (Caldwell 1937). 

While some early studies claimed isolates were able to cross-infect the full range of hosts 

(Bartels 1928), subsequent work has found isolates to be predominantly host-specialised. 

Caldwell (1937) described six different host groups, comprising barley (Hordeum vulgare), 

rye (Secale cereale), Agropyron repens, Bromus inermis, Elymus canadensis and Hordeum 

jubatum. Several later studies have found barley and rye isolates to be unable to cross-infect 

(Müller 1953; Owen 1958; Dodov, 1963; Kajiwara 1968; Lebedeva and Tvaruzek 2006). 

Müller (1953) and Owen (1958) both proposed designating the barley-infecting and rye- 



infecting races as formae specialis, R. secalis £sp. hordeum and R. secalis Esp. secalis, but 

these names have not entered common usage. Kajiwara and Iwata (1963) also found host- 

specialised races infecting the grass species Agropyron semicostatum and Phalaris 

arundinacea (now under investigation as a potential energy crop), which they named R. 

secalis f. sp. agropyri and R. secalis f. sp. phalaridis. Zaffarano et al. (2008) found host- 

specialised races infecting rye, barley or Agropyron spp. and constructed a molecular 

phylogeny based on ITS sequences, which showed these three host-specialised lineages to be 

monophyletic, and it was concluded that they are three separate species. However, for the 

purpose of this thesis, R. secalis refers to R. secalis s. l., including the barley-infecting lineage 

to which this study predominantly relates. 

The genus Rhynchosporium also contains the morphologically distinct R. orthosporum 
Caldwell which infects the grass Dactylis glomerata (Caldwell 1937) and may cause reduced 

yield (Isawa 1983; Welty 1991) and some reduction in nutritional value (Isawa 1983) in this 

popular forage grass. A species sometimes referred to as R. alismatis was excluded from the 

genus Rhynchosporium by Caldwell (1937) on morphological grounds, and reclassified as 

Plectosporium alismatis (Oudem. ) W. M. Pitt, W. Gams and U. Braun, by Pitt et al. (2004) 

based on molecular analysis. Molecular phylogenetic analyses have placed R. secalis and R. 

orthosporum close to Oculimacula in the Leotiomycetes (Goodwin 2002), whereas P. 

alismatis was placed close to Verticillium in the Sordariomycetes (Pitt et al. 2004). A species 

initially described as R. oryzae, causing a scald-like disease of rice, placed in 

Rhynchosporium based on a superficial similarity in the conidia which are sometimes two- 

celled and curved, has since been reclassified as Gerlachia oryzae (Hashioka & Yokogi) 

Gams (Gams and Muller 1980), and then Microdochium oryzae (Hashioka & Yokogi) 

Samuels & I. C. Hallet (Samuels and Hallett 1983), following more detailed morphological 

studies. 

1.1.1 Infection process 

Rhynchosporium secalis is a foliar pathogen, mainly producing symptoms on the leaf blades 

and sheaths. Spores landing on barley leaves germinate in response to nutrients or other 

substances exuded at the leaf surface (Ayres and Owen 1969). An early study by Bartels 

(1928) claimed that the fungus enters the leaf through stomata, but subsequent studies have 

repeatedly shown direct entry through the epidermis by forming appressoria (Caldwell 1937; 

Ayesu-Offei and Clare 1970; Jones and Ayres 1974). 
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There is an initial symptomless phase in which the fungus produces subcuticular hyphae, 

growing through the pectic layer between the cuticle and the epidermal cell walls (Ryan and 

Grivell 1974). The fungus penetrates the epidermal cells, causing epidermal cell collapse. At 

this stage bluish-grey, `lenticular' (lens-shaped) lesions, with a water-soaked appearance, 

become visible (Caldwell 1937). Fungal hyphae then grow down into the mesophyll, causing 

mesophyll cell collapse. The centre of the lesion then dries, leaving a light brown or grey 

necrotic lesion with a characteristic dark margin (Bartels 1928) (Figure 1.1). Lesions may 

spread outwards to form concentric rings, and in heavily-infected leaves they may coalesce to 

cover a large proportion of the leaf area. The two-celled conidia, with a beaked shape that 

gives the genus its name, form directly from hyphae, on one side of the leaf only, mostly in 

the centre of the lesion where hyphal growth is most dense, dislodging the cuticle so the 

spores are exposed (Caldwell 1937). 

Subsequent investigations using electron microscopy (Jones and Ayres 1974; Hosemans and 

Branchard 1985), GFP-transformed strains (Newton et al. 2010) and qPCR detection 

(Fountaine et al. 2007) of R. secalis have shown the symptomless phase to be more extensive. 

The fungus does not produce haustoria, but during the symptomless phase it may increase the 

permeability of plant cell membranes, increasing the availability of sugars and amino acids 

from plant cells to the fungus in the subcuticular space (Jones and Ayres 1972). The 

symptomless phase can persist for months (Fountaine et al. 2010), and the fungus can 

produce conidia through the cuticle (Howlett and Cooke 1987). 

The formation of necrotic lesions causes a reduction in photosynthetic area, reducing 

photosynthetic productivity and ultimately grain yield. James et al. (1968) found a clear 

correlation between the percentage of the flag leaf and leaf two visibly infected after ear 

emergence and the percentage yield lost, suggesting that loss of photosynthetic area during 

grain filling is especially damaging to yields. However, such studies have correlated yield 

loss with visibly-infected lead area, and so do not take account of asymptomatic infection. 

While there is experimental evidence that photosynthetic rate, measured by carbon dioxide 

uptake, only decreases from mesophyll cell collapse, the fungus is already taking up 

photosynthetic products from the plant during subcuticular growth (Jones and Ayres 1972). 

Mayfield and Clare (1991) studied plants grown in controlled environment, artificially 
inoculated with R. secalis at different growth stage. They found that reductions in yield were 

mainly due to fewer ears being produced per plant, and fewer grains per head, but still found 
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that infection later in the growing season was most damaging to grain yields. However, the 

plants were grown in controlled environment chambers, with water provided directly into the 

pots. Therefore in the absence of rainfall to cause splash-dispersal, this experiment did not 

account for the importance of earlier infection for the build-up of secondary inoculum that 

can cause later-season infection in the field. Taggart et al. (1998) found that control failure of 

R. secalis resulted in reduced grain weight. 

(n) 

Figure 1.1. Rhynchosporium secalis lesions on barley (a) in the field, (b) on leaf blades and leaf sheath. 
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1.1.2 Epidemiology 

Leaf scald is a polycyclic disease. Within a growing season, the primary inoculum source is 

infected seed or plant debris, followed by secondary spread by splash-dispersal of conidia 

(Habgood 1971; Shipton et al. 1974). 

Bartels (1928) describes R. secalis as overwintering on crop debris and in the soil as hyphae 

and conidia, sometimes forming sclerotia-like bodies of tightly-packed hyphae. Polley (1971) 

reports similar findings: lesions on dead leaves no longer sporulated, but conidia germinated 

on crop debris and grew saprophytically as dense hyphal masses that later produced conidia, 
forming the primary inoculum to infect the next crop. Ayesu-Offei and Carter (1971) used 

infected barley straw as an experimental inoculum source at the centre of a field, and 

observed the initial spread of symptomatic infection out through the crop. Evans (1969) 

observed higher disease incidence on farms where large amounts of barley stubble had been 

left in fields, and confirmed with glasshouse tests that a layer of debris, if wet, on top of the 

soil can infect growing plants. 

Another major primary inoculum is infected seed. Skoropad (1959) showed that R. secalis 
infection could spread from the leaves to the ear, infecting the inner surface of the lemma and 

then the pericarp of the grain itself. When seeds germinated in such a position that the 

emerging seedling came into contact with the infecting area of the seed-coat, symptoms 

appeared on the emerging shoot within a week. Habgood (1971) found that seed from an 

infected crop could produce infected seedlings, even where the seed lacked visible symptoms. 

Fountaine et al. (2010) measured significantly higher rates of infection from infected than 

from clean seed in field trials, and detected systemic symptomless infection in plants grown 

from infected seed, whereas previous studies had only measured visible symptoms in 

seedlings. 

Barley volunteers may act as a disease reservoir between barley crops (Stapel 1960), although 

this is less important than for obligate biotrophic pathogens (Yarham and Gladders 1993), as 
R. secalis can also survive saprophytically, and removal of volunteer plants may only reduce 
disease levels if crop debris is also removed (Evans 1969). It has also been suggested that 

wild grasses at field margins may act as reservoirs for the disease, but current knowledge of 
host-specialisation in R. secalis suggests this only applies to a limited range of grass species, 

such as wall barley, Hordeum murinum (Zaffarano et al. 2008). 
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Secondary dispersal by rain-splashed conidia allows the fungus to infect higher leaves, 

reaching epidemic levels in suitable conditions. In glasshouse tests, Polley (1971) found that 

epidemic levels of R. secalis infection occurred after periods of at least twelve hours with 

relative humidity over 90% and rainfall at least nine hours before the end. In the field, Ayesu- 

Offei and Carter (1971) detected conidia in spore-traps only after rainfall or spray-irrigation. 
Fitt et al. (1986) used simulated rainfall to show that more spores were collected in spore 

traps following heavier rain, with a minimum rainfall rate of 0.2mm/hour required for conidia 

to be detected. Occasionally spores were detected in windy conditions immediately following 

rainfall, but none were detected from dry leaves in wind-tunnel experiments. This 

corresponds with historical (Priestley and Bayles 1979) and geographical (Khan et al. 1968; 

Priestley and Bayles 1979) studies, which show that R. secalis epidemics are more frequent in 

seasons with high rainfall in May to July, and in regions with higher annual rainfall. 

Rhynchosporium secalis is an imperfect fungus, with no known sexual stage. 
Phylogenetically, however, it is a member of the Ascomycota, thought to be related to 
discomycete fungi in the Leotiales (Goodwin 2002; Crous et al. 2003), including the related 

species Oculimacula yallundae and Pyrenopeziza brassicae, which produce airborne 

ascospores from apothecia on crop debris (Wallwork 1987; McCartney and Lacey 1989; Dyer 

et al. 2001). 

There is some evidence of genetic recombination in R. secalis populations (Burdon et al. 
1994), but it is not yet clear whether this is due to an as yet undiscovered sexual stage, 

perhaps occurring on different host species (Zaffarano et al. 2006), or somatic recombination 
(Bo et al. 1994; Salamati et al. 2000). Spore trapping has repeatedly found only conidia of R. 

secalis (e. g. Skoropad 1959; Ayesu-Offei and Carter 1971), and very low levels of DNA 

(Fountaine et al. 2010), consistent with occasional capture of splash-dispersed spores rather 

than common wind-dispersed ascospores. 

Bartels (1928) described the formation in culture of gemmae, vegetative fragments that 

subsequently germinate, but there have been no reports of such propagules being produced in 

planta or dispersed in the field. Jones and Ayres (1974) found that when plants were 
inoculated with a mixture of hyphal fragments and spores, some hyphal fragments grew over 

the leaf surface, but were not able to penetrate the cuticle and infect the leaf. Microconidia 
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have also been reported in culture (Skoropad and Grinchenko 1957), but they did not 

germinate and have not been found in the field. 

1.1.3 Control 

Effective control relies on the combined use of more resistant barley varieties and fungicide 

applications (Zhan et al. 2008; Blake et al. 2011). Crop rotation, tillage to reduce surface 

crop debris and removal of volunteer plants have a limited effect in reducing those inoculum 

sources (Oxley 2010), but no effect on seed-borne infection. Work is underway to evaluate 

seed treatments for R. secalis control, but so far, effective control has not been achieved 

(Oxley and Burnett 2010). Later sowing date reduces infection levels, but also causes direct 

yield reduction (Cooke and Oxley 2000; Kavak 2004). 

Cultivar resistance includes major-gene-mediated and partial (or polygenic) resistance. In 

major-gene-mediated resistance, a single host gene enables recognition of pathogen strains 

with the corresponding avirulence gene, eliciting a defence response that prevents lesion- 

forming infection (Zhan et al. 2008). For example, the Rrsl resistance allele in barley gives 

resistance to R. secalis isolates with the corresponding avirulence allele, AvrRrsl. The 

resistance elicitor for AvrRrsl has now been identified as the protein NIP 1, a necrosis- 
inducing protein produced by R. secalis at the mesophyll-collapse, lesion-forming stage of 

infection (Rohe et al. 1995). So far, 17 resistance genes have been described (Wagner et al. 

2008), although some of these map to the same chromosome location and may represent 

multiple alleles rather than separate loci (Genger et al. 2005). 

The effect of major-gene-mediated resistance on asymptomatic infection has proven less 

tractable. Jones and Ayres (1972) found some subcuticular growth in a susceptible and a 

resistant variety, but in the resistant variety the levels of nutrients from the plants cells 

available to the fungus in the intercellular space were lower, and mycelial growth was less 

than in the susceptible variety. Lehnackers and Knogge (1990) observed some differences in 

spore germination rates and subcuticular hyphal growth levels, and in some cases host cell 

wall alterations blocking epidermal penetration, but these were not correlated with the 

presence of Rrsl/NIPJ. Subcuticular hyphal growth was less dense in the resistant 
interaction, but some sporulation still took place. Steiner-Lange et al. (2003) found that 

defence responses in resistant plants were triggered within 24 hours post inoculation, just 

after the fungus penetrated the cuticle. One of the Rrsl AvrRrsl-specific pathogenesis-related 
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proteins was expressed specifically in the epidermis, but three were expressed specifically or 

most highly in the mesophyll. Microscopy studies with a GFP-labelled R. secalis 

transformant on one susceptible barley cultivar and a near-isogenic resistant cultivar found 

that spore germination and mycelial growth rate were reduced on the resistant cultivar, with 

the hyphal network mostly limited to subcuticular growth parallel to the leaf surface rather 

than growing deeper into the leaf tissue. However, some sporulation did take place 
(Thirugnanasambandam et al. 2010). 

Major-gene-mediated resistance is vulnerable to resistance-breaking pathogen strains. 
Schurch et al. (2004) tested R. secalis isolates from a range of locations and found the NIP] 

gene had been deleted in 45% of isolates, resulting in virulence on Rrsl barley varieties. Of 

the remaining isolates, 10% of those sequenced had mutations in N1P1 associated with 

virulence on Rrsl barley varieties. Lehnackers and Knogge (1990) describe several R. secalis 
field isolates virulent on Rrs2 cultivars. Such gene-for-gene interactions provide the basis for 

the `physiologic races' of R. secalis on barley described in earlier literature (Shipton et al. 

1974). Rhynchosporium secalis populations contain a range of pathogenicity types (Burdon et 

al. 1994; Newton et al. 2001), and are able to evolve quickly to different barley cultivars as 

virulent strains are selected (Xi et al. 2003). 

Polygenic resistance, whereby multiple loci contribute to quantitative resistance, is thought to 

be more durable, but only provides partial resistance. In a cultivar with partial resistance, 

visible lesions will appear, but they may be smaller, fewer, develop later or have lower spore 

production (Habgood 1977; Kari and Griffiths 1993). Partial resistance is sometimes referred 

to as adult resistance, and major-gene-resistance as seedling resistance. Studies in R. secalis 
have shown that some, but not the majority, of partial resistance to R. secalis in barley is 

effective only in adult plants (Xue and Hall 1995). Recently, some components of polygenic 

resistance have been genetically analysed as QTLs and mapped to chromosomes (Wagner et 

al. 2008), but comparison of analyses is hampered by strong genotype x environment 
interactions (Kari and Griffiths 1993). 

Therefore a more durable resistance strategy would involve a combination of partial 

resistance, and multiple major resistance genes, combined in one cultivar by `pyramiding' 

(Jefferies et al. 2000), or in a cultivar mixture (Oxley and Burnett 2010). There has also been 

some interest in disease escape, whereby aspects of crop growth, such as earlier stem 
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elongation, lower canopy density, or more horizontal leaf surfaces, reduce secondary spread 
(Zhan et al. 2008). However, there may be associated yield penalties, such as increased 

shading of lower leaves. It has also been suggested that disease tolerance could be improved, 

so yield loss is lower for a given disease level, although it is not yet clear whether this would 
be possible without reducing the disease-free yield (Bingham et al. 2009). 

Blake et al. (2011) suggest that net blotch, Pyrenophora teres, overtook R. secalis as the most 

damaging foliar pathogen of winter barley in the UK in 2005 due to the introduction of barley 

varieties with higher resistance to R. secalis, although Oxley and Burnett (2010) list R. 

secalis as the most damaging foliar disease of barley in the UK. However, barley varieties 

still only provide moderate levels of resistance to R. secalis (Wagner et al. 2008) and 
fungicides remain a key part of disease control. HGCA Recommended List Varieties in 2010 

trials gave yields 8%-23% lower without fungicides than with standard treatment 

programmes, with a median yield difference of 17% (HGCA 2010). 

1.1.4 Chemical control 
Current UK recommendations for R. secalis control in winter barley include a Ti spray, at 

growth stage 31-32 for winter barley or growth stage 25-30 for spring barley, containing a 

triazole with a Qol (Quinone outside inhibitor) or SDHI (Succinate dehydrogenase inhibitor), 

or a morpholine if eradicant activity is needed; followed in wet summers by a T2 spray, at 

growth stage 39-49, containing a triazole with a different mixing partner such as cyprodinil or 

an SDHI if not used at Ti. An earlier spray, before GS30, containing morpholines and 

cyprodinil, may be applied on winter barley if early disease levels are high (Blake et al. 
2011). The UK Pesticide Usage Survey Report in 2008 showed that these recommendations 

were widely followed, with most fungicides applied in a two-way mixture and the most 

common mixtures containing a triazole with a QoI or morpholine (Figure 1.2) (Garthwaite et 

al. 2008). The modes of action and resistance mechanisms for these fungicide groups are 

discussed in Secion 1.2. 
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Figure 1.2. Pie chart showing fungicide use on barley in the UK in 2008 by proportion of active substance 

treated area. Series 1 (inner circle): proportion of total fungicides used. Series 2: mixing partners used 

with the fungicide groups shown in series 1. Series 3: additional mixing partners used with the fungicide 

combinations shown in series 2. Red: anilinopyrimidines; orange: imidazoles; yellow: benzimidazoles; 

light green: mildewicides; dark green: morpholines; light blue: multi-site inhibitors; dark blue: QoIs; 

light purple: SDHIs; dark purple: triazoles. Grey: no additional mixing partner. 
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1.2 Fungicides and resistance 
Fungicides are a key part of control programmes for R. secalis. The Defra 2003 Cereal 

Disease Database Report estimated that £24.8 million, an average of £55/ha, was spent on 
fungicide use on winter barley in the UK, with 96.4% of crops receiving at least one spray 
(DEFRA 2003). 

There are currently 408 fungicide products approved for use on barley in the U. K., 

comprising 379 field fungicides and 29 seed treatments (Chemicals Regulation Directorate 

2010). However, the 379 field fungicides contain only 35 different active ingredients, with 

just 11 different modes of action (FRAC 2010a), three of which are mildew-specific. 
Bringing a new compound to market takes over ten years (Morton and Staub 2008) and costs 

up to £200 million (Case 2010). Therefore the monitoring and management of fungicide 

resistance is essential, to prolong the effective life of the available products. 

1.2.1 Fungicide resistance 
Fungicide resistance has been defined as "stable, inheritable adjustment by a fungus to a 
fungicide, resulting in less than normal sensitivity to that fungicide... for strains of a sensitive 

species that have changed, usually by mutation, to be significantly less sensitive" (European 

and Mediterranean Plant Protection Organization 1988). This definition specifies acquired 

resistance, as opposed to intrinsic differences between species. In some cases, resistance has 

been defined as having occurred only when the frequency of such strains in field populations 

results in the failure of disease control (HGCA 2000), a situation which may be referred to as 

"practical resistance" (European and Mediterranean Plant Protection Organization 1988). 

Fungicide resistance develops when naturally-occurring genetic variation in a pathogen 

population includes mutations conferring reduced fungicide sensitivity, and fungicide use 

exerts a selective pressure that favours such mutations. Both of these stages, emergence and 

selection, have implications for resistance risk and management (Georgopoulos and 
Skylakakis 1986). Therefore detection of less-sensitive fungal isolates, before they reach 

sufficient frequency in the population to result in loss of control in the field, is vital in order 

to assess the risk of field resistance occurring and give appropriate management guidelines. 

The continued efficacy of most broad-spectrum fungicides relates to their multi-site mode of 

action, since mutations affecting a single target site will not confer resistance. Hence only 
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isolated cases of resistance have been reported, which are non-target-site based (e. g. Barak 

and Edgington 1984). In contrast, for many fungicides with a site-specific mode of action, a 

single mutation can confer high levels of resistance. Consequently in many cases resistance 
has developed rapidly, with resistance to benzimidazoles and strobilurins reported in some 

pathogens within two years of their introduction (Brent and Hollomon 2007b). 

When mutations conferring reduced sensitivity do arise, their persistence and spread will 

depend upon population genetic factors such as ploidy level and recombination frequency 

(Milgroom et al. 1989); biological factors relating to the level of selective advantage given by 

the mutation, a product of the resistance factor balanced against any fitness penalties resulting 

from reduced target-site efficiency or energy expenditure on over-expression or efflux; and 

agronomic factors relating to the level of selective pressure exerted by the fungicide class in 

question. 

Therefore fungicide risk can be broken down into fungicide-related factors, pathogen-related 
factors and agronomic factors (Brent and Hollomon 2007b). Where fungicide and pathogen 

risk are moderate to high, agronomic risk must be reduced through resistance management 

practices. These involve limiting the selective advantage conferred by resistance to a 
fungicide class by reducing exposure of pathogen populations to selection by those 

fungicides. This can be achieved by reducing the pathogen population under selection by the 

fungicide by utilising other control methods including resistant varieties and cultural control 

(HGCA 2000). Initially, cases where resistance emerged first in high disease pressure areas 

were given as anecdotal evidence that reducing pathogen populations by other means could 

prove useful in resistance management (Staub 1991). More recently field experiments have 

shown a lower shift in R. secalis sensitivity to epoxiconazole over a growing season on less 

sensitive barley cultivars (Oxley et al. 2003). Conversely, the use of fungicides alongside 

resistant cultivars can reduce the pathogen population under selection for virulence, 

prolonging the useful life of resistance genes (Staub 1991). 

Reducing the exposure of the pathogen population to a fungicide may be achieved by limiting 

the number of applications per season (Brent and Hollomon 2007a). This means using 
fungicides only when warranted by the presence or risk of disease (HGCA 2000). However, 

waiting for an epidemic to develop and then attempting eradicant use of fungicides results in 

a large pathogen population under selection by the fungicide, increasing resistance risk 
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(Staub 1991). Therefore disease forecasting and early detection are key. The number of 

applications of a single group of fungicides to a single crop during a growing season should 

also be limited, but here some compromise may be necessary between resistance 

management and disease control. The selection imposed by any one fungicide can be reduced 

by mixing or alternating fungicides from different cross-resistance groups (HGCA 2000), 

although experimental data regarding the effectiveness of using fungicide mixtures are 

limited and conflicting. Mixing or alternating with different fungicide groups delayed the 

selection of Qol and triazole resistance in Sphaerothecafuligenea (Wyenandt et al. 2008) and 

QoI resistance in Blumeria graminis f. sp. hordei (Fraaije et al. 2006), and reduced sensitivity 

shifts of R. secalis against epoxiconazole and prothioconazole within individual sites over a 

single season (Oxley et al. 2008). However, QoI resistance in M graminicola was rapidly 

selected even when QoI fungicides were only used once, in mixtures and alternations (Fraaije 

et al. 2006). In Plasmopara viticola, the benefit of a mixing partner in delaying the selection 

of Qol resistance depended on the mixing partner used and the dose rate of Qol and mixing 

partner (Genet et al. 2006). In R. secalis, the frequency of MBC resistance in populations 

proved too erratic between years and sites to determine the effect of fungicide mixtures on 

the frequency of resistant isolates (Holloman 1997). 

Fungicides used in mixtures or alternations should belong to different groups which are not 

cross-resistant. Positive cross-resistance occurs when different fungicides share a mode of 

action, and a single resistance mechanism confers resistance to both, whereas multiple 

resistance is the occurrence of separate mechanisms conferring resistance to different 

fungicides in the same pathogen. Fungicides have been classified into cross-resistance 

groups, each sharing a mode of action and affected (or potentially affected) by a common 

resistance mechanism (FRAC 2010a). Groups currently authorised for use on barley in the 

UK are the amines (morpholines), carboxamides, anilinopyrimidines, MBCs, QoIs, DMIs 

(demethylation inhibitors) and multi-site inhibitors, along with some specific mildewicides 
(Chemicals Regulation Directorate 2010). 

1.2.2 Fungicide classes used against R. secalis 
The amines, sometimes referred to as morpholines but also including piperadines and 

spiroxamine (FRAC 201 Oa), are a class of sterol biosynthesis inhibitors (SBIs) (Leroux and 
Gredt 1978), inhibiting sterol Og-07 isomerase (Kato et al. 1980) and A 14 

-reductase 
(Kerkenaar et al. 1981). They are in a separate cross-resistance group from the DMIs 
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(Hollomon 1994; Godet and Limpert 1998), which inhibit a different step in sterol 

biosynthesis. Their inhibition of two different enzymes is thought to make target-site 

resistance unlikely to evolve, since appropriate mutations in both target site encoding genes 

would be required (Hollomon 1994). The only reports of resistance so far are of a quantitative 

shift in B. graminis (f. sp. tritici and hordei) which was significant but smaller than that for 

DMIs (Godet and Limpert 1998; Napier et al. 2000), and laboratory mutants of Ustilago 

maydis (Markoglou and Ziogas 2001) and Nectria haematococca, the latter due to altered 

sterol metabolism, and possibly mutation or over-expression of one of the two target sites, 

sterol 014-reductase (Lasseron-De Falandre et al. 1999). Whilst the amines are not the most 

effective fungicides against R. secalis when used alone, their use in mixtures can improve 

results relative to use of another fungicide alone (Phillips and Frost 1975), including use as a 

mixing partner for triazoles (Taggart et al. 1998). The eradicant activity of amine fungicides 

means they can be used against established R. secalis infections, although their use is not 

recommended after canopy expansion as they can cause leaf die-back (Oxley and Burnett 

2010). In the UK in 2008, amines accounted for 17% of fungicide applications by active 

substance treatment area on barley (Garthwaite et al. 2008) (Figure 1.2) and nearly 10% of 

fungicide applications by treatment area on all cereals (FERA 2010) (Figure 1.3). 

The carboxamides, or SDHIs, inhibit succinate dehydrogenase of respiratory complex II 

(White 1971). Complex II comprises sdhA, or sdhFp, the flavoprotein subunit; sdhB, or 

sdhlp, the iron-sulphur protein subunit; and the membrane anchor, in fungi consisting of two 

subunits, sdhC and sdhD (Ackrell 2000). The first SDHI fungicides, such as carboxin, were 

introduced in the late 1960s for use against rusts and other basidiomycetes (Avenot and 

Michailides 2010). Field resistance to carboxin and fenfuram was detected in Ustilago nuda 

in 1986 (Leroux and Berthier 1988). Studies of carboxin-resistant laboratory mutants of U 

maydis (Broomfield and Hargreaves 1992) and M graminicola (Skinner et al. 1998) found 

single-site substitutions substitutions L257K and H267 Y/L, respectively, in the third 

cysteine-rich cluster of the iron-sulphur redox centre in sdhB. However, studies of resistant 

laboratory mutants of Coprinopsis cinerea found a single-site substitution (N80K) in sdhC 

(Ito et al. 2004). Mutations in sdhB and sdhD have been found in phytopathogenic bacteria 

(Matsson et al. 1998; Li et al. 2006), and mutations in sdhB, sdhC and sdhD have been found 

in carboxin-resistant laboratory mutants of Aspergillus oryzae, with each mutation 
independently conferring carboxin resistance (Shima et al. 2009). 
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Since 2002, a new generation of SDHI fungicides, effective against ascomycete pathogens, 
has been introduced (Ammermann et al. 2002). The first such compound was boscalid, 

released for use on cereals in 2005, followed by isopyrazam and bixafen in 2010 and 2011, 

with further compounds including penthiopyrad yet to be released (Avenot and Michailides 

2010; Chemicals Regulation Directorate 2010; FRAC 2010a; Oxley and Burnett 2010). By 

2008, boscalid accounted for 3.6% of fungicide applications on cereals in the UK by active 

substance treated area (FERA 2010), and whilst SDHIs accounted for only 0.28% of 
fungicide applications on barley in 2008 (Garthwaite et al. 2008), this is likely to increase as 

more products are introduced. In 2006, boscalid-resistant field isolates of Botrytis cinerea 

were found, with substitutions in sdhB (Stammler et al. 2007). Resistance to boscalid has also 

recently been reported in field isolates of Alternaria alternata carrying mutations in sdhB 
(Avenot et al. 2008), sdhC or sdhD (Avenot et al. 2009), with any one mutation conferring a 

resistance factor of over 900 against boscalid but lower resistance factors against carboxin. 
Resistance has also been reported in B. cinerea (Stammler et al. 2007), Sclerotinia 

sclerotiorum and some diseases of horticultural crops (Avenot and Michailides 2010), but so 
far there have been no reported cases of field resistance to the newer SDHIs in cereal 

pathogens (FRAC 201 Ob). Products currently registered for use on barley in the UK contain 

either boscalid in mixture with epoxiconazole, bixafen with prothioconazole or isopyrazam 

with cyprodinil (Chemicals Regulation Directorate 2010). 

The anilinopyrimidines were introduced in the 1990s. The mode of action has not yet been 

fully elucidated, but sensitivity is reduced in vitro in rich media and so the mode of action is 

believed to be linked to extracellular secretion of hydrolytic enzymes (Miura et al. 1994), or 

to methionine biosynthesis (Masner et al. 1994), although cystathionine ß-lyase appears not 

to be the target site (Fritz et al. 2003). Field resistance was detected in B. cinerea in 1993 

(Leroux and Gredt 1978), and subsequently in Venturia inaequalis (Kung et al. 1999) and the 

post-harvest pathogen Penicillium expansum (Li and Xiao 2008), and shifts were seen in 

Oculimacula spp. in field experiments (Babij et al. 2000). The anilinopyrimidine cyprodinil 
is effective against R. secalis (Heye et al. 1994), including as a mixing partner for triazoles 

(Cooke et al. 2004) or isopyrazam (Blake et al. 2011), but it accounts for under 5% of UK 

fungicide treatments on barley (Figure 1.2) and less than 1% of UK fungicide treatments on 

cereals (Figure 1.3), and some formulations cannot be used at T2 where certain plant growth 

regulators are used (Oxley and Burnett 2010). 
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The main multi-site inhibitor currently in use against R. secalis is chlorothalonil, which reacts 

with thiols such as glutathione so various thiol-dependent enzymes cannot function (Tillman 

et al. 1973). Generally multi-site inhibitors have very low risk of resistance, although B. 

cinerea isolates with cross-resistance to chlorothalonil and five other multi-site inhibitors 

were reported, suggesting that a non-target-site mechanism is involved, such as thiol over- 

production (Barak and Edgington 1984). Chlorothalonil shows good protectant activity 

against R. secalis, but lacks systemicity and curative action (Oxley and Burnett 2010). 

Therefore, it is often used in mixtures with systemic but higher resistance risk fungicides, and 

accounted for 16% of fungicide applications on cereals in the UK by active substance treated 

area in 2008 (FERA 2010) (Figure 1.3). 

1.2.3 Benzimidazoles 

Benzimidazoles, introduced in the late 1960s, were among the first selective, site-specific 
fungicides (Morton and Staub 2008). Benzimidazoles bind to ß-tubulin, preventing 

microtubule assembly (Davidse and Flach 1977), causing mitotic failure as pairs of 

chromatids cannot be separated (Hammerschlag and Sisler 1973). The thiophanate fungicides 

are converted by fungi to the benzimidazole carbendazim (Uesugi 1998), so the thiophanates 

and benzimidazoles are grouped together as methyl benzimidazole carbamates (MBCs) 

(FRAC 2010a). 

Field resistance was first reported in S. fuliginea in 1971, followed rapidly by many other 

pathogens of horticultural crops, and by B. graminis on the grass Poa pratensis in 1973 

(FRAC 201 Ob). MBCs were used on cereals from the mid-1970s. Field resistance was 

reported in Oculimacula spp. in 1982, Microdochium nivale in 1983 (FRAC 2010b), and M. 

graminicola in 1985 (Fisher and Griffin 1984). The Fungicide Resistance Action Committee 

now lists 120 plant pathogens that have developed benzimidazole resistance (FRAC 201 Ob). 

In 1990, benzimidazoles accounted for 16% of fungicide treatments on cereals in the UK by 

active substance treated area. By 2008, this had fallen to 0.15% (FERA 2010) (Figure 1.2). 

The ß-tubulin of MBC-resistant fungal strains has a greatly reduced binding affinity to MBCs 

(Davidse and Flach 1977), resulting from single-site mutations, predominantly at codons 198 

or 200 (Koenraadt et al. 1992). Substitutions include E198G, E198K, E198A and F200Y in 

V. inaequalis, with the same mutations in Monilinia fructicola, Sclerotinia homoeocarpa and 

various Penicllium species, as well as E198V in P. expansum (Koenraadt et al. 1992); the 
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same mutations have been found in other species in subsequent studies (e. g. Wong et al. 
2005; Ziogas et al. 2009), along with E198Q and L240F in O. yallundae (Albertini et al. 
1999) and F 167Y in Fusarium graminearum (Chen et al. 2009). Y200 corresponds to the 

wild-type sequence in some intrinsically insensitive species, including humans (Davidse and 
Ishii 1995). Further substitutions have been found in laboratory mutants but have not in field 

isolates, possibly due to fitness costs resulting from impaired tubulin-tubulin binding in 

microtubule formation making microtubule structure less stable and more temperature- 

sensitive (Davidse and Ishii 1995). Alternatively, some laboratory mutants of Oculimacula 

spp. had changes at multiple residues, or amino acid substitutions resulting from a two-base- 

pair mutation, which may not have been found in the field because these multiple changes 
have not occurred at natural mutation rates (Albertini et al. 1999). Benzimidazoles are also 

used as nematicides, and the substitutions E 198A, F200Y and F 167Y have been found in 

benzimidazole-resistant nematodes (Skuce et al. 2010). Furthermore, some mutations only 

reported in resistant laboratory mutants in fungi correspond to wild-type sequences found in 

intrinsically insensitive organisms (Davidse and Ishii 1995). This suggests that any fitness 

penalty depends on the genetic background. 

Substitutions E198A and E198G conferred negative cross-resistance to N-phenylcarbamate 

fungicides, such as diethofencarb: wild-type isolates are insensitive to these fungicides, but 

isolates with these substitutions are sensitive. Therefore fungicide mixtures of carbendazim 

and diethofencarb were introduced to control mixed populations of carbendazim sensitive and 

resistant isolates of Cercospora beticola (Kato et al. 1984). However, the F200Y and L240F 

substitutions confer resistance to the MBCs while retaining insensitivity to the N- 

phenylcarbamates, and E198K, E198Q and E198V confer resistance to MBCs, with negative 

cross-resistance to methyl N-(3,5-dichlorophenyl)-carbamate (MDPC) but retaining 

insensitivity to diethofencarb (Koenraadt et al. 1992). Therefore attempts to exploit the 

negative cross-resistance for resistance management by combining carbendazim and 

diethofencarb resulted in the selection of genotypes resistant to both compounds (Faretra et 

al: 1989; Katan et al. 1989; Ziogas et al. 2009). 

MBC fungicides were introduced for use on barley in the UK in 1975, but resistance in R. 

secalis was not reported until 1989 in Northern Ireland (Hollomon 1992) and 1990 on the UK 

mainland (Wheeler et al. 1995b). The ß-tubulin of resistant isolates bound radio-labelled 

carbendazim less strongly than that the ß-tubulin of sensitive isolates (Kendall et al. 1994). 
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All resistant field isolates of R. secalis sequenced have the ß-tubulin substitutions El98G 

(Wheeler et al. 1995a) or F200Y (Butters and Hollomon 1999). Substitution E198K has been 

found in a benzimidazole-resistant laboratory mutant of R. secalis (Wheeler et al. 1995a). 

This laboratory mutants had lost pathogenicity, whereas field isolates with E198G or F200Y 

had not (Wheeler et al. 1995b). However, it is not clear whether El 98K itself has fitness 

costs in planta, or whether the loss of pathogenicity resulted from co-incidental mutations or 

growth in culture. The E198G substitution, but not the F200Y substitution, confers negative 

cross-resistance to the N-phenylcarbamate fungicide, diethofencarb (Wheeler et al. 1995a). 

The spread of MBC-resistant genotypes in R. secalis populations has been described as 

"erratic". Ten years after the first report of resistance, the occurrence was still sporadic in the 

UK mainland, with farmers advised that carbendazim-containing mixtures still "may be 

useful" in some cases. In contrast, in Northern Ireland, resistance became "common and 

widespread" within three years (HGCA 2000). A survey in 1993 found 39% of isolates from 

Northern Ireland were carbendazim-resistant (Taggart et al. 1994), compared to 16.6% of 
isolates, with no resistant isolates obtained from over half of crops surveyed, in England and 
Wales in the same year (Locke and Phillips 1995). However, the apparent division between 

Northern Ireland and mainland Britain may be misleading, since resistant isolates were also 
found at higher frequencies in wetter regions of England and Wales, where higher rainfall 

results in higher disease pressure. For example, 12 out of 35 Welsh isolates were resistant to 

carbendazim, compared to none of 54 isolates from Suffolk and Essex (Locke and Phillips 

1995). Differences between Northern Ireland and Wales were not significant (Taggart et al. 

1999), and there was considerable variation between sites in Northern Ireland, with the 

proportion of resistant isolates ranging from 7.6% to 85.7%, and carbendazim still giving 
disease control at sites with the lowest frequency of resistance (Taggart et al. 1994). From 

1993 to 1995, overall resistance frequency in Northern Ireland stabilised at around 40%, but 

remained highly variable between sites (Taggart et al. 1999). Differences in resistance 
frequency between sites were not correlated with carbendazim use within each growing 

season, as large differences in the initial frequency of resistant isolates prior to fungicide 

treatment had a greater impact on the final frequency of resistant isolates (Taggart et al. 
1999). However, within sites the frequency of resistant isolates was higher after carbendazim 

treatment (Taggart et al. 1998). However, frequency of resistance was negatively correlated 

with disease control (Taggart et al. 1999), and by 2002, resistance was sufficiently 

widespread that MBCs were no longer considered useful for R. secalis control in the UK. 
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Morpholines and the newer anilinopyrimidine and Qol fungicides were recommended instead 

alongside DMIs (Cooke and Locke 2002). 

1.3 QoI fungicides 

The Quinone-outside inhibitors (QoIs) (Figure 1.4) effect reversible competitive inhibition of 

the quinone outside redox site (Q0) of cytochrome b of the cytochrome be j complex in 

respiration (Becker et al. 1981; Brandt et al. 1988) (Figure 1.5), a mitochondrially-encoded 

target site. This group includes the strobilurins, based on natural products of various 
basidiomycete fungi. The antifungal activity of strobilurins A and B, from Strobilurus 

tenacellus, was first reported in 1977, but extensive chemical modification was necessary to 

develop fungicides with sufficient stability and photo-stability to be useful in the field (Sauter 

et al. 1995). The first commercial strobilurin fungicides were released in 1996 and 1997 

(Joshi and Sternberg 1996; Bartlett et al. 2002). They now account for 21.4% of fungicide 

applications by active substance treated area on cereals in the UK (Chemicals Regulation 

Directorate 2010) (Figure 1.3), and 19.5% of applications on barley (Garthwaite et al. 2008) 

(Figure 1.2). 
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Figure 1.4. Structures of two QoI fungicides: (a) Azoxystrobin, (b) Pyraclostrobin. 

Resistance was first found in P. viticola in a field trial in 1997 (Heaney et al. 2000). These 

isolates were cross-resistant to strobilurins (azoxystrobin, kresoxim-methyl and 

trifloxystrobin were tested), fenamidone and famoxadone. These fungicides, therefore, were 

placed in the QoI-STAR (Strobilurin Type Action and Resistance) cross-resistance group 
(Heaney et al. 2000), which now includes a further eight strobilurins and the 

benzylcarbamate pyribencarb (FRAC 2010a). Kataoka et al. (2010) suggested that 

pyribencarb may interact with different Qo site domains from other QoIs due to its higher 

activity against B. cinerea strains with target-site resistance to other QoIs, but the resistant 
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isolates still had a resistance factor of 65, and higher EC50 values than most non-target 

organisms. The quinone inside inhibitors (Qils), such as cyazofamid and amisulbrom (FRAC 

201 Oa), inhibit a different region of cytochrome b, and are in a different cross-resistance 

group from the Qols (di Rago et al. 1989). The Qils are used for the control of oomycetes, 

and at present in the UK, they are only registered for use on potatoes (Chemicals Regulation 

Directorate 2010). 
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Figure 1.5. Schematic diagram of the mitochondrial electron transfer chain, including the Quinone 

outside (Qo) site, target site of the Qol fungicides. 

1.3.1 Target-site resistance 

The ability of target-site mutations to confer Qol resistance was shown by di Rago et al. 

(1989), who generated laboratory mutants of Saccharomyces cerevisiae with amino acid 

substitutions including F 129L and G 137R, as well as N256Y and three different substitutions 

at residue 275. Studies of naturally-resistant strobilurin-producing basidiomycetes revealed 

further amino acid changes associated with resistance, including A143 (Kraiczy et al. 1996). 

The G143A substitution, with a change from glycine to alanine encoded by a single 

nucleotide mutation from GGN to GCN at codon 143, was found in a field isolate of B. 

graminis f. sp. tritici collected in 1998, with around a 200-fold reduction in sensitivity to 

strobilurins (Sierotzki et al. 2000b). A study of field isolates of Magnaporthe oryzae found 

some with the G143A substitution, and some with F129L, with G143A conferring around ten 

times the level of resistance conferred by F 129L (Farman 2001). In field populations of 

Pyrenophora tritici-repentis, G143A, F129L and G137R have all been found, with G143A 
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conferring the highest level of resistance, and G137R similar to F129L (Sierotzki et al. 2007). 

In P. teres only F 129L has been found so far, and control is still possible using Qols with 
higher activity, such as pyraclostrobin and picoxystrobin (Oxley and Burnett 2010). As of 
January 2010, resistance to Qols had been reported in 39 phytopathogenic fungi and 

oomycetes, including Mycosphaerella graminicola, B. graminis f. spp. hordei and Ramularia 

collo-cygni (FRAC 2010b). 

Target-site resistance emerged rapidly in some pathogens, but has yet to be reported in others, 

raising questions as to why this is the case. Grasso et al. (2006) describe a type I intron 

immediately after codon 143, with the GT of the glycine-encoding GGT codon forming part 

of the splice site, in several rust species and in Alternaria solani. A mutation from GGT to 

the alanine-encoding GCT codon would prevent the intron from self-splicing, making the 

gene non-functional. The G143A substitution has not been found in taxa with this intron. The 

cytochrome b gene of P. teres also contains an intron at this position, whereas P. tritici- 

repentis does not. Accordingly, G143A has emerged in P. tritici-repentis, whereas only the 

F129L substitution has been reported in P. teres (Sierotzki et al. 2007). Monilinia laxa and 

M fructicola also possess this intron, whereas M fructigena does not (Miessner and 

Stammler 2010). In B. cinerea, some isolates have an intron after codon 143, but the G143A 

substitution is found only in isolates lacking this intron (Banno et al. 2009). Possible 

compensatory mutations restoring cytochrome b function in the presence of G143A and an 

intron at codon 143 have recently been reported in laboratory mutants of S. cerevisiae 
(Vallieres et al. 2011). A mutation to restore correct base pairing for intron formation would 

have to take place simultaneously with G143A as either mutation alone would prevent 

splicing, and overexpression of mitochondrial metal ion carriers resulted in other fitness 

penalties, so these mutations are unlikely to emerge in the field, but loss of the intron may be 

possible in the field. 

In species without an intron after codon 143, there may be fitness penalties associated with 

cytochrome b substitutions, due to effects on the structure or function of cytochrome b, such 

as steric hindrance during protein-folding, or impaired quinone-binding or electron transfer 

(Fisher et al. 2004). Di Rago et al. (1989) reported QoI resistant laboratory mutants of S. 

cerevisiae with impaired growth and reduced oxygen consumption. Avila-Adame and KSller 

(2003a) obtained two QoI-resistant strains of Magnaporthe oryzae by in vitro forced 

selection, one with the G143A substitution and another with G143S. The G143A isolate had 
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no apparent fitness costs or reduction in pathogenicity, whereas the G143S isolate had 

reduced sporulation in vitro and in planta. G143S has been reported in laboratory mutants of 
C. beticola, but this has not been found in the field (Malandrakis et al. 2011). Fisher et al. 
(2004) compared the effects of G143A and F129L in yeast cytochrome b with the Qo-site 

altered to resemble that found in a range of species, and fitness penalties were found to be 

species-dependent. For example, G143A was found to be deleterious to protein function in 

the V. inaequalis-like protein, but not in the B. graminis-like protein. F129L did not 
drastically affect the function of either protein. In G143A-Fl29L double mutants, function of 

the V. inaequalis-like protein was markedly reduced, and as G143A alone confers resistance 

to Qols beyond field rates, it is unsurprising that no such double mutants have been reported 
in the field. 

Two studies have shown that the G143A mutation has arisen multiple times within species, 

with at least two independent origins in P. viticola (Chen et al. 2007), and at least four in M 

graminicola (Torriani et al. 2009b). Among M oryzae isolates from ryegrass turf in the 

Eastern USA, G143A was found in five different genetic backgrounds (Kim et al. 2003), and 
in European P. teres isolates carrying F 129L, three different codons for L129 were found in 

field isolates (Sierotzki et al. 2007). 

The mitochondrially-encoded nature of the Qol target site raises the question of how a 

mutation in a single mitochondrion may increase in frequency in the mitochondrial 

population within a cell. Indeed, it was initially suggested that this would be unlikely to 
happen and therefore resistance risk for QoIs was low (Koller et al. 2004). Therefore the 

rapid emergence of Qol resistance in many pathogen species demonstrates that mitochondrial 

mutations can be selected more readily than predicted. Barr et al. (2005) give some examples 

of differential replication rates within intracellular mitochondrial populations, but these relate 

to mutations directly increasing replication rates of the mitochondria themselves, not those 

that benefit the cell as a whole. In addition, there are variations in patterns of mitochondrial 
inheritance between fungal species. In anisogamous species, ascogonium-producing strains 

always act as the maternal parent, contributing organelle DNA to all progeny. However, in 

isogamous, hermaphroditic species such as B. graminis, either isolate can act as maternal 

parent (Robinson et al. 2002). Studies of the spread of mitochondrial mutations mostly focus 

on the accumulation or removal of mutations deleterious to the organism, rather than possible 

selection of beneficial mutations. Nevertheless, such studies do provide evidence that in large 

23 



populations and under high selective pressure at the organism level, selection at the inter- 

organism level becomes the dominant evolutionary force (Taylor et al. 2002). 

In the apple powdery mildew fungus Podosphaera leucotricha, Lesemann et al. (2006) 

reported widespread G 143A heteroplasmy in the isolates tested. Sensitive isolates contained 

nearly all G143 mitochondria, whereas less-sensitive isolates had varying proportions of 
G143A correlated with resistance. The least sensitive isolates, which were able to infect 

leaves treated with 10 times the recommended field concentration of trifloxystrobin, had 

around 50% G143A mitochondria. In V inaequalis, QoI-resistant laboratory mutants with 

predominantly GCC, the resistant genotype, at codon 143 reverted to predominantly GGC, 

the sensitive genotype, when two generations of selection on fungicide-amended medium 

were followed by growth on fungicide-free medium, showing that some wild-type 

mitochondria had persisted in the intra-cellular population. After eight generations on 
fungicide-amended medium, however, the resistant genotype appeared to have reached 
fixation (Zheng et al. 2000). Furthermore, QoI-resistant field isolates of V. inaequalis 

reported the following year appeared to be homoplasmic for G143A (Koller et al. 2004). 

Sirven et al. (2002) reported stable resistance to QoIs in P. viticola with a frequency of 

resistant cytochrome b alleles of just 2%, which has been cited as an example of 
heteroplasmy. However, sporidial populations were studied, not single-spore isolates, so it is 

not clear whether allele frequencies represent heteroplasmy within isolates or polymorphism 

between them. G143A heteroplasmy has since been reported in several pathogens (Fraaije et 

al. 2002; Ishii et al. 2007; Ishii et al. 2009), with frequency of resistant alleles often 

decreasing after several generations without fungicide, whereas in other species, such as M 

graminicola (Fraaije et al. 2005), only A143 was detected in resistant isolates. 

1.3.2 Alternative oxidase 
Another possible resistance mechanism to strobilurins is target-site circumvention by an 

alternative respiratory pathway, using the alternative oxidase (AOX) as a penultimate 

electron acceptor directly from ubiquinone, which is oxidised at the Q. site in the core 

respiratory pathway (Joseph-Home and Hollomon 2000) (Figure 1.6). 
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Figure 1.6. Schematic diagram of the mitochondrial respiratory electron transfer chain, with the Quinone 

outside pocket of Complex III inhibited by a Qol fungicide, and alternative oxidase acting as penultimate 

electron acceptor. 

Ziogas et al. (1997) describe a laboratory mutant of M graminicola with around a ten-fold 
decrease in azoxystrobin sensitivity that was negated by the addition of salicylhydroxamic 

acid (SHAM), an AOX inibitor. However, respiratory rate was lower for the alternative 

pathway and there was no loss of control in planta. In V. inaequalis, AOX activity gave a 60- 

fold reduction in kresoxim-methyl sensitivity, but again, this was not seen in planta (Olaya et 

al. 1998). The lack of in planta effect may be because AOXis induced by the generation of 

reactive oxygen species (Yukioka et al. 1998), which are inactivated by antioxidant 

compounds such as flavonoids in plant tissue (Mizutani et al. 1996; Tamura et al. 1999). 

Zheng et al. (2000) used flavones to inhibit AOX expression in V. inaequalis, achieving a 

similar synergistic effect to AOX inhibitors such as SHAM. However, laboratory mutants 

with reduced QoI sensitivity but no cytochrome b mutations, consistent with increased AOX 

activity, were also less sensitive to the effects of flavones on QoI sensitivity, demonstrating 

the potential for isolates to evolve which could express A OX in planta. 

Alternatively, the observed ineffectiveness of AOX in planta may be because its effects are 
dependent upon fungal growth stage. AOX-terminated oxidative phosphorylation bypasses 

60% of the proton-pumping activity of the core pathway, so ATP production from 

carbohydrates and oxygen is less efficient, and may be insufficient for more energy-intensive 

or food-limited stages (Wood and Hollomon 2003). Avila-Adame and Köller (2003a) found 

that older (melanised) mycelium of a wild-type M. oryzae isolate was able to grow slowly on 
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azoxystrobin-amended medium even with SHAM added, but younger mycelium and an AOX- 

minus mutant were not. The prevention of growth by AOX gene disruption shows that the 

continued growth of the older wild-type mycelium was due to AOX activity not fully 

inhibited by SHAM. In M oryzae, AOX activity did enable spore germination to occur in the 

presence of a Qol. In fact, spore germination was only reduced by 17% in the presence of 
10µg ml-1 azoxystrobin, whereas hyphal growth was reduced by 66%, compared to over 99% 

of spore germination and hyphal growth with azoxystrobin plus SHAM. However, when 

azoxystrobin-treated barley leaves were droplet-inoculated with M oryzae spores, no 

symptoms developed. Preventative QoI treatment of barley leaves before inoculation was 

effective against both an AOX deletant and a wild-type strain of M oryzae. However, curative 

treatment of leaves colonised with established mycelium was only effective against the AOX 

deletant, and the wild-type isolate continued to grow (Avila-Adame and Köller 2003b). This 

suggests that in wild-type M oryzae, either AOX activity is insufficient for the energetic 
demands of early mycelial growth post-germination, or AOX expression is prevented during 

the early stages of host colonisation. In M graminicola, a laboratory mutant with increased 

AOX activity had reduced in vitro sensitivity but no loss of in planta control (Ziogas et al. 

1997). 

Lower intrinsic QoI sensitivity in F. graminearum than M. nivale is correlated with increased 

oxygen uptake and transcriptional upregulation of the A OX gene in response to azoxystrobin 
in F. graminearum and not in M nivale. The increased oxygen uptake in F. graminearum 

was prevented by the addition of n-propyl gallate, an AOX inhibitor (Kaneko and Ishii 2009). 

Yukioka et al. (1998) reported that AOXtranscript levels increased following the addition of 

a QoI fungicide, but transcript formation appeared constant, suggesting that reduced 

transcript degradation was responsible. However, Mizutani et al. (1996) detected a 40kDa 

protein when alternative respiration was induced by a QoI fungicide, but when AOX 

induction was suppressed by a reactive oxygen scavenger, a 41.3 kDa polypeptide was 
detected, which was converted to the 40kDa protein when the oxygen scavenger was 

removed, suggesting that the induction of AOX activity in that species was due to post- 

translation modification from a precursor to the active form. Analysis of AOX expression in 

Neurospora crassa identified at least four loci required, suggesting a complex regulatory 

pathway is involved (Descheneau et al. 2005). 
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Avila-Adame and Köller (2003a) obtained Qol-resistant isolates of M. oryzae only from older 

mycelium of wild-type isolates, in which AOX enabled growth to continue in the presence of 

azoxystrobin before mutations arose. In younger mycelium and an A OX-minus mutant, 

growth was fully inhibited on the first azoxystrobin-amended plate, and so serial transfers 

were not possible. In contrast, Zheng et al. (2000) only obtained cytochrome b mutants when 
UV mutagenesis was carried out on media with SHAM and kresoxim-methyl combined. 

When carried out with the fungicide alone, only mutants with increased AOX activity were 

obtained, suggesting that the ability to use AOX removed the selective advantage of target 

site mutations which may carry a fitness penalty. However, just 0.1. ig m1 1 kresoxim-methyl 

was used in the SHAM-amended media, but 1. tg ml-1 was used alone, so it is not possible to 

say whether AOX activity would have been sufficient to remove the selection pressure for 

target-site resistance at the higher fungicide dose. It has also been suggested that AOX may 
facilitate the evolution of QoI resistance in the field, as pathogens may continue to grow in 

the presence of a Qol, effectively giving a higher pathogen population under prolonged 

selection by the fungicide (Avila-Adame and Köller 2003a; Miguez et al. 2004). 

Furthermore, it has been suggested that since inhibition of cytochrome bcj results in 

increased levels of reactive oxygen species (Mizutani et al. 1996), growth under these 

conditions may result in an elevated mutation rate of mitochondrial DNA (Avila-Adame and 
Köller 2003a). 

There have also been reports of reduced Qol sensitivity linked to active efflux of the 
fungicide out of fungal cells by membrane transported proteins. Azoxystrobin-adapted 

isolates of P. tritici-repentis generated by serial transfer on fungicide amended medium 

showed increased efflux of a fluorescent substrate, and returned to Qol-sensitivity on the 

addition of a transporter inhibitor (Reimann and Deising 2005). Aspergillus nidulans strains 

transformed with an overexpression construct of ABC transporter atrB had decreased 

sensitivity to a range of fungicides including kresoxim-methyl (Andrade et al. 2000). 

Roohparvar et al. (2008) report field strains of M. graminicola with increased expression of 

major facilitator MgMFS1 and a further decrease in QoI sensitivity in addition to that 

conferred by G143A target-site resistance. There are also some cases of Qol resistance where 

the mechanism is not yet known, such as isolates of Podosphaera fusca resistant to Qols even 
in the presence of SHAM, but with no mutations in the Qo site encoding region of the 

cytochrome b gene correlated with QoI resistance (Femandez-Ortuno et al. 2008). 

27 



Up until 2008, extensive monitoring of R. secalis did not find any target-site resistance 
(Torriani et al. 2009a). Rhynchosporium secalis field isolates resistant to Qols and carrying 

the G143A mutation were found at one site in France in 2008 (FRAC Qol Working Group 

2008). However, G143A has not yet been reported in R. secalis from any other location, and 

was not found again in France in 2009 or 2010 (FRAC Qol Working Group 2009; FRAC Qol 

Working Group 2010). McCartney (2006) identified R. secalis isolates in which in vitro 

azoxystrobin EC50 was increased around ten-fold. There were no target-site mutations, and 

the decrease in sensitivity was negated by the addition of AOX inhibitors SHAM and propyl- 

gallate, suggesting that AOX was involved, but this was not investigated at the molecular 
level. 

1.4 Triazoles 
The triazoles (Figure 1.7) are demethylation inhibitor (DMI) fungicides, along with the 

imidazoles and heterocyclic DMIs (pyrimidines, pyridines and piperazines) (FRAC 2010a). 

They inhibit the14a-demethylation step in sterol biosynthesis (Sherald and Sisler 1975; 

Buchenauer 1977). As such, DMIs fall into the wider fungicide class of sterol biosynthesis 

inhibitors (SBIs), along with the morpholines and hydroxyanilides, which inhibit different 

stages in sterol biosynthesis and are therefore in different cross-resistance groups (FRAC 

2010a). 

The first DMI fungicide, the piperazine triforine, was introduced in 1969 (Schicke and Veen 

1969). The first imidazole, imazilil, was introduced in 1972, and the first triazole, 

triadimefon, was introduced in 1973 (Schultz and Scheinpflug 1988). In 2008, triazoles 

represented 47% of UK cereal crop fungicide treatments by active substance treated area 

(Chemicals Regulation Directorate 2010) (Figure 1.3), and 41.6% of active substance treated 

area on UK barley (Garthwaite et al. 2008) (Figure 1.2). Furthermore, on UK barley in 2008, 

60.9% of QoI applications, 62.1% of morpholine applications, 57.6% of MBC applications 

and 100% of SDHI applications by active substance treatment area were in a mixture 

containing a triazole (Garthwaite et al. 2008) (Figure 1.2). 

Azoles (triazoles and imidazoles) are also used as clinical anti-fungal drugs. Initially, azoles 

were developed for topical treatments of superficial infections, and no resistance was 

reported in over fifteen years (Plempel and Berg 1988). However, since the introduction of 
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azoles for long-term systemic treatment of opportunistic pathogens such as Candida spp. and 
Aspergillus spp. in immunocompromised patients, there have been many reports of resistance 
by various mechanisms (Edlind 2008), some of which are common to pathogens of humans 

and plants. 

Some triazoles, including tebuconazole and propiconazole, are also used as plant growth 

regulators, due to their inhibition of ABA 8'-hydroxylase, a cytochrome P450 involved in 

abscisic acid catabolism in plants (Kitahata et al. 2005). 
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Figure 1.7. Structures of four triazole fungicides: (a) propiconazole, (b) tebuconazole, (c) epoxiconazole, 

(d) prothioconazole. 

1.4.1 Mode of action 

Triazoles and other DMIs inhibit the 14a-demethylation of lanosterol or eburicol (2- 

methylene-dihydrolanosterol) in sterol biosynthesis (Sherald and Sisler 1975; Buchenauer 

1977) (Figure 1.7). Sterol 14a-demethylase is encoded by the gene CYP51 (also known as 
Erg] 1 due to its role in ergosterol biosynthesis), and is a member of the cytochrome P450 

family of proteins (Lepesheva and Waterman 2007). 

The main sterol in most fungi is ergosterol, a key component of cell membranes, which is 

synthesised de novo in fungi from acetyl CoA (Paltauf et al. 1992). Treatment with DMIs 

results in a decrease in ergosterol levels, and an accumulation of sterol intermediates 

including 2-methylene-dihydrolanosterol and obtusifoliol, and the aberrant sterol 14a-methyl- 

A8,24(28)-ergostadienol (14-methyl-3,6-diol), formed by the metabolism of 14-methylfecosterol 

by sterol 5,6 desaturase (Ragsdale and Sisler 1973; Kato et al. 1980) (Figure 1.8). The sterol 
14-methyl-3,6-diol is toxic and cannot properly fulfil the function of ergosterol in cell 

membranes (Kelly et al. 1995). 
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The effects of CYP51 inhibition on sterol composition varies between species. In R. secalis, 

the proportion of ergosterol was not reduced by the addition of azole fungicides, but sterol 
intermediates downstream of 14a-demetylase were reduced, suggesting that later steps may 

have been upregulated, although total growth was reduced so the absolute level of ergosterol 

was lower (Kwok and Loeffler 1993). In R. secalis, addition of triadimenol, propiconazole or 

prochloraz resulted in an increase in [U-14C] acetate incorporation into total sterols and in 

particular lanosterol, the substrate of CYP5 1, confirming 14a-demethylase as the site of 

action (Kendall and Hollomon 1990). 

Although all DMIs share the same mode of action, cross-resistance is incomplete and 

complex (Kendall 1986), so as efficacy of older products has been eroded, new products have 

provided effective control (Klix et al. 2007). In some cases, as sensitivity to older products 
has declined, no significant cross-resistance has been found with newer products (Robbertse 

et al. 2001). In other cases, resistance has been correlated, but is quantitatively far lower for 

new products (Girling et al. 1988; Kendall et al. 1993). Furthermore, cross-resistance may 
depend on products used. Robbertse et al. (2001) found that the use of triadimenol as a seed- 

treatment selected for decreased sensitivity to triadimenol in particular, but when triadimenol 

and tebuconazole were used together as foliar treatments, isolates less sensitive to both 

triadimenol and tebuconazole were found, suggesting that different mutations or different 

mechanisms were responsible. 

In some cases, triazoles have been found to show no or negative cross-resistance with some 
imidazoles (Kendall et al. 1993; Mavroeidi and Shaw 2005). For example, the I381 V CYP51 

substitution in M graminicola results in reduced sensitivity to tebuconazole but increased 

sensitivity to prochloraz (Fraaije et al. 2007). However, the S524T substitution confers 

reduced sensitivity to all tested triazoles and to prochloraz (Cools et al. 2011). Conflicting 

results have been obtained for other pathogens. For example, following studies of C. beticola, 

Karaoglanidis and Thanassoulopoulos (2003) place DMIs into different cross- 
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Figure 1.8. Ergosterol biosynthetic pathway from lanosterol onwards, showing the effect of azole 

fungicides (Paltauf et aL 1992; Kelly et al. 1995). 
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resistance subgroups, some containing a mixture of chemical classes (triazoles, imidazoles 

and pyrimidines). This is because the chemical groups are delineated by the nature of the 

heterocyclic ring (Uesugi 1998), whereas side chain substituents, which vary within each 

group, also affect target-site binding because the chemical groups are delineated by the nature 

of the heterocyclic ring (Uesugi 1998), whereas side chain substituents, which vary within 

each group, also affect target-site binding (Ito et al. 2005). Patterns of cross-resistance also 

depend on the resistance mechanisms involved. Reported resistance mechanisms against 

triazoles are target site mutations, target site over-expression, active efflux and altered sterol 

metabolism. 

1.4.2 Target-site mutations 
In contrast to the single-site, qualitative resistance to benzimidazoles and QoIs, target-site 

resistance to triazoles involves multiple mutations with varying and interacting effects. 

For example, amino acid substitutions S405F, G464S, and R467K, found in clinical isolates 

of Candida albicans, each reduced fluconazole and ketoconazole sensitivity by a factor of 

four but itraconazole only by a factor of two, whilst substitution Y132H decreased 

itraconazole, fluconazole and ketoconazole sensitivity by factors of two, four and 16, 

respectively (Edlind 2008). Over 140 predicted CYP51 amino acid substitutions have been 

reported in clinical isolates of C. albicans, although not all have been directly linked to 

quantified resistance factors and there is extensive polymorphism even within sensitive 
isolates (Morio et al. 2010). 

In the plant pathogen M graminicola, 19 target-site mutations have so far been identified 

(Cools et al. 2010), most of which have small but additive effects on triazole sensitivity 
(Leroux et al. 2007; Cools and Fraaije 2008). However, the I381 V substitution in M 

graminicola (Fraaije et al. 2007), as well as Y136F in Uncinula necator (Delye et al. 1997), 

and K147Q in B. graminis f. sp. hordei (Wyand and Brown 2005), are associated with higher 

levels of resistance to particular compounds (tebuconazole; triadimenol; and triadimenol and 

propiconazole, respectively). Other mutations in M graminicola include Y137F, found as the 

sole change in isolates with specific resistance to triadimenol; substitutions at at codons 459- 

461, or the deletion of codons 459-460; V 136A, found in combination with changes at 

codons 459-461 but not with 1381V; and A379G, found in combination with 1381V in the 

least sensitive isolates (Leroux et al. 2007; Cools and Fraaije 2008). The specific 

combinations of changes may reflect the evolutionary origins of the different mutations 
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(Brunner et al. 2008) or structural constraints to maintain enzyme activity (Bean et al. 2009; 

Cools et al. 2010). Substitutions equivalent to Y136F, codon 459 or 461 substitutions and 

A311 G have been found in the related plant pathogen Mycosphaerella fijiensis, in isolates 

with a 4- to 20-fold reduction in propiconazole sensitivity. However, the involvement of non- 

target-site mechanisms in addition to these substitutions prevented the calculation of the 

contribution of each mutation to reduced sensitivity (Canas-Gutierrez et al. 2009). 

In the cereal eyespot fungi Oculimacula acuformis and O. yallundae, phytopathogenic fungi 

closely related to R. secalis (Goodwin 2002; Crous et al. 2003), O. acuformis is naturally less 

sensitive to triazoles than O. yallundae, but sensitivity has decreased in both species, and 

CYP5J is highly polymorphic (Albertini et al. 2003). With 14 species-specific amino acid 

substitutions, and 15 other amino acid substitutions in 27 isolates between the two species, 
individual substitutions were not definitively linked to differences in sensitivity, but 

comparisons with any mutations found in R. secalis could prove informative. 

Some filamentous ascomycetes carry two paralogous CYP51 genes. This was first observed 
in Aspergillusfumigatus, in which the two genes were designated CYP51A and CYP51B 

(Mellado et al. 2001). Subsequently, clinical isolates with reduced azole sensitivity were 
found to possess mutations (Diaz-Guerra et al. 2003; Mellado et al. 2004), or a different 

mutation accompanied by tandem repeats in the promoter region leading to over-expression 

(Mellado et al. 2007), in the CYP5JA paralogue. Furthermore, knocking out CYP51A by gene 

disruption resulted in decreased azole sensitivity in sensitive as well as less-sensitive isolates, 

suggesting that the presence of the second copy may confer reduced intrinsic sensitivity 

(Mellado et al. 2005). 

1.4.3 Target-site over-expression 
Target site over-expression may result in reduced sensitivity to azoles, by reducing the ratio 

of fungicide to target site molecules (Hamamoto et al. 2000). Field isolates of V. inaequalis 

with reduced triazole sensitivity but no associated target-site changes had a 533-bp insertion 

upstream of the CYP51 gene corresponding to increased CYP51 expression (Schnabel and 
Jones 2001). Hamamoto et al. (2000) reported field isolates of Penicillium digitatum with 

reduced triazole sensitivity, but no mutations to the CYP51 coding region, containing a 126- 

bp section of the promoter region that was tandemly repeated five times, resulting in 

constitutive CYP51 expression around 100 times higher than sensitive isolates. Ghosoph et al. 
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(2007) reported another CYP51 promoter aleration in P. digitatum, comprising a 199-bp 

insert within the single copy of the 126-bp promoter region, with around a tenfold increase in 

constitutive CYP51 expression measured for either modification. In recent clinical isolates of 
A. fumigatus, over-expression was linked to a single tandem repeat in the CYP51 promoter 

region, but this only conferred a marked decline in sensitivity in combination with an L98H 

substitution (Mellado et al. 2007). Field isolates of Blumeriellajapii with reduced sensitivity 

to fenbuconazole overexpressed CYP51 five- to 12-fold compared to sensitive isolates, and 

the promoter regions of these isolates contained inserts of varying lengths but all with a 

common 2120-bp section (Ma et al. 2006). Constitutive CYP51 overexpression correlated 

with reduced azole sensitivity has also been reported in C. beticola (Nikou et al. 2009) and 

Puccinia triticina (Stammler et al. 2009), but the promoter regions have not been studied. In 

field isolates of M fructicola, a repetitive insertion 117 base pairs upstream of the start of the 

CYP51 coding region has been linked to a ten-fold increase in CYP51 expression (Luo and 

Schnabe12008). 

In some clinical isolates of C. albicans in which reduced azole sensitivity was correlated with 

increased CYP51 expression, mutations were found in the transcription factor encoding gene 

Upc2p. This transcription factor is involved in the upregulation of CYP51 and other genes in 

the sterol biosynthesis pathway in response to ergosterol depletion, whereas gain of function 

mutations, resulting in substitutions G648D (Dunkel et al. 2008) and A643T (Heilmann et al. 
2010), lead to constitutive upregulation of these genes. 

There have also been reports in Candida spp. of chromosome or chromosome arm 
duplications resulting in increased expression of CYP51. Whole-chromosome duplication has 

been reported in C. glabrata, where it was associated with increased CYP51 transcript levels 

and reduced intracellular levels of fluconazole (Marichal et al. 1997). In C. albicans, 
(Selmecki et al. 2006) report clinical isolates in which reduced fluconazole sensitivity is 

associated with a partial duplication of chromosome 5 to form an isochrome comprising two 

copies of the left arm, chr5L, rather than a left arm and a right arm. Genes on chr5L include 

CYP51, as well as two efflux pump encoding genes and one ABC transporter transcription 

factor, TAC1, and expression of these genes was higher in strains with isochromosome 5L. 

Successive deletions of individual copies of each of the four genes were carried out. Copy 

number of the two efflux transporter encoding genes did not affect fluconazole sensitivity, 

whereas CYP51 and TAC1 had independent, additive effects, with each extra copy of either 
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gene leading to a doubling of fluconazole MIC (minimum inhibitory concentration) 

(Selmecki et al. 2008). 

In Cryptococcus neoformans, reduced azole sensitivity has been associated with disomy, a 
full extra copy in the haploid genome, of chromosome 1, containing CYP51 and ABC 

transporter encoding gene AFR1. A proportion of isolates with disomic chromosome 1 were 
found in the progeny of sensitive isolates and selected in the presence of azoles, but the 

disomic chromosomes were subsequently lost from the population during serial transfers on 
fungicide-free medium. The effect of chromosome 1 disomy was partly mimicked by the 

insertion of a second copy of CYP51 on a different chromosome, but also reduced by the 

deletion of AFRI, showing that both genes contributed to reduced azole sensitivity (Sionov et 

al. 2010). 

1.4.4 Enhanced efflux 
In other cases, reduced fungicide sensitivity has been linked to ATP-dependent reduction in 

the intracellular fungicide concentration (de Waard and van Nistelrooy 1980). This has been 

attributed to active efflux by ATP-binding cassette (ABC) transporter proteins (Balzi et al. 
1994). Resistance due to ABC transporters is also be referred to as multidrug resistance 
(MDR) or pleiotropic drug resistance (PDR), sometimes according to the topology of the 

ABC transporter involved, with the transmembrane domain or the ATP-binding domain at the 

N-terminal of MDR and PDR proteins, respectively (de Waard et al. 2006). Another group of 

proteins involved in active efflux of fungicides is the major facilitator superfamily (MFS) 

(Tenreiro et al. 2000), which do not bind ATP but depend on protein-motive force (Del Sorbo 

et al. 2000). 

In clinical C. albicans isolates, ABC transporters confer cross-resistance to multiple triazoles, 

whilst the MF transporter MDRI confers specific resistance to fluconazole (Sanglard and 
Odds 2002). In A. fumigatus, 278 MF and 49 ABC transporters have been identified. So far, 

genes atrF, AfumDMR3 and AfumDMR4 have been linked to reduced triazole activity, with 
increased constitutive expression, or induced expression on exposure to itraconazole, in 

isolates with a high level of itraconazole resistance (Da Silva Ferreira et al. 2005). 

The role of efflux transporter gene expression in drug resistance has prompted work on the 

regulatory pathways involved (Hiller et al. 2006). In the model organism S. cerevisiae, 
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mutations in the transcriptional regulator locus PDR1 result in over-expression of three ABC- 

transporter proteins, leading to multi-drug resistance (Carvajal et al. 1997). In C. albicans, 

the transcription factor TACT regulates the ABC transporters CDR1 and CDR2, and some less 

sensitive isolates have a gain-of-function mutation (Coste et al. 2006) or duplication of the 

chromosome arm carrying this gene (Selmecki et al. 2006), whereas gain of function 

mutations in transcription factor MRR1 resulted in constitutive overexpression of major 

facilitator gene MDR] (Morschhauser et al. 2007), although TACT and MRRI also regulate 

other genes that may be involved in cellular stress responses (Cowen and Steinbach 2008). 

In some clinical C. albicans, constitutive overexpression of the ABC transporter CDR1 in 

isolates with reduced azole sensitivity was partly due to increased transcription, but also to 

increased transcript stability (Manoharlal et al. 2008). This was subsequently found to be due 

to hyperadenylation of CDR] transcripts. CDR1 hyperadenylation correlated with poly(A)- 

polymerase 1 (PAPI) genotypes, comprising PAPI a-PAPI a in sensitive isolates and PAPI a- 

PAPI a in resistant isolates. Deletion of PAPI a from sensitive isolates results in reduced 

azole sensitivity, suggesting that PAP] a has a negative regulatory effect on poly(A)- 

polymerase 1, and the loss of this allele in less sensitive isolates results in hyperadenylation 

of CDR] transcripts (Manoharlal et al. 2010). 

In plant pathogens, over-expression of an ABC transporter has been identified in field isolates 

of P. digitatum with reduced triazole sensitivity (Nakaune et al. 1998). In laboratory mutants 

of B. cinerea showing cross-resistance to oxpoconazole, tebuconazole and prochloraz, 

constitutive and induced expression of the ABC transporter encoding gene BcatrD was 

negatively correlated with azole sensitivity (Hayashi et al. 2001). BcatrD deletion increased 

azole sensitivity, and overexpression resulted in further reductions in sensitivity (Hayashi et 

al. 2002). In other cases, identifying specific ABC transporters with a clear link to changes 

in sensitivity has proven more elusive. Zwiers et al. (2002) reported one laboratory isolate of 

M graminicola with reduced azole sensitivity in which ABC transporter MgAtrl was 

constitutively overexpressed, and deletion of this gene restored wild-type sensitivity. 

However, in other isolates, reduced azole accumulation was not linked to expression changes 

in ABC transporter encoding genes MgAtr1-MgAtr5. In M graminicola field isolates with a 

range of azole sensitivities, constitutive MgAtr expression also varied, and MgAtr4 

expression was induced by cyproconazole, but expression of these genes was not correlated 

with azole sensitivity (Stergiopoulos et al. 2003). Isolates of P. tritici-repentis described as 
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showing reduced sensitivity to QoI fungicides due to efflux transporters were also cross- 

resistant to azoles, with sensitivity increased by the addition of efflux inhibitors (Reimann 

and Deising 2005), but the transporters responsible were not identified. 

In addition to increased efflux, Mansfield et al. (2010) recently reported clinical isolates of C. 

albicans with reduced azole uptake. They present evidence of azole uptake taking place by 

facilitated diffusion, rather than active transport or passive diffusion, since uptake is 

unaffected in de-energised cells or efflux pump knockout strains, but does not take place in 

heat-killed cells, and uptake can reach saturation. Similar results were obtained for Candida 

krusei, S. cerevisiae and C. neoformans, but no filamentous ascomycetes and no plant 

pathogens were investigated. All triazole and imidazole fungicides tested appeared to use the 

same uptake mechanism, whereas other unrelated fungicides did not. They suggest that 

mutations leading to loss or loss-of-function of the protein responsible for facilitated 

diffusion of azoles may be found in C. albicans isolates with reduced uptake, but the protein 

involved has not yet been identified. 

1.4.5 Altered sterol biosynthesis 

Another possible means of reduced triazole sensitivity involves alterations in enzyme activity 
downstream of sterol 14 a-demethylase in the sterol biosynthetic pathway, producing 

alternative sterols that are non-toxic and partially functional in cell membranes. In particular, 

the presence of the 14-methyl group impairs the function of sterol 5,6-desaturase, resulting in 

the addition of a 4-methyl group (Kelly et al. 1995). It has been shown that a 14a-methyl 

group does not directly destroy membrane function, but a 4-methyl group does (Debieu et al. 
1998). 

Two fluconazole-resistant laboratory mutants of S. cerevisiae were found to have reduced 

sterol C5-6 desaturase (Erg3) activity, preventing accumulation of toxic 14-methyl-3,6-diol, 

and accumulation instead of 14a-methyl fecosterol (Watson et al. 1989) (Figure 1.8). A 

similar mutation restored aerobic growth in CYP51 deletants (under anaerobic conditions, 

yeast is able to take up exogenous ergosterol), again resulting in accumulation of 14a-methyl 

fecosterol instead of 14-methyl-3,6-diol (Kelly et al. 1995). This mechanism was 

subsequently reported in clinical C. albicans isolates (Chau et al. 2005). These isolates had 

azole MICs over 100-fold greater than sensitive isolates, correlated with internal stop codons 
in Erg3, and accumulated 14a-methylfecosterol instead of 14-methyl-3,6-diol. The changes 
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were reversed by complementation with a wild-type Erg3. There was some evidence of 

reduced virulence, as mice infected with erg3 mutant isolates survived longer than those 

infected with wild-type isolates, although tissue colonisation levels after 24 hours were 

similar and the isolates had been obtained from a patient following failure of azole treatment. 

In C. glabrata, Geber et al. (1995) found that Erg]] deletants were aerobically inviable 

whereas Erg3-Erg] 1 double deletants were viable. However, they also obtained spontaneous 

mutants of Erg] l deletants which were aerobically viable, but Erg3 was expressed and 

contained no mutations. These mutants primarily accumulated lanosterol and obtusifoliol, 

suggesting loss of function or downregulation of genes involved in a different step in the 

conversion of lanosterol to ergosterol. 

Azole tolerance in Erg3 loss-of-function mutants depends on calcineurin-Hsp90 signalling, a 

pathway involved in responses to cell wall and membrane stress, and full sensitivity is 

restored in double mutants lacking both Erg3 and components of this pathway (Cowen et al. 
2006). Subsequent studies have identified further components of the signalling pathway, 
including protein kinases Pkcl and MAPK (LaFayette et al. 2010). So far, these mechanisms 
have only been reported in laboratory and clinical isolates of Candida spp. and laboratory 

mutants of S. cerevisiae. 

1.4.6 Resistance in R. secalis 
Triadimenol, the first triazole to be recommended for winter barley in the UK, was 
introduced in the mid-1970s (Morris et al. 1977). Field strains of R. secalis with a 16-fold 

range in sensitivity to triadimenol were isolated in 1975-1981, but no loss of control was 

reported, and no differences in sensitivity were observed between isolates from azole-treated 

and untreated crops (Hollomon 1984). The potential for resistance development in R. secalis 

populations against the triazoles triadimenol and propiconazole, and the imidazole 

prochloraz, was demonstrated in glasshouse tests reported in 1986 (Hunter et al. 1986). 

Spores were transferred four times onto successive plants treated with the same fungicide, 

after which isolates showed over a thirty-fold shift in sensitivity to that fungicide (cross- 

resistance between fungicides was not tested). At that point, however, there were still no 

reports of loss of control in the field. This is in contrast to the barley pathogen B. graminis 
f. sp. hordei, in which reduced triazole sensitivity was reported in 1981, with a survey of 
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England, Wales and Scotland finding 53% of isolates were insensitive (Fletcher and Wolfe 

1981). 

A survey in England and Wales in 1987 found that triadimenol sensitivity in R. secalis 

populations, as determined by the in vitro sensitivity of 464 isolates, had declined from levels 

recorded in 1981(Jones 1990). A subsequent survey in south-west England in 1989 found that 

triadimenol sensitivity had declined further, with an increase in both the highest MIC 

recorded and the proportion of isolates with higher MIC values, and propiconazole sensitivity 

had also declined. Triadimenol sensitivity followed a bimodal distribution, with cross- 

resistance against propiconazole, but propiconazole was still effective at lower concentrations 

than triadimenol, and propiconazole or prochloraz gave good field control (Jones 1990). 

More detailed studies of eight isolates confirmed positive cross-resistance between 

triadimenol and propiconazole, but no clear cross-resistance to prochloraz (Kendall and 

Hollomon 1990). Studies with [U-14C] found lanosterol accumulation after azole treatment in 

all isolates, although a higher fungicide dose was required in less sensitive isolates. There 

was no evidence of metabolism or decreased uptake of the fungicides in less sensitive 

isolates, with ['4C] triadimenol uptake similar in all isolates and all subsequently recovered as 

unmetabolised triadimenol, so it was suggested that target-site mutations may be responsible. 

A four-year UK-wide survey of field isolates from 1987-1990 reported similar results: 

triadimenol sensitivity followed a bimodal distribution, with mean MIC 40-fold higher in 

1990 than in 1975-1981, and propiconazole sensitivity followed a unimodal distribution, with 

an eightfold shift from 1987-1990 (Kendall et al. 1993). In 1990, tebuconazole sensitivity 

was also measured, and found to be positively correlated with triadimenol and propiconazole 

sensitivity. There was no significant correlation with sensitivity to the imidazole prochloraz. 
By 1990, triadimenol no longer provided field control , and control by propiconazole alone 

was reduced, but a propiconazole-carbendazim mixture or tebuconazole were effective 
(Kendall et al. 1993). In 1993-1994, MBC resistance in R. secalis was threatening the 

performance of DMI-carbendazim mixtures, but propiconazole, alone or with carbendazim, 

gave good disease control in field trials in Northern Ireland, even where control failed with 

carbendazim alone (Taggart et al. 1998). 

In 1996-1998, new fungicides showed some promise against R. secalis, with the new triazole 

epoxiconazole and new mixing partners in the form of QoIs and cyprodinil introduced to the 
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market (Jones et al. 2000). However, in field trials in Northern Ireland and south west 
England in 1998-2000, epoxiconazole use resulted in sensitivity shifts, both between pre- and 

post-treatment isolates and between years, although epoxiconazole continued to provide yield 
benefits and some visible disease control in the field, especially in combination with 

azoxystrobin or cyprodinil (Cooke et al. 2004). By 2002, sensitivity shifts to epoxiconazole 

were reported in field isolates of R. secalis. Sensitivity of the population appeared to be 

moving towards a bimodal distribution in 2000-2002, with an increase in isolates with higher 

MICs (Oxley et al. 2003). By 2005-2007, epoxiconazole sensitivity had declined, especially 

in northern Scotland, but it was generally still moderately effective (Oxley et al. 2008). 

Prothioconazole had been introduced and was proving highly effective against R. secalis. 
Sensitivity shifts were observed when prothioconazole was used alone, with some evidence 

of cross-resistance with epoxiconazole (Oxley et al. 2008), but in general prothioconazole 

sensitivity appeared stable from 2005-2008 (Oxley and Hunter 2009). 

Studies in other countries have also found successive declines in sensitivity to various 
triazole fungicides. In New Zealand, Sheridan and Nendick (1989) obtained R. secalis 
isolates with reduced triadimenol sensitivity from a field trial in 1988-1989, and disease 

control by triadimenol seed treatment or foliar spray was reduced, but cyproconazole seed 
treatment and propiconazole sprays were effective. In South Africa, Robbertse et al. (2001) 

reported isolates collected in 1993-1995 with significantly reduced sensitivity to triadimenol, 

propiconazole, flusilazole and tebuconazole compared to `wild-type' isolates collected from 

an untreated field in a predominantly wheat-growing region. Triadimenol sensitivity was 
further reduced in 1995 compared to 1993-1994, a shift which the authors attributed to the 

heavy use of triadimenol as a seed treatment. Also, tebuconazole sensitivity was lower in 

isolates collected from two sites where barley had been grown and treated with tebuconazole 

every year for five and six years, but otherwise triazole sensitivity fluctuated between years. 

Current HGCA monitoring in the UK has reported reduced azole sensitivity in R. secalis, 

with higher doses required for control of less sensitive strains, although sensitivity is higher 

in Northern Ireland (Blake et al. 2011). Prothioconazole and higher doses of epoxiconazole 

still provide disease control (Blake et al. 2011), although curative activity of epoxiconazole is 

reduced so this azole may now be more useful as a protectant (Oxley and Burnett 2010), and 

shifts in sensitivity to prothioconazole when used alone (Oxley et al. 2008) mean chemical 
diversity is important and there is a need for reistance monitoring and management. 
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In summary, QoI and triazole fungicides are important in the control of R. secalis. For the 

Qols, a single case of target site resistance has been reported, so continued monitoring is 

needed. Furthermore, the role of AOX in reduced QoI sensitivity merits further investigation. 

In the case of the triazoles, previous studies have reported sensitivity shifts to different 

compounds, but the resistance mechanism is not yet known. Further sensitivity testing is 

needed to clarify the sensitivity shifts that may have occurred over time against different 

triazoles, using a consistent sensitivity assay method in order to obtain comparable results. 

Identifying the molecular mechanism or mechanisms underlying triazole sensitivity shifts in 

R. secalis would enable molecular diagnostics to be developed. 
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1.5 Aims of current work 
This project aims to optimise culture conditions and develop a high-throughput fungicide 

sensitivity assay for R. secalis, in order to assess the Qol and triazole sensitivity of a range of 

older and recent isolates. 

In the case of the Qols, isolates will be screened for sensitivity shifts due to target-site 

mutations or AOX. The cytochrome b gene will be sequenced from a range of isolates to look 

for target-site mutations. The effect of AOX will be assessed through the use of AOX 

inhibitors, and analysis of AOX gene sequences and expression levels. 

Isolates will also be screened for sensitivity shifts to a range of azole fungicides. The CYPSJ 

genes will be sequenced from a range of isolates to determine whether sensitivity shifts 

correlate with target-site mutations. A possible role of efflux transporters in azole sensitivity 

will also be tested through the use of efflux inhibitors. 

The occurrence of multiple CYP51 paralogues in fungal genomes will be surveyed through 

bioinformatic and phylogenetic methods. The role of multiple CYP51 paralogues in azole 

sensitivity in R. secalis will be investigated. Assays will be developed to detect CYP51 

paralogues in R. secalis isolates, expression analysis of the CYP51 genes will be carried out, 

and a pyrosequencing assay will be used to investigate the occurrence of CYP51 paralogues 
in R. secalis populations from the Hoosfield spring barley experiment. 

Elucidation of the methods responsible for altered fungicide sensitivity in R. secalis and 
investigation of their occurrence will help to inform future fungicide use and resistance 

management, as well as providing fundamental insights into the evolution of fungicide 

resistance and the adaptive potential of R. secalis populations. 
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Chapter 2 

Method development: R. secalis culture conditions and fungicide 

sensitivity assay 

2.1 Introduction 

Assessing the occurrence of fungal strains with reduced sensitivity and investigating the 

molecular mechanisms responsible requires accurate measurements of the fungicide 

sensitivity of individual isolates. An in vitro fungicide sensitivity bioassay can be used to 

determine the fungicide concentrations required to inhibit growth of fungal isolates. 

Most previous studies of fungicide sensitivity in R. secalis have used agar media amended 

with a range of fungicide concentrations. Some methods have used agar slants in test tubes, 

which are inoculated with spores and the Minimum Inhibitory Concentration (MIC) assessed 

as the lowest fungicide concentration at which no growth occurs (Hollomon 1984). Other 

methods use agar in petri dishes or 24-well plates, on which a mycelial disc is placed. MIC 

may be assessed as the lowest concentration at which no growth occurs, as for agar slants, 
Kendall et al. (1993), or the Effective Concentration at which growth is reduced by 50% (the 

EC50) may be assessed based on measurements of colony diameter (Sierotzki and Morchoisne 

2006). 

In other species, fungal growth has been assessed by optical density, measuring turbidity by 

passing light through a liquid culture. Georgopoulos and Sisler (1970) compared U. maydis 

growth in liquid culture in microtubes with and without fungicide. They subsequently 

measured growth at a range of fungicide concentrations and generated a dose response curve, 
but each fungicide concentration had to be set up and read in a separate tube, limiting the 

number of isolates that could be tested (Georgopoulos et al. 1972). In 1978, the first 96-well 

microplate reader was introduced, initially for ELISA (Enzyme-linked immunosorbant assay) 

plates (Thermo Scientific 2008). In 1982, Genta et al. (1982) reported using a microplate 

reader for a microtitre sensitivity assay for bacteria, and in 1986, Drouhet et al. (1986) 

described the use of this assay for a range of clinical pathogenic fungal species, including C. 

albicans, C. neoformans and A. fumigatus. The assay used is based on serial dilutions of 
fungicide in liquid growth media. Fungal isolates are then grown in 96-well microtitre plates 
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with a concentration series of fungicide-amended medium. Fungal growth is assessed by 

optical density readings, or with fluorescent metabolic indicators, using an automated plate 

reader. Dose-response curves are fitted, and MICs calculated. This method has also been 

developed for M graminicola, for which EC50 values were calculated from the dose-response 

curves (Pijls et al. 1994; Fraaije and Cools 2006). This assay is preferable to those previously 

used for R. secalis. The 96-well format is suitable for high-throughput screening of large 

numbers of isolates, EC50 values reflect the point at which the majority of fungal growth is 

inhibited whereas MICs may be elevated when low levels of residual growth occur, and the 

automated reading of plates removes the need for subjective judgements in assessing fungal 

growth by eye. 

The liquid-media based sensitivity bioassay requires spores as inoculum. Therefore it was 

necessary to optimise growth conditions of R. secalis in culture for conidia production. 
Previous authors have noted that R. secalis grows slowly in culture (Brooks 1928; Caldwell 

1937; Schein and Kerelo 1956). A range of different growth media have been used. Caldwell 

(1937) tried agar media containing barley leaf decoction, potato or corn meal with and 

without dextrose, lima bean, oatmeal and malt extract, of which the fastest growth was 

observed on potato dextrose agar. Lebedeva (2005) reported the fastest growth in colony 

diameter on yeast potato sucrose agar, followed by potato sucrose agar, oatmeal agar, carrot 

dextrose, Czapek dox and finally water agar. Cooke et al. (2004) used malt yeast agar to 

isolate R. secalis, Czapek dox agar with mycological peptone for subculturing and yeast 

glucose medium for fungicide sensitivity testing. 

Skoropad (1966) noted that when R. secalis grows saprophytically on barely debris, 

conditions conducive to sporulation did not result in greater hyphal growth. Similar 

observations had been made in culture by Schein and Kerelo (1956), who noted that only 

slow hyphal growth and small colonies were obtained on the media producing the highest 

spore yields, whereas potato dextrose agar, which previous studies reported as giving good 

growth, produced very low spore yields. Therefore conditions must be optimised for spore 

production without excessive hyphal growth, to produce suitable inoculum for an optical 

density-based sensitivity assay. 

Rhynchosporium secalis growth is also temperature-dependent. Bartels (1928) found the 

optimal growth temperature to be 19-21°C, with a minimum temperature of 2-3°C and a 
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maximum of 30-31 °C. Caldwell (1937) recorded maximum growth at temperatures of 18- 

21 °C. The minimum temperature for germination and growth was 2-4°C. The maximum 

temperature was 28-30°C, with spores in water rupturing above 30°C, but growth rates 

dropped rapidly as temperature increased above 21 °C. Subsequent studies have reported 

similar results for growth in culture (Schein and Kerelo 1956; Owen 1958; Lebedeva 2005) 

and infection and sporulation in planta (Skoropad 1959). 

It was then necessary to optimise growth conditions for the bioassay itself. For sensitivity 

testing, sporulation is not required and maximising total growth rate would allow 

measurements to be taken after a shorter incubation time. Therefore different growth media 

and temperatures were tested again, and the inoculum density was also optimised for the 

sensitivity assay. However, a major problem with the use of optical density readings for R. 

secalis is the heterogeneous growth, or "clumping", of R. secalis in liquid culture. This 

covers two different growth states. Initially, R. secalis grows in discrete colonies: different 

growth levels result in smaller colonies with larger gaps, or larger colonies with smaller gaps, 

rather than homogeneous growth at lower or higher density as is seen with the yeast-like 

growth of M graminicola. Later, fungal material forms thick clumps in the middle of each 

well. Neither state is conducive to the accurate assessment of growth by turbidity 

measurements. Different approaches have been used to deal with this, including gelatin- 

amended growth medium (Havis 2006), or the use of fluorescent metabolic indicators such as 

resazurin so fluorescence rather than optical density is measured (McCartney 2006). Earlier 

plate readers scanned plates with a light beam covering approximately a 3mm diameter in the 

centre of each well (Pijls et al. 1994). The plate reader used in the current study (Optima 

Fluostar, BMG Labtech, Germany) measures a single point at the centre of each well. 

Finally, for DNA and RNA extraction, rapid growth in liquid culture was required, since agar 

contamination or secondary metabolites from older cultures may inhibit subsequent reactions 

such as PCR. Furthermore, for analysis of induced gene expression in response to fungicides, 

fungicide addition and RNA extraction should take place during the linear phase of growth, 

after spore germination but while the fungus is still actively growing. Therefore growth 

curves were produced for R. secalis in suitable growth conditions. 

This chapter describes experiments carried out to optimise growth conditions for R. secalis in 

culture and to develop a protocol for a high-throughput in vitro fungicide sensitivity bioassay. 
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2.2 Materials and Methods 

2.2.1 Culture conditions 

2.2.1.1 Medium 

Isolates used in initial tests were OSB 28-2-2, LARS 12-4-2 and LARS 12-4-3 and SAC 0003 

1-4-2 30 (Table 2.1), collected by J. Fountaine from field trials in 2001-2002 and stored as 

conidia in silica gel at -80°C. All were grown on Czapek Dox agar with mycological peptone 

at 15°C for 12 days, and spores harvested into sterile distilled water. 

Media tested for spore production were malt yeast glucose agar 1, as described in Cooke et 

al. (2004) (yeast extract 10 g 1-1, malt extract 10 g 1"1, agar 20 g 1"1); CDM agar (Czapek Dox 

broth mix 33.25 g 1"1, mycological peptone 5g 1"', agar 20 g 1-1); V8 agar (V8 juice 165 ml 1" 

I, calcium chloride 2g 1"1, agar 16 g 1"1; pH-adjusted to pH7 with sodium hydroxide); 

Sabouraud agar (Sabouraud broth mix 30 g 1-1, agar 20 g 1-1); malt yeast glucose agar 2, with 

added glucose (yeast extract 10 g 1"', malt extract 10 g 1'1, glucose 20gl", agar 20 g 1"1); PDA 

(potato dextrose agar) and YPD (yeast peptone dextrose) agar (according to pack 

instructions). Media were poured into 90mm diameter Petri dishes, inoculated with 50µl 

spore suspension, sealed with parafilm and incubated in darkness at 15°C for seven days. 

Subsequently, when a link between inoculum density and spore yield was established 
(Section 2.3.1.3), the experiment was repeated with a fixed inoculum density of 2.5 x 106 

spores ml-1, with 50µl spore suspension spread evenly over the plate surface. Isolates OSB 

28-2-2 and LARS 12-4-2 were used, with two replicates of each. 

Spores were harvested by adding 2ml sterile distilled water to the plate, scraping the surface 

with a sterile disposable spreader for two minutes, and pouring off the spore suspension. 

Spores were counted in an Improved Neubauer haemocytometer (Weber Scientific 

International, Middlesex, UK), with 5/25 squares chosen by random number. 
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Table 2.1. List of R. secalis isolates used in this project 

Isolate Year of Location 

collection 
K1124 Pre-1994 Long Ashton Research Station, UK 
SK7 1984 Long Ashton Research Station, UK 
NKT 12 1996 Norway 
FI12-63 1996 Finland 
R157 (1) 1997 USA 
R157 (2) 1997 USA 
788 1997 France 
SAC 0003 1-4-2 30 2000 Scottish Agricultural College, UK 
SAC 1-4-8 (0003) 2000 Scottish Agricultural College, UK 
SAC 8-3-8 (0003) 2000 Scottish Agricultural College, UK 
SAC 0004 1.15 0030 2000 Scottish Agricultural College, UK 
SAC 8.83 00 (0.04) 2000 Scottish Agricultural College, UK 
SAC 0003 1.2.4 00 (3.33) 2000 Scottish Agricultural College, UK 
SAC 0003 1.2.5 00 1.11 2000 Scottish Agricultural College, UK 
SAC 0003 1.4.8 00 (10) 2000 Scottish Agricultural College, UK 
SAC 0003 8.1.8 00 (0.123) 2000 Scottish Agricultural College, UK 
SAC 0004 8.1.2 2000 10.07 2000 Scottish Agricultural College, UK 
SAC 0004 1.2.4 00 2000 Scottish Agricultural College, UK 
SAC 0003 16/20 2000 Scottish Agricultural College, UK 
QUB 9-10 2001 Northern Ireland 
QUB 30-10 2001 Northern Ireland 
QUB 18-2 2001 Northern Ireland 
QUB 30-13 2001 Northern Ireland 
QUB 12-3 2001 Northern Ireland 
QUB 18-9 2001 Northern Ireland 
R 9517.1 2001 ARINI, Northern Ireland 
R 9524.2 2001 ARINI, Northern Ireland 
R 9528.4 2001 ARINI, Northern Ireland 
R 9516.1 2001 ARINI, Northern Ireland 
R 9511.4 2001 ARINI, Northern Ireland 
R 9522.3 2001 ARINI, Northern Ireland 
R 9519.2 2001 ARINI, Northern Ireland 
RSO 1 ch2.126 2001 Switzerland 
RSO l ch2.126.5.5 2001 Switzerland 
RSO l ch2.306.5.5 2001 Switzerland 
RSO l ch01 Al 2a5.5 2001 Switzerland 
3.1 2/7 2001 Rothamsted Research, UK 
3.1 4/7 2001 Rothamsted Research, UK 
3.1 5/7 2001 Rothamsted Research, UK 
5.2 2/7 2001 Rothamsted Research, UK 
T. I. 3.1 11/7 2001 Trenthome Farm, Nottingham, UK 
M. S. 1.1 13/7 2001 Trenthome Farm, Nottingham, UK 
M. S. 5.1 13/7 2001 Trenthome Farm, Nottingham, UK 
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Table 2.1 continued 

Isolate Year of Location 

collection 

GKII 18-2-1 2002 Rothamsted Research, UK 
GKII 18-2-3 2002 Rothamsted Research, UK 
GKII 18-3-1 2002 Rothamsted Research, UK 
GKII 18-3-2 2002 Rothamsted Research, UK 
GKII 18-3-3 2002 Rothamsted Research, UK 
GKII 20-3-1 2002 Rothamsted Research, UK 
OSA 28-2-2 2002 Rothamsted Research, UK 
OSA 10-4-1 2002 Rothamsted Research, UK 
OSA 10-4-28 2002 Rothamsted Research, UK 
OSB 28-2-2 2002 Rothamsted Research, UK 
OSB 24-4-1 2002 Rothamsted Research, UK 
OSB 24-4-21 2002 Rothamsted Research, UK 
OSB 24-4-47 2002 Rothamsted Research, UK 
LARS 12-4-2 2002 Long Ashton Research Station, UK 
LARS 12-4-3 2002 Long Ashton Research Station, UK 
LARS 8-4-2.5 2002 Long Ashton Research Station, UK 
Sheringham 1 2002 Sheringham, Norfolk, UK 
Sheringham 2 2002 Sheringham, Norfolk, UK 
XNC 2000 3-2 TI A 2002 Northern Ireland 
XNC 2000 3-2 Ti B 2002 Northern Ireland 
XNC 2000 4-2-4 T1 2002 Northern Ireland 
SAC 09/943/186 2007 Scottish Agricultural College, UK 
SAC 09/943/62 2007 Scottish Agricultural College, UK 
SAC 09/943/73 2007 Scottish Agricultural College, UK 

SAC 09/943/13 2007 Scottish Agricultural College, UK 

SAC 09/943/115 2007 Scottish Agricultural College, UK 
SAC 09/943/131 2007 Scottish Agricultural College, UK 
SAC 09/943/14 2007 Scottish Agricultural College, UK 
SAC 09/943/132 2007 Scottish Agricultural College, UK 
SAC 09/943/178 2007 Scottish Agricultural College, UK 
RS 219 2004 UK (Syngenta sensitive reference isolate) 
RS 683 2004 UK (Syngenta intermediate reference) 
RS 783 2004 UK (Syngenta less sensitive reference) 
R. s. 2310 4.2 2008 France (BASF Qol monitoring) 
R. s. 2313 4.2 2008 France (BASF QoI monitoring) 
R. s. 2314 4.2 2008 France (BASF QoI monitoring) 
R. s. 2318 4.2 2008 France (BASF QoI monitoring) 
SCRI 13-13 Scottish Crop Research Institute, UK 

(genome sequencing) 
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2.2.1.2 Temperature 

Silica gel stocks of the four isolates used in media tests were used to inoculate CDM Agar. 

These were incubated at 15°C and 21°C. Spores were harvested and counted after ten days. 

2.2.1.3 Inoculum density 

The four isolates used in the media tests were sub-cultured onto CDM Agar. Spore 

suspensions were diluted to concentrations of 2.5 x 104,2.5 x 105,2.5 x 106 and 2.5 x 107 

spores ml'', with 50pl spore suspension used per 90mm diameter Petri dish. There were two 

replicates at each concentration, except LARS 12-4-2, LARS 12-4-3 and SAC 0003 1-4-2 30 

at 2.5 x 107, for which insufficient inoculum was available. Plates were incubated in darkness 

at 15°C. Spores were harvested and counted after ten days. 

2.2.2 Assay method 

2.2.2.1 Medium 

The preliminary assay used the same four isolates as culture condition tests. Spore 

suspensions were harvested from 10-day-old cultures on CDM agar. Spore counts were 

carried out, and spore concentration was adjusted to 2.5 x 105 spores ml-1 by dilution in sterile 
distilled water. Double-strength media were amended with epoxiconazole. A 10 mg ml- 

solution of epoxiconazole in acetone was made, and added to the media to a final 

concentration of 100 gg ml- 1. Ten serial dilutions were carried out with a dilution factor of 
2/5. Media used were Czapek Dox (McCartney, 2006), Sabouraud (Pijls et al. 1994), alkyl 

ester (Sierotzki and Morchoisne 2006) and yeast glucose (Cooke et al. 2004). 

The assay was carried out in 96-well microtitre plates (TPP, Switzerland). l00pl of 
fungicide-amended medium and 100gl of concentration-adjusted spore suspension were 

added to each well. Columns 1-12 contained increasing concentrations of epoxiconazole, 

with a final concentration of 50 gg ml-1 in column 12, ten serial dilutions (dilution factor 2/5) 

in columns 11-2 and 0 µg ml-1 in column 1. Rows A-H comprised two replicate rows for each 

of the four isolates. Plates were sealed with parafilm and incubated in darkness at 15°C. 

After 7,9,11 and 13 days, fungal growth was measured by optical absorbance at 620nm 

using an Optima Fluostar plate reader (BMG Labtech, Germany), with the accompanying 

software used to fit a dose-response curve (4-parameter fit) and calculate EC50 values. 
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2.2.2.2 Incubation Temperature and Time 

Epoxiconazole sensitivity assays were carried out as described above, but with Sabouraud 

medium used throughout and one plate incubated at 15°C, one at 18°C and one at 21°C. 

Growth was measured after 7,9 and 12 days. 

2.2.2.3 Inoculum density 

Epoxiconazole sensitivity assays were set up as described above, using Sabouraud medium 
throughout, and isolates OSB 28-2-2 and LARS 12-4-2. Inoculum concentrations of 2.5 x 
104,1 x 105,2.5 x 105,1 x 106 and 2.5 x 106 spores ml"' were used. 

Plates were incubated at 18°C for seven days. 

2.2.2.4 Growth Heterogeneity: Gelatin 

Double-strength Sabouraud medium was amended with 180-bloom gelatin to final 

concentrations of 0,0.4,1,2 and 4% w/v. Epoxiconazole sensitivity assays were set up as 
described above, for those four isolates, with plates incubated at 18°C and read after seven 
days. This was then repeated for final gelatin concentrations of 0 and 1 %. 

2.2.2.5 Growth Hetero eg neity: Shakin 

Epoxiconazole sensitivity assays were set up as described above, using Sabouraud medium, 

spore suspension at 2.5 x 105 spores ml-1, incubating at 15°C for 12 days. In addition to 

isolates OSB 28-2-2 and LARS 12-4-2, isolates QUB 9.10 and QUB 30.10, previously found 

to have differing levels of sensitivity to epoxiconazole (L Black, unpublished data), were 

used. Plates were read without shaking, then after 30 seconds shaking at medium speed (c. 

1125 rpm), 2 minutes at medium speed, 2 minutes at top speed (1300 rpm) then 5 minutes at 

top speed, on an Orbis Plate Shaker (Mikura, West Sussex). Further assays were carried out 

taking readings before and after shaking for 30 seconds at medium speed, with a wider range 

of isolates and the four triazole fungicides described in Chapter Four. 

2.2.2.6 Growth Heterogeneity: Fluorescence-Based Assays 

Epoxiconazole sensitivity assays were set up as described. After seven days, optical density 

readings were taken and 20 pl of 80 µg ml" resazurin solution was added to each well. Plates 

were incubated overnight (16 hours) in darkness at 18°C, then fluorescence at 530 nm was 

measured using the Optima Fluostar plate reader (BMG Labtech, Germany). 
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2.2.2.7 Growth Heterogeneity: Reader Settings 

An Epoxiconazole sensitivity assay was set up using Sabouraud medium, spore suspension at 

2.5 x 105 spores ml-1, and incubating at 18°C for seven days. Isolates SAC 09/943/186, SAC 

09/943/73, SAC 09/943/115 and RS 219 were used. The assay plate was read with the 

following settings (well inside diameter = 6.7 mm): endpoint mode, single reading per well; 

endpoint mode, orbital averaging, 20 flashes around a 4mm-diameter orbit; well-scanning 

mode, 3x3 matrix, 6mm diameter; well-scanning mode, 6x6 matrix, 6mm diameter; well- 

scanning mode, 6x6 matrix, 4mm diameter; well-scanning mode, 4x4 matrix, 3mm diameter. 

The well-scanning points are arranged in a square grid with sides equal to the specified 
diameter; points in the matrix that fall wholly outside a circle of the specified diameter are 

excluded. Hence for a 3x3,4x4 and 6x6 matrix, readings are taken at 9,12 and 32 points, 

respectively. Further assays were carried out taking readings in end-point mode and in well- 

scanning mode with a 4x4 matrix of 3mm diameter before and after shaking for 30 seconds at 

medium speed, with a wider range of isolates and the four triazole fungicides described in 

Chapter 4. 

2.2.3 Growth curve 
Isolates 788 and K1124 were each grown in 50 ml tubes containing 10 ml Sabouraud medium 

inoculated with 2.5 x 104 spores ml"1, in an orbital shaker at 150 rpm at 20 °C. At day 0 and 

subsequent 2-day intervals, 2 tubes of each isolate were selected at random, removed, and 

frozen at 20 °C. Subsequently all isolates were harvested by vacuum filtration onto a nylon 

filter disc, placed into individual plastic bags, re-frozen and freeze-dried. The dry mass of 

fungus on the filter discs was measured on a fine balance. 

2.3 Results 

2.3.1 Culture conditions 

2.3.1.1 Medium 

CDM agar yielded the highest spore numbers, V8 agar produced good hyphal growth but 

lower spore counts, and the malt yeast glucose agar and PDA gave no growth after seven 
days for all four isolates tested (Table 2.2). 
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Table 2.2. Spore yields obtained by subculturing R. secalis isolates on different agar media 

Spore counts (105 spores ml"' ) 

Agar Medium 
Isolate Czapek Dox with V8 Malt Yeast Potato Dextrose 

mycological Glucose I 
peptone 

OSB 28-2-2 95 46.5 Na N 
LARS 12-4-2 26.5 5 N N 
LARS 12-4-3 22.5 5.5 N N 
SAC 0003 1- 51 6.5 N N 

4-2 30 
aN indicates no growth. 

In the second experiment, spore counts for both isolates were highest on CDM agar. V8 agar 

still produced good hyphal growth but lower spore counts, as did the Sabouraud agar. The 

addition of extra glucose to the malt yeast glucose agar and yeast extract to the potato 
dextrose agar resulted in some growth and sporulation, but less than was obtained with the 

CDM agar (Table 2.3). 

Table 2.3. Spore yields obtained by subculturing R. secalis isolates on five different agar media. 

Spore counts (10 spores ml-) 
Agar Medium 

Isolate Czapek Dox + V8 Malt Yeast Yeast Sabouraud 
Mycological Glucose 2 Potato 
Peptone Dextrose 

OSB 28-2- 339 11 21.8 40.5 19.8 
2 
LARS 12- 159.5 17.5 24.8 45 85.5 
4-2 

2.3.1.2 Temperature and Time 

All four isolates grew well at 15°C, sporulating within ten days. There was little or no 

germination and growth at 21 °C. 

2.3.1.3 Inoculum density 

Spore yields for all isolates increased with inoculum density for inoculum concentrations up 

to 2.5 x 106 spores ml"' (Figure 2.1). However, increasing inoculum concentration to 2.5 x 
107 spores ml-1 resulted in a far lower increase in spore yield for isolate LARS 12-4-3, and 
decreased spore yields for the other isolates. An inoculum density of 2.5 x 106 spores ml-1 
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was selected for all future work, as it produced consistently high spore yields for both 

replicates of all four isolates. 
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Figure 2.1. Spore yield against inoculum level for four R. secalis isolates. Spore counts of zero are shown 

as 5x 103 spores ml'', the lowest detectable level, due to the log scale. Circle, isolate OSB 28-2-2; square, 

LARS 12-4-2; diamond, LARS 12-4-3; triangle, SAC 0003 1-4-2. 

2.3.2 Assay method 

2.3.2.1 Medium 

The control growth, i. e. 0 pg ml-1 epoxiconazole, was greatest in Sabouraud medium, 
followed by yeast glucose, alkyl ester then Czapek Dox, for all four isolates at all four 

measurement times. Data shown are measurements at 13 days (Figure 2.2). 
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Figure 2.2. Growth of four R. secalis isolates after 13 days, from an initial inoculum concentration of 2.5 x 

10-5 spores ml-1, in four different liquid media, measured by optical absorbance. 

The growth rate affected the quality of dose-response curves obtained (Figure 2.3). In Czapek 

Dox and alkyl ester media, some isolates did not grow sufficiently to obtain an EC50 value 

even after 13 days, but better data are obtained with yeast glucose medium, and better still 

with Sabouraud. This is reflected in the consistency of EC50 values between replicates, with 

Sabouraud producing the most consistent results (Figure 2.4). Therefore, Sabouraud medium 

was selected as the first choice of assay medium for future assays, with the caveat that a very 

rich medium may not be suitable for all fungicides. 
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Figure 2.3. Dose-response curves of fungal growth against epoxiconazole concentration for four R. secalis 

isolates in four different liquid media: (a) Czapek Dox, (b) alkyl ester, (c) yeast glucose, (d) Sabouraud. 

Black/grey: isolate OSB 28-2-2; red/orange: LARS 12-4-2; blue/light blue, LARS 12-4-3; green/light 

green, SAC 0003 1-4-2 30. 
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Figure 2.4. Epoxiconazole EC50 values obtained for four R. secalis isolates in four different growth media, 

with two replicates per isolate: Black, isolate OSB 28-2-2; light grey, LARS 12-4-2; dark grey, LARS 12- 

4-3; white, SAC 0003 1-4-2. Circle, replicate 1; square, replicate 2. 

2.3.2.2 Temperature and Time 

Growth after seven days was greatest at 18°C for three of the four isolates, slightly lower at 

15°C and markedly lower at 21°C (Figure 2.5). Readings at seven days produced the most 

consistent epoxiconazole EC50 values between replicates at15°C and 18°C incubation 

temperatures, with greater differences at 9 and 12 days (Figure 2.6). The opposite pattern was 

seen at 21 °C, as the slower growth rate meant the optimal measuring time had not been 

reached at the earlier readings. 
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Figure 2.5. Growth of four R. secalis isolates at three different temperatures after 7 days, measured by 

optical absorbance. Black, isolate OSB 28-2-2; mid-grey, LARS 12-4-2; dark grey, LARS 12-4-3; light 

grey, SAC 0003 1-4-2; white, all isolates. 
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Figure 2.6. Epoxiconazole ECso values obtained for four R. secalis isolates at three different temperatures 

with readings taken at three times, with two replicates per isolate: Black, isolate OSB 28-2-2; light grey, 

LARS 12-4-2; dark grey, LARS 12-4-3; white, SAC 0003 1-4-2. 

2.3.2.3 Inoculum density 

Spore concentrations of 1 O5 to 106 spores ml-1 produced better dose-response curves with 

more consistent EC50 values (Figure 2.7). At lower concentrations, growth was too sparse, 

whereas higher concentrations resulted in excess turbidity from inoculum material, giving 

elevated optical absorbance readings in the absence of any further growth. 

2.3.2.4 Growth Heterogeneity: Gelatin 

Initially, it appeared that a final gelatin concentration of I% produced the most consistent 

EC50 values (Figure 2.8). However, this is solely due to the absence of outlying EC5o data 

points for that data set, with no general pattern of improved data quality around an optimum 

gelatin concentration. When the experiment was repeated with 0 and 1% gelatin, the assay 

with 0% gelatin produced more consistent results. 
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Figure 2.7. Epoxiconazole ECso values obtained for two R. secalis isolates with five different inoculum 

concentrations, with two replicates per isolate: Black, isolate OSB 28-2-2; grey, LARS 12-4-2. 
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Figure 2.8. Epoxiconazole ECso values obtained for four R. secalis isolates in Sabouraud medium 

amended with different concentrations of gelatin, with two replicates per isolate: Black, isolate OSB 28-2- 

2; light grey, LARS 12-4-2; dark grey, LARS 12-4-3; white, SAC 0003 1-4-2. a' Assays with 0% and I% 

gelatin were carried out twice. 

2.3.2.5 Growth Heterogeneity: Shaking 

Shaking for 30 seconds appeared to give a slight improvement in dose-response curves and 

EC50 value consistency by breaking up some clumps of fungal growth. However, further 

shaking did not yield any further improvements (Figure 2.9). In subsequent assays, shaking 

was generally beneficial to data quality (Figure 2.10). However, in some cases, especially in 

prothioconazole sensitivity assays, the opposite effect was seen (Figure 2.11). 
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Figure 2.9. Epoxiconazole EC50 values obtained for four R. secalis isolates with five different levels of 

shaking to disperse clumps of fungal material, with two replicates per isolate. Black, isolate OSB 28-2-2; 

red, LARS 12-4-2; purple, QUB 9.10; orange, QUB 30.10. Shaking used: 1, no shaking; 2,30 seconds 

medium speed; 3,2 minutes medium speed; 4,2 minutes top speed; 5, five minutes top speed. 
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Figure 2.10. Dose-response curves of fungal growth against epoxiconazole concentration, and 

epoxiconazole EC50 values, for four R. secalis isolates, with and without shaking the assay plates: (a) 

Dose-response curves obtained before shaking; (b) Dose-response curves obtained after shaking the plates 

for 30 seconds; (c) Comparison of EC50 values obtained before shaking (0) and after shaking for 30 

seconds (1). Black/grey: isolate OSB 28-2-2; red/orange: LARS 12-4-2; blue/light blue, LARS 12-4-3; 

purple/light purple, QUB 9-10. 
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Figure 2.11. Dose-response curves of fungal growth against prothioconazole concentration, and 

prothioconazole EC50 values, for four R. secalis isolates, with and without shaking the assay plates: (a) 

Dose-response curves obtained before shaking; (b) Dose-response curves obtained after shaking; (c) 

Comparison of EC50 values obtained before (0) and after shaking (1). Black/grey: isolate OSA 10-4-1; 

red/orange: OSA 10-4-28; blue/light blue, LARS 8-4-2.5; green/light green, OSB 24-4-47. 

2.3.2.6 Fluorescence-Based Assays 

Most assay plates failed to give the expected dose-response curves from fluorescence 

measurements. In many cases, the highest fluorescence readings were obtained for mid-range 

or high fungicide concentrations (Figure 2.12), whereas for slower-growing isolates, growth 

was insufficient for EC50 to be determined accurately by this method (Figure 2.13). 
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Figure 2.12. Dose-response curves of fungal growth, measured as fluorescence produced by the ingrowth 

indicator resazurin, against epoxiconazole concentration, for three R. secalis isolates. Black/grey: Isolate 

LARS 12-4-2; red/orange: LARS 12-4-3; blue/light blue: QUB 9-10. Fluorescence is highest for 

intermediate growth due to the reduction of resazurin to resorufin, and lower where growth is greatest 

due to the reduction of resorufin to non-fluorescent hydroresorufin. 
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Figure 2.13. Dose-response curves of fungal growth, measured as fluorescence produced by the indicator 

substance resazurin, against epoxiconazole concentration, for two R. secalis isolates. Black/grey: Isolate 

R157; Red/orange: isolate RSOlch2.126. Isolate RSOlch2.126 shows insufficient growth to give a reliable 

ECso value. 
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2.3.2.7 Growth Heterogeneity: Reader Settings 

The data produced in end-point mode when testing reader settings were better than for some 

other plates, but not all points fit on a smooth dose-response curve, especially for isolates 

SAC 09/943/186 and SAC 09/943/73 (Figure 2.14a). The reading with orbital averaging 

(setting 2) produced very poor data (Figure 2.14b), as did the first reading in well-scanning 

mode (setting 3) (Figure 2.14c), with several optical density readings increasing at the highest 

fungicide concentrations, contradicting what was shown by the endpoint readings and visual 
inspection of the plate. Data from individual reading points within the wells showed that this 

was due to inaccurate readings closer to the edges of the wells (Figure 2.15). 

When more readings per well were taken (setting 4), the outermost readings could be 

excluded, improving the in data quality (Figure 2.16, Figure 2.17). Taking all readings within 

a smaller diameter (setting 5) produced better data still (Figure 2.18b-c, Figure 2.19). 

Reducing the matrix from 6x6 to 4x4 data points cut the time taken to read each plate from an 

hour to twenty minutes, with relatively little reduction in data quality (Figure 2.18d, Figure 

2.19). 

Further assays with a larger set of isolates gave consistently better readings in well-scanning 

mode with a 4x4 matrix and 3mm diameter than in end-point mode, even when end-point 

readings gave very poor data (for example, Figure 2.20). 

66 



(a) 

0.8 

6 
0.6 

e 0.4 

0.2 

0 
0.001 

(c) 

1.6 

1.4 
0 

0 1.2 

(b) 

08 

- 

01 0.6 
t 
e0.4 

0.2 

0 
0.001 

Figure 2.14. Dose-response curves of fungal growth against epoxiconazole concentration for four R. 

secalis isolates. (a) Readings obtained from a single optical density measurement per well; (b) readings 

obtained from 20 optical density measurments, taken in a 6mm diameter circle, per well; (c) obtained 

from a 3x3 matrix of optical density measurments, within a 6mm diameter, per well. Black/grey: isolate 

SAC 09/943/186; red/orange: SAC 09/943/73; blue/light blue, SAC 09/943/115; green/light green, RS 219. 
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Figure 2.15. Individual data points from an epoxinconazole sensitivity bioassay in a 96-well microtitre 

plate, with 9 data points per well, read in well-scanning mode with a 3x3 matrix of 6mm diameter (well 

diameter = 6.7 mm). Columns 1-12 contain increasing epoxiconazole concentrations. Rows A-B contain R. 

secalis isolate SAC 09/943/186; C-D, isolate SAC 09/943/73; E-F, isolate SAC 09/943/115 and G-H, isolate 

RS 219. 
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Figure 2.16. Dose-response curves of fungal growth against epoxiconazole concentration for four R. 

secalis isolates, obtained from a 6x6 matrix of optical density measurments, within a 6mm diameter, per 

well. (a) All readings included; (b) only readings within a 5mm diameter included; (c) only readings 

within a 4mm diameter included; (d) only readings within a 3mm diameter included. Black/grey: isolate 

SAC 09/943/186; red/orange: SAC 09/943/73; blue/light blue, SAC 09/943/115; green/light green, RS 219. 
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Figure 2.17. Epoxiconazole ECsa values for four R. secalis isolates with two replicates per isolate, obtained 

from a 6x6 matrix of optical density measurements, within a 6mm diameter, per well. (a) All readings 

included; (b) only readings within a 5mm diameter included; (c) only readings within a 4mm diameter 

included; (d) only readings within a 3mm diameter included. Black: isolate SAC 09/943/186; light grey: 

SAC 09/943/73; dark grey, SAC 09/943/115; white, RS 219. 
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Figure 2.18. Dose-response curves of fungal growth against epoxiconazole concentration for four R. 

secalis isolates. (a) Obtained from one reading per well; (b) Obtained from a 6x6 matrix of measurements, 

taken within a 6mm square, per well, with only the 4 readings falling within a 3mm diameter included; (c) 

Obtained from a 6x6 matrix of measurements, taken within a 4mm square, per well, with only the 16 

readings falling within a 3mm diameter included; (d) Obtained from a 4x4 matrix of measurements, 

taken within a 3mm square, per well, with only the 12 readings falling within a 3mm diameter included. 

Black/grey: isolate SAC 09/943/186; red/orange: SAC 09/943/73; blue/light blue, SAC 09/943/115; 

green/light green, RS 219. 
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Figure 2.19. Epoxiconazole EC% values obtained for four R. secalis isolates with two replicates per isolate. 

(a) Obtained from one reading per well; (b) Obtained from a 6x6 matrix of measurements, taken within a 

6mm, diameter per well, with only the 4 readings falling within a 3mm diameter included; (c) Obtained 

from a 6x6 matrix of measurements, taken within a 4mm diameter, per well, with only the 16 readings 

falling within a 3mm diameter included; (d) Obtained from a 4x4 matrix of measurements, taken within a 

3mm diameter, per well, with only the 12 readings falling within a 3mm diameter included. Black/grey: 

isolate SAC 09/943/186; red/orange: SAC 09/943/73; blue/light blue, SAC 09/943/115; green/light green, 

RS 219. 
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Figure 2.20. Dose-response curves of fungal growth against epoxiconazole concentration, and 

epoxiconazole EC50 values, for four R. secalis isolates, with optical absorbance readings taken at single 

and multiple points per well: (a) Dose-response curves obtained in end-point mode (one reading per 

well); (b) Dose-response curves obtained in well-scanning mode with 4x4 matrix and 3mm diameter (12 

readings per well); (c) Comparison of ECso values obtained with each setting. Black/grey: isolate OSB 24- 

4-1; red/orange: OSA 10-4-1; blue/light blue, OSB 24-4-21; green/light green, LARS 8-4-2.5. 
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2.3.3 Growth curve 
Fungal mass was plotted against time for the two isolates (Figure 2.21). Both isolates show a 
lag phase up to day 6, followed by linear growth. Some reduction in growth rate is apparent 
for isolate K1124 from days 12-14, whereas isolate 788 reaches stationary or declining mass 

after 16 days. 
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Figure 2.21. Dry mass obtained from fungal cultures at two-day intervals, for isolates 788 (black) and 

K1124 (white). 

2.4 Discussion 

2.4.1 Culture conditions 

Of the media tested, CDM agar gave the most consistently high spore yields, and was 

selected as the growth medium. The malt yeast glucose agars, PDA and YDP agar resulted in 

lower total growth, whereas Sabouraud medium, and for some isolates V8 agar, resulted in 

extensive hyphal growth but lower sporulation. The lack of growth on PDA is in contrast 

with previous studies that have reported good growth on PDA, such as Caldwell (1937) who 

reported the fastest growth on PDA of all media tested. This may be because in the present 
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study the PDA was inoculated with spores that had been frozen on silica gel, resulting in 

additional germination requirements following prolonged dormancy. Schein and Kerelo 

(1956) also obtained no detectable spores on PDA, but did not mention the level of vegetative 

growth on this medium. Sporulation was greater on potato sucrose agar, and also on lima 

bean agar, with intermediate levels of sporulation on various other media including V8 and 

malt extract agars. Lebedeva (2005) also reported the fastest growth in colony diameter on 

potato sucrose agar. CDM agar, the medium with the greatest spore yields in the present 

study, also contains sucrose as the carbon source. 

The high hyphal growth but lack of sporulation on the Sabouraud and V8 media is similar to 

the observations of Schein and Kerelo (1956), who noted that the best media for spore 

production gave only slow growth and small colonies. Owen (1958) also noted that 

sporulation was generally higher on media with relatively low soluble nutrient content. 
However, Lebedeva (2005) and Schein and Kerelo (1956) observed the lowest growth and 

sporulation respectively on water agar. Therefore it would appear that the best spore yields 

are obtained at intermediate levels of available nutrients, enabling some growth but not 

extensive vegetative hyphal mass. 

The isolates tested grew at 15°C but not at 21°C. When comparing assay methods, 18°C gave 
faster growth than 15°C or 21°C, and was selected for all further work. An optimal growth 

temperature of 18°C and reduced growth at 21 °C is consistent with many previous studies, 
including Bartels (1928), who reported an optimal growth temperature of 19-21°C, Caldwell 

(1937), who reported an optimum temperature for germination and germ-tube elongation of 
18-21 °C and a rapid reduction in growth as temperature increased above 21 °C, and Lebedeva 

(2005), who reported maximum in vitro growth in colony diameter of R. secalis isolates from 

barley at 15-20°C. Cooke et al. (2004) and Oxley et al. (2006) also used an incubation 

temperature of 18°C. Skoropad (1959) reported an optimum temperature of 16°C for seedling 
infection from seed, with a rapid reduction above 20°C. The lower optimum temperature in 

this case may reflect faster growth of the seedling at higher temperatures, allowing early 
disease escape. 

The four isolates used in initial tests sporulated within seven days of inoculation, but slower- 

growing isolates required 10 days. A 10-day incubation time was selected to allow a 

consistent protocol to be used for all isolates. 
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Spore yields for some isolates fluctuated greatly with subculturing, with low yields 

sometimes obtained from cultures inoculated with a high concentration of spores. Therefore, 

the effect of inoculum concentration on spore density was investigated. 

Spore yields for all isolates increased with inoculum density for concentrations up to 2.5 x 

106 spores ml-1, but plateaued or decreased at higher inoculum densities. This was consistent 

with the appearance of the cultures: at lower inoculum concentrations, growth was limited to 

separate colonies with unutilised space between them; at 2.5 x 106 spores ml-1, the surface 

was mostly covered but colonies remained separate; and at the highest inoculum 

concentration, the agar surface was covered with continuous dense hyphal growth but with 

lower sporulation levels. Furthermore, higher inoculum levels produced more hyphal 

material, which increased the turbidity of the resulting concentration-adjusted spore 

suspension for use in sensitivity bioassays, giving elevated optical absorbance readings in the 

absence of any further growth. Therefore an inoculum density equivalent to 50µ1 per 90mm 

plate at 2.5 x 106 spores ml-1 was selected for all future work, as it produced consistently high 

spore yields for both replicates of all four isolates. Consequently, isolates stored in silica gel 

at -80°C are first grown from those stocks, and then subcultured at the optimal inoculum 

density. 

Previous publications have not addressed the impact of inoculum density on spore yields, 

although Schein and Kerelo (1956) mentioned that high spore yields were obtained using `a 

zigzag smear technique', which would reduce overcrowding and ensure most growth took 

place close to the edge of the streak of fungal mass. Ayres and Owen (1969) suggested that 

spores may produce a `self-inhibitor of germination', preventing germination when spores are 

present at high density, such as within a sporulating lesion on crop debris. However, in the 

present study, germination did not appear to be reduced. In fact, dense hyphal growth was 

produced, but with lower spore yields, similar to growth on some richer media. It is not clear 

whether this is due to later allelopathic effects or resource depletion by the crowded 

mycelium, or a response to conditions resembling in planta conditions during pre-sporulation 

stages in the infection process. 

2.4.2 Assay method 
To measure fungal growth in a sensitivity assay, total growth, rather than spore production, 

should be maximised. Growth rate was greatest in Sabouraud medium, resulting in the most 

consistent EC50 values between replicates. Therefore, Sabouraud medium was selected as the 
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first choice of assay medium for future assays, with the caveat that a very rich medium may 
be unsuitable for some fungicides. For example, anilinopyrimidines may be less effective 

when the medium contains a rich source of methionine (Masner et al. 1994), and SDHI 

effectiveness in vitro may depend on the carbon source (Shima et al. 2009). 

Growth after seven days was greatest at 18°C for three of the four isolates, and readings taken 

after seven days produced the most consistent EC50 values at 18°C. Therefore, incubation at 

18°C for seven days is optimal, which is consistent with previous studies, as previously 
discussed. Inoculum concentrations within the range of 105 to 106 spores ml"' gave the most 

consistent EC50 values. Therefore an inoculum concentration of 2.5 x 105 was selected for 

future assays. 

Despite the optimisation of growth medium, temperature, time and inoculum level, data 

quality was still excessively variable, due to the heterogeneous growth of R. secalis in liquid 

culture. Gelatin-amended growth medium, as described by Havis (2006), did not result in a 

consistent improvement in data quality. Furthermore, when plates were shaken, gelatin- 

amended medium formed large air bubbles, resulting in inaccurate optical absorbance 

readings. Therefore, gelatin was not used in any further tests. Shaking for 30 seconds slightly 
improved the data quality by breaking up some clumps of fungal growth, but further shaking 

gave no further improvements. Therefore shaking for 30 seconds at medium speed was 

selected for further assays. When further assays were carried out, in many cases shaking was 
beneficial to data quality, visibly dispersing clumps of fungal material and reducing 

corresponding anomalous data points. However, in other cases, the opposite effect was seen, 

with fungal material being loosened from the well bottom. This was most common in 

prothioconazole sensitivity assays, as fungal growth tended to form a thin film across the 

bottom of the well, which loosened and crumpled when the plates were shaken. 

A fluorescence-based method was also tried, using the metabolic indicator resazurin. 
Whilst a colour gradient was observed on many plates after incubation with resazurin, most 
failed to give the expected dose-response curves from fluorescence measurements. 

In many cases, the highest fluorescence readings were obtained at mid-range or higher 

fungicide concentrations. This is because resazurin undergoes two reduction reactions. It is 

reduced first to resorufm, the fluorescent product, but then to hydroresorufin, which is non- 
fluorescent (O'Brien et al. 2000). Therefore, to use resazurin to obtain EC50 values, it would 
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be necessary to find an incubation time at which the first reaction, but not the second, will 

take place in fungicide concentrations where growth has been inhibited by less than 50% for 

all isolates. However, preliminary tests found that for the range of isolates being tested here, 

variation in growth rates is such that no one timing would be universally acceptable: either 

the slower-growing isolates will have insufficient growth for EC50 to be determined 

accurately (Figure 2.12), or the faster-growing isolates will reduce the resazurin to 

hydroresorufin at the lowest fungicide concentrations (Figure 2.13). 

In all assays discussed so far, the plate reader (Optima Fluostar, BMG Labtech, Germany) 

had been used in end-point mode, taking a single reading per well. This produces good results 

for M graminicola (for example, Bean et al. 2009), which gives homogeneous yeast-like 

growth in suitable culture conditions, but for the more heterogeneous growth of R. secalis, 

multiple readings per well can be made. 

Taking multiple readings per plate, using orbital-averaging or well-scanning settings on the 

plate reader, initially produced very poor data due to inaccurate readings close to the edge of 

each well. However, reducing the diameter within which readings were taken to 3mm clearly 
improved the data quality, with readings lying closer to a smooth yield-density curve, 

resulting in more consistent EC50 values. This may be due to optical effects from the well 

walls or differences in fungal growth at the edge of the well. The 3mm diameter is similar to 

that scanned by the more diffuse light sources of some other plates readers (Pijls et al. 1994). 

Within a 3mm diameter, taking multiple readings per well improved data quality, as a more 

representative sample of the fungal growth was measured and chance effects of whether a 

single reading point fell within or between fungal colonies was reduced. Increasing the matrix 

of measurement points per well from a single point, to a 2x2,3x3 then 4x4 matrix, gave 

successive improvements in data quality, with smoother yield-density curves and more 

consistent readings between replicates. However, increasing the matrix from 4x4 to 6x6 data 

points increased the time taken to read each plate from twenty minutes to an hour, with 

relatively little further improvement in data quality. 

Therefore, well-scanning mode was selected for use in all further assays. A 4x4 matrix gave a 

suitable balance between data quality and read time, and reading within a 3mm diameter gave 

sufficient coverage to allow for growth heterogeneity while avoiding inaccurate readings 
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from around the well edges. When well-scanning was used, shaking plates was no longer 

necessary. The assay plate used to test these settings produced relatively good data even in 

end-point mode, but further assays with a wider range of isolates and fungicides gave 

consistently better readings in well-scanning mode (with a 4x4 matrix and 3mm diameter) 

than in end-point mode, particularly when end-point readings gave very poor data due to 

patchy growth. The final assay protocol is described in Section 3.2.1. 

2.4.3 Growth curve 

When testing liquid media for the fungicide sensitivity assay, growth was highest in 

Sabouraud medium, and so it was selected for growing liquid cultures for nucleic acid 

extraction. Similarly, a temperature of 18°C was selected based on previously discussed data. 

A lag phase of growth was observed up to day 6 for both isolates. Therefore for gene 

expression analyses, any treatments should be applied and samples taken from day 7 

onwards, once the culture has entered linear growth. This is consistent with the observations 

of Caldwell (1937) that R. secalis growing in culture takes 4-5 days "to become 

macroscopically evident". An upper time limit of 10-12 days ensures that cultures are in 

linear growth, and not entering a stationary or declining phase. Lebedeva (2005) also 

observed a lower growth rate in colony diameter at 14-21 days compared to 0-14 days. 

Furthermore, an upper time limit of ten days for culture growth for nucleic acid extractions 

avoided the accumulation of putative secondary metabolites, which results in a melanised 

appearance, correlated with poor PCR performance of extracted DNA, for older cultures. The 

melanisation of older cultures was also described by Schein and Kerelo (1956) and Owen 

(1958), with the age at which cultures become melanised depending on the growth media 

used. 
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Chapter 3 

Qol fungicide sensitivity in R. secalis 

3.1 Introduction 
The Quinone Outside Inhibitors (Qols), including the strobilurins, inhibit cytochrome b in the 

electron transfer chain of mitochondrial respiration. Target-site resistance has been found in 

many species (FRAC 2010b), often due to the G143A substitution. Isolates of B. graminis 
f. sp. tritici with a G143A-encoding mutation and a 200-fold reduction in QoI sensitivity were 

found in 1998 (Sierotzki et al. 2000b), but no target-site resistance was reported in R. secalis 

for the following ten years (Torriani et al. 2009a). In 2008, target-site resistance to Qols in R. 

secalis was reported in field isolates from one site in France, and this was found to be due to 

the G143A substitution (FRAC QoI Working Group 2008). So far this has not been found in 

the UK, but alternative oxidase (AOX) activity has been implicated in the reduced in vitro 

Qol sensitivity of some isolates (McCartney 2006). 

AOX can act as an alternative electron acceptor from ubiquinone, circumventing cytochrome 

b (Joseph-Home and Hollomon 2000). However, its role in planta is not clear, as it may be 

inhibited by plant secondary metabolites, or the reduced ATP generation resulting from the 

alternative respiratory pathway may be insufficient for some stages of fungal growth (Wood 

and Hollomon 2003). McCartney (2006) reported a ten-fold reduction in QoI sensitivity of 

some R. secalis isolates in vitro when AOX inhibitors were added, but this was not 

investigated at the molecular level. AOX expression in M oryzae was induced following the 

addition of a QoI fungicide (Yukioka et al. 1998), and inter-specific differences in QoI 

sensitivity between F. graminearum and M nivale correlated with induced expression of 
AOX (Kaneko and Ishii 2009), but so far there are no published reports of intraspecific 

differences in A OX expression in relation to Qol fungicide sensitivity. 

Huh and Kang (2001) reported the presence of two AOXparalogues in C. albicans. One 

paralogue was expressed constitutively. Expression of the other was induced by complex III 

inhibitors, and varied with growth stage. Tanton et al. (2003) reported the presence of two 

AOX paralogues in N. crassa. One paralogue was constitutively expressed at a low level, and 
increased expression was induced by addition of a complex III inhibitor; the other was not 

expressed under the conditions used. McDonald and Vanlerberghe (2006) list multiple AOX 
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genes in several other fungal species, including the leotiomycete B. cinerea. It is not clear 

whether these represent independent duplications within a few lineages, or a basal duplication 

into two fungal A OXparalogues. 

This chapter describes Qol sensitivity testing in R. secalis, and the effect of adding the AOX 

inhibitor SHAM. The cytochrome b Qol target site encoding gene was sequenced for a 

selection of isolates with a range of Qol sensitivities. The R. secalis AOX gene was identified, 

and phylogenetic analyses were carried out to investigate the occurrence of multiple fungal 

AOX paralogues. The AOX gene was sequenced for a selection of R. secalis isolates, and 

expression levels analysed. 

3.2 Materials and Methods 

3.2.1 Sensitivity testing 

Isolates used for initial tests comprised reference isolates from a range of locations, and field 

isolates collected by J. Fountaine from field trials in 2001-2002, stored in silica gel at -80°C. 
Additional isolates were obtained from Syngenta Crop Protection, the Scottish Agricultural 

College and BASF. Isolates used are shown in Table 2.1. 

Sensitivity testing was carried out using the method developed in Chapter 2. In brief, isolates 

were grown on Czapek Dox agar with mycological peptone (Czapek Dox broth mix 
33.25 g 1"', mycological peptone 5g 1"1, agar 20 g 1-1), with an inoculum density of 1.25 x 105 

spores per 90mm Petri dish, at 18°C for 10 days. Spores were harvested and suspended in 

sterile distilled water. Fungicide sensitivity assays were carried out in 96-well microtitre 

plates (TPP, Switzerland). Fungicide-amended 2x Sabouraud medium (100µl) and 

concentration-adjusted spore suspension (100µl at 2.5 x 105 spores ml-1) was added to each 

well. Columns 1-12 contained increasing concentrations of technical-grade azoxystrobin, as 

shown in Table 3.1. Rows A-H comprised two pseudo-replicate rows for each of four 

isolates. Each assay was repeated with 10µl ml-1 of 8mg ml" SHAM (salicylhydroxamic 

acid; Sigma-Aldrich, Germany) solution in DMSO added to the medium, to give a final 

concentration of 40 µg ml" SHAM, to inhibit AOX activity. Plates were sealed with parafilm 

and incubated in darkness at 18°C for seven days. 
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Table 3.1. Final fungicide concentrations used in strobilurin sensitivity bioassays, carried out in 96-well 

microtitre plates. 

Microtitre plate 123456789 10 11 12 
column 

Final azoxystrobin 
or pyraclostrobin 0 0.00169 0.00508 0.0152 0.0457 0.137 0.412 1.235 3.70 11.1 333 100 
concentration 
(µg ml-') (3 s. f. ) 

After 7 days, fungal growth was measured by optical absorbance at 620nm using an Optima 

Fluostar plate reader (BMG Labtech, Germany), in well-scanning mode with a 4x4 matrix of 

scanning points within a 3mm diameter. The accompanying software was used to fit a dose- 

response curve (4-parameter fit) and calculate EC50 values. Correlation between EC50 values 

with and without SHAM, and between Qol and triazole sensitivity (chapter 4), was tested by 

least squares linear regression analysis in GenStat 13th Edition (VSN International, 

Hertfordshire, UK). 

3.2.2 SHAM matrix assays 

The assay procedure was carried out as described above, but with a single isolate per plate. 

Spore suspensions were diluted to 5x 105 spores ml-1, and 50µl was added to each well. 

SHAM was dissolved in DMSO at 432 mg ml-1, then 10 µl ml-1 was added to sterile distilled 

water. Six serial dilutions were carried out at a dilution factor of 1/3, and 50µl was added to 

each well to give the following final concentrations: 0µg ml-1 (5041 distilled water only), then 

1.48 µg ml", 4.44 gg ml"', 13.3µg ml"1,40 gg ml"', 120 gg m1"', 360 gg ml-1 and 
1080 µg ml"'. Isolates SAC 09/943/186, SAC 09/943/73, SAC 09/943/115 and RS 219 were 

tested. Plates were incubated and read as described in section 3.2.1. 

The assay was then carried out for isolates R. s. 2310 4.2, R. s. 2313 4.2 and R. s. 2314 4.2. 

SHAM was dissolved in DMSO at 16 mg ml"', then 10 µl ml-1 was added to sterile distilled 

water, and six serial dilutions carried out at a dilution factor of 1/3, to give the following final 

concentrations: two rows at 0µg ml-1 (50µl distilled water only), then one row each at 0.123 

pg m1-1,0.494 pg ml-1,1.48 pg ml'', 4.44 µg ml-1,13.3 µg ml" and 40µg ml-1. A subsequent 

experiment tested pyraclostrobin sensitivity of isolates R. s. 2310 4.2, R. s. 2313 4.2, R. s. 2314 

4.2 and R. s. 2318 4.2 with the same concentrations of SHAM and fungicide, in order to 
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obtain EC50 values for the azoxystrobin-resistant isolates, since pyraclostrobin has greater 

intrinsic activity than azoxystrobin. 

3.2.3 DNA extraction 
Isolates QUB 30-10,788, K1124, Rs 9528.4, GKII 18-2-3, RS 219, RS 783, R. s. 2310 4.2, 

R. s. 2318 4.2, R. s. 2313 4.2 and R. s. 2314 4.2 were selected for DNA extraction and 

sequencing as they had a range of Qol sensitivities. 

Isolates were grown in Sabouraud liquid medium for ten days. Fungal material was harvested 

by filtration and freeze-dried. DNA was extracted by grinding for 45 seconds at 5 m/s in a 

FastPrep-24 homogeniser (MP Biomedicals, Ohio) with 7O0µ1 DNA extraction buffer (95m1 

2x TEN (400mM Trizma hydrochloride, 50mM EDTA, 500mM sodium chloride), 95m12% 

SDS, 0.39g phenanthroline monohydrate C18H8N-HZO (Sigma), 4. Og polyvinylpyrrolidone 

(Sigma), 9.5ml 1% ß-mercaptoethanol). Samples were incubated at 65°C for 20 minutes, 

350pl ice-cold ammonium acetate was added, samples incubated on ice for 20 minutes then 

centrifuged at 13200 rpm for 15 minutes. The supernatant was added to 900µl ice-cold 

isopropanol, incubated at room temperature for 15 minutes and centrifuged for 15 minutes. 

The supernatant was discarded, the pellet washed twice with 4O0µ170% ethanol, dried on a 

heat block at 65°C and re-suspended in 200µ1 sterile distilled water. DNA was quantified 

with a NanoDrop spectrophotometer (NanoDrop products, Detroit), then diluted to 20ng µl"1 

in sterile distilled water. 

3.2.4 Target site sequence analysis 

A PCR reaction was carried out using Red Hot Taq (ABgene, Epsom, UK) according to 

manufacturer's instructions, with 1.5mM MgC12,0.2µM dNTPs, 0.2µM primers and 2ng µl"1 

template, with cytochrome b primers Forwards 1 and Reverse 1 (Table 3.2). Primers were 

designed in Vector NTI (Invitrogen Corporation), based on the cytochrome b sequence of R. 

secalis isolate Syl-14. The PCR programme comprised 2 minutes at 94°C; followed by 40 

cycles of 30 seconds at 94°C, 1 minute at 58°C and 90 seconds at 72°C; followed by 5 

minutes at 72°C. 
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Table 3.2. Primers used for amplification and expression analysis of cytochrome b and AOX genes of R. 

secalis 

Gene Primer name Primer sequence 

cytochrome b Forward 1 5'-CGATTCACCACAACCATCTAATCTAAG-3' 

Reverse 1 5'-AAGGCGAAGAATAGTCTATTGACGTGTT-3' 

AOX Forward 1 5'-GAACACCAGGTTTGACTCCCAATCAT-3' 

Reverse 1 5'-CATCTTAGTCTTTCCGTCGTGTTCAT-3' 

Expression F 5'-TCTCCACAACACCTCGAACACAACTA-3' 

Expression R 5'-AAGGCTTGGTTTCCGTAACAGCATT-3' 

ß-tubulin 
Expression F 5'-GTGCAGTCACTGTTCCAGAGTTGACC -3' (RT-qPCR 
Expression R 5'-GCGGTTTGGACATTGGTGGG -3' 

endogenous control) 

Products were purified using the Wizard SV Gel and PCR Clean-Up System (Promega, 

Wisconsin, USA), eluting into 50µl sterile distilled water. Purified PCR products were ligated 

into the pGEM-t Easy plasmid vector (Promega) using T4 DNA ligase (Promega) according 

to manufacturer's instructions. JM109 competent cells (Promega) were transformed 

according to manufacturer's instructions, using blue-white screening for plasmids with 

inserts. White transformant colonies were suspended in 50µl sterile distilled water. PCR 

reactions to screen colonies were set up as described above, with 10% volume transformant 

suspension as template. The PCR programme started with 2.5 minutes at 94°C to lyse the 

bacterial cells, followed by 40 cycles of 30 seconds at 94°C, 60 seconds at 58°C and 60 

seconds at 72°C, followed by 5.5 minutes at 72°C. One transformant for each PCR product 

was selected for sequencing. The bacterial suspension was added to 5ml LB broth and 

incubated overnight at 37°C with shaking. Plasmid DNA was then extracted and purified 

using the GeneElute (Sigma) or QIASpin (Qiagen) mini-prep kits, according to pack 

instructions. DNA samples were sequenced by Eurofins MWG (Germany). Sequences were 

assembled in the ContigExpress module of Vector NTI (Invitrogen Corporation), vector 

sequence was removed and amino acid sequences predicted in Vector NTI, and sequences 

aligned using the ClustalW algorithm implemented in the AlignX module of Vector NTI. 
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3.2.5 AOX sequence analysis 

A text search was carried out for A OX and "Alternative Oxidase" on GenBank 

(http: //www. ncbi. nlm. nih. gov/genbank/), within the Leotiomycetes (Goodwin 2002), 

followed by BLAST cross-searching. A tBLASTn search of the translated S. sclerotiorum, B. 

cinerea and B. graminis f. sp. tritici sequences was carried out against the R. secalis genome 

currently in preparation at the Scottish Crop Research Institute (Anna Avrova, personal 

communication). 

The R. secalis A OX gene was amplified from genomic DNA, extracted as described in section 

3.2.3, for isolates K1124, RS 783 and SCRI 13-13. Additionally, for isolates KI 124 and RS 

783, AOX was amplified from cDNA, synthesised as described in section 3.2.6. PCR 

reactions were carried out using Easy-A High-Fidelity PCR Cloning Enzyme (Stratagene, 

California, USA) according to manufacturer's instructions, with 50 ng genomic or 1% cDNA 

template. The PCR programme comprised 2 minutes at 95°C; followed by 30 cycles of 40 

seconds at 95°C, 30 seconds at 65°C and 2 minutes at 72°C; followed by 7 minutes at 72°C. 

PCR was carried out with primers AOX Forward 1 and Reverse 1 (Table 3.2). Primers were 

designed based on the AOX BLAST match from the R. secalis genome (Section 3.3.4) in 

Vector NTI (Invitrogen Corporation). PCR products were purified, cloned and sequenced as 

described in section 3.2.4. 

Sequences were assembled in the ContigExpress module of Vector NTI (Invitrogen 

Corporation), vector sequence was removed and amino acid sequences predicted in Vector 

NTI, and sequences aligned using the ClustaiW and MUSCLE algorithms implemented in 

BioEdit (Hall 1999). The R. secalis AOX predicted amino acid sequence was analysed for 

possible mitochondrial import using MitoProt II (Claros and Vincens 1996). 

Phylogenetic analyses were carried out with R. secalis AOX sequences and the AOX 

sequences from GenBank, along with AOX sequences from selected fungal genomes, as 

shown in Figure 3.8 - Figure 3.10. tBLASTn searches were carried out on fungal genomes 

using the predicted protein sequences of both C. albicans AOX paralogues as query 

sequences. Amino acid sequences were aligned using the ClustalW algorithm implemented in 

BioEdit (Hall 1999). Corresponding alignments of coding nucleotide sequences were created 
in PAL2NAL (Suyama et al. 2006). Neighbour joining and maximum parsimony trees were 

calculated from the PAL2NAL alignment of coding DNA sequences in PAUP* 4. Obeta 
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(Swofford 1991), with 100 bootstrap replicates. A maximum likelihood tree was 

reconstructed from the coding DNA sequence alignment using the CodeML programme 

implemented in TOPALi, with the GTR+I+G substitution model selected according to the 

Akaike Information Criterion, and 1000 bootstrap runs. Bayesian analysis was carried out in 

MrBayes, with the GTR+I+G model, and other parameters on default settings including a 

random starting tree. A two-chain MCMC analysis was carried out for 500,000 generations, 

sampling every 100 generations, with a bum-in of 1250 samples, and a 50% strict consensus 

tree was constructed. 

3.2.6 AOX expression analysis 
To investigate constitutive and induced expression, isolates 788, K1124, RS 783, R. s. 2310 

4.2, R. s. 2313 4.2, R. s. 2314 4.2 and R. s. 2318 4.2 were selected to cover a range of QoI 

sensitivities. Isolates were grown in 100ml Sabouraud liquid medium at 2.5 x 104 spores ml-1 

in an orbital shaker at 150 rpm at 20°C, with two flasks per isolate. Azoxystrobin sensitivity 

assays with 0 and 40 µg ml-1 SHAM were set up as described above using the same inoculum. 

After seven days, 10µl of 10mg ml-1 azoxystrobin in acetone, giving a final azoxystrobin 

concentration of 1µg ml"', was added to one flask of each isolate, and l0µ1 of acetone only 

was added to the other flask. The cultures were harvested three days later. 

Induced expression was then measured over a shorter time after fungicide addition. To 

investigate induced expression, it was not possible to add a concentration of azoxystrobin that 

would inhibit cytochrome b in isolates carrying the G143A substitution without killing all 

other isolates, so four pre-2008 isolates with a range of QoI sensitivities were used. Isolates 

788, KI 124, R 9528.4 and RS 783 were grown as described. After seven days, one flask per 

isolate was harvested before adding azoxystrobin. The remaining flasks were harvested 30 

minutes, 1 hour, 2 hours and 4 hours after adding the fungicide. 

Fungal material was harvested by vacuum filtration, immediately placed into liquid nitrogen 

then stored at -80°C before freeze-drying. RNA extraction was carried out with TRIzol 

Reagent (Invitrogen, California, USA), according to manufacturer's instructions, using a 

tissue homogeniser for 2 minutes, with two phase separation steps, and resuspending the 

pellet in 50µl TE. An equal volume of 8M lithium chloride was added, the mixture was 

incubated overnight at 4°C, then centrifuged at 4°C for 30 minutes and the supernatant 

discarded. The RNA pellet was washed with 70% ethanol, dried at room temperature, 
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resuspended in RNase-free water and stored at -80°C. The RNA was treated with the TURBO 

DNA-free Kit (Applied Biosystems, California, USA). cDNA was synthesised with the 

Superscript III first-strand synthesis system (Invitrogen, California, USA). End-point PCRs 

were carried out with Red Hot Taq as described in section 3.2.4 with AOX primers 

Expression F and Expression R (Table 3.2) to check for genomic DNA contamination. 

Quantitative PCR was carried out using SYBR Green JumpStart Taq ReadyMix (Sigma), in 

25µ1 reactions with 0.25µM primers and 0.2% cDNA template, with the 7500 Real Time 

PCR System (Applied Biosystems). AOX and ß-tubulin primers Expression F and Expression 

R were used (Table 3.2), withß-tubulin used as the endogenous control. Primers were 

designed in Vector NTI (Invitrogen Corporation), based on the AOX BLAST match from the 

R. secalis genome (Section 3.3.4) and an R. secalis ß-tubulin sequence provided by Bart 

Fraaije (unpublished data). The PCR cycle comprised 2 minutes at 95°C; followed by 40 

cycles of 15 seconds at 95°C, 30 seconds at 58°C and 36 seconds at 72°C at which point the 

reading was taken; followed by a dissociation cycle of 15 seconds at 95°C, 1 minute at 60°C 

and 15 seconds at 95°C. 

Results were analysed using the 7500 System software (Applied Biosystems). Relative gene 

expression was calculated as 2-6'°CT (Livak and Schmittgen 2001), where CT is the threshold 

cycle number and At CT is the target CT relative to the endogenous control gene and a 

calibrator sample. In this case ß-tubulin was used as the endogenous control gene, and isolate 

788 without fungicide was the calibrator sample for each experiment. Three technical 

replicates were carried out for each reaction. 

SHAM potentiation was calculated as 
PSHAM = 

ECSO(Azoxystrobin)afone 
(Wood and Hollomon 2003). ECsO(Azoxystrobin)+4o µg MI-1SHAM 

Correlation of SHAM potentiation with AOX expression was tested by least squares linear 

regression analysis in GenStat 13th Edition (VSN International, Hertfordshire, UK). 
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3.3 Results 

3.3.1 Sensitivity testing 

A full list of azoxystrobin EC50 values is given in Appendix 1. For pre-2008 isolates, EC50 

values obtained without SHAM show considerable variability, ranging from 0.0135 to 2.58 

µg ml-1. The EC50 values obtained with 40 . tg ml-' SHAM were generally lower than those 

without AOX inhibition, and 90% are within the range 0.015 to 0.15 µg ml-' (Figure 3.1). 

There was a significant (P<0.01) positive correlation between azoxystrobin EC50 values with 

and without 40 . tg ml-' SHAM. However, on closer examination of the data, the correlation 

was significant (P<0.01) among those isolates with azoxystrobin EC50 values less than 0.06 

µg ml-' without SHAM, but not significant (P>0.1) among those isolates with higher EC5o 

values (Figure 3.1). Of the 2008 isolates, R. s. 2310 4.2 and R. s. 2318 4.2 had azoxystrobin 
EC50 values within the ranges previously seen with and without 40 µg ml"' SHAM (Figure 

3.1), whereas isolates R. s. 2313 4.2 and R. s. 2314 4.2 did not show a 50% reduction in 

growth even at the maximum tested concentration of 100µg ml-' azoxystrobin, with 0 or 

40µg ml-1 SHAM, and therefore could not be included in Figure 3.1. 
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Figure 3.1. Scatter plots showing EC50 for azoxystrobin with 40 µg ml-' SHAM against EC50 values for 

azoxystrobin without SHAM for R. secalis isolates. Black: isolates with azoxystrobin EC50 without SHAM 

less than 0.06 µg ml-'; white: isolates with azoxystrobin EC50 without SHAM greater than 0.06 µg ml-'; 

grey, isolates selected for sequence analysis. 1: 788; 2: R. s. 2310 4.2; 3: RS 219; 4: R. s. 2318 4.2; 5: GKII 

18-2-3; 6: R9528.4; 7: KI 124; 8: RS 783. Bold numbers indicate isolates used in the 4-hour AOX 

expression analysis experiment. 

3.3.2 SHAM matrix assays 

As SHAM concentration increased from 0 to 120 pg ml-1, the azoxystrobin EC50 of isolate 

788 remained in the range 0.014 to 0.030 µg ml-' (Figure 3.2 a and e), whereas the 

azoxystrobin EC50 of isolates K1124 and RS 783 decreased from 0.094 to 0.017 . ig ml-' 

(Figure 3.2 b and e), and from 2.54 to 0.049 µg ml-' (Figure 3.2 c and e), respectively. Isolate 

R9528.4 was intermediate between isolates 788 and K1124 (Figure 3.2 e). Above 

120 µg ml-1, SHAM itself was toxic, with EC50s for SHAM alone ranging from 140-470 µg 

ml-1 (Figure 3.2 d). 
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Figure 3.2. (a-c) Dose-response curves of fungal growth against azoxystrobin concentration, and 

azoxystrobin ECso values, for three R. secalis isolates, with a range of SHAM concentrations: (a) Isolate 

788; (b) K1124; (c) RS 783. Red: 0g ml"' SHAM, orange: 1.48 gg ml-1; yellow, 4.44 gg ml''; green, 13.3 µg 

ml'; blue, 40 µg ml-'; dark blue, 120 µg ml''; purple, 360 pg ml-'; grey, 1080 µg ml-'. (d) Dose-response 

curves of fungal growth against SHAM without Qol fungicide. Red: isolate 788; blue: K1124; green: 

9528.4; yellow: RS 783. (e) Comparison of azoxystrobin EC50 values for different SHAM concentrations; 

isolates as in (d). 
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Of the 2008 isolates, R. s. 2310 4.2 had azoxystrobin EC50 values of around 0.02-0.04 pg ml-' 

regardless of SHAM concentration. Isolates R. s. 2313 4.2 and R. s. 2314 4.2 did not show 

sufficiently reduced growth at the azoxystrobin concentrations tested for EC50 values to be 

calculated (data not shown). Isolate R. s. 2310 4.2 had pyraclostrobin EC50 values of around 

0.01-0.03 µg ml"' regardless of SHAM concentration (Figure 3.3a). Pyraclostrobin EC50 of 

isolate R. s. 2318 4.2 decreased from 0.145 to 0.026 µg ml"' as SHAM concentrations 

increased from 0 to 40µg ml-' (Figure 3.3b). Isolate R. s. 2314 4.2 had EC50 values of 1.5-2.5 

µg ml-1 regardless of SHAM concentration (Figure 3.3c), as did isolate R. s. 2313 4.2 with the 

exception of two anomalous values (Figure 3.3d). 
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Figure 3.3. Dose-response curves of fungal growth against pyraclostrobin concentration for four R. secalis 

isolates with a range of SHAM concentrations: (a) Dose-response curves for isolate R. s. 2310 4.2; (b) 

Dose-response curves for isolate R. s. 2318 4.2; (c) Dose-response curves for isolate R. s. 2314 4.2; (d) 

Dose-response curves for isolate R. s. 2313 4.2; with a range of SHAM concentrations: Red: 0 µg ml-1; 

orange: 0.0549 pg ml-'; yellow, 0.165 µg ml''; green, 0.494 µg ml"'; blue, 1.48 µg ml'; dark blue, 4.44 µg 

ml'; purple, 13.3 µg ml"; black, 40 µg ml-'. 
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3.3.3 Target site sequence analysis 
A 1118-base pair fragment of cytochrome b, encompassing base pairs 54-1171 of the 

genomic sequence, was amplified from the seven pre-2008 isolates. There were no 
differences in predicted amino acid sequence (Appendix 2). Of the 2008 French isolates, R. s. 

2310 4.2 and R. s. 2318 4.2 had identical predicted amino acid sequences to the pre-2008 
isolates, whereas R. s. 2313 4.2 and R. s. 2314 4.2 carried the G143A amino acid substitution 
(Figure 3.4), due to the substitution of a cytosine in place of a guanine at nucleotide position 
428 (Figure 3.5). 
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1 6U 
Syl-14 (1) MRIFKSHPLLKLVNSYIIDSPQPSNLSYLWNFGSLLAVCLAIQIVTGVTLAMHYNPSILE 
R. s. 2310 4.2 (1) ----------------------------------------------------HYNPSILE 
R. s. 2313 4.2 (1) ----------------------------------------------------HYNPSILE 
R. ß. 2314 4.2 (1) ----------------------------------------------------HYNPSILE 
R. s. 2318 4.2 (1) ----------------------------------------------------HYNPSILE 

61 120 
Syl-14 (61) AFNSIEHIMRDVNNGWLIRYLHSNTASFFFFLVYLHMGRGLYYGSYRAPRTLVWTIGTFI 
R. s. 2310 4.2 (9) AFNSIEHIMRDVNNGWLIRYLHSNTASFFFFLVYLHMGRGLYYGSYRAPRTLVWTIGTFI 
R. s. 2313 4.2 (9) AFNSIEHIMRDVNNGWLIRYLHSNTASFFFFLVYLHMGRGLYYGSYRAPRTLVWTIGTFI 
R. s. 2314 4.2 (9) AFNSIEHIMRDVNNGWLIRYLHSNTASFFFFLVYLHMGRGLYYGSYRAPRTLVWTIGTFI 
R. s. 2318 4.2 (9) AFNSIEHIMRDVNNGWLIRYLHSNTASFFFFLVYLHMGRGLYYGSYRAPRTLVWTIGTFI 

121 180 
Syl-14 (121) FILMIVTAFLGYVLPYGQMSL TVITNLMSAIPWIGQDIVEFIWGGFSVNNATLNRFF 
R. s. 2310 4.2 (69) FILMIVTAFLGYVLPYGQMSL TVITNLMSAIPWIGQDIVEFIWGGFSVNNATLNRFF 
R. s. 2313 4.2 (69) FILMIVTAFLGYVLPYGQMSL TVITNLMSAIPWIGQDIVEFIWGGFSVNNATLNRFF 
R. s. 2314 4.2 (69) FILMIVTAFLGYVLPYGQMSL TVITNLMSAIPWIGQDIVEFIWGGFSVNNATLNRFF 
R. s. 2318 4.2 (69) FILMIVTAFLGYVLPYGQMSL TVITNLMSAIPWIGQDIVEFIWGGFSVNNATLNRFF 

181 240 
Syl-14 (181) ALHFVLPFILAALVLMHLIALHDSAGSGNPLGVSGNYDRLPFAPYFLFKDLITIFLFIFV 
R. s. 2310 4.2 (129) ALHFVLPFILAALVLMHLIALHDSAGSGNPLGVSGNYDRLPFAPYFLFKDLITIFLFIFV 
R. s. 2313 4.2 (129) ALHFVLPFILAALVLMHLIALHDSAGSGNPLGVSGNYDRLPFAPYFLFKDLITIFLFIFV 

R. s. 2314 4.2 (129) ALHFVLPFILAALVLMHLIALHDSAGSGNPLGVSGNYDRLPFAPYFLFKDLITIFLFIFV 
R. s. 2318 4.2 (129) ALHFVLPFILAALVLMHLIALHDSAGSGNPLGVSGNYDRLPFAPYFLFKDLITIFLFIFV 

241 300 
Syl-14 (241) LSLFVFFMPNVLGDSENYVVANPMQTPPAIVPEWYLLPFYAILRSIPNKLLGVIAMLSAI 
R. s. 2310 4.2 (189) LSLFVFFMPNVLGDSENYVVANPMQTPP-------------------------------- 
R. s. 2313 4.2 (189) LSLFVFFMPNVLGDSENYVVANPMQTPP-------------------------------- 

R. s. 2314 4.2 (189) LSLFVFFMPNVLGDSENYVVANPMQTPP-------------------------------- 
R. s. 2318 4.2 (189) LSLFVFFMPNVLGDSENYVVANPMQTPP -------------------------------- 

301 360 
Syl-14 (301) LVILAMPFTDLSRSRGIQFRPLSKIAFYIFVANFLILMVLGAKHVESPFIEFGQISTVIY 

R. s. 2310 4.2 (217) ------------------------------------------------------------ 
R. s. 2313 4.2 (217) ------------------------------------------------------------ 
R. s. 2314 4.2 (217) ------------------------------------------------------------ 
R. s. 2318 4.2 (217) ------------------------------------------------------------ 

361 397 
Syl-14 (361) FSHFLIIVPLVSLIENSLIDLNTSIDYSSPSVLEKA- 
R. s. 2310 4.2 (217) ------------------------------------- 
R. s. 2313 4.2 (217) ------------------------------------- 
R. s. 2314 4.2 (217) ------------------------------------- 
R. s. 2318 4.2 (217) ----------------------------------- 

Figure 3.4. Translated aligned sequences of cytochrome b from R. secalis isolates Syl-14 (Torriani, 2004), 

R. s. 2310 4.2, R. s. 2318 4.2, R. s. 2313 4.2 and R. s. 2314 4.2. Position 143 is highlighted. 

93 



Syl-14 (1) ATGAGAATATTTAAGAGTCATCCTTTATTAAAATTGGTTAATTCCTATATAATCGATTCACCACAACCATCTAATCTAAGCTAC 
R. s. 2310 4.2 (1) ------------------------------------------------------------------------------------ 
R. s. 2313 4.2 (1) ------------------------- ---------------------------------------------------------- 
R. s. 2314 4.2 (1) ------------------------------------ ---------------- ------------ 
R. s. 2318 4.2 (1) ------------------------------------------------------------------------------------ 

Syl-14 (85) TTATGAAATTTTGGTTCTTTATTAGCCGTTTGTTTAGCTATACAAATAGTTACAGGTGTAACATTGGCTATGCATTACAACCCT 
R. s. 2310 4.2 (1) ----------------------------------------------------------------------TGCATTACAACCCT 
R. s. 2313 4.2 (1) ----------------------------------------------------------------------TGCATTACAACCCT 
R. s. 2314 4.2 (1) ----------------------------------------------------------------------TGCATTACAACCCT 
R. s. 2318 4.2 (1) ----------------------------------------------------------------------TGCATTACAACCCT 

Sy1-14 (169) AGTATATTAGAAGCGTTTAATTCCATAGAACATATTATGCGTGATGTAAATAACGGATGATTAATACGTTACTTACATAGTAAC 

R. s. 2310 4.2 (15) AGTATATTAGAAGCGTTTAATTCCATAGAACATATTATGCGTGATGTAAATAACGGATGATTAATACGTTACTTACATAGTAAC 
R. s. 2313 4.2 (15) AGTATATTAGAAGCGTTTAATTCCATAGAACATATTATGCGTGATGTAAATAACGGATGATTAATACGTTACTTACATAGTAAC 
R. s. 2314 4.2 (15) AGTATATTAGAAGCGTTTAATTCCATAGAACATATTATGCGTGATGTAAATAACGGATGATTAATACGTTACTTACATAGTAAC 
R. s. 2318 4.2 (15) AGTATATTAGAAGCGTTTAATTCCATAGAACATATTATGCGTGATGTAAATAACGGATGATTAATACGTTACTTACATAGTAAC 

Syl-14 (253) ACTGCATCTTTTTTCTTCTTCCTAGTGTATTTACACATGGGTAGAGGTTTATATTATGGGTCATACAGAGCACCTAGAACATTA 

R. s. 2310 4.2 (99) ACTGCATCTTTTTTCTTCTTCCTAGTGTATTTACACATGGGTAGAGGTTTATATTATGGGTCATACAGAGCACCTAGAACATTA 

R. s. 2313 4.2 (99) ACTGCATCTTTTTTCTTCTTCCTAGTGTATTTACACATGGGTAGAGGTTTATATTATGGGTCATACAGAGCACCTAGAACATTA 
R. s. 2314 4.2 (99) ACTGCATCTTTTTTCTTCTTCCTAGTGTATTTACACATGGGTAGAGGTTTATATTATGGGTCATACAGAGCACCTAGAACATTA 

R. s. 2318 4.2 (99) ACTGCATCTTTTTTCTTCTTCCTAGTGTATTTACACATGGGTAGAGGTTTATATTATGGGTCATACAGAGCACCTAGAACATTA 

Syl-14 (337) GTATGAACAATAGGTACATTTATATTCATATTAATGATCGTTACAGCATTCTTGGGTTATGTGCTTCCTTATGGACAGATGTCT 

R. S. 2310 4.2 (183) GTATGAACAATAGGTACATTTATATTCATATTAATGATCGTTACAGCATTCTTGGGTTATGTGCTTCCTTATGGACAGATGTCT 

R. $. 2313 4.2 (183) GTA°'?. nGTACATTTATATTCATATTAATGATCGTTACAGCATTCTTGGGTTATGTGCTTCCTTATGGACAGATGTCT 
R. s. 2314 4.2 (183) G°' ; TACATTTATATTCATATTAATGATCGTTACAGCATTCTTGGGTTATGTGCTTCCTTATGGACAGATGTCT 
R. s. 2318 4.2 (183) G1 ; TACATTTATATTCATATTAATGATCGTTACAGCATTCTTGGGTTATGTGCTTCCTTATGGACAGATGTCT 

yvy 
Syl-14 (421) TT: G l, CAGTTATAACTAATCTTATGAGTGCTATACCTTGAATAGGTCAAGACATTGTTGAGTTTATCTGAGGGGGT 

R. s. 2310 4.2 (267) TTI,. G :. CAGTTATAACTAATCTTATGAGTGCTATACCTTGAATAGGTCAAGACATTGTTGAGTTTATCTGAGGGGGT 
R. s. 2313 4.2 (267) TTAT, ýi, GCIGC: CACAGTTATAACTAATCTTATGAGTGCTATACCTTGAATAGGTCAAGACATTGTTGAGTTTATCTGAGGGGGT 

R. s. 2314 4.2 (267) TTATGAGCTGCCACAGTTATAACTAATCTTATGAGTGCTATACCTTGAATAGGTCAAGACATTGTTGAGTTTATCTGAGGGGGT 

R. s. 2318 4.2 (267) TTATGAGlTGCCACAGTTATAACTAATCTTATGAGTGCTATACCTTGAATAGGTCAAGACATTGTTGAGTTTATCTGAGGGGGT 

Syl-14 (505) TTTTCTGTTAATAATGCAACTTTAAATAGATTCTTTGCATTACATTTTGTTTTACCGTTTATATTAGCTGCATTAGTATTAATG 
R. s. 2310 4.2 (351) TTTTCTGTTAATAATGCAACTTTAAATAGATTCTTTGCATTACATTTTGTTTTACCGTTTATATTAGCTGCATTAGTATTAATG 

R. s. 2313 4.2 (351) TTTTCTGTTAATAATGCAACTTTAAATAGATTCTTTGCATTACATTTTGTTTTACCGTTTATATTAGCTGCATTAGTATTAATG 

R. s. 2314 4.2 (351) TTTTCTGTTAATAATGCAACTTTAAATAGATTCTTTGCATTACATTTTGTTTTACCGTTTATATTAGCTGCATTAGTATTAATG 

S. s. 2318 4.2 (351) TTTTCTGTTAATAATGCAACTTTAAATAGATTCTTTGCATTACATTTTGTTTTACCGTTTATATTAGCTGCATTAGTATTAATG 

Sy1-14 (589) CACTTAATAGCCTTACACGATAGTGCAGGGTCAGGTAATCCTTTAGGTGTATCAGGTAATTACGATAGATTACCTTTTGCTCCT 
R. s. 2310 4.2 (435) CACTTAATAGCCTTACACGATAGTGCAGGGTCAGGTAATCCTTTAGGTGTATCAGGTAATTACGATAGATTACCTTTTGCTCCT 

R. s. 2313 4.2 (435) CACTTAATAGCCTTACACGATAGTGCAGGGTCAGGTAATCCTTTAGGTGTATCAGGTAATTACGATAGATTACCTTTTGCTCCT 

R. s. 2314 4.2 (435) CACTTAATAGCCTTACACGATAGTGCAGGGTCAGGTAATCCTTTAGGTGTATCAGGTAATTACGATAGATTACCTTTTGCTCCT 
R. s. 2318 4.2 (435) CACTTAATAGCCTTACACGATAGTGCAGGGTCAGGTAATCCTTTAGGTGTATCAGGTAATTACGATAGATTACCTTTTGCTCCT 

Syl-14 (673) TACTTCTTATTCAAAGATTTAATAACTATCTTTTTATTTATCTTTGTATTAAGTTTATTCGTATTCTTCATGCCTAACGTATTA 

R. s. 2310 4.2 (519) TACTTCTTATTCAAAGATTTAATAACTATCTTTTTATTTATCTTTGTATTAAGTTTATTCGTATTCTTCATGCCTAACGTATTA 

S. s. 2313 4.2 (519) TACTTCTTATTCAAAGATTTAATAACTATCTTTTTATTTATCTTTGTATTAAGTTTATTCGTATTCTTCATGCCTAACGTATTA 

S. s. 2314 4.2 (519) TACTTCTTATTCAAAGATTTAATAACTATCTTTTTATTTATCTTTGTATTAAGTTTATTCGTATTCTTCATGCCTAACGTATTA 

R. s. 2318 4.2 (519) TACTTCTTATTCAAAGATTTAATAACTATCTTTTTATTTATCTTTGTATTAAGTTTATTCGTATTCTTCATGCCTAACGTATTA 

Syl-14 (757) GGTGATAGTGAAAATTACGTTGTAGCTAACCCTATGCAAACTCCACCTGCGATAGTTCCGGAGTGATATTTACTACCTTTCTAT 

R. s. 2310 4.2 (603) GGTGATAGTGAAAATTACGTTGTAGCTAACCCTATGCAAACTCCACCT------------------------------------ 

5. s. 2313 4.2 (603) GGTGATAGTGAAAATTACGTTGTAGCTAACCCTATGCAAACTCCACCT------------------------------------ 

R. s. 2314 4.2 (603) GGTGATAGTGAAAATTACGTTGTAGCTAACCCTATGCAAACTCCACCT------------------------------------ 

R. s. 2318 4.2 (603) GGTGATAGTGAAAATTACGTTGTAGCTAACCCTATGCAAACTCCACCT------------------------------------ 

Syl-14 (841) GCTATATTAAGATCTATACCTAACAAATTATTAGGTGTTATAGCTATGCTTAGTGCTATATTAGTTATATTAGCTATGCCATTT 

Syl-14 (925) ACAGATTTAAGTAGATCTAGAGGTATACAATTTAGACCTTTAAGTAAAATAGCTTTTTATATTTTTGTTGCTAATTTCTTAATA 

Syl-14 (1009) TTAATGGTGTTAGGTGCTAAACACGTTGAATCACCATTCATAGAATTTGGACAAATAAGTACCGTAATATATTTCTCACACTTT 

Syl-14 (1093) TTAATCATAGTGCCTTTGGTTTCTTTAATAGAAAACAGTTTAATAGATTTAAACACGTCAATAGACTATTCTTCGCCTTCCGTT 

Syl-14 (1177) TTAGAAAAAGCGTAA (1191) 

Figure 3.5. Aligned DNA sequences of cytochrome b from R. secalis isolates Syl-14(Torriani, 2004), R. s. 

2310 4.2, R. s. 2318 4.2, R. s. 2313 4.2 and R. s. 2314 4.2. Arrows indicate codon 143. 
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3.3.4 AOX sequence analysis 

AOX sequences for S. sclerotiorum, B. cinerea and B. graminis f. sp. hordei were found on 

GenBank. A tBLASTn search of the predicted protein sequences against the R. secalis initial 

genome contigs gave the same three significant matches for each query sequence. The three 

fragments were all on one contig and appeared to be from three exons, separated by two 

introns. Genomic and cDNA sequences from isolates K1124 and RS 783 confirmed the 

predicted introns, with no genomic sequence differences between the three isolates (Figure 

3.6). The first intron, between base pairs 251-307, is present in R. secalis and predicted in S. 

sclerotiorum, B. cinerea and B. graminis f. sp. hordei. A second predicted intron in S. 

sclerotiorum and B. cinerea is present between base pairs corresponding to 650-651 of the R. 

secalis gene, whereas a second intron in R. secalis is situated between base pairs 874-928 

(Figure 3.7). 

In a HMMER3 search of the Pfam protein families databases with the R. secalis predicted 

amino acid sequence, the Pfam A family "Alternative oxidase" as the only significant match, 

with an E-value of 3.1 e"87. All the highly conserved regions identified by Berthold et al. 
(2000) are present, except the "LET" region comprises the fungal variant "LES" (Figure 3.7). 

Analysis with MitoProt II gave 0.9903% probability of the R. secalis AOX predicted peptide 
being mitochondrially imported, with a predicted cleavage site at residue 72,11 base pairs 
downstream of the predicted site in S. sclerotiorum, B. cinerea and B. graminis f. sp. hordes 

(Figure 3.7). 
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13-13 Genomic (1)ATGTATGTCGCAAGGGTATCAACAAAGCTTCAACTCTCTAAGCAATCTGCTGCACAGCTCTCGAGAGCAGTGACTACTTGCTCCCAA 
K1124 Genomic (1)ATGTATGTCGCAAGGGTATCAACAAAGCTTCAACTCTCTAAGCAATCTGCTGCACAGCTCTCGAGAGCAGTGACTACTTGCTCCCAA 
K1124 cDNA (1)ATGTATGTCGCAAGGGTATCAACAAAGCTTCAACTCTCTAAGCAATCTGCTGCACAGCTCTCGAGAGCAGTGACTACTTGCTCCCAA 
RS 783 Genomic (1)ATGTATGTCGCAAGGGTATCAACAAAGCTTCAACTCTCTAAGCAATCTGCTGCACAGCTCTCGAGAGCAGTGACTACTTGCTCCCAA 
RS 783 cDNA (1) ATGTATGTCGCAAGGGTATCAACAAAGCTTCAACTCTCTAAGCAATCTGCTGCACAGCTCTCGAGAGCAGTGACTACTTGCTCCCAA 

13-13 Genomic (88)TGCCATGGAGGCTCAACGAACGCAGCAGGTTTTCGTTTGACAGCTGCAC)TCTACAATCGCGCCGCCAGTTCTCCACAACACCTCGA 
K1124 Genomic (88)TGCCATGGAGGCTCAACGAACGCAGCAGGTTTTCGTTTGACAGCTGCACIJTCTACAATCGCGCCGCCAGTTCTCCACAACACCTCGA 
K1124 cDNA (88)TGCCATGGAGGCTCAACGAACGCAGCAGGTTTTCGTTTGACAGCTGCAC$TCTACAATCGCGCCGCCAGTTCTCCACAACACCTCGA 
RS 783 Genomic (88)TGCCATGGAGGCTCAACGAACGCAGCAGGTTTTCGTTTGACAGCTGCAC&TCTACAATCGCGCCGCCAGTTCTCCACAACACCTCGA 
RS 783 cDNA (88)TGCCATGGAGGCTCAACGAACGCAGCAGGTTTTCGTTTGACAGCTGCACCTCTACAATCGCGCCGCCAGTTCTCCA. ". n"'^--CGA 

13-13 Genomis (175) ACACAACTACGAGATATATTCCCTTCTCCAGAACATGAGCATATCAAGAAGACCGAAGCCGCTTGGCCTCATCCI: 'GTAAGCCM 
K1124 Genomis (175) ACACAACTACGAGATATATTCCCTTCTCCAGAACATGAGCATATCAAGAAGACCGAAGCCGCTTGGCCTCATCC/. "GTAAGCC'# 
K1124 cDNA (175)ACACAACTACGAGATATATTCCCTTCTCCAGAACATGAGCATATCAAGAAGACCGAAGCCGCTTGGCCTCATCCA---- 
RS 783 Genomis (175) ACACAACTACGAGATATATTCCCTTCTCCAGAACATGAGCATATCAAGAAGACCGAAGCCGCTTGGCCTCATCC: °,! "'GTAAGCC= 
RS 783 cDNA (175) ACACAACTACGAGATATATTCCCTTCTCCAGAACATGAGCATATCAAGAAGACCGAAGCCGCTTGGCCTCATCCACC---------- 

13-13 Genomis (262) TACGATGGCGAAAAAATAAAGAATGATATCTACTACGCCCA 
K1124 Genomis (262) TACGATGGCGAAAAAATAAAGAATGATATCTACTACGCCCA 
K1124 cDNA (252) --------------------------------------------- ATACCATGGCGAAAAPATAAAGAATrATATCTACTACGCCCA 
RS 783 Genomic (262) TACGATGGCGAAAAAATAAAGAATGATATCTACTACGCCCA 
RS 783 cDNA (252)--------------------------------------------- ATACGATGGCGAAAAAATAAAGAATGATATCTACTACGCCCA 

13-13 Genomic (349) TCGAGAGCCCCAAGACTTCAGTGATAGAATAGCTCTCTTCATGGTTCGCTTACTTCGATTCGGAATGGATACAGCTACACGGTATAA 
K1124 GenomiC (349) TCGAGAGCCCCAAGACTTCAGTGATAGAATAGCTCTCTTCATGGTTCGCTTACTTCGATTCGGAATGGATACAGCTACACGGTATAA 
K1124 cDNA (294)TCGAGAGCCCCAAGACTTCAGTGATAGAATAGCTCTCTTCATGGTTCGCTTACTTCGATTCGGAATGGATACAGCTACACGGTATAA 

RS 783 Genomic (349) TCGAGAGCCCCAAGACTTCAGTGATAGAATAGCTCTCTTCATGGTTCGCTTACTTCGATTCGGAATGGATACAGCTACACGGTATAA 

RS 783 cDNA (294) TCGAGAGCCCCAAGACTTCAGTGATAGAATAGCTCTCTTCATGGTTCGCTTACTTCGATTCGGAATGGATACAGCTACACGGTATAA 

13-13 Genomis (436) GCACGACGTCGAAACGCCCAAGAAAATCGGTGACAGCAATGCTGTTACGGAAACCAAGCCTTACGCAATGTCCGAGAAGAAATGGCT 

K1124 Genomis (436) GCACGACGTCGAAACGCCCAAGAAAATCGGTGACAGCAATGCTGTTACGGAAACCAAGCCTTACGCAATGTCCGAGAAGAAATGGCT 

K1124 cDNA (381)GCACGACGTCGAAACGCCCAAGAAAATCGGTGACAGCAATGCTGTTACGGAAACCAAGCCTTACGCAATGTCCGAGAAGAAATGGCT 

RS 783 Genomic (436) GCACGACGTCGAAACGCCCAAGAAAATCGGTGACAGCAATGCTGTTACGGAAACCAAGCCTTACGCAATGTCCGAGAAGAAATGGCT 

RS 783 cDNA (381) GCACGACGTCGAAACGCCCAAGAAAATCGGTGACAGCAATGCTGTTACGGAAACCAAGCCTTACGCAATGTCCGAGAAGAAATGGCT 

13-13 Genomis (523) CATCCGAATGGTATTTCTCGAATCTGTTGCAGGTGTACCAGGGATGGTCGCTGGGATGGTTCGCCACCTTCATAGTTTGAGACGACT 

K1124 Genomis (523) CATCCGAATGGTATTTCTCGAATCTGTTGCAGGTGTACCAGGGATGGTCGCTGGGATGGTTCGCCACCTTCATAGTTTGAGACGACT 

K1124 cDNA (468) CATCCGAATGGTATTTCTCGAATCTGTTGCAGGTGTACCAGGGATGGTCGCTGGGATGGTTCGCCACCTTCATAGTTTGAGACGACT 

RS 783 Genomic (523)CATCCGAATGGTATTTCTCGAATCTGTTGCAGGTGTACCAGGGATGGTCGCTGGGATGGTTCGCCACCTTCATAGTTTGAGACGACT 
RS 783 cDNA (468)CATCCGAATGGTATTTCTCGAATCTGTTGCAGGTGTACCAGGGATGGTCGCTGGGATGGTTCGCCACCTTCATAGTTTGAGACGACT 

13-13 Genomic (610) CAAGAGAGACAATGGATGGATCGAAACACTACTGGAAGAAGCCTATAATGAGCGGATGCATCTTCTTACATTTCTCAAGATGGCAGA 

K1124 Genomis (610) CAAGAGAGACAATGGATGGATCGAAACACTACTGGAAGAAGCCTATAATGAGCGGATGCATCTTCTTACATTTCTCAAGATGGCAGA 

K1124 cDNA (555) CAAGAGAGACAATGGATGGATCGAAACACTACTGGAAGAAGCCTATAATGAGCGGATGCATCTTCTTACATTTCTCAAGATGGCAGA 

RS 783 Genomic (610) CAAGAGAGACAATGGATGGATCGAAACACTACTGGAAGAAGCCTATAATGAGCGGATGCATCTTCTTACATTTCTCAAGATGGCAGA 

RS 783 cDNA (555) CAAGAGAGACAATGGATGGATCGAAACACTACTGGAAGAAGCCTATAATGAGCGGATGCATCTTCTTACATTTCTCAAGATGGCAGA 

13-13 Genomic (697) GCCTGGCAAATTCATGAAGTTCATGATATTAGGAGCTCAGGGCGTTTTCTTCAACTCGATGTTTCTCTCCTACCTCATTTCGCCAAA 

K1124 Genomis (697)GCCTGGCAP. ATTCATGAAGTTCATGATATTAGGAGCTCAGGGCGTTTTCTTCAACTCGATGTTTCTCTCCTACCTCATTTCGCCAAA 

K1124 cDNA (642) GCCTGGCAAATTCATGAAGTTCATGATATTAGGAGCTCAGGGCGTTTTCTTCAACTCGATGTTTCTCTCCTACCTCATTTCGCCAAA 
RS 783 Genomis (697) GCCTGGCAAATTCATGAAGTTCATGATATTAGGAGCTCAGGGCGTTTTCTTCAACTCGATGTTTCTCTCCTACCTCATTTCGCCAAA 

RS 783 cDNA (642) GCCTGGCAAATTCATGAAGTTCATGATATTAGGAGCTCAGGGCGTTTTCTTCAACTCGATGTTTCTCTCCTACCTCATTTCGCCAAA 

13-13 Genomic (784) GACCTGTCACCGCTTTGTTGGCTATCTTGAGGAGGAGGCCGTCTTGACCTACTCACTTGCCATTCAAGATATTGAGGCTGGCAAGCT 

K1124 Genomis (784)GACCTGTCACCGCTTTGTTGGCTATCTTGAGGAGGAGGCCGTCTTGACCTACTCACTTGCCATTCAAGATATTGAGGCTGGCAAGCT 

K1124 cDNA (729)GACCTGTCACCGCTTTGTTGGCTATCTTGAGGAGGAGGCCGTCTTGACCTACTCACTTGCCATTCAAGATATTGAGGCTGGCAAGCT 

RS 783 Genomic (784) GACCTGTCACCGCTTTGTTGGCTATCTTGAGGAGGAGGCCGTCTTGACCTACTCACTTGCCATTCAAGATATTGAGGCTGGCAAGCT 

RS 783 cDNA (729)GACCTGTCACCGCTTTGTTGGCTATCTTGAGGAGGAGGCCGTCTTGACCTACTCACTTGCCATTCAAGATATTGAGGCTGGCAAGCT 

13-13 Genomic 
K1124 Genomic 

K1124 cDNA 
RS 783 Genomic 

RS 783 cDNA 

(871)0001 
(871)000A 
(816)000A----- 
(871)000A 
(816)000A----- 

AAATGGICTGATCCTAAATTTCAAATCCCT 
TGG, CTGATCCTAAATTTCAAAT000T 

AAATGGCCTGATCCTAAATTTCAAATCCCT 

13-13 GenomiC (958) GCGCTGGCAGTCAATTACTGGAAGATGCCTGAGGGGTCCCGAACTATGAAGGATCTCCTGCTGTACATCAGAGCAGATGAAGCCAAG 

K1124 Genomic (958)GCGCTGGCAGTCAATTACTGGAAGATGCCTGAGGGGTCCCGAACTATGAAGGATCTCCTGCTGTACATCAGAGCAGATGAAGCCAAG 

K1124 cDNA (850) GCGCTGGCAGTCAATTACTGGAAGATGCCTGAGGGGTCCCGAACTATGAAGGATCTCCTGCTGTACATCAGAGCAGATGAAGCCAAG 

RS 783 Genomis (958) GCGCTGGCAGTCAATTACTGGAAGATGCCTGAGGGGTCCCGAACTATGAAGGATCTCCTGCTGTACATCAGAGCAGATGAAGCCAAG 

RS 783 cDNA (850) GCGCTGGCAGTCAATTACTGGAAGATGCCTGAGGGGTCCCGAACTATGAAGGATCTCCTGCTGTACATCAGAGCAGATGAAGCCAAG 

13-13 Genomis (1045) CATCGCGAAGTCAACCATACACTTGGCAATCTTGACCAAAATGAAGATTCGAACCCATTCGTAAGCGAATACAAAGACACCGACCTC 

K1124 Genomis (1045) CATCGCGAAGTCAACCATACACTTGGCAATCTTGACCAAAATGAAGATTCGAACCCATTCGTAAGCGAATACAAAGACACCGACCTC 

K1124 cDNA (937) CATCGCGAAGTCAACCATACACTTGGCAATCTTGACCAAAATGAAGATTCGAACCCATTCGTAAGCGAATACAAAGACACCGACCTC 

RS 783 Genomis(1045)CATCGCGAAGTCAACCATACACTTGGCAATCTTGACCAAAATGAAGATTCGAACCCATTCGTAAGCGAATACAAAGACACCGACCTC 
RS 783 cDNA (937) CATCGCGAAGTCAACCATACACTTGGCAATCTTGACCAAAATGAAGATTCGAACCCATTCGTAAGCGAATACAAAGACACCGACCTC 

13-13 Genomic (1132) CCGCATCCAGGCAAGGGTATCGAGCATATTAAGCCGTTGGGATGGGAAAGAAAAGATGTCATTTGA 

K1124 Genomic (1132) CCGCATCCAGGCAAGGGTATCGAGCATATTAAGCCGTTGGGATGGGAAAGAAAAGATGTCATTTGA 

K1124 cDNA (1024) CCGCATCCAGGCAAGGGTATCGAGCATATTAAGCCGTTGGGATGGGAAAGAAAAGATGTCATTTGA 

RS 783 Genomis(1132) CCGCATCCAGGCAAGGGTATCGAGCATATTAAGCCGTTGGGATGGGAAAGAAAAGATGTCATTTGA 

RS 783 cDNA (1024) CCGCATCCAGGCAAGGGTATCGAGCATATTAAGCCGTTGGGATGGGAAAGAAAAGATGTCATTTGA 

Figure 3.6. Genomic sequence of AOX from R. secalis isolate 13-13, and genomic and cDNA sequences 

from isolates K1124 and RS 783. 
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Figure 3.7. Predicted amino acid sequences for AOX genes from Blumeria graminis f. sp. horde! (GenBank 

AF327336), Botrytis cinerea (Broad Institute genome, gene BC1G_05703.1), Sclerotinia sclerotiorum 

(Broad Institute genome, SS1G_02882.1) and R. secalis. Shaded residues are conserved across the four 

sequences. Highly conserved regions identified by Berthold et a/. (2000) are underlined; arrows indicate 

putative di-iron-binding sites. / indicates intron positions. Wavy underlining indicates predicted 

mitochondrial targeting regions. 
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Searches for A OX genes in a selection of fungal genomes found the sequences included in 

Figure 3.8. No AOX genes were found in the genomes of the other yeast species in the 

Genolevures database. Figure 3.8 shows the Neighbour joining tree. The 50% majority-rule 

consensus of most parsimonious trees was mostly compatible with but less resolved than the 

trees generated by other methods, with a 9-way basal polytomy in the filamentous 

ascomycetes (data not shown). Figure 3.9 shows the Maximum Likelihood phylogenetic tree. 

Bayesian analysis had reached stationarity after 500,000 generations, with the average 

standard deviation of split frequencies <0.01, the plot of log probability against generation 

time showing no apparent trend, and PRSF values in the range 1.000-1.040. The 50% 

majority-rule consensus tree of the maximum posterior probability tree set is shown in Figure 

3.10. Figure 3.11 shows the presence of AOX genes in sequenced yeast genomes, with gene 

loss and duplication events predicted based on the maximum likelihood AOX gene tree. 
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Dictyostelium discoideum 521891 
Batrachochybium dedrobatidis 320331 
Mucor circinelloides 75024' 
Cryptococcus neoformans CNAG 00162.22 
Laccaria bicolor LACBIDRAFT_3092242 
Coprinopsis cinerea CC 1G 10695.32 
Coprinopsis cinerea CC 1 G_03463.32 
Candida lusitaniae CLUG_02042.12 
Candida elongisporus LELG_03594.12 
Candida guillermondii PGUG 05793.12 
Candida parapsilosis CPAG_04301.12 
Candida parapsilosis CPAG_04302.12 
Candida tropicalis CTRG_03270.32 
Candida albicans CAWG00513.12 
Candida albicans CAWG00514.12 
Candida tropicalis CTRG_03271.32 
Pichia stipitis 673321 
Candida hansenii_DEHA0004378g3 
Yarrowia lipolytica YALI0D09933g3 
Yarrowia lipolytica YALIOE00814g3 
Neurospora crassa N0007953.42 
Fusarium graminearum FGSG_01342.32 
Neurospora crassa N0004874.12 
Magnaporthe oryzae MGG_12936.62 
Mycosphaerella graminicola 729181 
Aspergillus clavatus ACLA_0615602 
Stagonospora nodorum SNOG_03031.12 
Pyrenophora tritici-repentis PTRG_11607.12 
Aspergillus nidulans AN ID 02099.12 
Aspergillus terreus ATEG_059992 
Aspergillus niger fge 1 

_pm_C_40001982 Aspergillus fumigatus Afu2g050602 
Aspergillus clavatus ACLA_0895902 
Aspergillus oryzae A00900030003102 
Aspergillus flavus AFL2G_02670.22 
Aspergillus niger fge l 

_pg_C_40006482 Aspergillus terreus ATEG_074402 
Aspergillus oryzae A00900110000222 
Aspergillus flavus AFL2G_048292 
Blumeria graminis f. sp. hordeii AF3273364 
Rhynchosporium secalls 
Monilinia fructicola AAL245164 
Botrytis cinerea BC 1 G_05703.12 
Sclerotinia sclerotiorum SS 1 G_02882.12 

Figure 3.8. Neighbour-joining cladogram of coding DNA sequences of fungal AOX genes with 
Dictyostelium discoideum as an outgroup. 50% majority-rule consensus of 100 bootstrap replicates. Gene 

sources: 1. Joint Genome Initiative (http: //www. jgi. doe. gov/), 2. Broad Institute 

(http: //www. broadinstitute. org/scientific-community/data), 3. Genolevures (http: //www. genolevures. org/), 
4. GenBank (http: //www. ncbi. nlm. nih. gov/genbank/). Numbers at nodes indicate bootstrap values over 
70. 
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Yarrowia lipolytica YALI0D09933g3 
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Magnaporthe oryzae MGG_12936.62 

Figure 3.9. Maximum Likelihood phylogram of coding DNA sequences of fungal AOX genes with 

Diclyostelium discoideum as an outgroup. Gene sources: 1. Joint Genome Initiative 

(http: //www. jgi. doe. gov/), 2. Broad Institute (http: //www. broadinstitute. org/scientific-community/data), 3. 

Genolevures (http: //www. genoIevures. org/), 4. GenBank (http: //www. ncbi. nlm. nih. gov/genbank/). 

Numbers at nodes indicate bootstrap values over 70. 

Cryptococcus neoformans CNAG_00162.22 
Laccaria bicolor LACBIDRAFT_3092242 

Coprinopsis cinerea CC1 G 10695.32 
Coprinopsis cinerea CC 1 G_03463.32 

100 



0.93 

0.1 

Dictyostelium discoideum 521891 
Batrachochytrium dedrobatidis 320331 

Mucor circinelloides 750241 
Cryptococcus neoformans CNAG_00162.22 

1.00 Laccaria bicolor LACBIDRAFT_3092242 
Coprinopsis cinerea CC1 G_1 0695.32 

0.93 
Coprinopsis cinerea CC1G_03463.32 

Candida lusitaniae CLUG 02042.12 

8 

1.00 Candida guillermondii PGUG 05793.12 
Candida elongisporus LELG_03594.12 

1.00 1 00 
1.00 Candida parapsilosis CPAG_04301.12 

Candida parapsilosis CPAG04302.12 
1 Candida tropicalis CTRG_03270.32 

0 22 andida albicans CAWG00513.12 

0.91 1.00 Candida albicans CAWG00514.12 
1.00 Candida tropicalis CTRG_03271.32 

Pichia stipitis 673321 
1.00 0.8 Candida hansenii DEHA0004378g3 

Yarrowia lipolytica YALI0D09933g3 
Yarrowia lipolytica YALIOE00814g3 

1. r72 Aspergillus clavatus ACLA_0615602 
Mycosphaerella graminicola 729181 E 

1. Stagonospora nodorum SNOG_03031.12 
Pyrenophora tritici-repentis PTRG_11607.12 

0.97 ýý Blumeria graminis f. sp. hordeii AF3273361 

0.85 
1.00 Rhynchosporium secalis 

1.00 Monilinia fructicola AAL245164 
Botrytis cinerea BC 1 G_05703.12 

j 

0.98 Sclerotinia sclerotiorum SS 1 G02882.12 
1.00 Fusanurn graminearum FGSG_01342.32 

Neurospora crassa N0007953.42 
Neurospora crassa N0004874.12 1.000 

79 Magnaporthe oryzae MGG_12936.62 
0.87 Aspergillus nidulans ANID_02099.12 

Aspergillus temeus ATEG_059992 
1.00 Aspergillus niger fge l 

_pm_C_40001982 0.64 Aspergillus oryzae A00900030003102 

0 92 1.00 Aspergillus flavus AFL2G 02670.22 
Aspergillus fumigatus Afu2g050602 

0.99 Aspergillus clavatus ACLA 0895902 
Aspergillus niger fge l 

_pg_C_40006482 
0.96 1.00 Aspergillus terreus ATEG_074402 

1.00 Aspergillus oryzae A00900110000222 
Aspergillus flavus AFL2G_048292 

Figure 3.10. Bayesian phylogram (50% strict consensus) of coding DNA sequences of fungal AOX genes 

with Dictyoslelium discoideum as an outgroup. Gene sources: 1. Joint Genome Initiative 

(http: //www. jgi. doe. gov/), 2. Broad Institute (http: //www. broadinstitute. org/scientific-community/data), 3. 

Genolevures (http: //www. genolevures. org/), 4. GenBank (http: //www. nebi. nIm. nih. gov/genbank/). 

Numbers at nodes indicate posterior probabilities. 
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Saccharomyces paradoxus 
Saccharomyces mikatae 
Saccharomyces kudriazeviae 
Saccharomyces bayanus 
Saccharomyces servazzi 
Saccharomyces exiguus 
Saccharomyces castellii 
Kluyveromyces polyspora 

Kluyveromyces waltii 

Kluyveromyces marxianus 

Pichia angusta 
Debariomyces hansenii 

Pichia sorbitophila 

Del kera blLI eflensis 
Pichia pastoris 
Komagataella phaffü 

Figure 3.11. Saccharomycotina yeast species cladogram compiled by the Genolevures yeast genome 

consortium (Sherman el aL 2009), annotated with AOX gene presence, and predicted gene loss and 

duplication events based on the AOX gene phylogeny shown in Figure 3.8 - Figure 3.10. Shaded species 

have nuclear genomes (complete or draft) available for searching: Pale shading with strikethrough: no 

AOX genes; Mid-grey shading with single outline: one AOX gene, Dark shading with double outline: two 

AOX genes. Crosses indicate predicted gene loss events, arrows indicate predicted gene duplication 

events. 
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3.3.5 AOX expression analysis 

A OX expression three days after addition of azoxystrobin is shown in Figure 3.12. 
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Figure 3.12. AOX expression in R. secalis isolates three days after adding fungicide. Black: no fungicide; 

grey: azoxystrobin, final concentration I jig mf-'. AOX expression is calculated relative to isolate 788 with 

no fungicide. 

There was no correlation between SHAM potentiation (section 3.2.6) and constitutive AOX 

expression, with only acetone added (P=0.995) (Figure 3.13a), nor between SHAM 

potentiation and induced AOX expression, three days after adding 1 gg ml-1 azoxystrobin 

(P=0.845) (Figure 3.13b). 
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Figure 3.13. Scatter plots of SHAM potentiation (Azoxystrobin EC50 without SHAM / Azoxystrobin EC50 

with 40 µg ml"' SHAM) against AOX expression. AOX expression is calculated relative to isolate 788 with 

no fungicide. (a) Constitutive expression, without fungicide. (b) Induced expression, with 1 µg ml' 

azoxystrobin added three days before harvesting. 

AOX expression 0-4 hours after adding azoxystrobin is shown in Figure 3.14. In the first 

replicate, constitutive expression was similar for all isolates, and A OX expression increased in 

all isolates after the addition of azoxystrobin. Highest observed expression for isolates 788, R 

9528.4 and RS 783 was at 120 minutes, and highest expression for isolate K1124 was at 60 

minutes, after which transcript levels decreased again. The maximum expression level in 

isolates 788, K1124 and R 9528.4 was 5-8.5 times the reference (isolate 788 replicate I 

before adding fungicide), whereas the maximum expression for isolate RS 783 was 16.8 

times the reference. In the second replicate, induced expression levels were lower in isolates 

788, K1124 and R 9528.4, but higher in isolate RS 783. In isolate K1124, elevated 

constitutive expression was observed, after which expression decreased before a slight 

increase by 240 minutes. Expression in isolates 788 and R 9528.4 increased slowly after the 

addition of azoxystrobin throughout the time measured. Expression in isolate RS 783 

increased greatly after the addition of azoxystrobin, reaching a peak of 512 times the 

reference at 60 minutes. 
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Figure 3.14. Induced AOX expression after addition of azoxystrobin to 7-day-old cultures of four R. 

secalis isolates. (a) Biological replicate 1, (b) Biological replicate 2. Black: isolate 788; light grey: isolate 

K1124; dark grey: isolate R 9528.4; white, isolate RS 783. AOX expression is calculated relative to isolate 

788 with no fungicide for each set of biological replicates. 
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There was some apparent association between SHAM potentiation and maximum AOX 

expression (Figure 3.15). Regression analysis showed a significant positive correlation 

(p=0.027) between SHAM potentiation and Logio (Maximum AOX expression). The first 

replicate for isolate RS 783 was identified as having a high standardized residual, with the 

AOX expression lower than expected under a linear regression model. 
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Figure 3.15. Scatter plot of SHAM potentiation (Azoxystrobin EC50 without SHAM / Azoxystrobin EC50 

with 40 µg ml-' SHAM) against maximum observed AOX expression 0-4 hours after adding azoxystrobin, 

with regression line (solid) and 95% confidence limits of regression line (dashed lines). 

3.4 Discussion 

In the SHAM matrix experiments, two- to four- fold decreases in azoxystrobin sensitivity 

were measured for isolates SAC 09/943/186 and RS 219 as SHAM concentration increased 

from 0 to 40 or 44.4 µg ml-1. Isolates SAC 09/943/73, SAC 09/943/115 and F112-63 both had 

EC50 values below 0.05 µg ml-1 without SHAM, which did not decrease further as SHAM 

concentration increased to 40 or 44 µg ml-1. This is consistent with the results of McCartney 

(2006), who found that the EC50 of a less sensitive isolates decreased two- to three- fold as 

SHAM concentration increased from 0 to 55.55 µg ml-1, whereas sensitive isolates had EC50 

values below 0.1 ug ml-1 at all sub-lethal concentrations of SHAM. These results suggest that 

decreased in vitro strobilurin sensitivity in pre-2008 isolates is due to AOX activity. 
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For those isolates with azoxystrobin sensitivity affected by SHAM, EC50 values decreased as 

SHAM concentrations increased from 0 to 44.4 . ig ml-1, but at concentrations of 133 gg ml-1 

and above, SHAM itself inhibited fungal growth. This confirms that 40 . ig ml'' is a suitable 

SHAM concentration to inhibit AOX activity in R. secalis azoxystrobin sensitivity assays in 

liquid medium. For screening pre-2008 isolates, azoxystrobin sensitivity assays were carried 

out with 0 and 40 gg ml-1 SHAM. EC50 values obtained without SHAM varied considerably, 

ranging from 0.006 to 0.845 . tg ml-1. EC50 values obtained with 40 gg ml-1 SHAM were 

generally lower than those without AOX inhibition. There is still some variability, but this is 

continuous in nature and generally within a ten-fold range from 0.01 to 0.1 gg ml-1, rather 

than the large bimodal shifts seen in pathogens with target-site resistance to strobilurins (e. g. 

Sierotzki et al. 2000b). Sequencing the cytochrome b genes from a range of isolates 

confirmed the absence of target-site mutations. 

When the assay without SHAM was repeated with different cultures of the same isolate, EC5o 

values obtained varied by up to a factor of 7.6. This appeared to be linked to the presence of 

greater levels of hyphal material in the inoculum. This level of variability of EC50 values was 

not seen with SHAM-amended media, nor for isolates where EC50 was unaffected by SHAM, 

suggesting that the variability relates specifically to AOX. It is possible that AOX facilitates 

the growth of established mycelium more than that of spores, due to the reduced efficiency of 

the alternative respiratory pathway and high energy demands of spore germination. This is 

also consistent with suggestions that AOX utilisation varies with developmental stage (Wood 

and Hollomon 2003). This variability means when comparing EC50 against AOX expression, 

the same batch of inoculum, and not just the same isolate, must be used for sensitivity assays 

and RNA extraction. 

SHAM potentiation values, i. e. the EC50 without SHAM divided by the EC50 with SHAM 

(Wood and Hollomon 2003; section 3.2.6), for 40 gg ml-1 SHAM, varied from around 1 up to 

15.1, but most were in the range of 1 to 5. This is consistent with the results of McCartney 

(2006), who observed a potentiation factor of 2.5 with 55.6 µg ml-1 SHAM in a less sensitive 

isolate. However, many isolates with AOX activity indicated by SHAM potentiation also 

showed trailing growth, a low level of residual growth above the EC50 value. This is also 

absent in the presence of SHAM, implying that this, too, is a result of AOX activity. This 

could have a role in the emergence of more resistant isolates, since it would allow a low level 
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of fungal growth to continue in the presence of strobilurin fungicides, but only if the effect is 

seen in planta. 

No correlations between azoxystrobin log(EC50) values with or without 40 µg ml"' SHAM 

and log(EC50) values for the four triazoles tested in Chapter 4 were significant at I%. This is 

consistent with triazoles and strobilurins having different modes of action, and not showing 

cross-resistance. EC50 values for azoxystrobin with SHAM and tebuconazole were correlated 

at 5% significance, but this was a far weaker correlation than between the pairs of triazoles, 

and probably a result of separate mechanisms conferring multiple decreases in sensitivity 
between the least and most sensitive isolates. 

There was a significant positive correlation between azoxystrobin EC50 values with and 

without 40 µg ml-1 SHAM, but the relationship was only present for those isolates with the 

lowest azoxystrobin EC50 values in the absence of SHAM. Therefore slight variation in 

azoxystrobin sensitivity amongst the most sensitive isolates is not affected by SHAM at the 

concentration used, but among less sensitive isolates, further increases in azoxystrobin EC5o 

are negated by the addition of SHAM and therefore likely to be due to AOX activity. 

Of the isolates collected in France in 2008, R. s. 2310 4.2 had EC50 values within the sensitive 

range of pre-2008 isolates. Isolate R. s. 2318 4.2 had EC50 values consistent with AOX 

activity as seen in the pre-2008 isolates, with a SHAM potentiation factor of 5.58 for 

pyraclostrobin. Growth of isolates R. s. 2313 4.2 and R. s. 2314 4.2 was not sufficiently 
inhibited by azoxystrobin at the concentrations used to calculate EC50 values, so assays were 

repeated with pyraclostrobin, which has a higher intrinsic activity. Pyraclostrobin sensitivity 

of isolates R. s. 2313 4.2 and R. s. 2314 4.2 was reduced by a hundred-fold relative to sensitive 

isolates. This was far outside the range seen in the pre-2008 isolates, and closer to the 200- 

fold shift found in B. graminis f. sp. tritici isolates with the G143A substitution (Sierotski et 

al. 2000). Sequencing the cytochrome b gene from these R. secalis isolates confirmed that 

isolates R. s. 2313 4.2 and R. s. 2314 4.2 had a cytosine in place of a guanine at nucleotide 

position 428, resulting in the G143A amino acid substitution. 

However, unlike in other pathogens including B. graminis f. sp. tritici and M graminicola, in 

which the G143A mutation arose and spread, G143A has not been detected again in R. 

secalis in 2009 or 2010 (FRAC Qol Working Group 2009; FRAC QoI Working Group 2010). 

108 



Prior to 2008, when the G143A mutation had not been detected, it was suggested that the lack 

of G143A in R. secalis was due to low mutation rate (Gisi et al. 2002), or the structure of the 

cytochrome b gene making aG 143A mutation lethal (Grasso et al. 2006). McCartney (2006) 

noted that R. secalis cytochrome b did not contain an intron after codon 143, so G143A- 

encoding mutations would not caused a lethal loss of splicing, but Fisher et al. (2004) 

demonstrated that G143A may be detrimental to protein function in some cytochrome b 

backgrounds. The comparatively long time for G143A to be detected in R. secalis may be due 

to lower mutation rates than some other pathogens. However, this does not explain why 
having arisen, the mutation has not yet spread. This may be partly due to absence of airborne 

ascospores in R. secalis (Fountaine et al. 2010). In 2008, two field isolates carrying the 

G143A substitution were found. These isolates appear to grow normally in culture, and are 

capable of SHAM-insensitive respiration. This demonstrates that R. secalis cytochrome b 

with G143A is a functional protein, although more subtle in planta fitness costs, such that the 

mutation is only favoured under strong selection by Qol fungicides, cannot be discounted. 

However, in the case of the MBC fungicides, slow emergence and erratic early spread of 

resistant mutants was followed by spread of resistance resulting in loss of disease control 

(Cooke and Locke 2002). Therefore, resistance management for the Qol fungicides remains 

important. 

SHAM potentiation of azoxystrobin sensitivity in isolates without cytochrome b mutations 

suggested AOX activity. Searching the R. secalis genome with A OX genes of other 
leotiomycetes gave one significant match. The sequence contained two predicted introns, 

subsequently confirmed by cDNA sequences. Analysis of the predicted amino acid sequence 

with MitoProt found a potential mitochondrial targeting sequence. The predicted cleavage 

site was 11 base pairs downstream of that for other leotiomycete and most other filamentous 

ascomycete sequences. This is because MitoProt identifies the last possible cleavage site 

before other required properties of a mitochondrial targeting site are violated, and the R. 

secalis sequence contains an additional R-X-(F/I/L) motif (Gavel and von Heijne 1990) due 

to the isoleucine at residue 64. However, it also contains the predicted cleavage site present in 

the other leotiomycetes, with the R-X-(F/UL) motif present at residues 51-53. Therefore the 

exact site at which the protein is cleaved in unclear, especially since the sites in other species 

are only predictions, but the protein is likely to be mitochondrially imported. Searching the 

predicted protein against the Pfam database confirmed that it is an Alternative Oxidase. 
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Maximum likelihood and Bayesian phylogenetic trees were largely congruent, apart from 

relationships between the Pezizomycotina classes. Neighbour joining and maximum 

parsimony trees were similar but less resolved. The R. secalis A OX gene fell within the 

leotiomycete Glade, as expected. Multiple AOX genes have been reported in some species. 
Two AOX genes were reported in C. albicans, one constitutively expressed and the other 
inducible (Huh and Kang 2001). Tanton et al. (2003) reported two AOX genes in N. crassa, 

one expressed at a low level constitutively and at a higher level when induced, and the other 

not expressed under studied conditions. 

McDonald and Vanlerberghe (2006) list B. cinerea as containing two AOX genes, but the 

sequences listed were found to be two different fragments from a cDNA library, both of 

which fall within the same gene (BC 1 G_05703.1) in the B. cinerea genome. Similarly, the 

two listed sequences for Coccidioides posadasii are fragments of one gene (CPAG_01812.1 

in isolate RMSCC 3488, genome at www. broadinstitute. org). The second sequence listed for 

Podospora anserina (AF252256) was incomplete, gave no significant matches from the P. 

anserina genome (http: //podospora. igmors. u-psud. fr), and the only fungal AOX gene returned 

from a BLAST search of GenBank was from Penicillium chrysogenum. Therefore, it is not 

clear whether this represents a second AOX gene in some strains of P. anserina or a 

contaminant. 

In addition to C. albicans and N. crassa, two AOX genes were found in Candida tropicalis, 

C. parapsilosis, Yarrowia lipolytica, C. cinerea, Aspergillus clavatus, A. oryzae, A. flavus, A. 

terreus and A. niger. Phylogenetic analysis shows that these represent several relatively 

recent duplications, rather than a basal duplication followed by widespread losses. The two C. 

cinerea A OX genes group together, indicating a recent duplication within the C. cinerea 
lineage. Within the Saccharomycotina yeasts, the AOX phylogeny supports separate 

duplications in the C. tropicalis/C. albicans lineage and in the C. parapsilosis lineage, rather 

than a single duplication followed by a loss in Lodderomyces elongisporus, and a separate 

duplication in Y. lipolytica, rather than a basal duplication followed by repeated losses. 

Furthermore, the Saccharomycotina AOX genes fall as expected within the fungi, supporting 

the presence of AOX as the ancestral state, with secondary losses in the Schizosaccharomyces 

and Saccharomyces/Kluyveromyces lineages. Within the Pezizomycotina, the duplication 

leading to the second AOX gene in N. crassa appears to have originated within the 

Sordariomycetidae, but within this subclass, resolution between the M oryzae and N. crassa 
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genes is poorly supported. Therefore it is not possible to say whether the duplication took 

place within the N. crassa lineage, or in the common ancestor of N. crassa and M oryzae 
followed by a loss from M oryzae. Within Aspergillus sp., there appears to have been a 
duplication in the common ancestor followed by losses in A. fumigatus and A. nidulans, 

although the placement of the second A. clavatus gene with the Dothidiomycetes cannot be 

explained at present. There is no evidence of any AOX gene duplications ancestral to R. 

secalis, as the divergence of paralogues with different expression patterns is confined to 

within other lineages, and therefore the single AOX gene in R. secalis is descended from an 

undifferentiated A OX orthologue. 

The AOX genomic DNA sequences of the three R. secalis isolates tested were identical. 

Therefore, apparent differences in AOX activity between isolates are not due to mutations in 

coding DNA, but may be due to differences in gene expression. Initially, AOX expression 
levels were measured three days after adding the QoI fungicide azoxystrobin. Only in isolate 

R. s. 2310 4.2 was AOX expression significantly higher with azoxystrobin than in the control, 

and this isolate had a low SHAM potentiation. SHAM potentiation was not correlated with 

constitutive (p=0.995) or induced AOX expression (p=0.845) among isolates without target- 

site resistance. Kaneko and Ishii (2009) reported AOX expression in F. graminearum 

reaching a peak 60 minutes after the addition of azoxystrobin, then falling back towards the 

constitutive expression level. Therefore, the experiment was repeated with cultures harvested 

immediately before, and 30,60,120 and 240 minutes after, addition of azoxystrobin. Induced 

expression was observed within 30-120 minutes, and in isolate RS 783, the isolate showing 

the greatest upregulation, expression was decreasing again by 240 minutes. Therefore, 

induced expression of AOX in R. secalis should be measured within 1-2 hours of fungicide 

addition, as was shown by Kaneko and Ishii (2009) for F. graminearum. Yukioka et al. 
(1998) reported that AOX expression in M oryzae increased 20-60 minutes after addition of 

metominostribin, but only measured up to 60 minutes so it is not known how long the 

increased transcript levels lasted. Sierotzki et al. (2000a) report that in M. fijiensis isolates 

with a SHAM potentiation factor of 130 for azoxystrobin, AOX expression appears not to be 

inducible by trifloxystrobin. However, the trifloxystrobin was added 12 hours prior to 

harvesting the cultures, so given the current results and those of Kaneko and Ishii (2009), 

upregulation may have taken place more rapidly after QoI addition, with transcript levels 

returning to basal levels within 12 hours. 
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Constitutive AOX expression, before addition of azoxystrobin, was similar for all isolates, but 

there was variation in induced expression 30-240 minutes after addition of azoxystrobin. The 

greatest upregulation was observed in isolate RS 783, the isolate with the greatest SHAM 

potentiation in azoxystrobin sensitivity. There was a positive correlation (p=0.027) between 

Loglo(Maximum AOX expression) and SHAM potentiation. Kaneko and Ishii (2009) showed 

that greater induced AOX expression was associated with lower intrinsic azoxystrobin 

sensitivity in F. graminearum compared to M nivale. Here, it is demonstrated that in R. 

secalis, differences in induced A OX expression may be associated with intraspecific 

differences in QoI sensitivity in the absence of SHAM. 

The first biological replicate for isolate RS 783 appears anomalous, with the maximum AOX 

expression lower than expected given the SHAM potentiation value under the fitted linear 

regression model, and thirty times lower than the observed AOX expression for the second 

biological replicate. It is possible that the maximum AOX expression was between measured 

time points. The maximum observed AOX expression in the first biological replicate of 

isolate RS 783 was at 120 minutes, whereas in the second biological replicate the maximum 

observed expression was at 60 minutes. Due to the heterogeneous growth of R. secalis in 

liquid culture, it is not practicable to take representative aliquots. Consequently, a separate 

culture must be grown for each time point, limiting the number of time points for which 

measurements can be made. For future work, the use of promoter-reporter fluorescence gene 

constructs will allow repeated non-destructive measurements of expression over time. 

Furthermore, only ß-tubulin was used as an endogenous control. The use of additional 

endogenous control genes would reduce the risk that apparent changes in relative expression 

of the target gene are actually the result of confounding changes in the expression of the 

control. 

Expression analysis provides preliminary evidence for transcriptional upregulation of AOX, 

whether by increased transcription or reduced transcript degradation (Yukioka et al. 1998), in 

some R. secalis isolates. The R. secalis genome sequence upstream of the AOX coding 

sequence did not contain the induction motif identified in N. crassa (Chae et al. 2007), nor 

any of the putative transcriptional elements identified in M oryzae (Yukioka et al. 1998). 

This is not surprising, since the induction motif in N. crassa was only found within the 

Sordariales and not in M oryzae, a more distant Sordariomycete, and R. secalis as a 

Leotiomycete is more taxonomically distant from N. crassa and M oryzae than they are from 
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each other. When the R. secalis genome is released and annotated, it may be possible to 

further investigate the regulatory pathways involved in A OX upregulation in this species. 

It has been suggested that increased AOX activity may facilitate the evolution of target-site 

resistance, by enabling slow growth in the presence of Qol fungicides, under selective 

pressure for resistance and where mitochondrial mutation rates may be elevated due to high 

levels of reactive oxygen species (Avila-Adame and Köller 2003b). This could be further 

investigated by assessing in planta growth, including microscopic assessment of 

symptomless infection, of isolates with different levels of A OXupregulation or an AOX 

knockout strain, on Qol-treated plants. Alternatively, in vitro experimental evolution by serial 

transfer on Qol-amended media could be carried out, to investigate the effects of SHAM, 

flavones or AOX gene deletion on the arising of Qol-resistant strains. Since AOX over- 

expression was only observed when induced by QoIs, it was not possible to tell whether this 

upregulation was present in isolates with the G143A mutation, since it was not possible to 

achieve an inhibitory dose of fungicide for these isolates without killing all other isolates. If 

the molecular mechanisms for upregulation are identified in the future, it may be possible to 

test isolates for the corresponding genotype in order to establish whether the G143A mutation 

arose in a genetic background with AOX overexpression. 
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Chapter 4 

Triazole sensitivity in R. secalis 

4.1 Introduction 

The triazoles are demethylation inhibitor (DMI) fungicides, inhibiting lanosterol 14a- 

demethylase in ergosterol synthesis (Buchenauer 1977), resulting in ergosterol depletion and 

build-up of toxic sterol intermediates such as 14-methyl-3,6-diol (Ragsdale and Sisler 1973). 

Lanosterol 14a-demethylase is a cytochrome P450, CYP51. 

Reduced triazole sensitivity due to mutations in the target-site-encoding CYP51 genes has 

been reported in several plant and clinical pathogens, including M graminicola (Cools and 

Fraaije 2008), B. graminis f. sp. hordei (Wyand and Brown 2005) and C. albicans (Edlind 

2008). These mutations have varying, interacting, quantitative effects on triazole sensitivity, 

in contrast to the qualitative Qol resistance conferred by the G143A substitution in 

cytochrome b. Furthermore, cross-resistance patterns between azoles (triazoles and 

imidazoles) vary for different mutations. For example, in clinical C. albicans isolates, 

substitutions S405F, G464S and R467K confer similar reductions in sensitivity to fluconazole 

and ketoconazole, whereas Y132H affects ketoconazole sensitivity fourfold more than 

fluconazole sensitivity (Sanglard et al. 1998). In M graminicola, Y137F specifically affects 

triadimenol sensitivity, whereas 138 IV reduces sensitivity to tebuconazole (Cools and Fraaije 

2008). 

Some fungal species possess two paralogues of CYP51, designated CYP51A and CYP51 B 

(Mellado et al. 2001). Mutations associated with reduced triazole sensitivity in clinical 

isolates of A. fumigatus are found in the CYP51A paralogue (Diaz-Guerra et al. 2003). The 

phylogeny of CYPSI paralogues is investigated, and the nomenclature explained, in chapter 

5. 

Some fungal isolates with reduced triazole sensitivity do not possess any mutations in 

CYP51. Non-target-site mechanisms include increased efflux of the fungicide out of fungal 

cells by ABC transporter (de Waard et al. 2006) or major facilitator proteins (Tenreiro et al. 

2000). Different transporters may confer reduced sensitivity to a single compound or multiple 
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triazoles (Sanglard and Odds 2002), or to triazoles and unrelated compounds such as Qols 
(Reimann and Deising 2005). 

In some cases, reduced azole sensitivity has been linked to specific transporter-encoding 

genes, such as BcatrD in B. cinerea (Hayashi et al. 2002), or reduced intracellular azole 

accumulation has been measured directly with radio-labelled fungicides (Hayashi et al. 2001; 

Roohparvar et al. 2008). In other cases, enhanced efflux has been inferred from the 

restoration of fungicide sensitivity by the addition of putative efflux inhibitors. A range of 
drugs known to affect mammalian efflux transporters and other transmembrane protein 

targets have been tested for efflux inhibition. These include the phenothiazines, calcium- 

calmodulin antagonists in clinical use as antipsychotics, which increased triazole sensitivity 

of less-sensitive isolates of both C. albicans (Marchetti et al. 2000) and M graminicola 
(Roohparvar et al. 2008). 

Reduced triazole sensitivity has been reported in field populations of R. secalis (Jones 1990; 

Kendall et al. 1993; Cooke et al. 2004). Sensitivity shifts against triadimenol were first 

reported in a survey of UK field isolates in 1987 (Jones 1990). By 1990, triadimenol 

sensitivity had declined further, resulting in loss of field control. A correlated but smaller 

sensitivity shift was seen for propiconazole and tebuconazole, but these compounds remained 

effective in the field (Kendall et al. 1993). In 2000-2002, sensitivity shifts were seen against 

the newly-introduced epoxiconazole (Oxley 2003). In 2005-2007, further shifts in 

epoxiconazole sensitivity were reported, with some evidence of cross-resistance with the 

newer prothioconazole (Oxley et al. 2008). Current monitoring of R. secalis in the UK 

suggests some reductions in azole sensitivity, but epoxiconazole and prothioconazole still 

provide field control, albeit at higher doses, or in more of a protectant capacity in the case of 

epoxiconazole (Oxley and Burnett 2010). The mechanisms causing triazole sensitivity shifts 
in R. secalis have not yet been identified. 

This chapter describes investigations into triazole sensitivity in R. secalis and whether 

changes in sensitivity are due to mutations in CYPSI genes, or associated with efflux pump 

activity. Sensitivity to propiconazole, tebuconazole, epoxiconazole and prothioconazole was 

tested for 80 R. secalis isolates, and cross-resistance patterns investigated. Sensitivity testing 

was also carried out for an additional set of 31 isolates collected in six European countries in 

2009 by Syngenta Crop Protection, and cross-resistance patterns compared. Field isolates 

115 



were collected from experimental plots at Rothamsted Research in 2009 and their sensitivity 

compared to the reference and Syngenta isolate sets. The full sequence of CYP51A was found 

by genome-walking, and CYP51A and CYP51B sequences were analysed for 12 isolates with 

a range of triazole sensitivities. A CYP51A pseudogene, CYP51A-P, was also discovered and 

was sequenced for all isolates. Further sensitivity assays were carried out with the addition of 

putative efflux inhibitors to investigate the possible role of efflux pump activity in triazole 

sensitivity. 

4.2 Materials and Methods 

4.2.1 Triazole sensitivity testing 

Sensitivity testing of the isolates listed in Table 2.1 was carried out as described in section 

3.2.1, but with the fungicides and concentrations shown in Table 4.1. An additional set of 31 

isolates, collected from several sites in the Czech Republic, Germany, France, Spain, the 

United Kingdom and Ireland in 2009, provided by Syngenta Crop Protection, were also tested 

for fungicide sensitivity. 

Table 4.1. Final fungicide concentrations used in triazole sensitivity bioassays, carried out in 96-well 

microtitre plates. 

Microtitre plate 123456789 10 11 12 
column 

Fungicide Final fungicide concentration (µg ml"') (3 s. f. ) 

Epoxiconazole 0 0.00524 0.0131 0.0327 0.0819 0205 0512 128 32 8 20 50 

Prothioconazole, 
Tebuconazole, 0 0.00169 0.00508 0.0152 0.0457 0.137 0.412 124 3.70 11.1 333 100 
Propiconazole 

Tebuconazole, 
Propiconazole 0 0.00508 0.0152 0.0457 0.137 0.412 124 3.70 11.1 333 100 300 
(less sensitive 
isolates) 

Cross-resistance was assessed by testing for correlation (least squares linear regression, with 

pairwise deletions of missing values) between loglo(EC50) values for each possible pairing of 

the fungicides tested, and by Principal Componenets Analysis (PCA) using the correlation 
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matrix of logio transformed EC50s for all four fungicides, in GenStat 13 ̀h Edition (VSN 
International, Hertfordshire, UK). 

4.2.2 Field conditions and R. secalis isolation 

Saffron winter barley was grown in field Great Harpenden II at Rothamsted Research, 

Hertfordshire, UK, according to standard farm operations but untreated with fungicides or 

treated with two sprays at 1/3 full rate of epoxiconazole (Opus, BASF; 125g 1"1,0.33 1 ha') or 

propiconazole (Bumper 250EC, Makhteshim Agan; 250 g 1-1,0.161 ha 1) at TO and Ti. 

Infected leaves were collected three weeks after the Ti fungicide application. 

Lesions were cut from leaves, surface-sterilised for 2 minutes in 70% ethanol and 5 minutes 
in 1/10 10% sodium hypochlorite, rinsed in sterile water, dried on autoclaved tissue paper 

then placed on CDM agar containing 125 units ml-1 penicillin and 125 µg ml'' streptomycin 

(Sigma), and incubated at 18°C for seven days. Rhynchosporium secalis spores were 

harvested into sterile distilled water and streaked out onto CDM plates to obtain single-spore 
isolates. Fungicide sensitivity testing was carried out as described in section 4.2.1. PCAwas 

carried out, using the correlation matrix of loglo transformed EC50s for the four fungicides, in 

GenStat 13th Edition (VSN International, Hertfordshire, UK). 

4.2.3 Sequencing of R. secalis CYPSIA by genome-walking 

CYP5IB had been sequenced from R. secalis (Hans Cools, personal communication). A 

second CYPSJ, CYPSIA, had been found in R. secalis and a partial sequence had been 

obtained with degenerate primers (Helge Sierotzki, personal communication). The remainder 

was found by genome-walking. Genomic DNA libraries were prepared by Hans Cools, using 

the GenomeWaker universal kit (Clontech, California, USA), with restriction enzymes Dral 

(two libraries), PvuII (two libraries), EcoRV and Stuff. Three reactions in the 5' direction and 

one in the 3' direction were needed to obtain the complete coding sequence of the gene 
(Figure 4.1). For each genome-walking step, two nested PCR reactions were carried out: the 

first with API and GSP1, the second with AP2 and GSP2. Adaptor primers (API and AP2) 

were specified by the GenomeWalker Universal Kit (Clontech, California, USA). Genome- 

specific primers (GSP1 and GSP2) used in successive reactions are listed in Table 4.2, and 

were designed in Vector NTI (Invitrogen Corporation). 
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(; W3 added (; W2 added (iWI added 10') Original fragment (; W I added (3') 
196 h. p. + 516 h. p. 267 h. p. 612 h. p. 324 h. p. + 

5' 3' 

/7 

(SI' I)I GSP C2 GSP E32 C; SP AI 
(iSp GI (isP Cl GSP BI GSP A2 

Figure 4.1. Primer-binding sites and sections added to the sequence of the second CYP5I gene of R. secalis 

in successive genome walks. GSP = Gene-Specific Primer; primers listed in Table 4.2. 

Table 4.2. List of gene-specific primers used in successive genome-walking reactions to obtain the full 

sequence of R. secalis CYP51A, and primers used for the amplification and sequencing of CYP51 genes 

from R. secalis isolates 

Gene Primer name Primer sequence 

CYP51 Al: GW1 (3'), GSP 18 5'-TGGTGAAGGAGAC GCTCCGGCTCCATT-3' 

Genome A2: GWI (3'), GSP2 5'-TGATGCGCGCAGT CAAGAACGACCTCC-3' 

walking BI: GWI (5'), GSPI 5'- TTCTGAGGCAGTGG TAACCACGGAGCGAG -3' 

B2: GWI (5'), GSP2 5'- ATTGGCCGGAACC CGTGGTCGAGATCA -3' 

Cl: GW2 (5'), GSP1 5'- AGAGGGAGAGGTAG GCGATTGGGGAATGA -3' 
C2: GW2 (5'), GSP2 5'- TTCGAGTGCGCGTT GAGTGAGGCCGAA -3' 
G 1: GW3 (5'), GSPI 5'- CGTTGACATCCTGCA ATCTTCCATTGAGGA -3' 
D2: GW3 (5'), GSP2 5'- TGTGCTGGAGGAAGA GGGAGGGTGAGAGA -3' 

CYP5IA Forward I 5'-ATGCTGGGTATCTTCTCGGTGCTAG -3' 

Reverse 1 5'- GACCCTCTTTTCCCATCTAACTCTCG-3' 

Internal 5'-TGCTAACTCGGCATATCTAGCTACACC -3' 
Nested F 5'-TCCGCTATGGATTCTACACCCTCA -3' 
Nested R 5'- CCGTCTTTGGGATCTGTCCTCC-3' 

CYP51A-P Forward I 5'-AAAAGAAGAAGTCCGAACCGCCTC -3' 
Reverse 1 5'-CACCAAACGGTAAATAAGGAATCCTAATCT -3' 

CYP51 B Forward 1 5'- GGAATTTTTGAGGCTGTTACAGTCCC-3' 

Reverse 1 5'- TTCTCTCTTCTCCCACTCAACCACC-3' 

Internal 5'- CCTTCAAGACTTACGTTCCAATCATTCAG-3' 

Nested F 5'- GCGGATTGGGCGTTGTGATC-3' 

Nested R 5'-CTCAACAACCTTCGAGCTTCCATC -3' 

'GW: Genome Walk, GSP: Gene-Specific Primer 
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For each step, PCR reactions were set up as above using each of the six libraries as templates 

with GSP1 and AP1, followed by a nested PCR reaction using a 1/50 dilution of the first PCR 

product as template with GSP2 and AP2. The PCR programme comprised seven cycles (five 

for the nested reaction) of 25 seconds at 94°C and three minutes at 70°C (67°C for primer 

GI), followed by 32 cycles (20 for the nested reaction) of 25 seconds at 94°C and 3 minutes 

and 65°C, followed by 7 minutes at 65°C. Longest PCR products were purified using the 

Wizard SV Gel and PCR Clean-Up System (Promega, USA). Cleaned PCR products were 
ligated into the pGEM-t Easy plasmid vector (Promega, USA) using T4 DNA ligase 

(Promega, USA) according to manufacturer's instructions. JM109 competent cells were then 

transformed according to manufacturer's instructions, using blue-white screening for 

plasmids with inserts. PCR reactions were set up as described above, using 5µl of white 

transformant bacterial suspension as template, and primers AP2 and GSP2. The PCR 

programme started with 2 minutes 30 seconds at 94°C to lyse the bacterial cells; followed by 

40 cycles of 30 seconds at 94°C, 60 seconds at 52°C and 60 seconds at 72°C; followed by 5 

minutes 30 seconds at 72°C. One transformant for each PCR product was selected for 

sequencing. The bacterial suspension was added to 5m1 LB broth and incubated overnight at 

37°C with shaking. Bacterial pellets were collected from 3ml culture. Plasmid DNA was 

extracted and purified using the GeneElute (Sigma) or QIASpin (Qiagen) mini-prep kits and 

eluted into 50pl nuclease-free water, then sequenced by Eurofins MWG (Germany) and the 

sequences analysed in Vector NTI 10 (Invitrogen). 

4.2.4 Sequencing of CYPSI genes from R. secalis isolates 

The CYP51A and CYP51B genes of isolates showing a range of triazole sensitivities were 

sequenced. These were fully-sensitive isolates K 1124, FI12-63 and RS-219; intermediate 

isolates QUB 30-10, R 9528.4 and 9522.3; and less-sensitive isolates 788, SAC 1-4-8 (0003), 

GKII 18-2-3, GKII 18-3-2, SAC 09/943/14, QUB 12-3, OSA 28-2-2 and RS 783 (Figure 

4.3). 

PCR reactions were carried out using Phusion High-Fidelity DNA Polymerase (Finnzymes 

Oy, Espoo, Finland) according to manufacturer's instructions, in 30µl reactions with HF 

buffer, no DMSO, 0.5mM primers and 1.67 gg ml-1 template. The PCR programme 

comprised 2 minutes at 95°C; followed by 40 cycles of 10 seconds at 95°C, 20 seconds at 

60°C (the annealing temperature) and 50 seconds at 72°C; followed by 4 minutes 10 seconds 
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at 72°C. PCR was carried out with primers Forwards 1 and Reverse 1 shown in Table 4.2 for 

CYP5JA and CYP51B respectively. Primers were designed in Vector NTI (Invitrogen 

Corporation). PCR products were purified and sequenced by Eurofins MWG (Germany), 

with the Nested F, Nested R and Internal primers listed in Table 4.2 for CYP51A and CYPSIB 

respectively. 

CYP51A-P (see discussion, section 4.4.2) was sequenced for isolates QUB 30-10,788, QUB 

12-3, R 9528.4, GKII 18-2-3, RS 783, RSO4CH6B NB32 and RS99CH1 H1OB, in addition to 

isolates K1124, FI12-63 and RS 219 for which CYP51A-P sequences had already been 

obtained during CYP51A sequencing. cDNA sequences of CYP51B and CYP51A of isolate 

788, and CYP51A-P of isolate F112-63, were amplified from cDNA prepared as described in 

section 5.2.5. PCR reactions were carried out using Easy-A High-Fidelity PCR Cloning 

Enzyme (Stratagene, California, USA) according to manufacturer's instructions, with 2 ng µl" 

genomic or 1% cDNA template. The PCR programme comprised 2 minutes at 95°C; 

followed by 30 cycles of 40 seconds at 95°C, 30 seconds at 58°C and 2 minutes at 72°C; 

followed by 7 minutes at 72°C. PCR was carried out with primers Forward I and Reverse 1 

shown in Table 4.2 for CYP51B, CYP51A and CYP51A-P, designed in Vector NTI 

(Invitrogen Corporation). PCR products were purified, cloned and sequenced as described in 

section 4.2.3. 

4.2.5 Efflux inhibitor assay 

The assay procedure was carried out as described in section 4.2.1 for tebuconazole and 

prothioconazole and section 3.2.1 for azoxystrobin, but with a single isolate per plate. Spore 

suspensions were diluted to 5x 105 spores ml"', and 50µl was added to each well. The 

phenothiazine compounds, trifluoperazine dihidrochloride 98% (Sigma) and fluphenazine 

dihydrochloride (Sigma), were dissolved in sterile distilled water at 2.5 mg ml-1. Six serial 

dilutions were carried out at a dilution factor of 1/5, and 50µ1 was added to each well to give 

the following final concentrations: Ogg ml-1 (50µl distilled water only), 0.04 gg ml-1,0.2 µg 

ml'', 1 µg ml"', 5 pg ml-1,25 pg ml-1 125 µg ml" and 625 pg ml-1. Isolates K1124, R 9528.4, 

788 and RS 783 were tested (Table 2.1). Plates were incubated and read as described in 

section 3.2.1. 

Correlation between reduction in EC50 with 5µg ml-1 putative inhibitor, and EC50 value 

without the putative inhibitor, for each fungicide-phenothiazine combination, was tested by 
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least squares linear regression analysis in GenStat 13th Edition (VSN International, 

Hertfordshire, UK). 

4.3 Results 

4.3.1 Triazole sensitivity testing 
The full data set of triazole EC50 values is given in Appendix 3. 

Significant positive correlations (r>1, P<0.01) were found between EC50 values for all pairs 

of triazoles. Scatter plots for all pairwise comparisons are shown in Figure 4.2. 
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Figure 4.2. Scatter plots showing log(EC50) values of R. secalis isolates for each pairwise comparison of 

the four triazoles tested: (a) tebuconazole against propiconazole; (b) epoxiconazole against propiconazole; 

(c) prothioconazote against propiconazole; (d) epoxiconazole against tebuconazole; (e) prothioconazole 

against tebuconazole; (t) prothioconazole against epoxiconazole. Solid lines indicate linear regression; 

dashed lines indicate 95% confidence limits of regression line (calculated in SigmaPlot, Systat Software 

Inc. ) 
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PCA was carried out with sensitivity data for the four triazoles. The first two principal 

components encompassed 92.3% of variation (Figure 4.3a). Principal component 1 (PC 1) had 

positive latent vectors for all four variates, whereas principal component 2 (PC2) had a 

negative latent vector for prothioconazole (Table 4.3). Plotting isolates against PC1 and PC2 

(Figure 4.3b) gives separation of sensitive, intermediate and less sensitive isolates, with most 

variation in PC2 found among the less-sensitive isolates. Principal component analysis was 

repeated with the sensitive isolates excluded. Results were similar, with almost 90% of 

variation in the first two principal components, and latent vectors having the same signs and 

similar magnitudes to the full data set (data not shown). 

Table 4.3. Principal component analysis results for triazole Log(EC50) data. 

Principal component 
1234 

Percentage variation 

Latent vectors Propiconazole a 

Tebuconazole 

75.8 16.5 

0.521 0.400 

0.551 0.165 

5.94 1.77 

0.428 0.621 

0.286 -0.766 

Epoxiconazole 0.521 0.098 -0.844 0.081 

Prothioconazole 0.391 -0.896 0.152 0.145 

a Variates comprise Loglo [EC5o (µg ml- 1)] for each fungicide 
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Figure 4.3. Principal component analysis of triazole EC50 data for R. secalis isolates. (a) Cumulative 

percentage variation of principal components. (b) Principal component 2 against principal component 1. 

Red crosses indicate isolates selected for sequence analysis. 1: RS 219; 2: K1124; 3: F112-63; 4: R 9528.4; 

5: R 9522.3; 6: QUB 30-10; 7: GKII 18-3-2; 8: GKII 18-2-3; 9: 788; 10: SAC 0003 1.4.8; 11: SAC 

09/943/14; 12: QUB 12-3; 13: OSA 28-2-2; 14: RS 783. 
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Sensitivity profiles for the four triazoles tested fall into three main groups. Examples of each 

are shown in Figure 4.6. Group I in Figure 4.6, including isolates 1-3 in Figure 4.3, consists 

mainly of pre-2000 reference isolates, with propiconazole, tebuconazole and epoxiconazole 
EC50 values below 0.1 µg ml-1 and prothioconazole EC50 values between 0.1 and 0.5 . tg ml-1. 
Group II in Figure 4.6, including isolates 4-6 in Figure 4.3, have intermediate sensitivity 
levels, with propiconazole and tebuconazole EC50 values mostly between 0.1 and 1 pg ml-1 
but smaller shifts in epoxiconazole and prothioconazole sensitivity compared to the reference 
isolates. Most isolates in this group were collected in Northern Ireland in 2001. Group III in 

Figure 4.6, including isolates 7-14 in Figure 4.3, encompasses the majority of isolates from 

2001 onwards, have further reductions in sensitivity. Propiconazole EC50 values are around 

10 µg ml"1, with values for tebuconazole slightly lower. Prothioconazole EC50 values are 

around 1 µg ml-1, with values for epoxiconazole slightly lower. Within group III, the final 

three isolates in Figure 4.6, corresponding to numbered isolates 12-14 in Figure 4.3, have 

especially elevated prothioconazole EC50 values of around 10 . tg ml-1. 

PCA was repeated for the Syngenta isolate set. As for the reference isolate set, the first two 

principal components encompassed around 90% of variation, with PC 1 representing general 

positive cross-resistance, and PC2 revealing different sensitivity patterns for prothioconazole 

compared to propiconazole and tebuconazole (Table 4.4). As with the reference isolate set, 
isolates are divided into sensitive, intermediate and less-sensitive isolates along PC I, with 
PC2 variation mainly among the less-sensitive isolates (Figure 4.4). 

Table 4.4. Principal component analysis results for triazole Log(ECso) data for R. secalls isolates collected 

by Syngenta Crop Protection from six European countries in 2009. 

Principal component 

1 2 3 4 

Percentage variation 68.7 20.5 9.95 0.87 

Latent vectors Propiconazole a 0.557 -0.371 0.200 -0.715 
Tebuconazole 0.562 -0.267 0.382 0.683 

Epoxiconazole 0.506 0.105 -0.850 0.101 

Prothioconazole 0.343 0.883 0.301 -0.106 
a Variates comprise Log, o [EC50 (µg ml-')] for each fungicide 
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Figure 4.4. Principal component analysis of triazole EC50 data for R. secalis isolates collected by Syngenta 

Crop Protection from six European countries in 2009. (a) Cumulative percentage variation of principal 

components. (b) Principal component 2 against principal component 1. Initials indicate country of origin: 
CZ: Czech Republic; DE: Germany; FR: France; ES: Spain; GB: United Kingdom; IE: Ireland. 

Superimposing the biplots for the reference isolate set and the Syngenta isolate set shows that 

the sensitivity groupings match closely between the two isolate sets (Figure 4.5). The PC2 

axis is reversed for the Syngenta isolate set, as the signs of the latent vectors are arbitrary. 
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Figure 4.5. Principal component biplots of triazole ECso data for R. secalis isolates collected by Syngenta 

Crop Protection from six European countries in 2009 (red circles), and for the set of R. secalis isolates 

listed in Table 2.1 (black crosses). 1: RS 219; 2: KI 124; 3: F112-63; 4: R 9528.4; 5: R 9522.3; 6: QUB 30- 

10; 7: GKII 18-3-2; 8: GKII 18-2-3; 9: 788; 10: SAC 0003 1.4.8; 11: SAC 09/943/14; 12: QUB 12-3; 13: 

OSA 28-2-2; 14: RS 783. 

4.3.2 Rothamsted field isolates 

PC1 and PC2 were calculated from Rothamsted 2009 field isolate logio[EC50s] based on the 

coefficients obtained for the first isolate set. The 2009 isolates all fell within the lower end of 

the less-sensitive group, except one isolate which may have intermediate sensitivity (Figure 

4.5). There was no difference between isolates from plots receiving different fungicide 

treatments. 
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Figure 4.5. Principal component 2 plotted against principal component 1 for PCA of R. secalis log1olECsol 

for triazole fungicides. Crosses represent the reference set of isolates. Red symbols represent isolates 

collected from Rothamsted Research in 2009: Diamonds: Untreated; Circles: Propiconazole treated; 

Triangles: Epoxiconazole treated. 

4.3.3 CYPSI sequence analysis 

The complete CYP51A sequence was obtained. Intron positions at base pairs 173-309 and 
511-569, confirmed by cDNA sequences, were removed and the sequence translated. The 

translated sequence of isolate 788 is shown in Figure 4.7. For CYP51 B, cDNA sequences 

confirmed the presence of two introns, at base pairs 244-312 and 484-638. 

CYP51B and CYP51A sequences for the selected R. secalis isolates are shown in Appendix 

4(a) and (b). For CYP51 B, the only non-synonymous mutation resulted in a T67S substitution 

in sensitive isolate F112-63 and intermediate isolates QUB 30-10 and R9528.4 (Figure 4.6). 

For CYP51A, the only non-synonymous single nucleotide polymorphisms resulted in a P170S 
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substitution in isolate 9522.3, and an A11IV substitution in isolates SAC 09/943/14 and 
QUB 12/3 (Figure 4.6). However, substantially different CYP51A sequences were obtained 
for isolates K1124, F112-63 and RS 219. Differences included substitutions, frame-shift 

indels and premature stop-codons (Figure 4.7). 
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Figure 4.6. Propiconazole, tebuconazole, epoxiconazole and prothioconazole EC50 values of R. secalis 

isolates selected for target site sequence analysis. Black: propiconazole, Light grey: tebuconazole, Dark 

grey: epoxiconazole, White: prothioconazole. 1: sensitive isolates; II: intermediate sensitivity; III: less 

sensitive. WT = Wild Type. 
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788 ATGCTGGGTATCTTCTCGGTGCTAGTTTCTAGCATCCGCTATGGATTCTACACCCTCACTCTCCTTATTGTCACAGTCCTGCTCAACGCTCTACACCAAC 
F112-63 ------------------------------------------------------------------------ TCAATCCTCCTCAACGCTCTACACCAAA 

101 200 
788 TCCTCCCAAAGAAGAAGTCCGAACCGCCTTTGGTATGGCATTGGATCCCATTTATCGGGAATGCCATCGAAT 

. CCTTCCTAAC 
FI12-63 TCCTCCAAAAGAAGAAGTCCGAACCGCCTCTGGTATGGCATTGGATCCCCTTTATTGGGAATGCCATCGAAT ! 'CCTTCCTAAC 

201 300 
788 CCTCTTGATCTTTTC CTCP, CCC. TTCCTCTT: G'PCCACCA(: iaCCT000-ATTA7 ACP( C,., ý ; i: ý1I (, ,.::: TGACAT ; CAACC 
FI12-63 CCTCTTGATCTTTC CTCACCCTTCCTCTTCCTCCACCACACCCCCCCATTATCAACATCACAT, CA,, TAG4�CAAAAGTTACTGACATGCAACC 

301 400 
788 A7TTTTCTAGATGGCACCGACCCTCTAGCTTTCTACACAAAATGTCAACGGCAACATGGCCCGATCTTCACT°ATATTCTTTTCGGCA: -AAAAATGACTG 
FI12-63 GTTT TCTAGATGGCACCGATCCTCTAGCTTTCTACACAAAATGTCAACGGCACCATGGCCCGATCTTCACTCATATTCTTTTCGGCAGAAAAATGACTG 

401 nn *++ 500 
788 TTTATCTTGGGCTGGAAGGAAATGAGTTTATCCTCAATGGAAGATTGCAGGATGTCAACGCGGAAGATATTTATGGTCCAICTGA, 3TGT: TACi'PCTCCAT 
FI12-63 TTTATCTTGGGCTGGAAG----TGAATTTATCCTCAATGGTAGACTGCAGGATGTCAATGCAGAAGATATTTATGGTCCAC I TGAGTGTGTAITTC': CCAT 

501 600 
788 IA CCt, GAF'ü, TCGC"AA C: '. , °c ± T:,:; TG TTtiul. rc .. : PAAGTTAT000AT 
FI12-63 CTB, 

CýTx, 
TIGATCCCTAA CTTC Ar,. _Tr CTAAAT, AT('CC :,. ::, APAGTTATCCCAT 

601 700 
788 G2iTPI TIeG 

. 
iTATCTAGCTACACCAGTCTTCGGGCCCAACGTCATCTACGACTGCCCCAACTCCAAACTAATGGAACA 

FI12-63 GA: CAA', TCAGGGAAAGCG. ATGCTAACTCGGCA-ýTTCTAGCTACACCAGTCTTCGGGCCCAACCTCATCTACGACTGCCCCAACTCCAAACTAATGGAACA 

701 800 
788 AAAGAAATTCGTCAAGTTCGGCCTCACTCAACGCGCACTCGAACAACACGTTCCCCTCATCGAAAACGAAGTCCTCTCCTACATGGCTTCATCTCCGTCC 
FI12-63 AAAGAAATTTGTCAAG TT .. C.. C 

_"CF .: 
CRACSi. C ACFý'i: ý, ý 

.,., ... _..; 
"CT t. ,. C. A,; A, A. -. -" , '; GTCCTCTCCTACATGGCTTTATCTCCGTCC 

801 900 
788 TTCATTCCCCAATCGCCTACCTCTCCCTCTTCCTCCGACCAAAGCACAACCAAAATGGAACAGAAACTTCAAACAGCCATAATAGACCTGCCTCACACCA 
FI12-63 TTCATCTCCCAATCGCCTACCTCCCCCTCTTGCTCTAACCAAGGCATAACCAAAACGGAACAAAAACTTCAAACAGCCATAGTAGACCTTCCCCATACCA 

901 1000 
788 TGGCTCAGATCACAATCTTCACAGCCGGTCGCGCTCTTCAAGGCCCGGAGGTCCGCACTAAACTCACAGACGAATTCGCGGGTTTGTATGATGATCTCGA 
FI12-63 TGTCTCAGATCACAATCTTCACAGCTGGTCGCGCTCTTCAAGGCCCGGAGGACTGCAGCAAACTCACAGACTAATTCGCGGATTTGTATGATGATCTCGA 

1001 1100 
788 CCACGGGTTCCGGCCAATCAACTTCCTCGCTCCGTGGTTACCACTGCCTCAGAACTGGAGAAGGGATAAAGCACATGCAAAGATGATGAGTGTGTATATG 
FI12-63 CCACGGGTTTCGGCCAATCAACTTCCTCGCTCCGTGGCTACCGCTGCCGCAGAACTGGAGAAGAGATAAAGCACATGCAAAGATGATGAGTGTGTATATG 

1101 1200 
788 GACATCATATCACGACGACGTGAAAAGAGTGGTGGTGGAGTGGTGGGGAGAGGAATGGAAAGGGAGGAGATTGACATGATTGATAATCTCATGACTTGTG 
FI12-63 GACATCATATCACGACGATGGGAAAAGAGTGGTGGTGGGGAGGTGGGGAGAGGAATGGAGAGGGAGGAGATTGACATGATTGACAATCTCATGACTTGTG 

1201 1300 
788 TCTATAAATCCGGAGAAACGATTCCAGACAGCGAGATTGCGTGTATGATGATCACGATCCTTATGGCGGGACA--ACATTCGTCGAGCAGTTCCTCGTGC 
FI12-63 TCTATAAATCCGGAGAAACGATCCCAGATGGCGAAATTGCGTGTATGATGATCTCGATCCTTATGGCGGGAAAAAACACTCGTCCAGCAGTTCCTCGAGC 

1301 1400 
788 TGGATTATGCTCCATCTAGCCTCTCGCCCAGATCTTCAGGAGGAATTGTATCGCGAGCAACAGGATGCGAATCTCTACCTTGCCGGCAACAGAGGGCTAC 
FI12-63 TGGATTATGCTGCATCTAGCCTCTCGCCCAGATCTTCAGGAGGAATTGTATCGCGAGCAACAGGATGCGAATCCTTATCTTGCCGGCAACAAAGGACTAT 

1401 1500 
788 AATACCAGGACTTAGAGAAATTGAAGTTGTTGAGTGACGTGGTGAAGGAGACGCTCCGGCTCCATTCTAGCATCCATTCTGTGATGCGCGCAGTCAAGAA 
FI12-63 AATACCAGGACCTAGAGAAATTGACGTTGTTGGGTGACGTGGTGAAGGAGACGCTCCGGCTACATTCTAGCATCCATTCTATGATGCGCGCTATCAAGAA 

1501 1600 
788 CGACCTCCCGATTCCAGGGACACCATACGTCGTCACAACAGATAAAGTTCTGATTGCGAGTCCGCTTGTTACGCACCTCTCGCCAGAACACTTTTCAGAC 
FI12-63 CGACCTCCCGATTCCAGGGACACCATATGTTGTCACAACAGACAAAGTTCTGATCGCAAGTCCGCTTGTTACGCACCTCTCGCCAGAACACTTTTCAGAC 

1601 1700 
788 CCGGAGGAGTGGGATCCGTACCGCTGGGCTACACCGGGTGACATTGAGAAAGATGAAGAGGTGGATTATGGATATGGTGTGATTAGCAAGGGGACTAGGA 
FI12-63 CCTGAGAAACGGGATCCGTACCGTTGGGCTACCCTGGGTAACATTGAGAAAGATGAAGAGGCGGGTTATGGATATGGTGTGATTAGTAAGGAGATTAGGA 

1800 
788 GTCCGTACTTACCGTTTGGTGCGGGCAGACATCGATGCATTGGGGAGAAGTTTGCATTTGTCAATTTATTGACGATTATAGCTACGCTGGTGAGGGGATA 
FI12-63 TTCCTTATTTACCGTTTGGTGCGGGCAGACATCGGTGCATTGGGGAGAAGTTTGCATTCGTCAATTCATTGACGATTATAGCCACGCTTGTGAGGGGATA 

1801 1900 
788 TAAGTGGAGTCTTGTCCCTGGGGGAGAGGAAGGAGGACAGATCCCAAAGACGGATTATTCGAGTATGGTCTCTAGACCTATGCCGGGCTCGAGAGTTAGA 
FI12-63 TAGGTGGAGTCT ---------------------------------------------------------------------------------------- 

1901 1918 
788 TGGGAAAAGAGGGTCTAG 
FI12-63 ------------------ 

Figure 4.7. Alignment of CYP51A genomic DNA sequences from two R. secalis isolates. Introns are shown 

in grey. Vindicates the four base pair frameshift indel, * indicates the stop codon in the F112-63 sequence 

with I indicating the reading frame of each gene at that point. 
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Nucleotide sequences for CYP51A-P are given in Appendix 4(c). All sequences contained the 

4 base pair deletion at base pairs 419-422, resulting in a premature stop codon at base pairs 
482-484 (numbered according to functional CYP51A gene). cDNA sequences confirmed that 

the first intron is in the same position as in the functional CYP51A gene. The second intron 

starts two base pairs downstream but finishes in the same position as in the functional 

CYP51A gene. A third intron, with the splice site formed due to the presence of the sequence 

TAG instead of GAA at base pairs 764-766, was found at base pairs 712-766 (Figure 4.7). 

4.3.4 Efflux inhibitor assays 

Triazole EC50s over the range of phenothiazine concentrations are shown in Figure 4.8. EC50s 

for the phenothiazine compounds themselves in the absence of triazole fungicide were in the 

range 4.7-23.9 µg ml"1, so triazole EC50 values at higher phenothiazine concentrations are not 

reliable. At 5 gg ml-' phenothiazine, tebuconazole EC50s were reduced by less than 2.05-fold 

(Table 4.5). Prothioconazole EC50s were reduced by up to nine-fold, but this was not 

correlated with EC50 of the fungicide alone. Azoxystrobin EC50s were reduced by up to 4.17, 

but this was not correlated with EC50 of the fungicide alone. 
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Figure 4.8. Tebuconazole and prothioconazole ECtos of four R. secalis isolates over a range of 

concentrations of the putative efflux inhibitors fluphenazine and trifluoperazine. Black circles: isolate 

K1 124; white circles: Rs 9528.4; black triangles: 788; white triangles, RS 783. Grey shading indicates the 

range of EC50s of the putative efflux inhibitors alone for the four R. secalis isolates. 
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Table 4.5. Fungicide EC50s with and without 5 µg ml"' of the putative efflux inhibitors fluphenazine and 

trifluoperazine. 

Fungicide Putative efflux Isolate Fungicide EC50 EC5o 
inhibitor 

(µg MI-1) 
Potentiation e 

Tebuconazole Fluphenazine 

Trifluoperazine 

Prothioconazole Fluphenazine 

Trifluoperazine 

Azoxystrobin Fluphenazine 

Trifluoperazine 

0 µg m1-1 5 pg m1-1 
phenothiazine phenothiazine 

K1124 0.00969 0.0344 0.282 
RS 9528.4 0.465 0.442 1.05 
788 4.44 3.62 1.23 
RS 783 28.7 16.4 1.75 
RS 9528.4 0.583 0.284 2.05 
788 4.01 3.15 1.27 
RS 783 28.7 14.3 2.01 

KI 124 0.107 0.0227 4.73 
RS 9528.4 0.664 0.586 1.13 
788 0.518 0.998 0.519 
RS 783 10.1 1.93 5.23 
RS 9528.4 0.132 0.0147 9.00 
788 0.445 0.301 1.48 
RS 783 8.59 1.39 6.18 

RS 9528.4 0.104 0.104 1.00 
788 0.0507 0.0122 4.17 
RS 783 1.81 0.802 2.26 
RS 9528.4 0.129 0.363 0.355 
788 0.0221 0.0564 0.393 
RS 783 1.91 0.716 2.66 

a EC50 Potentiation = EC5o (0 µg ml" efflux inhibitor) / EC50 (5 µg ml" efflux inhibitor) 

4.4 Discussion 

4.4.1 Triazole sensitivity testing 

Sensitivity profiles against the four fungicides tested fall into three main groups. The first 

group, with the lowest EC50 values for all four triazoles tested, consists mainly of pre-1997 

isolates, which will be considered sensitive reference isolates for the triazoles being tested 

here, although isolates from the late 1980s onwards may come from populations that had 

already been subject to selection by triadimenol (Jones 1990). 
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The second group show some shifts in sensitivity levels, with propiconazole and 

tebuconazole EC50 values increased by around ten-fold, but smaller shifts in epoxiconazole 

and prothioconazole sensitivity relative to the reference isolates. Most isolates in this group 

were collected in Northern Ireland in 2001. Kendall et al. (1993) reported an eightfold shift in 

mean propiconazole sensitivity in field trials between 1988 and 1990, with some cross- 

resistance, but greater sensitivity, to tebuconazole. In this study, a similar shift in 

propiconazole sensitivity is apparent in this second group of isolates relative to the reference 

isolates, but with a greater shift in sensitivity to tebuconazole. 

The third group of isolates, including the majority of isolates from 2001 onwards, are further 

reduced in triazole sensitivity. Propiconazole and tebuconazole EC50 values are around 100- 

fold higher than those of the sensitive reference isolates. Prothioconazole and epoxiconazole 

EC50 values are also increased relative to the sensitive reference isolates, but generally by less 

than ten-fold. 

The decreased epoxiconazole sensitivity of isolates in group III, slightly less than ten-fold 

compared to group II, is consistent with shifts observed by Cooke et al. (2004), although 

actual sensitivity values are not comparable due to their use of MIC rather than EC50 values. 

Therefore, overall there is evidence of around a hundred-fold decrease in sensitivity to 

propiconazole and tebuconazole, around a ten-fold decrease in epoxiconazole sensitivity, and 

slightly less decline in prothioconazole sensitivity, for the majority of recent isolates 

compared to the reference isolates. Prothioconazole EC50 values appear somewhat elevated in 

vitro, compared to good control in the field (HGCA 2006), but the data still show that it is 

less affected by shifts in sensitivity than propiconazole and tebuconazole. 

EC50 values for each pairing of the triazoles tested here showed a significant positive 

correlation, suggesting positive cross-resistance between all four compounds. This is 

consistent with the results of Girling et al. (1988) and Kendall et al. (1993), with resistance 

against newer triazoles found to be correlated with, but quantitatively lower than, resistance 

to older triazoles. Multivariate analysis largely supports this conclusion. The first principal 

component has positive latent vectors for all four variants, indicating that 75.7% of variance 

can be accounted for by general positive cross-resistance to all four triazoles tested. However, 

the second principal component, accounting for a further 16.6% of variance, has a negative 
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latent vector for prothioconazole but positive latent vectors for propiconazole and 
tebuconazole. This indicates a slightly different pattern of variation in prothioconazole 

compared to the other three fungicides. It has been shown that prothioconazole interacts with 
different regions of CYP51 from other triazoles (Parker et al. 2011). However, similar latent 

vectors were obtained when the most sensitive isolates were excluded from the analysis, and 

sensitivity differences in this subset of isolates are not due to target-site alterations. 

The Syngenta isolate set had a similar pattern of triazole sensitivities, but with fewer sensitive 
isolates as they were all collected in 2009 whereas the first set included older isolates. As 

with the first isolate set, PC I, representing general positive cross-resistance and dividing 

isolates into sensitive, intermediate and less-sensitive isolates, and PC2, in which 

prothioconazole sensitivity varies differently from propiconazole and tebuconazole among 

the less-sensitive isolates, together encompass over 90% of variation. 

Isolates collected from Rothamsted field plots in 2009 fell within the lower end of the less 

sensitive group. There was no separation of isolates from plots receiving different fungicide 

treatments, suggesting that the initial population at that site was already less-sensitive and no 
further selection took place due to fungicide use within the 2008-2009 growing season. 

4.4.2 CYP51 sequence analysis 

No sequence differences detected in CYP51B, and no single-residue changes detected in 

CYP51A, correlated with differences in triazole sensitivity. Therefore, target-site resistance to 

triazoles, as found in M graminicola (Cools and Fraaije 2008) and B. graminis (Wyand and 
Brown 2005), can be ruled out for current isolates of R. secalis. 

However, CYP51A sequences obtained for isolates K1124, F112-63 and RS 219 contained 

substitutions, frame-shift indels and premature stop-codons, suggesting that the gene is non- 
functional. Therefore this appears to be a pseudogene and is referred to as CYP51A-P. 

CYP51A-P gene sequences from the selected isolates contained some sequence differences, 

but all contained a4 base pair deletion resulting in a stop codon at codon 114, and further 

premature stop codons downstream of codon 114. The presence of CYP51 paralogues in 

sensitive and other isolates, and their possible role in azole sensitivity, is investigated in 

Chapter 5. 
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4.4.3 Efflux inhibitor assays 

Since triazole sensitivity differences among intermediate and less-sensitive isolates are not 

explained by target-site sequence differences, a preliminary investigation into the possible 

role of enhanced efflux, using efflux inhibitors. However, the inhibitors used had very little 

effect on triazole sensitivity. At the highest concentration at which the efflux inhibitors 

themselves did not inhibit fungal growth, tebuconazole sensitivity was reduced around two- 

fold. This is less than the ten-fold variation seen between intermediate and less-sensitive 

isolates, and was similar for all isolates tested and not correlated with initial tebuconazole 

sensitivity. Greater reductions in prothioconazole sensitivity were seen in some isolates. The 

lowest potentiation of prothioconazole sensitivity by both phenothiazines was in isolate 788, 

which also had the highest score for Principal Component 2, indicating a lower 

prothioconazole Log[EC50] than expected from overall azole sensitivity, of the four isolates 

tested. However, these four isolates cover relatively little of the range of PC2 scores seen 

across all isolates. Therefore future tests on the effect of efflux inhibitors on prothioconazole 

sensitivity should include a selection of the isolates numbered 7-12 in Figure 4.3. However, 

potentiation in sensitivity to tebuconazole, prothioconazole or azoxystrobin was not 

correlated with initial fungicide EC50 for the isolate set tested here. 

The inhibitors tested here were phenothiazines, which have previously been found to restore 

azole sensitivity in isolates of C. albicans (Marchetti et al. 2000) and M graminicola 

(Roohparvar et al. 2008). Trifluoperazine was shown to be a non-competitive inhibitor of the 

yeast efflux pump Pdr5p (Kolaczkowski et al. 1996), although it may have different activity 

against different transporters (Wesolowska et al. 2009). McCartney (2006) reported that 

epoxiconazole and tebuconazole sensitivity in R. secalis were also unaffected by the efflux 

inhibitor ENT9811. However, efflux inhibition has been reported for a wide range of 

substances, including calcium channel blockers (Bulatova and Darwish 2008), tricyclic 

serotonin uptake inhibitors (Roohparvar et al. 2008), macrolide immunosuppressants 

(Hayashi et al. 2003), and milbemycin actinomycete metabolites (Lee et al. 2001). Therefore 

a role of efflux in reduced azole sensitivity in R. secalis cannot be categorically ruled out. 

Considering the wide range of putative efflux inhibitors, without clearly-defined structure- 

activity relationships except in some human and bacterial efflux inhibitors (Guz et al. 2000), 

it would not necessarily be possible to determine the role of efflux in sensitivity even if a 

wider range of substances were tested. Therefore, it would be preferable to measure fungicide 

accumulation directly, using [14C] radiolabelled fungicides (Hayashi et al. 2003). Fungicide 
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accumulation would also be affected by different rates of azole uptake (Mansfield et al. 

2010). Furthermore, when the R. secalis genome is released, it will be possible to search for 

predicted transporter genes, and in future microarrays or next generation sequence data may 

become available to identify genes that are upregulated in less-sensitive isolates or on 

addition of fungicides. 

However, in the absence of evidence for increased efflux, other possible mechanisms should 

be investigated. Expression levels of the triazole target-site-encoding genes CYP51A and 
CYP5JB are investigated in chapter 5. 

137 



Chapter 5 

CYPSJ paralogues and triazole sensitivity 

5.1 Introduction 

In the previous chapter, triazole sensitivity data were presented for R. secalis. Isolates fell 

into sensitive, intermediate and less sensitive groups, with further variation among the less- 

sensitive isolates. The target site encoding genes CYP51A and CYP51B and pseudogene 
CYP51A-P were sequenced for isolates from each sensitivity group. No point mutations 

correlated with triazole sensitivity, but in the case of the sensitive isolates, CYP51A could not 

be amplified and only CYP51A-P and CYP51B sequences were obtained. Further tests are 

needed to confirm whether CYP51A is present in these isolates. 

Multiple CYP51 genes have been identified from filamentous ascomycetes including A. 

fumigatus (Mellado et al. 2001), Fusarium spp. (Deng et al. 2007) and Magnaporthe oryzae 

(Yan et al. 2011). It is not known whether any functional divergence has taken place between 

CYP51 paralogues. In the case of A. fumigatus, CYP51 mutations and over-expression 

conferring reduced azole sensitivity have been reported in the CYP51A paralogue (Diaz- 

Guerra et al. 2003). However, knocking out A. fumigatus CYP51A increased the azole 

sensitivity of sensitive as well as less-sensitive isolates, suggesting that the presence of a 

wild-type CYP51A can confer reduced intrinsic sensitivity (Mellado et al. 2005). 

While the presence of CYP5JA may correlate with the initial shift from sensitive to 

intermediate sensitivity in R. secalis, no CYP51 mutations correlate with further sensitivity 

shifts (Section 4.3.3). Furthermore, no evidence was found of a role of enhanced efflux in 

reduced triazole sensitivity. Another possible mechanism of reduced triazole sensitivity is 

target site over-expression (Hamamoto et al. 2000). This may be due to insertions (Schnabel 

and Jones 2001; Ma et al. 2006; Ghosoph et al. 2007) or tandem repeats (Hamamoto et al. 
2000; Mellado et al. 2007) in the CYP51 promoter, mutations in transcription factors (Dunkel 

et al. 2008; Heilmann et al. 2010) or chromosome duplication (Sionov et al. 2010). These 

mechanisms all result in constitutive over-expression of CYP51, but greater induced 

expression of an ABC transporter (Luo and Schnabel 2008) and AOX (Chapter 2) in response 

to fungicide exposure have been reported in fungal isolates with reduced sensitivity to 
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triazoles and Qols, respectively. Furthermore, expression analysis of CYP5JA and CYP5JB 

may shed light on functional differences between the two paralogues. 

This chapter investigates the evolution of fungal CYP51 paralogues, and the role of the two 

R. secalis CYP51 paralogues in triazole sensitivity. Sequenced fungal genomes were searched 

for CYP51 genes, and phylogenetic analyses and selection tests were carried out. The 

designations CYP51A and CYP51B used for R. secalis CYP51 paralogues in the previous 

chapter are explained with reference to the fungal CYP51 gene tree obtained. 

A PCR-RFLP assay was designed to detect CYP51A and CYP51A-P in R. secalis isolates, and 

a Southern blot was carried out to confirm the results. A yeast expression assay was carried 

out to test whether R. secalis CYP51A encodes a lanosterol demethylase capable of 

complementing S. cerevisiae CYP51. Expression analysis was carried out for R. secalis 

CYP51A and CYP51B. Constitutive expression and induced expression in the presence of 

tebuconazole were analysed for both CYP51 paralogues. A pyrosequencing assay was 

designed to detect CYP51A in R. secalis populations, and samples from the Hoosfield spring 

barley experiment were analysed. 

5.2 Materials and Methods 

5.2.1 Analysis of CYP51 paralogues in fungal genomes 
Initially, a text search was carried out for annotated CYP51 genes in fungal genomes on the 

Broad Institute server (http: //www. broadinstitute. org/science/data). Subsequently, BLAST 

searches were carried out against each genome with S. cerevisiae CYP51, and with CYP51A 

and CYP51 C from the nearest available relative for species where these paralogues were not 
found. A preliminary amino acid alignment was constructed using the ClustaiW algorithm 
implemented in the AlignX module of Vector NTI (Invitrogen Corporation), and predicted 
introns and start and stop sites were checked manually. 

Amino acid sequences obtained from fungal genomes, plus CYP51 sequences from 

Mycobacterium tuberculosis, Trypanosoma cruzi and Homo sapiens, for which crystal 

structures have been solved, and additional outgroup sequences comprising Arabidopsis 

thaliana CYP51G1 and Mus musculus CYP51A1 and CYP7A1, were aligned using M-Coffee. 

The M-Coffee amino acid alignment was used to construct a corresponding coding nucleotide 
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alignment using PAL2NAL (Suyama et al. 2006). Rhynchosporium secalis CYP51A-P was 

then added manually according to its alignment with R. secalis CYP51A (Figure 4.7). 

Phylogenetic analyses were carried out with the full alignment, and with ambiguously- 

aligned regions excluded based on M-Coffee scores. 

Model selection was carried out in jModelTest 0.1.1, selecting models by AICc. 

Neighbour joining trees were reconstructed in MEGA5 (Tamura et al. 2011), using the 

TrN+G model for the full data set, with 100 bootstrap runs. Maximum likelihood 

phylogenetic reconstruction was carried out in PhyML (Guindon and Gascuel 2003) 

implemented through the TOPALi v2.5 platform (Milne et al. 2009), using the TVM+I+G 

model for the unambiguously aligned site set and the TrN+I+G model for the full data set, 

with 100 bootstrap runs. Nodes with under 50% bootstrap support were collapsed using the 

Phylo module of Biopython (Cock et al. 2009). Bayesian analysis was carried out in MrBayes 

(Ronquist and Huelsenbeck 2003), using the GTR+I+G model for the unambiguously aligned 

site set and the HKY+I+G model for the full data set. The mixed-chain Monte Carlo 

simulation was carried out for 1200000 generations until stationarity was reached (average 

standard deviation of split frequencies < 0.01), sampling every 100 generations, with a burn- 

in of 3000 samples. A 50% majority-rule consensus tree was calculated in PAUP* (Swofford 

1991). 

Intron sequences were too variable to align unambiguously so were not used for phylogenetic 

reconstruction, but intron presence/absence data were plotted onto the Maximum Likelihood 

tree generated from the full coding sequences for ascomycete CYP51 s. Ancestral state 

reconstructions were carried out by Maximum Parsimony in Mesquite (Maddison and 
Maddison 2010). 

Recombination detection was carried out using the DSS (Difference of Sums of Squares) 

method (McGuire and Wright 2000) in TOPALi v2.5. Selection testing was carried using the 

codon-based Z-test of selection implemented in MEGA 5 (Tamura et al. 2011). Further 

selection testing was carried out in the CodeML module of PAML 4.4 (Yang 2007), using 
branch-site new model A (model=2, NSsites=2; null model, w2=1) with the branches leading 

to the CYPSIA, B and C clades in turn set as the foreground branch, and in Diverge 2.0, using 

the Gu99 model, for each pairing of the yeast, A, B and C clades. Sequence logos for CYP51 

substrate recognition sites (Podust et al. 2001) were made using WebLogo (Crooks et al. 
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2004). Selection testing was carried out for yeast and filamentous ascomycete CYP51 clades, 

with H. sapiens CYP51 as an outgroup. Since Diverge and WebLogo require a minimum of 
four sequences per group, N. haematococca (Fusarium solani) gene eggwl. 5.6 72.1 was 

added to the alignment as a fourth CYP51 C, and the tree reconstructed in PhyML from the 

full alignment using the TrN+I+G model. 

Protein subcellular location prediction was carried out with TargetP 1.1 (Emanuelsson et al. 
2000), SignalP 3.0 (Bendtsen et al. 2004), TMHHMM (Krogh et al. 2001) and Phobius (Kall 

et al. 2004) according to the protocol described by Emanuelsson et al. (2007), with additional 

analyses in WoLF PSORT (Horton et al. 2006), Protein Prowler (Hawkins and Boden 2006) 

and MultiLoc (Hoglund et al. 2006). 

5.2.2 PCR-RFLP Assay 

To test for the presence of CYP51A genes in R. secalis isolates, a PCR-RFLP (Polymerase 

Chain Reaction - Restriction Fragment Length Polymorphism) assay was developed. PCR 

reactions were carried out using Phusion High-Fidelity DNA Polymerase (Finnzymes Oy, 

Espoo, Finland) according to manufacturer's instructions, in 30µ1 reactions with HF buffer, 

no DMSO, 0.5mM primers and 1.67 pg ml-1 template. Two reactions were carried out for 

each template to detect CYP51A and CYP51A-P, with primers Frameshift F and Stop Codon 

R for CYP51A and CYP51A-P, respectively (Table 5.1). Primers were designed manually, 

with annealing temperatures and dimer formation calculated in Vector NTI (Invitrogen 

Corporation). The PCR programme comprised 2 minutes at 95°C; 40 cycles of 10 seconds at 

95°C, 20 seconds at the annealing temperature and 50 seconds at 72°C; followed by 4 

minutes 10 seconds at 72°C. Annealing temperature was 60°C for the first cycle, reduced in 

1 °C increments per cycle to 56°C, followed by 35 cycles with an annealing temperature of 

55°C. Restriction digests were carried out using 5µl PCR product, in 10µI reactions with 

enzymes PstI, Hindill and EcoRl (Promega) according to manufacturer's instructions, 

incubating for 3 hours. Products were run on 1% agarose gel with 0.01% ethidium bromide. 
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Table 5.1. List of primers used to amplify CYPSI genes from R. secalis for PCR-RFLP analysis, Southern 

blot probe synthesis, yeast construct synthesis, expression analysis and pyrosequencing. 

Assay Gene Primer name Primer sequence 

PCR-RFLP CYP51A Frameshift F 5'- AGGAAATGAGTTTATCCTCAATGGAAGAT -3' 
Stop codon R 5'- TGAAGCCATGTAGGAGAGGACTTCGTTT -3' 

CYP51A-P Frameshift F 5'- CTGGAAGTGAATTTATCCTCAATGGTAGAC -3' 
Stop codon R 5'- TGGGTGAGGCCGAACTTGACA -3' 

Southern CYP51A Southern F 5'- TGTATGATGATCTCGACCACGGGTT -3' 
blot Reverse 10D 5'- CACCAAACGGTAAGTACGGACTCCTAG -3' 

CYP51A-P Southern F as for functional CYP51A 

Reverse 31 D 5'- CACCAAACGGTAAATAAGGAATCCTAATCT -3' 

Yeast CYP51A pYES F2 5'- GAGGTACICATGCTGGGTATCTTCTCGGTG -3' 
construct pYES R 5'- CTGAGCTICGACCCTCTTTTCCCATCTAACTCT -3' 

CYP51B 5'- GAGGTACICATGGGAATTTTTGAGGCTGTTACAGT -3' pYES F 
5'- CTGAGCTICAACCTTAACTTTTTCTCTCTTCTCCCA -3' pYES R 

5'- [Phos]GAAGACGACTGTGTACCTTGG[CJACCC 
pYES mut ACGGAAACGAATTCA -3' 

Expression CYPSIA Expression F 5'- AGGAAATGAGTTTATCCTCAATGGAAGAT -3' 
analysis Expression R 5'- TGAAGCCATGTAGGAGAGGACTTCGTTT -3' 

CYP51B Expression F 5'- ACCCCAGTCTTTGGAAAGGATGTGGT -3' 
Expression R 5'- GAGTGGTCGAATTTGTCTCGGCAA -3' 

B-tubulin Expression F 5'-GTGCAGTCACTGTTCCAGAGTTGACC -3' 
Expression R 5'-GCGGTTTGGACATTGGTGGG -3' 

Pyro- CYP51A Pyro F3 5'- CCTCTAGCTTTCTACACAAAATGTC -3' 
sequencing and Pyro R2 5'- GTTGTTCGAGTGCGCGTTG -3' 

CYP5IA-P Del Fl 5'- [Btn]TTTCGGCARAAAAATGACTGT -3' 
Del RI 5'- ACATCCTGCARTCTWCCATTGAG -3' 
Del Si 5'- TCTWCCATTGAGGATAAAYT -3' 

a [Phos]: Phosphorylated nuceleotide; [Btn]: Biotinylated nucleoide; Underlining indicates restriction 

enzyme recognition sequences, I indicates cleavage site; [C]: mismatch 

5.2.3 Southern Blot 

IOgg genomic DNA from isolates 788, K1124 and P112-63 was digested with high 

concentration restriction enzymes Hindlll, EcoRI, Pstl and EcoR V (Promega) in 2Oµ1 

reactions according to manufacturer's instructions. Products were run on a 1.2% agarose gel 

at 100V for 3 hours. The gel was washed in 0.25M hydrochloric acid for 15 minutes, rinsed 
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in distilled water, and blotted onto Hybond N+ membrane (GE Healthcare) with 0.4M 

sodium hydroxide for 16 hours. The membrane was washed in 2x SSC buffer (Sigma), air 
dried and stored in dry paper at room temperature. The gel was soaked in ethidium bromide 

solution for 30 minutes to ensure all DNA had been transferred. 

A PCR reaction was carried out using Phusion High-Fidelity DNA Polymerase (Finnzymes 

Oy, Espoo, Finland) according to manufacturer's instructions, in 30µl reactions with HF 

buffer, no DMSO and 0.5mM primers. Soithern Blot primers (Table 4.2) were designed 

manually, with annealing temperatures and dimer formation calculated in Vector NTI 

(Invitrogen Corporation). Template was 2.5 gl of 104 diluted plasmid containing cloned 

cDNA product of CYP51 for isolate 788 and CYP51-P for isolate F112-63, synthesised as 

described in section 4.2.4. The PCR programme comprised 2 minutes at 95°C; 40 cycles of 

10 seconds at 95°C, 20 seconds at 55°C and 50 seconds at 72°C; followed by 4 minutes 10 

seconds at 72°C. PCR products were purified using the Wizard SV Gel and PCR Clean-Up 

System (Promega, USA), and diluted to give 25ng DNA in 45µl TE buffer. The probe was 

radiolabelled with [32P] dCTP (Perkin Elmer, Waltham, Massachusetts) using the Amersham 

Rediprime II Random Prime Labelling System (GE Healthcare, Buckinghamshire) according 

to manufacturer's instructions. 

The membrane was incubated with 50m1 hybridisation buffer (7% SDS, 500mM sodium 

phosphate buffer pH 7.0) at 65°C with rotation in a hybridisation oven (Techne, Bibby 

Scientific Limited, Staffordshire), then incubated with the CYP51A (isolate 788) probe in 

hybridisation buffer with 100 µg ml-1 boiled sheared DNA at 65°C with rotation in a 
hybridisation oven for 16 hours. The membrane was washed twice in 2x SSC, 0.1% SDS 

solution preheated to 65°C, and twice in 0.1% SSC, 0.1% SDS solution preheated to 65°C, at 

65°C with rotation in a hybridisation over for 20 minutes. The membrane was sealed in a 

transparent plastic bag and placed in an autoradiogram cassette for 3 days. The autoradiogram 

was viewed with a Typhoon 8600 phosphoimager (Amersham Pharmacia Biotech, 

Buckinghamshire). The membrane was stripped by adding boiling 0.1 % SDS and leaving to 

cool to room temperature, three times, and the hybridisation repeated with CYP51A-P (isolate 

FI12-63) probe. 
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5.2.4 Yeast Complementation 

The primer binding sites and restriction sites used to make R. secalis CYP5J inserts for yeast 

constructs are shown in Figure 5.1. 

(a) Kpnl 

pYES F2 

pYES mut 

pYES R 

Sac/ 

I pYES R 

Sac! 

Figure 5.1. Primer binding sites and restriction sites for R. secalis CYP51 inserts for yeast constructs: 

(a) CYPSIA, (b) CYP51B. 

A PCR reaction was carried out with Easy-A High-Fidelity PCR Cloning Enzyme 

(Stratagene, California, USA) according to manufacturer's instructions, with primers pYES F 

and pYES R for CYP51B and pYES F2 and pYES R for CYP51A. Primers were designed 

manually, with annealing temperatures and dimer formation calculated in Vector NTI 

(Invitrogen Corporation). PCR template was a 1/10 dilution of isolate 788 cDNA, 

synthesised as described in section 5.2.5. The PCR programme comprised 2 minutes at 95°C; 

followed by 30 cycles of 40 seconds at 95°C, 30 seconds at 62°C and 2 minutes at 72°C; 

followed by 7 minutes at 72°C. PCR products were purified using the Wizard SV Gel and 

PCR Clean-Up System (Promega, USA). For CYP51A, PstI and Hindill restriction digests 

were carried out as described in section 5.2.2 to confirm that the PCR product was CYP51A 

and not CYP51A-P. 
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The CYP5JB PCR product was ligated into pGEM T-Easy plasmids, cloned in JM109 

competent cells and plasmid DNA purified as described in section 4.2.3. Site-directed 

mutagenesis to remove the internal KpnI restriction site by synonymous substitution was 

carried out with the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies, 

California, USA), with primer CYP51 B pYES mut. Primer CYP51 B pYES mut was designed 

manually, with annealing temperature calculated in Vector NTI (Invitrogen Corporation). 

The PCR was carried out in 25µl reaction volume, with 125 ng primer, 1 gg plasmid template 

and 2.5 units Pfu polymerase. PCR cycle comprised 30 seconds at 95°C, followed by 30 

cycles of 30 seconds at 95°C, 1 minute at 55°C and 4 minutes 30 seconds at 68°C. 10 units 
DpnI was added, and incubated at 37°C for 1 hour. The product was then transformed into 

XL 1-Blue supercompetent cells. Cloned plasmids were purified using the QIASpin mini-prep 

kit (Qiagen) according to manufacturer's instructions and eluted into 50 µl distilled water. A 

KpnI restriction digest was carried out to confirm that the internal restriction site had been 

removed. 

The CYP51A purified PCR product and CYP5JB mutated plasmids were digested with KpnI 

and Sac1. This template (10 . il) was added to 2 gl KpnI, 2 gl Sacl, 2 . tl Buffer J and 1 gl BSA 

(Promega) and 3 µl distilled water, and incubated at 37°C for 3 hours. Products were run on a 

1% agarose gel, insert bands were excised, and purified using the Wizard SV Gel and PCR 

Clean-Up System (Promega). Purified inserts were inserted into pYES2-CT vector. Ligations 

were carried out with T4 ligase (Promega) with 5: 1 insert: vector, incubated at 4°C for 16 

hours. Plasmids were then cloned into XL 1-Blue supercompetent cells (Agilent) according to 

manufacturer's instructions but with the initial 1 hour incubation after heat-shocking carried 

out at 30°C rather than 37°C, and purified with the QiaSpin mini-prep kit (Qiagen). 

Purified CYPSIA, CYP51 B and empty pYES2-CT plasmids were transformed into S. 

cerevisiae strain YUG37: erg11, in which the native CYP51 is controlled by a doxycycline- 

repressible promoter. Transformation was carried out using the Sc. EasyComp 

Transformation Kit (Invitrogen) according to manufacturer's instructions. Selection plates 

comprised SD GAL+RAF agar medium, containing 2g 1"1 yeast nitrogen base without amino 

acids, 1.92 g 1"1 yeast synthetic drop-out medium supplement without uracil, 20 g 1"1 galactose 

and 20 g 1" raffinose, with or without 3 pg ml" doxycycline. 
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In order to test for CYP51 complementation, a growth assay was carried out with and without 
3 µg ml"' doxycycline. Yeast transformants were grown in SD GAL+RAF liquid medium at 
30°C in an orbital shaker for 24 hours to induce CYP51 expression. Yeast suspensions were 
diluted to 1.25 x 106 cells µl'', followed by 6 serial dilutions at 1/5 to give concentrations of 
2.5 x 105,5 x 104,1 x 104,2 x 103,4 x 102 and 8x 10' cells µl'. Five microlitre drops of 

spore suspension were placed on SD GAL+RAF plates with and without 3 . tg ml"' 
doxycycline, left to dry at room temperature, incubated at 30°C for 5 days then visually 

checked for growth. 

5.2.5 CYP51 Expression Analysis: Constitutive Expression 

Isolates QUB 30-10, QUB 12-3, F112-63, R 9528.4, GKII 18-2-3 and RS 783 were grown in 

100m1 Sabouraud liquid medium at 2.5 x 104 spores ml"' in an orbital shaker at 150 rpm at 
20°C for 10 days, at which point cultures were in the linear phase of growth as established in 

section 2.4.3. Fungal material was harvested by vacuum filtration, immediately placed into 

liquid nitrogen and stored at -80°C before freeze-drying. 

RNA extraction was carried out with TRIzol Reagent (Invitrogen, California, USA), 

according to manufacturer's instructions, using a tissue homogeniser for 2 minutes, with two 

phase separation steps using BCP (Molecular Research Center Inc., USA), and resuspending 

the pellet in 50µ1 TE. An equal volume of 8M lithium chloride was added, the mixture was 
incubated overnight at 4°C, then centrifuged at 4°C for 30 minutes and the supernatant 

discarded. The RNA pellet was washed with 70% ethanol, dried at room temperature, 

resuspended in RNase-free water and stored at -80°C. The RNA was treated with the 

TURBO DNA-free Kit (Applied Biosystems, California, USA). cDNA was synthesised with 

the Superscript III first-strand synthesis system (Invitrogen, California, USA). End-point 

PCRs were carried out with Red Hot Taq as described in section 3.2.4 with CYPSI B primers 

F1 and R1 to check for genomic contamination. 

Quantitative PCR was carried out using SYBR Green JumpStart Taq ReadyMix (Sigma), in 

25µl reactions with 0.25µM primers and 0.2% cDNA template, with the 7500 Real Time 

PCR System (Applied Biosystems). CYP51 B, CYP5JA and Q-tubulin primers Expression F 

and Expression R (Table 5.1) were used, with ß-tubulin used as the endogenous control. 

CYP51B and ß-tubulin primers were designed in Vector NTI (Invitorgen Corporation); 

CYP51A primers were designed manually, with annealing temperature and dimer formation 

146 



calculated in Vector NTI. The PCR cycle comprised 2 minutes at 95°C; followed by 40 

cycles of 15 seconds at 95°C, 30 seconds at 58°C and 36 seconds at 72°C at which point the 

reading was taken; followed by a dissociation cycle of 15 seconds at 95°C, 1 minute at 60°C 

and 15 seconds at 95°C. Data were analysed as described in Section 3.2.6, with fi-tubulin as 

endogenous control and isolate QUB 30-10 as calibrator sample. 

5.2.6 CYP51 Expression Analysis: Induced Expression 

Isolates QUB 30-10,788, KI 124, QUB 12-3, FI12-63, R 9528.4, GKII 18-2-3 and RS 783 

were grown as described in section 5.2.5, with two cultures of each isolate. At day 7, 

tebuconazole solution in acetone was added to one culture of each isolate to give a final 

concentration of 1 µg ml-1. An equal volume of acetone without tebuconazole was added to 

the other cultures. At day 10, cultures were harvested by vacuum filtration, immediately 

placed in liquid nitrogen and stored at -80°C before freeze-drying. RNA extraction and 

quantitative PCR was carried out as described in section 5.2.5. Two biological replicates were 

carried out. Data were analysed as described in Section 3.2.6, with ß-tubulin as endogenous 

control and isolate R9528.4 without fungicide as calibrator sample. Correlation between EC5o 

values, and gene upregulation following addition of tebuconazole, was tested by least squares 

linear regression analysis in GenStat 13th Edition (VSN International, Hertfordshire, UK). 

5.2.7 Pyrosequencing Assay 

Spring barley has been grown at Hoosfield at Rothamsted Research in Hertfordshire, UK, 

since 1852. DNA had been extracted from grain samples. Rhynchosporium secalis disease 

levels had been quantified by qPCR (Simon Atkins, unpublished data), and years with high 

levels were selected for pyrosequencing analysis. 

A PCR reaction was carried out in 25µi reactions using Red Hot Taq (ABgene) according to 

manufacturer's instructions, with 1.5mM MgC12,0.29M dNTPs, 0.2µM primers and Ing µl'1 

template. Primers used were Pyro F3 and Pyro R3 (Table 5.1), designed using 

Pyrosequencing Assay Design Software (Biotage, Uppsala, Sweden). The PCR programme 

comprised 2 minutes at 94°C; followed by 40 cycles of 30 seconds at 94°C, 1 minute at 52°C 

and 90 seconds at 72°C; followed by 5 minutes at 72°C. The products were diluted 500-fold 

in nanopure water (Sigma), and a nested PCR carried out with the same conditions as the 

initial PCR but using primers Del F1 and Del R1 (Table 5.1), designed using Pyrosequencing 

Assay Design Software (Biotage, Uppsala, Sweden), and an annealing temperature of 58°C. 

147 



The Pyrosequencing assay was carried out using the PyroMark system (Qiagen), according to 

manufacturer's instructions. The bead mix was made with 3µl streptavidin-coated Sepharose 

beads, 37µl binding buffer, 25µl water and l5µ1 PCR product per well. Samples were 

processed with the Q96 vacuum workstation, and annealed to primer Del Si (Table 5.1). 

Sequencing was carried out using the PSQ96 instrument (Biotage, Uppsala, Sweden), 

according to manufacturer's instructions. 

5.3 Results 

5.3.1 Analysis of CYP5J paralogues in fungal genomes 

CYP51 genes identified in genomes on the Broad Institute server are listed in Table 5.2. The 

full amino acid alignment is given in Appendix 5. For the alignment with ambiguously- 

aligned regions excluded, the TVM+I+G model was selected for phylogenetic reconstruction 
in PhyML, with GTR+I+G selected from the subset of jModeltest models available in 

MrBayes. For the full alignment of all sites, the TrN+I+G model was selected for 

phylogenetic reconstruction in PhyML, with HKY+I+G selected from the subset of 
jModeltest models available in MrBayes. All phylogenetic trees are shown in Figure 5.2. 

Figure 5.2. Phylogenetic trees of CYPS1 sequences of R. secalis and from fungal genomes on the Broad 

Institute genome server, rooted with a CYP7 outgroup. (a-d) Trees reconstructed from nucleotide 

alignments with ambiguously-aligned regions excluded based on M-Coffee alignment scores; (e-h) trees 

reconstructed from full nucleotide alignments. (a, e) Neighbour-joining phylograms: node labels indicate 

percentage bootstrap support, nodes collapsed if bootstrap support is under 50%. (b, f) 50% majority-rule 

consensus cladogram of most parsimonious trees: node labels indicate bootstrap support. (c, g) Maximum 

likelihood phylograms: node labels indicate percentage bootstrap support, nodes collapsed if bootstrap 

support is under 50%; numbers in brackets indicate omitted branch length. (d, h) 50% majority-rule 

consensus cladogram of Bayesian trees: node labels indicate percentage posterior probability. 
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(Figure 5.2) 
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The presence of introns in ascomycete CYP51 genes is shown in Figure 5.3. According to 

maximum parsimony ancestral state reconstructions, an intron after alignment position 357 

(C. albicans base pair 235) was gained once with three subsequent losses. The intron after 

alignment position 566 (C. albicans position 432) was gained once with two subsequent 

losses. For the intron after position 1946 (C. albicans position 1518), two equally 

parsimonious reconstructions are possible, with one gain followed by three losses or three 

independent gains and one subsequent loss. Other introns are limited to single branches. 

Filamentous ascomycete CYP51 paralogues fall into three main clades, designated A, B and 

C (Figure 5.2). CYP51 genes are listed, along with gene names according to P450 

nomenclature (Nelson 2009), and the Glade into which they fall in phylogenetic analyses, in 

Table 5.2. 

The tree including N haematococca gene e_gwl. 5.672.1 was largely congruent with the 

maximum likelihood tree previously obtained from the full alignment, with the N 

haematococca gene falling into the CYP51 C Glade as sister group to the other Fusarium spp. 

CYP51F3 paralogues. Amino acid sequence variations between the three ascomycete CYP51 

clades and yeast CYP51 in the predicted CYP51 substrate recognition sites (Podust et al. 

2001) are shown in Figure 5.4. 

Selection testing by the codon-based Z-test found no significant evidence of positive 

selection except in some comparisons with Rhizopus oryzae CYP51 Fl p. The majority of 

pairwise comparisons showed evidence of purifying selection, even between paralogues. 

Diverge results are listed in Table 5.3. All comparisons show significant evidence of Type I 

functional divergence. The greatest coefficient of functional divergence, O,, is between yeast 

CYP51 and CYP51C; the least functional divergence is between CYPSIA and CYP51 B. 

CodeML results are listed in Table 5.4. Likelihood is significantly greater (p<0.001) for new 

Branch-site model A with free w2 than with w2=1 with the branch leading to the CYPS1A, 

CYP51B or CYP51C Glade as the foreground branch. w2 >1 was calculated as occurring at 

6.6,6.5 and 16.9% of sites on the branches leading to CYP51A, CYP51B and CYPSI C, 

respectively. 
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Yeast CYP51F1 

Fusarium spp. CYP51 F3 

Mycosphaerella graminicola CYP51 F1 
Stagonospora nodorum CYP51 F1 
Pyrenophora tritici-repentis C YP5 1 F1 
Rhynchosporium secalis CYP51F1 

Sclerotinia sclerotiorum CYP51 F1 
Botrytis cinerea CYP51 F1 

Fusarium spp. CYP51F1 

Magnaporthe grisea CYP51 F1 
Neurospora crassa CYP51 F1 
Chaetomium globosum CYP51 F1 

Verticillium dahliae C YP51 F 1' 

Colletotrichum spp. CYP51 F1 

Aspergillus spp. CYP51F1 

Paracoccidioides brasiliensis CYP51 F1 
Histoplasma capsulatum CYP51 F1 
Blastomyces dermatitidis CYP51 F12 
Uncinocarpus reesii CYP51 F1 
Coccidioides immitis CYP51 F1 
Trichophytoni Microsporum CYP51F1 

U. reesii CYP51 F2 
C. immitis CYP51F2 
P. tritici-repentis CYP51 F2 
C. higginsianum CYP51F2 
Fusarium spp. CYP51 F2 
M. grisea CYP51F2 
R. secalis CYP51 F2P 
R. secalis CYP51 F2 
Aspergillus spp. CYP51 F2 / F4 
B. dermatitidis CYP51 F2 
H. capsulatum CYP51F2 

Trichophyton/ Microsporum CYP51 F2 

Figure 5.3. Introns present in ascomycete CYPSI genes, shown on the maximum likelihood cladogram, 

with ancestral states reconstructed by maximum parsimony. Green: intron after alignment position 357; 

Red: intron after position 566; yellow: intron after position 1946; Blue: other introns, after the alignment 

position numbers indicated. Dashed lines: uncertainty due to two equally parsimonious solutions. 

1V albo-atrum excluded due to poor sequence quality at the 3' end. 2 Intron after position 1946 was not 

predicted by GeneWise due to the absence of a guanine at the end of Exon 2, but this residue is not fully 

conserved in fungal introns, so presence or absence cannot be confirmed without transcript data. 
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Table 5.2. CYPSI genes used in this study, with gene names according to P450 nomenclature and the Glade 

into which they fall in phylogenetic analyses. Shading indicates P450 gene names not yet assigned on the 

P450 website (Nelson 2009). 

Species Locus ID P450 
nomenclature 

Fungal CYP51 
Glade 

Homo sapiens NM000780 CYP7 

BC032322 CYP51A1 

Mycobacterium BX842574 locus tag CYP51 Bl 
tuberculosis Rv0764c 
Trypansosoma cruzi AY283023 CYP51 EI 
Arabidopsis thaliana AtlgI1680 CYP51G1 

Rhizopus oryzae RO3G_11790.3 CYP51 Fl Mucoromycete 
R03G_08504.3 CYP51 Fl -p Mucoromycete 

RO3G_16595.3 CYP51 F5 Mucoromycete 
Cryptococcus CNAG_00040 CYP51 Fl Basidiomycete 
neoformans 
Puccinia graminis 1 PGTG_07202 CYP51 Fl Basidiomycete 

Puccinia trilicina 2 PTTG_05595. I CYP51 Fl Basidiomycete 

Ustilago maydis UM03662. I CYP51 Fl Basidiomycete 

Coprinopsis cinerea CC1G_07605 CYP51 Fl Basidiomycete 

CC I G_08364 Not yet Basidiomycete 
designated 

Schizosaccharomyces SPAC 13A 11.02c CYP51 Fl Taphrinomcotina 

pombe 
Candida albicans CAWG_04460 CYP51 Fl Saccharomycotina 
Candida guilliermondii PGUG_03415 CYP51 Fl Saccharomycotina 

Candida lusitaniae CLUG_04932 CYP5I Fl Saccharomycotina 

Candida parapsilosis CPAG_03310 CYP51 Fl Saccharomycotina 

Candida tropicalis CTRG_05283 CYP51 Fl Saccharomycotina 

Debaromyces hansenii DEHAOE20383g CYP51 Fl Saccharomycotina 

Lodderomyces LELG_03738 CYP51 Fl Saccharomycotina 
elongisporus 
Saccharomyces SCRG_04712.1 CYP51 Fl Saccharomycotina 
cerevisiae 
Arthroderma benhamiae ARB_00950 CYP51 FI Pezizomycotina B 

ARB_05314 CYP51 F2 Pezizomycotina A 
Aspergillus clavatus ACLA_005420 CYP51 Fl Pezizomycotina B 

ACLA_046180 CYPSI F2 Pezizomycotina A 

Aspergillus flavus AFL2G_06478 CYP51 FI Pezizomycotina B 
AFL2G_02771 CYP51 F2 Pezizomycotina A 
AFL2G_10953 CYP51 F4 Pezizomycotina A 

Aspergillusfumigatus Afu7g03740 CYP51 FI Pezizomycotina B 

Afu4g06890 CYP51 F2 Pezizomycotina A 
Aspergillus nidulans ANID_08283 CYP51 Fl Pezizomycotina B 

ANID_01901 CYP51 F2 Pezizomycotina A 
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Table 5.2 continued 

Species Locus ID P450 
nomenclature 

Fungal CYP5I 
Glade 

Aspergillus niger est_fgel_pm_C_150008 CYP5I Fl Pezizomycotina B 

est_fge 1 
_pm_C_40090 

CYP51 F2 Pezizomycotina A 

Aspergillus oryzae A0090026000842 CYP51 FI Pezizomycotina B 

A0090003000205 CYP51 F2 Pezizomycotina A 

A0090020000357 CYP51 F4 Pezizomycotina A 
Aspergillus terreus ATEG_02850 CYP51 F1 Pezizomycotina B 

ATEG_10302 CYP51 FI p Pezizomycotina B 

ATEG_05917 CYP51 F2 Pezizomycotina A 
Blastomyces BDBG_01678.1 CYP51 F1 Pezizomycotina B 
dermatitidis 

BDBG_04743.1 CYP51 F2 Pezizomycotina A 
Botrytis cinerea BCIG_11853.1 CYP51 FI Pezizomycotina B 

Chaetomium globosum CHGG_01652.1 CYP51 F1 Pezizomycotina B 
Coccidioides immitis CIMG_07469 CYP51 FI Pezizomycotina B 

CIMG_00573 CYP51 F2/ Pezizomycotina A 
CYP51 F7 

Colletotrichum GLRG_01612.1 CYP51 Fl Pezizomycotina B 
graminicola 
Colletotrichum CH063_04981.1 CYP5I FI Pezizomycotina B 
higginsianum 

CH063_09462.1 CYP51 F2 Pezizomycotina A 

Fusarium graminearum FGSG_01000 C YP51 F1 Pezizomycotina B 

FGSG_04092 CYP51 F2 Pezizomycotina A 
FGSG_11024 CYP51 F3 Pezizomycotina C 

Fusarium oxysporum FOXG_00394 CYP51 FI Pezizomycotina B 

FOXG 11545 CYP51 F2 Pezizomvcotina A 
FOXG_13138 CYP51 F3 Pezizomycotina C 

Fusarium verticillioides FVEG_01123 CYP51 Fl Pezizomycotina B 

FVEG_10277 CYP51 F2 Pezizomycotina A 
FVEG_12391 CYP51 F3 Pezizomycotina C 

Histoplasma capsulatum HCAG_04048.3 CYP51 Fl Pezizomycotina B 
(NAm 1) 

HCAG_04481.3 CYP51 F2 Pezizomycotina A 
Magnaporthe oryzae MGG_04432.6 CYP51 Fl Pezizomycotina B 

MGG_04628.6 CYP51 F2 Pezizomycotina A 
Microsporum canis MCYG_07307.2 CYP51 FI Pezizomycotina B 

MCYG_07010.2 CYP51 F2 Pezizomycotina A 
Microsporum gypseum MGYG_04803.2 CYP51 FI Pezizomycotina B 

MGYG_07916.2 CYP51 F2 Pezizomycotina A 

Mycosphaerella 110231 CYP51 Fl Pezizomycotina B 

graminicola 
Neosartorya fischeri NFIA_024690 CYP51 Fl Pezizomycotina B 

NFIA_109350 CYP51 F2 Pezizomycotina A 
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Table 5.2 continued 

Species Locus ID P450 Fungal CYP51 
nomenclature Glade 

Neurospora crassa N0002624 CYP51 Fl Pezizomycotina B 

Paracoccidioides PAAG_00827 (PbO 1) CYP51 Fl Pezizomycotina B 
brasiliensis 

Pyrenophora trilici- PTRG_08691 CYP51 FI Pezizomycotina B 
repentis 

PTRG_09430 CYP51 F2 Pezizomycotina A 

Rhynchosporium secalis CYP51 B CYP5I Fl Pezizomycotina B 

CYP5IA CYP51 F2 Pezizomycotina A 

CYP5IA-p CYPS1 F2-P Pezizomycotina A 
Sclerotinia sclerotiorum SS 1 G_04805.1 CYP51 Fl Pezizomycotina B 

Stagonospora nodorum SNOG_03702.1 CYP51 FI Pezizomycotina B 

Trichophyton equinum TEQG_00435.2 CYPS1 Fl Pezizomycotina B 

TEQG_02768.2 CYP51 F2 Pezizomycotina A 

Trichophyton rubrum TERG_0 1703.2 CYP51 FI Pezizomycotina B 

TERG_02984.2 CYP51 F2 Pezizomycotina A 

Trichophyton tonsurans TESG_04364.2 CYPS1 Fl Pezizomycotina B 

TESG_02544.2 CYP51 F2 Pezizomycotina A 

Trichophyton TRV_00734 CYP51 Fl Pezizomycotina B 
verrucosum 

TRV 06889 CYP5I F2 Pezizomycotina A 
Uncinocarpus reesii UREG_07804.1 CYP51 Fl Pezizomycotina B 

UREG_00593.1 CYP51 F7 Pezizomycotina A 

Verticillium albo-atrum VDBG_04839 CYP51 Fl Pezizomycotina B 

Verticillium dahliae VDAG_04380 CYP51 Fl Pezizomycotina B 
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Figure 5.4. Amino acid sequence logos (Crooks et al. 2004) for filamentous ascomycete CYP51 groups A, 

B and C and yeast CYP51. 

Table 5.3. Diverge results for ascomycete CYPSI clades. 

Ox (ML method) a 

LRT 9a b 

Number of sites where 

P(F1)> 50% 

Number of sites where 
P(FI)> 67% 

Yeast/C Yeast/A Yeast/B C/A C/B A/B 

0.41 +0.09 

22.3 *** 

0.29 ±0.03 

72.1 *** 

0.32 ±0.04 

74.3 *** 

0.21 ±0.06 

13.6 *** 

0.23 ±0.08 

8.2 ** 

0.16 ±0.03 

40.0 *** 

78 46 58 11 21 

20 26 34 

'Maximum likelihood estimate of 0+ standard error. Likelihood ratio test. ** significant at I%, 

*** significant at 0.1%. 'If P(FI) > 50%, sites are more likely than not to have experienced functional 

divergence; if P(FI) > 0.67, sites are twice as likely as not to have experienced functional divergence. 
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Table 5.4. CodeML results for ascomycete CYPSIs under the branch-site model. 

Foreground log Likelihood Significance ̀ Foreground sites with w>I 
branch 

M8a ° M8 Difference Proportion Number BEB 

A -32943.4 -32934.6 -8.8 >0.001 0.066 38 7 

B -32947.1 -32937.3 -9.8 >0.001 0.064 37 7 

C -32925.8 -32915 -10.8 >0.001 0.169 97 29 

a Model M8a: Null hypothesis with foreground o=1. Model M8: Alternative hypothesis with foreground o 

free to be > 1. ̀  Significance: Probability that likelihood under M8 is significantly greater than under M8a, based 

on a x12 distribution. d BEB: number of foreground sites with P ((o > 1) < 0.05 identified by Bayes Empirical 

Bayes analysis. 

DSS analysis did not reveal any significant evidence of recombination at 95% significance. 

Adjusting the probability threshold to 50% resulted in three partitions, with breakpoints at 

nucleotide alignment positions 1150 and 1805, gave three trees differing in the placement of 

some individual taxa but retaining the main A, B, C and yeast clades except the final partition 

for which the B Glade was split into two groups, as for trees generated from unambiguously 

aligned sites only, since the monophyly of the CYPSI B Glade is most strongly supported by a 

paralogue-specific region encoding the N-terminal region of the protein. 

5.3.1.1 Protein localisation prediction 

TargetP predicted most CYP51 s as localising within the secretory pathway, although some 

CYP51Bs were predicted as ̀ other' (non-secretory, non-mitochondrial) (Table 5.5). Similar 

results were obtained by Protein Prowler. WolfPSORT also predicted locations within the 

secretory pathway (Plasma membrane, extracellular, endoplasmic reticulum or Golgi 

apparatus) for most CYP51 s, and MultiLoc predicted all CYP51 s to be located in the Plasma 

membrane, Golgi apparatus or endoplasmic reticulum (Table 5.5). The sequences were then 

analysed with SignalP. All CYP51B and CYP5IC N-terminal peptides were predicted to 

form signal anchors, whereas most CYP51 A N-terminal peptides were predicted to be 

cleaved signal peptides (Table 5.5). 

However, TMHMM predicted transmembrane helices in the N-terminal regions of all fungal 

CYP51 Is. Since SingalP predicted a signal peptide and TMHHMM predicted a 
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transmembrane helix within the same region of most proteins, Phobius (Kall et al. 2004) was 

used to distinguish between the two (Emanuelsson et al. 2007). All CYP51 N-terminal 

regions were predicted as containing a transmembrane region and not a signal peptide, except 

U maydis CYP51, Schizosaccharomyces pombe CYP51 and C. cinerea CC1G_08364, with 

predicted signal peptides upstream of the predicted transmembrane region, and P. tritici- 

repentis CYP5IA and Aspergillus niger CYP5IA, predicted as containing a signal peptide 

and not a transmembrane region (Table 5.5). The R. secalis CYP51A and CYP51B Phobius 

output plots are shown in Figure 5.5. 

164 



Table 5.5. Predicted subcellular localisation of fungal CYP51 peptides. 

CYP51 TargetP e Wolf 
PSORT b 

Protein 
Prowler 

MultiLoc ° SignalP TMHM 
M Helix 

Phobius 

Cyp7 Human Secretory Golgi Secretory Golgi Signal 5-24 TMH ` 

Mycobacterium Other Cyto Other Cyto Non- None None 
tuberculosis B1 secretory 
Trypanosoma Secretory Plasma Secretory Golgi Signal None Signal 

cruzi El 
Arabidopsis Secretory Cyto Secretory Golgi Non- 13-32 TMH 
thaliana GI secretory 
CYP51A1 Secretory Cyto Other Golgi Signal 4-21, Signal 
Human 28-50 +TMH 

Aspergillus 
clavatus B 
A. fumigatus B 

A. flavus B 

A. oryzae B 

A. niger B 

A. terreus B 

A. nidulans B 

A. terreus B 

Neosartorya 
fischeri 
Blastomyces 
dermatitidis 
Trichophyton 
rubrum 
Microsporum 
canis 
M. gypseum 

Trichophyton 
equinum 
T. tonsurans 

T. verrucosum 

Other ER 

Secretory Plasma 

Secretory Plasma 

Secretory Plasma 

Secretory ER 

Secretory Plasma 

Secretory Plasma 

Other ER 
Secretory Plasma 

Secretory Plasma 

Other Cyto 

Other Plasma 

Other Plasma 

Other Cyto 

Other Cyto 

Other Cyto 

Arihroderma Other Cyto 
benhamiae 
Coccidioides Secretory Extra- 

Other Golgi 

Secretory Golgi 

Secretory Plasma 

Secretory Plasma 

Secretory Plasma 

Secretory Plasma 

Secretory Plasma 
Other Golgi 
Secretory Extra- 

cellular 
Secretory Extra- 

cellular 
Secretory Extra- 

cellular 
Other Extra- 

cellular 
Other Extra- 

cellular 
Secretory Extra- 

cellular 
Secretory Extra- 

cellular 
Secretory Extra- 

cellular 
Secretory Extra- 

cellular 
Secretory Golgi 

Anchor 20-42 TMH 

Anchor 21-43 TMH 

Anchor 20-42 TMH 

Anchor 20-42 TMH 
Anchor 20-42 TMH 

Anchor 19-41 TMH 

Anchor 20-42 TMH 
Anchor 20-42 TMH 

Anchor 21-43 TMH 

Anchor 20-42 TMH 

Anchor 21-43 TMH 

Anchor 20-42 TMH 

Anchor 21-43 TMH 

Anchor 21-43 TMH 

Anchor 21-43 TMH 

Anchor 21-43 TMH 

Anchor 21-43 TMH 

Anchor 20-41 TMH 
immitis B cellular 
Uncinocarpus Secretory Extra- Secretory Golgi Anchor 20-42 TMH 

reesii B cellular 
Histoplasma Secretory Plasma Secretory Plasma Anchor 20-42 TMH 

capsulatum B 
Paracoccidioides Secretory Plasma Secretory Plasma Anchor 20-42 TMH 
brasiliensis B 
Botrytis cinerea B Other ER Other Golgi Anchor 20-42 TMH 
Sclerotinia Other Cyto Secretory Golgi Anchor 20-42 TMH 

sclerotiorum B 
Rhynchosporium Secretory Plasma Secretory Golgi Anchor 20-42 TMH 
secalis B 
Chaetomium Other MT Other Golgi Anchor 20-41 TMH 

Qlobosum B 

Table 5.5 continued 
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CYP51 TargetP a Wolf 
PSORT b 

Protein 
Prowler 

MultiLoc SignalP TMHM 
M Helix 

Phobius 

Neurospora Secretory ER Other Golgi Anchor 20-41 TMH 

crassa B 
Fusarium Other Cyto Other Golgi Anchor 20-42 TMH 

graminearum B 
F. oxysporum B Other Cyto Other Golgi Anchor 20-42 TMH 

F. verticillioides Other Cyto Other Golgi Anchor 20-42 TMH 
B 
Colletotrichum Secretory Extra- Other Extra- Anchor 20-42 TMH 

graminicola cellular cellular 
Colletotrichum Secretory ER Other Extra- Anchor 20-42 TMH 
higginsianum cellular 
Magnaporthe Other ER Other Golgi Anchor 15-37 TMH 

oryzae B 
Verticillium Other ER Other Golgi Anchor 24-46 TMH 

albo-atrum B 
V. dahliae B Other ER Other Golgi Anchor 20-41 TMH 

Pyrenophora Other Cyto Other Golgi Anchor 20-42 TMH 
tritici-repentis B 
Stagonospora Other Plasma Other Golgi Anchor 20-41 TMH 

nodorum B 
Mycosphaerella Secretory Cyto Other Extra- Anchor 20-42 TMH 

graminicola cellular 
Candida albicans Secretory Cyto- Other Golgi Non- 15-37 TMH 

nuclear secretory 
C. tropicalis Other Nuclear Other Golgi Non- 15-37 TMH 

secretory 
C. guilliermondii Secretory Golgi Other Golgi Non- 20-42 TMH 

secretory 
C. lusitaniae Secretory Plasma Secretory Golgi Signal 15-37 TMH 

Candida Secretory Mito Secretory Extra- Non- 15-37 TMH 

parapsilosis cellular secretory 
Lodderomyces Secretory ER Secretory Extra- Non- 15-37 TMH 

elongisporus cellular secretory 
Debaryomyces Secretory ER Other Extra- Non- 15-37 TMH 
hansenii cellular secretory 
Saccharomyces Secretory MT Other Golgi Non- 29-51 TMH 

cerevisiae secretory 
Schizosaccha- Secretory Plasma Secretory Extra- Signal 5-22 Signal 

romyces pombe cellular +TMH 
Coprinopsis Secretory Plasma Secretory Golgi Anchor 6-25 TMH 

cinerea FI 
C. cinerea Other Plasma Other Golgi Non- 38-60 Signal 
CC I G_08364 secretory +TMH 
Cryptococcus Secretory Cyto Secretory Golgi Non- 32-54 TMH 

neoformans secretory 
Puccinia graminis Secretory Cyto Secretory Golgi Anchor 20-39 TMH 

Ustilago maydis Secretory Plasma Other ER Signal 32-54 Signal 
+TMH 

Rhizopus oryzae Secretory ER Secretory Extra- Anchor 13-35 TMH 

F1 cellular 
Rhizopus oryzae Secretory Nuclear Secretory Extra- Anchor 12-34 TMH 

FS cellular 
F. graminearum Secretory Plasma Secretory Plasma Anchor 15-34 TMH 

C 

Table 5.5 continued 
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CYP51 TargetP a Wolf 
PSORT b 

Protein 
Prowler 

MultiLoc b SignalP TMHM 
M Helix 

Phobius 

F. oxysporum C Secretory Plasma Secretory Plasma Anchor 12-34 TMH 

F. verticillioides Secretory Plasma Secretory Golgi Anchor 12-34 TMH 
C 
C. immitis A Secretory Plasma Secretory Golgi Anchor 10-32 TMH 

U. reesii A Secretory Plasma Secretory Plasma Anchor 10-32 TMH 

P. tritici-repentis Secretory Extra- Secretory Golgi Signal 5-24 Signal 
A cellular 
F. graminearum Secretory Extra- Secretory Golgi Signal 7-29 TMH 
A cellular 
F. oxysporum A Secretory Plasma Secretory Golgi Signal 4-25 TMH 

F. verticillioides Secretory Plasma Secretory Golgi Signal 4-25 TMH 
A 
C. higginsianum Secretory Plasma Secretory Extra- Anchor 10-32 TMH 
A cellular 
M. oryzae A Secretory Plasma Secretory Golgi Signal 10-32 TMH 

R. secalis A Secretory Plasma Secretory ER Signal 13-35 TMH 

A. flavus Al Secretory Plasma Secretory Golgi Signal 7-28 TMH 

A. oryzae Al Secretory Plasma Secretory Golgi Signal 7-28 TMH 
H. capsulatum A Secretory Plasma Secretory Plasma Signal 7-24 TMH 

A. clavatus A Secretory Plasma Secretory Plasma Signal 7-29 TMH 
A. fumigatus A Secretory Extra- Secretory Golgi Signal 7-29 TMH 

cellular 
A. nidulans A Secretory Plasma Secretory Golgi Signal 7-29 TMH 

A. flavus A2 Secretory Plasma Secretory Golgi Signal 5-24 TMH 

A. oryzae A2 Secretory Plasma Secretory Golgi Signal 5-24 TMH 

A. niger A Secretory Plasma Secretory Golgi Signal 5-24 Signal 

A. terreus A Secretory Plasma Secretory Golgi Signal 4-23 TMH 
N. fischen A Secretory Extra- Secretory Extra- Signal 7-29 TMH 

cellular cellular 
B. dermatitidis A Secretory Mito Secretory Peroxi- Signal 5-24 TMH 

somal 
T. rubrum A Secretory Plasma Secretory Peroxi- Signal 5-27 TMH 

somal 
M. canis A Secretory Plasma Secretory Peroxi- Signal 5-27 TMH 

somal 
M. gypseum A Secretory Plasma Secretory Extra- Signal 5-27 TMH 

cellular 
T. equinum A Secretory Plasma Secretory Extra- Signal 5-27 TMH 

cellular 
T. tonsurans A Secretory Plasma Secretory Extra- Signal 5-27 TMH 

cellular 
T. verrucosum A Secretory Plasma Secretory Extra- Signal 5-27 TMH 

cellular 
A. benhamiaeA Secretory Plasma Secretory Extra- Signal 2-24 TMH 

cellular 
e Shaded cells indicate locations in the secretory pathway. t ER: Endoplasmic reticulum; Plasma: Plasma 

membrane; Golgi: Golgi apparatus, MT: Mitochondrial, Cyto: Cytoplasmic. ` TMH: Transmembrane helix 
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Figure 5.5. Phobius (Kalt et at 2004) output plots for (a) R. secalis CYP51A and (b) R. secalis CYP51B. 

Red: Signal peptide; Grey: Transmembrane helices; Green: Cytoplasmic; Blue: Non-cytoplasmic. 
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5.3.2 PCR-RFLP Assay 

Isolates QUB 30-10, R9528.4, R9522.3,788, SAC 1.4.8 (0003), GKII 18-2-3, QUB 12-3, 

OSA 28-2-2, GKII 18-3-2, SAC 09/943/14 and RS 783 gave PstI and Hindlll restriction 

products consistent with the functional CYP51A gene from the PCR reaction with CYP51A 

primers, and PstI and Hindlll restriction products consistent with the CYP51A pseudogene 
from the PCR reaction with CYP5JA p primers (Figure 5.6; Table 5.6). Isolates K1124, FI12- 

63 and RS 219 gave PstI and Hindlll restriction products consistent with CYP5JA p from 

PCR reactions with both primer pairs. 

Table 5.6. Restriction sites in PCR-RFLP analysis of 14 R. secalis isolates, with CYPSIA and CYPSIA p 

primers, and restriction enzymes Pst! and HindII!. 

PCR-RFLP restriction sites 
Isolate CYP51 A primers CYP51 Ap primers 

Pstl Hindlll Pstl Hindlll 

CYP51A plasmid 0 2 0 2 
CYP51A p plasmid 1 0 1 0 

RS 219 1 0 1 0 
K1124 1 0 1 0 
FI12-63 1 0 1 0 
R 9528.4 0 2 1 0 
R 9522.3 0 2 1 0 

QUB 30-10 0 2 1 0 
GKII 18-3-2 0 2 1 0 
GKII 18-2-3 0 2 1 0 

788 0 2 1 0 
SAC 1.4.8 (0003) 0 21 0 
SAC 09/943/14 0 21 0 

QUB 12-3 0 21 0 
OSA 28-2-2 0 21 0 

RS 783 0 21 0 

5.3.3 Southern Blot 

The EcoR V, PstI and Hindill digests produced two bands for isolate 788 but only one band 

for isolates F112-63 and K1124. The EcoRI digest is less clear for isolate 788. The same 
bands are visible with both probes (Figure 5.7). 
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Figure 5.6. (a) Expected PCR-RFLP product lengths for R. secalis CYPSIA genes. Solid lines indicate 

primer binding sites, dotted lines indicate restriction sites, arrows indicate amplicon and restriction 

fragment lengths. (i) CYPSIA; (ii) CYPSI p 

(b) Gel obtained from PCR-RFLP analysis of R. secalis CYP5IA and CYPSIA p plasm ids (Section 4.2.4), 

digested with Pstl and HindII!. Ladder is GeneRuler 1 kb (Fermentas). 

(c) Gel obtained from PCR-RFLP analysis of R. secalis isolates K1124, R 9528.4 and 788, amplified with 

CYP51A and CYP51A p primers, digested with (left to right for each isolate) Pstl and Hindlll. Ladder is 

GeneRuler 1 kb (Fermentas). 
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Figure 5.7. Southern blot of R. secalis genomic DNA digested with restriction enzymes EcoRV, Psil, EcoRl 

and Hindill. (a) CYPSIA probe; (b) CYPSIA-P probe. Isolate 1: F112-63; 2: K1124; 3: 788. 

Ladder (visualised on agarose gel before transfer to membrane) is GeneRuler Ikb (Fermentes). 
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5.3.4 Yeast Complementation 

Rhynchosporium secalis CYP51A complemented yeast CYP51, allowing transformants to 

grow on doxycycline-amended medium (Figure 5.8). However, R. secalis CYP51 B produced 

very slow growth in yeast on doxycycline-amended medium, insufficient for further assays to 

be carried out. 

-Dozy cý cline +Doxycy cline 

Vector onh 

R. secalis 
CYP5l. -1 

R. secalis 
CYPSI B 

Figure 5.8. Growth of Saccharomyces cerevisiae strain YUG37: erglltransformed with pYES2-CT vector 

only or pYES-CT with R. secalis CYPSIA or CYPSIB on SD +GAL+RAF agar with and without 3 µg ml-' 

doxycycline, with six inoculum concentrations of 1.25 x 106,2.5 x 105,5 x 10°, 1x 104,2 x 103 and 4x 102 

cells pf'. 

5.3.5 CYP51 Expression Analysis: Constitutive Expression 

Constitutive expression levels are shown in Figure 5.9. Isolate Fl 12-63 lacks CYP51A, so the 

calculated relative expression was very low, and the dissociation curve showed that the 

product was non-specific (Figure 5.9c). CYP51A relative expression levels for all other 

isolates fell within a factor of ten, and differences in expression level do not correlate to 

differences in sensitivity. For CYP51 B, relative expression levels for all isolates fell within a 

factor of 3, with most differences not significant at 95%. 
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Figure 5.9. Constitutive expression of (a) CYP51A and (b) CYP51B for six R. secalis isolates, as relative 

quantification calibrated to isolate QUB 30-10 with ß-lubulin as endogenous control. Error bars show 

95% confidence intervals based on the student's T distribution. (c) CYP51A qPCR dissociation curve for 

isolates QUB 30-10 (blue) and F112-63 (green). 
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5.3.6 CYP51 Expression Analysis: Induced Expression 

Induced expression levels are shown in Figure 5.10. Isolates K1124, Fl 12-63 and RS219 lack 

CYP51A, so the calculated relative expression was very low, and the dissociation curve 

showed that the product was non-specific (data not shown). In all other isolates, CYP51A 

expression increased by around 100-fold in the presence of tebuconazole, with similar 

expression levels between those isolates. Up-regulation of CYP51 B in the presence of 

tebuconazole was less than upregulation of CYP51A in all isolates, with under ten-fold 

increases in expression levels. Apart from the lack of CYP51A in sensitive isolates, there was 

no correlation between induced expression of either gene and triazole sensitivity. Fold- 

change in CYP51A expression was greater in intermediate than less-sensitive isolates (Figure 

5.11 a). There was no significant correlation between CYP51B upregulation and triazole 

sensitivity among the six isolates with CYP51A (P = 0.061, data not shown), but the 

correlation was significant for the full set of nine isolates (Figure 5.11 b). 
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Figure 5.10. Graphs showing induced expression of (a) CYP51A and (b) CYP5IB, as relative 

quantification, relative to isolate R 9528.4 constitutive expression, with /1-tubulin as endogenous control. 

Light grey: constitutive expression, without fungicide; dark grey: induced expression, following the 

addition of I µg ml-' tebuconazole. Error bars indicate standard error of biological replicates. 
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Figure 5.11. Triazole sensitivity, represented by PC1 as calculated in section 4.3.1, plotted against CYPSI 

upregulation, calculated as the difference between log10IRQj with I pg ml-' tebuconazole and log, ojRQj 

with 1 pg ml'' tebuconazole, for R. secalis isolates. (a) CYP51A: Grey circles: isolates without CYP51A; 

black circles: isolates with CYPSIA; regression lines and P-values for isolates with CYP5JA. (b) CYP51B, 

with regression line and P-value for all isolates. Grey lines indicate 95% confidence limits. Isolate 1: RS 

219; 2: F112-63; 3: K1124; 4: R 9528.4; 5: QUB 30-10; 6: GKII 18-2-3; 7: 788; 8: QUB 12-3; 9: RS 783. 
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5.3.7 Pyrosequencing Assay 

Pyrosequencing results gave the percentage of DNA molecules with an insertion (CYP51A) 

or deletion (CYP51A-P) at base pair 481. Isolates with CYP51A-P only have 100% of DNA 

molecules with the deletion, whereas isolates with both CYP51A-P and CYP51A have 50% of 
DNA molecules with the deletion and 50% with the insertion (Figure 5.12). Therefore, in a 

population sample, the percentage of isolates with CYP51A is calculated as 

=x100 
D 

and the percentage of isolates with CYP51A-P only is calculated as 
D-I 

x100 D 

where I is the percentage of molecules with an insertion, and D is the percentage with a 
deletion. 
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Figure 5.12. Single isolate Pyrogram traces for (a) Isolate FI12-63, with CYP51A-P only; (b) Isolate 788, 

with CYP51A and CYP51A-P. 

The percentage of isolates containing CYP51A-P only, or CYP51A and CYP51A-P, for 

Hoosfield samples is shown in Figure 5.13. The proportion of isolates with CYP51A is low 

until 1998, after which it increases rapidly, with the majority of the population possessing 
CYP51A from 2002. 

178 



120 

100 

ö 80 

ö 60 

0 
m 40 
c N 
U 

a) 
a- 20 

0 

-20 

O CE O 

s 
=ý I"=s ýs = 

1900 1920 1940 1960 1980 2000 2020 

Year Isolate 

Figure 5.13. Percentage of the R. secalis population from the Hoosfield spring barley experiment with 

CYPSIA. Black circles: isolates with CYP51A and CYP5IA-P; white circles: isolates with CYP5IA-P only. 

Grey area: reference isolates; white area: Hoosfield archive population samples. 

5.4 Discussion 

5.4.1 CYPS1 paralogues in fungal genomes 

Ascomycete CYP51 paralogues fall into three main clades. Filamentous ascomycete 

CYP51 F1 and CYP51 Fl p form the CYP51 B group; CYP51 F2, CYP51 F4 (from A. terreus 

and A. oryzae) and CYP51 F7 (from Uncinocarpus reesii and Coccidioides immitis) form the 

CYP51A group, and CYP51 F3 (from Fusarium spp. ) form the CYP51 C group. This is 

consistent with the trees presented by Liu et al. (2011) and Becher et al. (2011). The second 

paralogue in C. cinerea, currently the only known basidiomycete with multiple CYP51 s, does 

not fall into groups F I-7, and so a new name should be assigned, such as CYP51 F8. It should 

be noted that the division into CYP5JA, B and C is limited to the filamentous ascomycetes, 

with the single yeast CYP51 orthologues forming a sister group to the A+B+C Glade. As such, 

CYP51 FI is paraphyletic, with the CYP51 F1 of filamentous ascomycetes more closely 
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related to the (CYPS1 F2+F4+F7) Glade and CYP51 F3 than to the undifferentiated CYP51 Fl 

orthologues of hemiascomycetous and archiascomycetous yeasts and non-ascomycetes. The 

names CYP51 Fl -7 (Nelson 2009) provide unique and stable nomenclature for individual 

genes, whereas the designations CYP51A, CYP51B (Mellado et al. 2001) and CYP51 C (Yin 

et al. 2009) are descriptive of the phylogenetic and possibly functional divisions of 
filamentous ascomycete CYP51 paralogues. However, care must be taken to distinguish the 

A, B and C clades of ascomycete CYP51 F from the use of CYP51 A, CYP51 B and CYP51 C in 

the names of CYP51 genes from animals, bacteria and chromista, respectively. 

Phylogenetic reconstruction suggests that two CYP51 gene duplications, to give CYP51C and 

then CYP51A and CYP51B, occurred basally to the filamentous ascomycetes, followed by the 

loss of CYP51A from around half the species shown here and the loss of CYP51C from all 

lineages except Fusarium. However, protein-coding genes may carry a high chance of 

homoplasy, where sequence differences and similarities do not give a true picture of 

evolutionary history, but have been influenced by functional constraints, especially if there 

has been functional divergence between the paralogues. Therefore, the placement of CYP51 C 

as a sister group to (CYP51A + CYP51 B) may be due to functional divergence in CYP51 C 

and greater sequence conservation in CYP51 A and CYP51 B. However, the pattern of intron 

occurrence across ascomycete CYP51 s is also consistent with a basal split into A, B and C 

clades. On the phylogeny here, a most parsimonious reconstruction of intron presence does 

not require any independent gains of introns at the same position in multiple lineages, 

whereas a later duplication of Fusarium CYP51 s would require an independent gain of an 

intron after alignment position 1946. There was also no evidence of recombination in fungal 

CYP51 genes. 

There have also been some further duplications within the A group, giving rise to CYP51 F4 

in A. f avus and A. oryzae, a duplication within the B group resulting in a CYP51 B 

pseudogene in A. terreus, and one gene duplication within a Basidiomycete, C. cinerea. 
However, some of these may fall within more widespread patterns of gene duplication 

(Machida et al. 2005), so the inclusion of a CYP51 amongst the duplicated genes may not 

always have functional significance. Uncinocarpus reesii CYP51 F7 and C. immitis 

CIMG_00573 are in the CYP51A Glade, but they fall at the base of the Glade, rather than with 

the other eurotiomycetes as for CYP51B. This may also be down to long-branch attraction, 
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whereby more divergent sequences are erroneously placed outside a group of otherwise 

conserved sequences. 

The split between CYP51A and CYP51B was better-supported on trees reconstructed from the 

full sequence alignment, including ambiguously-aligned regions. This suggests that 

consistent differences between CYP51A and CYP51B include length variation, since 

ambiguously-aligned regions tend to be those containing indels. These regions include the N- 

terminal region, which protein structure models have identified as a membrane-binding helix 

(Xiao et al. 2004; Canas-Gutierrez et al. 2009). Otherwise the trees reconstructed by different 

methods are largely congruent. 

As paralogues differ in the N-terminal region, which may contain a signal protein or 

membrane anchor, subcellular localisation predictions were carried out. Protein location 

predictions predominantly identified the fungal CYP51 paralogues tested as belonging to the 

secretory pathway, which includes plasma membrane proteins, although predictions of 
location within the secretory pathway were not consistent and are generally not reliable as 

signals are poorly characterised (Emanuelsson et al. 2007). However, the N-terminal regions 
identified by TargetP (Emanuelsson et al. 2000) as secretory signals were identified by 

TMHHMM (Krogh et al. 2001) and Phobius (Kall et al. 2004) as membrane-binding regions, 

as previously reported in homology-based protein structure modelling studies (Xiao et al. 
2004). These results are consistent with all ascomycete CYP51 paralogues being plasma- 

membrane bound proteins. Predicted cytoplasmic and non-cytoplasmic regions are not 

reliable for proteins with a single membrane-spanning region (Kall et al. 2004), and the 

second transmembrane helix identified in some peptides corresponds to the first P450 

structural helix, aA' (Xiao et al. 2004; Canas-Gutierrez et al. 2009). One consistent 
difference between paralogous groups was observed at the extreme N-terminus. In CYP51B, 

the predicted transmembrane helices started at residues 19-21, with only two exceptions; in 

CYP51 A, the helices started at or before residue 10, with a single exception starting at 

residue 13; and in CYP51 C, the transmembrane helices started at residue 12 or 15. However, 

those 10-20 N-terminal residues were not recognised as signal peptides, so no differences in 

subcellular localisation of the three CYP51 paralogues are predicted at present, although in 

silico protein localisation tools only provide predictions, which may be disproved by 

experimental testing. 
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In addition to the N-terminal region, there is length variation between paralogues between 

regions aD and ß3-1, including a unique insertion of around 20 residues in R. secalis 
CYP51A; between aG and aH, with insertions in some CYP51As; between aJ and aJ', with 
insertions in CYP51 As and yeast CYP51 s; between ß2-1 and ß2-2, with insertions in 

basidiomycete CYP51 s; between aK" and aL, with insertions in basidiomycete CYP51 s and 

some CYP51Bs; and some length variability across all sequences between ß3-3 and ß4-1, and 
between 03-2 and the C-terminal. The lack of substantial length variation within any of the 

conserved structural motifs or substrate binding sites suggests overall structural conservation 

across fungal CYP51 Is. Furthermore, the lack of support for the CYP51A/CYP51 B split in 

phylogenies reconstructed from only unambiguously-aligned regions indicates a lack of 

consistent sequence differences between CYP5 1A and CYP51B within the core structural 

motifs. 

At present, the closest known relatives to R. secalis with CYP5JA are sordariomycetes 

including M oryzae, as leotiomycetes B. cinerea and S. sclerotiorum lack CYP5JA. A wider 

search of other leotiomycetes for CYP51A may identify a closer orthologue of R. secalis 

CYPSIA, which would shed more light on the evolution of the currently unique intron 

structure and the aD - ß3-1 loop insert. 

CYPSI C is consistently recovered as a separate Glade, even in phylogenies based on 

unambiguously-aligned regions, reflecting sequence differences in regions of the gene 

without length variation. Examination of amino acid sequences shows that this includes 

sequence variation within the substrate recognition sites (Podust et al. 2001), including some 

residues previously identified as conserved across all CYP51 s or phylum-specific and 

conserved within fungal CYP51s. Variation is seen in SRS (Substrate Recognition Site) 1 and 

the following a-helix C, and in SRS4 (Podust et al. 2001), generally the most conserved 

regions of CYP51 Is (Lepesheva and Waterman 2007). In particular, S312 (C. albicans residue 

number) in SRS4 has been identified as part of the fully conserved eukaryotic CYP51 

signature (Lepesheva and Waterman 2007; Lepesheva and Waterman 2011), but CYP51 C 

amino acids have a threonine in place of a serine. This suggests functional conservation 

between CYP5 IA and CYP51 B, and possible functional divergence of CYP5 1 C. 

Selection testing using the codon-based Z-test found no evidence of positive selection except 
in some comparisons with R. oryzae CYPSJFl p. This is a pseudogene in a basal fungal 
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lineage, so it is likely to be evolving neutrally but with an excess of non-synonymous 

mutations as dS is approaching saturation. The majority of pairwise comparisons of fungal 

CYP51 sequences across all sites showed evidence of purifying selection. This is to be 

expected for functional protein-coding genes, with the majority of sites conserved to retain a 

functional protein and any positive selection associated with changes in function restricted to 

a few sites (Yang 2007). Diverge (Gu and Vander Velden 2002) tests for Type I functional 

divergence, whereby some residues are less conserved in one Glade than another following 

gene duplication. CodeML (Yang 2007) tests for Type II functional divergence, whereby 

some codons experience positive selection at the point of gene duplication (Gu 1999). 

Diverge identified strong evidence for Type I functional divergence between all pairs of 

ascomycete CYP51 clades. The greatest coefficient of functional divergence is between yeast 

CYP51 s and CYP51 C; the lowest is between CYP51A and CYP51 B. In each comparison, 

many sites of apparent functional divergence, spread throughout the gene, were identified. 

Selection testing using the branch-site model in CodeML showed strong evidence of positive 

selection at some sites on the branch leading to CYP51 A, CYP51 B and CYP51 C, with a 

higher proportion of sites under positive selection on the branch leading to CYP51C. 

Twenty-nine sites with significant probability of being under positive selection on the branch 

leading to CYP51 C were identified by Bayes Empirical Bayes analysis, but this method 

works best for few sites under strong selective pressure, rather than selection across multiple 

sites (Zhang et al. 2005). Therefore there is strong evidence of Type II functional divergence 

of CYP51C at some codons but those codons cannot be reliably identified by this method. 

Overall, there is strong evidence of both Type I and Type II functional divergence between 

CYP51 paralogues: some sites have undergone positive selection when the paralogues 

diverged, and some sites are more constrained in some clades than others following 

duplication. This functional divergence appears to involve many sites spread through the 

gene, making it difficult to identify the precise sites involved, so the use of covariotide 

models (Huelsenbeck 2002) may prove informative in future analyses. 

5.4.2 CYPS1 paralogues and azole sensitivity in R. secalis 
CYP5JA and CYP51 B genes were amplified from R. secalis isolates (Chapter 4). Functional 

CYP51A genes were only obtained from isolates with intermediate and reduced sensitivity to 

triazole fungicides, whereas a CYP51A pseudogene was obtained from sensitive isolates 

(Section 4.3.3). A PCR-RFLP assay and a Southern blot were carried out to establish whether 
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the pseudogene was found only in the sensitive isolates instead of the functional gene, or 

whether it was also found in less sensitive isolates in addition to the functional gene. 

In the PCR-RFLP assay, the three fully-sensitive isolates only produced PCR products with 

restriction patterns corresponding to the CYP51A pseudogene, even with primers designed to 

preferentially amplify the functional CYP51A gene. The other isolates gave PCR products 

with restriction patterns corresponding to both CYP51A and the CYP51A pseudogene, with 

the respective primer pairs. This suggests that the functional CYP51A gene is absent from the 

fully-sensitive isolates, whereas the pseudogene is present in all isolates. Sequencing the 

genes amplified with the pseudogene-specific primers confirmed that CYP51A p is non- 
functional in all isolates (Section 4.3.3). There were some differences in the pseudogene 

sequence from isolate K1124, including an EcoRI restriction site, but the four-base-pair 

deletion and resulting premature stop codon that make CYP51A p non-functional were still 

present. Furthermore, alignment of CYP51 sequences reveals that the splicing of the third 

intron in CYP51A p removes part of helices C and D. Therefore the protein would probably 

be non-functional with or without the premature stop codon. The Southern blot confirmed 

that isolates K1124 and F112-63 contain only one CYP51A, whereas isolate 788 contains two, 

although the gene and pseudogene are too similar to be distinguished by probes of the length 

required for the labelling kit used here. 

Therefore CYPSIA p is present in all isolates, at a separate locus from CYP51A, which is 

present in isolates with intermediate and reduced sensitivity to triazole fungicides, and absent 
in sensitive isolates. It is not clear how large a region is absent in sensitive isolates. If 

CYP51A is located on a chromosome that is absent from sensitive isolates, this could be 

established by using CYP51A probes in a Southern hybridisation of a PFGE gel (von Felten et 

al. 2011). Alternatively, if a relatively short region is absent, it may be possible to design 

PCR primers for the flanking regions. Furthermore, next-generation sequencing of several 
isolates of Rhynchosporium spp. is currently underway. If this includes isolates with and 

without CYP51A, comparing the genomic sequences will reveal the portion of the genome 

that is absent in isolates lacking CYP51A. 

Constitutive expression of CYP51 B varied little between isolates, with no variation 

correlating with sensitivity differences. When measuring CYP5JA constitutive expression, 

amplification from isolate FI12-63 cDNA was very poor. This isolate lacks CYPSIA, so this 
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apparent low level of expression probably results from primer-dimer formation or non- 

specific amplification of the non-functional CYP51A. For the other isolates, CYP51A 

constitutive expression levels were slightly more variable than for CYP51 B, with around a 

ten-fold range, but again no variation correlated with sensitivity differences. Therefore 

constitutive target-site over-expression, as found in V inaequalis (Schnabel and Jones 2001) 

or P. digitatum (Hamamoto et al. 2000) does not contribute to reduced azole sensitivity in 

current isolates of R. secalis. 

Differences in induced expression of CYP51A and CYP51B between isolates did not correlate 

with reduced triazole sensitivity, apart from the low values obtained for CYP51A expression 
in isolates without CYP51A. However, in those isolates possessing a functional CYP51A 

gene, this gene was up-regulated around 100-fold in the presence of tebuconazole, in contrast 

to the far lesser (around five-fold) up-regulation of CYP51 B in all isolates. The accuracy of 

the absolute degrees of upregulation calculated here may be affected by the use of a single 

endogenous control gene, although comparisons between CYP51 A and CYP51 B would be 

unaffected so long as the same controls are used for both. This provides further evidence that 

the presence of a functional CYP51A may be related to reduced triazole sensitivity in the 

intermediate and less-sensitive isolates. The fold-change in CYP51A expression in isolates 

possessing CYP51A was negatively correlated with PC 1, a composite term calculated from 

logio [EC50]s of the four triazoles tested (section 4.3.1). The suggests that sensitivity 
differences among isolates with CYP51A are due to a mechanism independent of CYP51 

upregulation, and the fungicide concentration used had a greater effect on more sensitive 

isolates, resulting in a greater change in gene expression. Therefore, CYPSIA upregulation 

occurs as a quantitative response to the effects of tebuconazole, such as ergosterol depletion 

or accumulation of sterol intermediates, in all isolates with CYPSIA. A weaker correlation 

was seen with the fold-change in CYPSI B expression, providing further evidence that 

CYP51 B expression is less responsive to the effects of triazole fungicides. 

Heterologous expression in yeast demonstrated that R. secalis CYP51A is able to complement 

yeast CYP51. Therefore R. secalis CYP51A is a functional sterol 14a-demethylase, despite 

sequence differences including a 20-residue insertion between regions aD and 03-1 and a 

unique intron pattern. Yeast transformants expressing R. secalis CYP51B grew poorly. 

However, sensitive isolates of R. secalis can survive with CYP51B and not CYP5IA. 

Therefore, R. secalis CYP51B is able to function as sole CYP51 and the poor growth of yeast 
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transformants is probably due to issues associated with heterologous expression, such as 
different codon use preferences or post-translational processing. This adds to the evidence 
from the phylogenetic analyses and selection testing across fungal CYP51 s suggesting a lack 

of functional divergence between CYP51A and CYP51B in terms of protein structure and 

substrate, so any functional divergence is likely to be based on different transcriptional 

regulation as seen in the induced expression experiment. Divergence in regulatory control 

may be a frequent occurrence among duplicated genes in fungi (Wapinski et al. 2007), and 
differences in transcriptional control have been used to infer neo- or sub-functionalisation in 

other fungal gene families (Skamnioti et al. 2008). Therefore it appears that CYP51A and 
CYP51B can act upon the same substrate, but CYP51B is expressed at more constant levels 

whereas CYP51A is more inducible in response to the effects of DMIs. In F. graminearum, 
Becher et al. (2011) report around a 128-fold increase in CYP51A expression, compared to 

around an 8-fold increase in CYP51B expression and 3-4-fold increase in CYP51 C 

expression, on exposure to tebuconazole, whereas CYP51 B and CYP51C expression levels 

were around ten times higher than CYP51A without fungicide. 

Therefore, the presence of CYP51A in some R. secalis isolates enables greater CYP51 

expression in the presence of triazole fungicides, conferring reduced triazole sensitivity. The 

presence of CYP51A has previously been linked to inter-specific differences in intrinsic 

triazole sensitivity. In A. fumigatus, knocking out the CYP51A gene resulted in increased 

triazole sensitivity in sensitive isolates with wild-type CYP51A as well as in less-sensitive 

isolates with CYP51A mutations, suggesting that the presence of CYP51A confers lower 

intrinsic azole sensitivity (Mellado et al. 2005). Disruption of CYP51A also increased azole 

sensitivity in M oryzae and F. graminearum, whereas disruption of CYP51B did not (Liu et 

al. 2011; Yan et al. 2011). However, this is the first report of intraspecific variation in the 

presence of CYP51 paralogues. In C. glabrata (Marichal et al. 1997) and C. albicans 

(Selmecki et al. 2006), chromosome or chromosome-arm duplications encompassing CYP51 

confer reduced triazole sensitivity in some isolates. However, the chromosome arm also 

contains a gene encoding an efflux pump transcription factor, and reduced intracellular 

accumulation of azoles was measured in isolates with chromosomal duplications. Therefore, 

the resistance factors attributable to a duplicate of the existing CYP51 orthologue are 

relatively low, with MIC approximately doubled by each extra copy (Selmecki et al. 2008). 

In R. secalis, the extra copy is a diverged paralogue under different transcriptional control, 
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allowing a greater transcriptional response to triazoles, conferring a resistance factor of 

around ten against tebuconazole and propiconazole. 

When A. fumigatus CYP51A and CYP51 B were expressed in yeast, each under the control of 

the same promoter, CYP51A transformants were 16 times less sensitive to fluconazole than 

CYP51 B transformants, although sensitivity to four other clinical azoles was similar for the 

CYP51A and CYP51 B (Mellado et al. 2005). Therefore it is possible that intrinsic sequence 

differences between CYP51A and CYP51B, as well as differences in gene expression, 

contribute to the reduced triazole sensitivity of R. secalis isolates with CYP51A. Since R. 

secalis CYP51 B did not produce sufficient growth in yeast to allow fungicide sensitivity 

testing for comparison with R. secalis CYP51A, gene replacement and promoter swaps within 

R. secalis may be necessary in order to separate the effects of sequence differences or 

expression levels on triazole sensitivity. 

Pyrosequencing analysis of samples from the Hoosfield archive provides further evidence for 

the role of CYP51A in reduced triazole sensitivity in R. secalis. Levels of CYP51A increase 

from 1998 onwards, and CYP51A is found in the majority of the R. secalis population from 

2002. The first isolate found to possess CYP51A in the present study, isolate 788, dates from 

1997, and most isolates studied from after 2000 possess CYP51A. 

Previous surveys of fungicide sensitivity in R. secalis populations had reported shifts in 

sensitivity to triadimenol and then propiconazole in the early 1990s (Kendall et al. 1993), 

with a later shift in epoxiconazole sensitivity to a bimodal distribution by 2002 (Oxley et al. 

2003). Only one isolate in this study dates from before 1990, so the majority of the most 

sensitive isolates may come from a population already selected for reduced sensitivity to 

triadimenol, and the selection of CYP51A may correspond to the bimodal shift seen in 2000. 

This suggested scenario is supported by the cross-resistance between propiconazole and 

tebuconazole in isolates with CYP5JA, whereas Kendall et al. (1993) reported that isolates 

selected for decreased propiconazole were still controlled by tebuconazole, although that 

study refers to field control rather than in vitro sensitivity. Therefore, this explanation cannot 

be verified without further isolates from before 1990. It is also possible that the sensitivity 

shifts first reported in the early 1990s took place later at the Hoosfield site. Furthermore, 

CYP51A only correlates with the initial shift from sensitive to intermediate isolates seen here. 

As stated in Chapter 4, further sensitivity shifts do not correlate with any differences in 
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CYP51 sequences or expression levels, suggesting that a non-target-site mechanism is 

responsible. Knocking out CYP51A from intermediate and less-sensitive isolates would show 

whether further sensitivity shifts are independent of CYP5JA. 

CYP51A presence levels prior to 1998 were measured at 10-20% of the population. However, 

measurements of 5-9% were obtained for single isolates without CYP51A. Therefore, earlier 

years may be too close to the detection limit of the assay to be taken as conclusive evidence 

for levels of CYP51A in the pre-selection population. The presence of the highly similar 
CYP51A p in all isolates limits the sensitivity with which CYP51A may be detected, so better 

evidence for levels of CYP51A before selection may be obtained by population genetic 

methods. If CYP51A was restricted to a small part of the R. secalis population, genetic 

diversity would be lower in isolates with CYP51A than in the population as a whole. 

Following a hard selective sweep, lower diversity would be present in isolates with CYP51A 

in the absence of recombination, or linkage disequilibrium would be present following 

recombination. If a wide range of haplotypes are found at near-equilibrial frequencies in 

isolates with CYP51A, this would suggest a softer selective sweep, whereby an existing allele 

increases in frequency in an already polymorphic population. 

Rhynchosporium secalis has recently been shown to be a complex of at least three host- 

specialised lineages, referred to as R. commune on barley, R. secalis sensu stricto on rye and 

R. agropyri on couch and related grasses (Zaffarano et al. 2011). This study has shown 

variation in the occurrence of CYP51A in R. commune, with CYP51A apparently having been 

lost from the majority of isolates before being selected back to prevalence by triazole use. It 

would be interesting to investigate the occurrence of CYP51A and CYP5JA p in the other R. 

secalis s. 1. lineages and sister species R. orthosporum. This would shed more light on the the 

evolution of CYP51A in R. secalis, as it has been suggested that R. secalis s. I. lineages went 

through genetic bottlenecks during host shifts (Zaffarano et al. 2008), so if CYP51A was 

already in a minority of isolates at that point it may not have made it through the bottleneck 

in all lineages, or it may have been subsequently lost in some lineages but not others due to 

differing selective pressures or chance effects of genetic drift. Alternatively, if all other 

lineages possess a functional CYP51A, the near-loss from the barley lineage must be a very 

recent event, as the lineages were estimated as having diverged 1200-3600 years ago 

(Zaffarano et al. 2008). This would also have practical implications for the use of triazoles on 

rye, turf and forage grasses. Genome sequencing of isolates from each lineage is currently 
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underway, so when released the genomes can be searched for CYP51A, although it should be 

borne in mind that these lineages may also be polymorphic for CYP51A so its absence from 

the sequenced isolate does not necessarily indicate its absence from the lineage as a whole. If 

other lineages are found to be polymorphic for the presence of CYP51A, its presence should 
be monitored for those lineages growing on host plants on which triazoles are used. 
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Chapter 6 

General discussion 

6.1 Key findings 

6.1.1 A high-throughput fungicide sensitivity bioassay can be used for R. secalis if 

multiple readings are taken to allow for heterogeneous growth 
A high-throughput fungicide sensitivity bioassay has been developed for R. secalis. Growth 

conditions were optimised, first to produce spores for use as inoculum for the bioassay, and 

then to maximise total growth for the bioassay itself and to produce material for nucleic acid 

extraction. These different requirements for spores and biomass should be considered if 

further media and growth conditions are tested in future. 

Rhynchosporium secalis grows heterogeneously in liquid culture: its growth is filamentous 

rather than yeast-like, and too slow to cover entire wells of a 96-well microtitre plate. 

Therefore, to quantify growth by measuring optical density, it is necessary to measure 

multiple points per well. This allows the use of an automatic plate reader, which is less 

labour-intensive than measuring colony diameter, and less subjective thanjudging density of 

growth by eye. This method may be applied to other species growing heterogeneously in 

liquid culture. 

6.1.2 Qol sensitivity in R. secalis may be reduced by a target-site mutation encoding 

G143A, or by increased induced expression ofAOX, but target-site resistance has not 

yet spread 

A mutation in cytochrome b encoding the G143A substitution confers a hundred-fold 

reduction in R. secalis QoI sensitivity. However, to date, this has only been found at one site 

in France in 2008: it has not been found since, and has not been reported in the UK. 

Alternative oxidase (AOX) activity results in smaller decreases in Qol sensitivity in vitro in 

the absence of AOX inhibitors such as SHAM. For most isolates, QoI sensitivity falls within 

a tenfold range, but a further tenfold shift was seen for one isolate. For these isolates, no 

target-site mutations were found, and sensitivity shifts were mostly reversed by adding the 

AOX inhibitor SHAM. 
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Expression analysis provided preliminary evidence for AOX upregulation following the 

addition of azoxystrobin, with an apparent correlation between decreased azoxystrobin 

sensitivity in the absence of SHAM and induced A OX expression. A OX upregulation 
following Qol fungicide addition has previously been reported in M oryzae (Yukioka et al. 

1998), and greater induced A OX expression correlated with lower intrinsic QoI sensitivity in 

F. graminearum compared to M nivale (Kaneko and Ishii 2009). Here, greater induced 

expression of AOX is linked to intraspecific differences in in vitro QoI sensitivity for the first 

time. 

6.1.3 Triazole sensitivity in R. secalis has declined over the last twenty years, but 

sensitivity differences are not associated with point mutations or constitutive over- 

expression of CYPS1 

Sensitivity of R. secalis to some triazoles had decreased tenfold by 2000, with a further 

tenfold shift after that. The partial cross-resistance between triazole fungicides is well-suited 

to Principal Components Analysis. PCA revealed that the initial sensitivity shift resulted in 

positive cross-resistance to the four triazoles tested, with tenfold shifts in propiconazole and 

tebuconazole sensitivity, and correlated but quantitatively smaller shifts for epoxiconazole 

and prothioconazole. Further sensitivity shifts affect prothioconazole differently from 

propiconazole and tebuconazole, with greater shifts in prothioconazole sensitivity seen in 

isolates with the lowest overall triazole sensitivity. 

No point mutations in CYP51 were correlated with differences in triazole sensitivity. The 

three CYP51 substitutions found were each limited to 1-3 isolates not corresponding to the 

three triazole sensitivity groups. Therefore target-site resistance, as seen in species including 

M graminicola (Cools and Fraaije 2008), can be ruled out for the R. secalis isolates studied. 
Furthermore, expression analysis found no evidence of the constitutive CYP51 

overexpression caused by promoter changes in species such as P. digitatum (Hamamoto et al. 
2000) or V. inaequalis (Schnabel and Jones 2001) with reduced triazole sensitivity. 

A preliminary investigation into the possible role of enanced efflux in reduced triazole 

sensitivity did not find clear evidence of a correlation between reduced overall triazole 

sensitivity and potentiation by the putative efflux inhibitors tested. However, the effect on 

prothioconazole sensitivity should be tested for a wider range of isolates with reduced overall 

azole sensitivity, and other putative inhibitors should be tested or the intracellular 
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accumulation of radiolabelled fungicides should be measured before a wider role of efflux in 

sensitivity differences can be ruled out. 

6.1.4 Rhynchosporium secalis isolates with reduced triazole sensitivity have a second 

CYP5J paralogue 

Two CYP51 paralogues, CYP51A and CYP51 B, and a pseudogene, CYP51A p, are found in 

R. secalis. CYP51 B and CYP51 Ap were found in all isolates tested, but the functional 

CYP51A was absent from all tested isolates with the highest triazole sensitivity and present in 

all tested isolates with intermediate and reduced triazole sensitivity. Yeast complementation 

confirmed that R. secalis CYP51A is a functional sterol 14a-demethylase. Therefore the 

initial sensitivity shift against the four triazoles tested correlates with the presence of an 

additional target-site-encoding gene. Presence of CYP51A has been shown to result in 

reduced intrinsic triazole sensitivity in A. fumigatus (Mellado et al. 2005), M. oryzae (Yan et 

al. 2011) and F. graminearum (Liu et al. 2011), but this is the first report of intra-specific 

variation in the presence of CYP51A, linked to acquired triazole sensitivity differences in 

fungal populations. 

Analysis of samples from the Hoosfield spring barley archive revealed that the majority of 

the R. secalis population in that field lacked CYP51A until 1998, at which point the 

proportion of the population with CYP51A increased, forming the majority of the population 

since 2002. This correlates with the collection dates of isolates with and without CYP51A 

from other sites. 

6.1.5 The two CYP51 paralogues in R. secalis result from a gene duplication basal to the 

filamentous ascomycetes 

Phylogenetic analysis of the CYP51 paralogues from R. secalis and homologues from 

sequenced fungal genomes produced trees suggesting that the CYP51 A and CYP51 B 

paralogues result from a duplication event basal to the filamentous ascomycetes, followed by 

multiple losses of CYP51A from various fungal lineages. Rhynchosporium secalis CYP51A 

and CYP51A p diverged more recently, appearing as a sister branches. 

6.1.6 The filamentous ascomycete CYPSIA paralogue is upregulated in response to the 

effects of triazole fungicides 

CYP51A is upregulated following the addition of tebuconazole in all tested isolates with 

CYP51A; that is, isolates with intermediate and reduced triazole sensitivity. CYPSIB, present 
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in all isolates including those sensitive to triazoles, was upregulated to a far lesser degree. 

Therefore the upregulation of CYP51A appears to be at least partly responsible for the initial 

shift in triazole sensitivity in R. secalis. This resistance mechanism appears partly analogous 

to the target-site overexpression reported in species such as P. digitatum (Hamamoto et al. 

2000), or the CYP51 duplication seen in C. albicans (Selmecki et al. 2006), but all previous 

cases involve additional copies or increased transcription of an existing CYP51 gene, rather 

than a functionally-diverged paralogue. There are also intrinsic sequence differences between 

CYP51A and CYP51B, so triazole binding may differ between the paralogues. 

Greater upregulation of CYP51A than CYP51B on addition of triazoles has also been reported 
in F. graminearum (Becher et al. 2011). This suggests functional differentiation between 

CYPSIA and CYP51 B by divergence in transcriptional control. 

6.2 Practical implications for R. secalis control and resistance management 

6.2.1 QoIs 

Target site resistance to QoIs was not found in any isolates from the UK, or in any of the 70 

isolates tested except two collected by BASF in France in 2008. There have also been no 

further reported cases from industry monitoring (FRAC QoI Working Group 2010). 

Therefore Qols remain effective in the field for the control of R. secalis. 

However, the occurrence of isolates with the G143A substitution shows that it is possible for 

the G143A-encoding mutation in cytochrome b to arise in R. secalis without lethal impact on 

transcript processing or protein function. Some species contain an intron in cytochrome b that 

would not splice properly if the guanine at position 428 were replaced with a cytosine to give 

G143A (Grasso et al. 2006), but McCartney (2006) reported that this intron is not present in 

R. secalis. Deleterious effects on cytochrome b protein function have been proposed for some 

species (Fisher et al. 2004), but the occurrence of R. secalis isolates with G143A shows that 

any effects on cytochrome b function are insufficient to prevent the emergence of G143A 

under strong selective pressure. Therefore it must be assumed that the re-emergence and 

wider spread of QoI resistance remains a possibility in R. secalis, as was eventually seen with 

the MBC fungicides (Cooke and Locke 2002), and so monitoring must continue and 

resistance management guidelines should be followed. 
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AOX activity is not likely to result in control failure in the field, although further testing is 

needed to establish whether this mechanism results in any reduction in QoI sensitivity in 

planta. It has also been suggested that AOX activity may facilitate the emergence of target- 

site resistance (Avila-Adame and Kö11er 2003a), and further investigation of the mechanisms 

responsible for the increased upregulation of AOX in some R. secalis isolates may reveal 

whether G143A arose in a genetic background capable of increased AOX expression. 
However, in practical terms, it should be assumed that QoIs are a high resistance risk group 

of fungicides regardless of whether AOX can facilitate the emergence of resistance. 

6.2.2 Triazoles 

The sensitivity shifts observed for triazoles are broadly in line with previous reports (Cooke 

et al. 2004), and support current advice to UK farmers from the HGCA (Blake et al. 2011) 

and SAC (Oxley and Burnett 2010), that the newer triazoles epoxiconazole and 

prothioconazole still provide disease control, but shifts in sensitivity mean higher doses may 
be required. The range of prothioconazole sensitivities among isolates with the lowest general 

triazole sensitivity shows potential for further selection for reduced prothioconazole 

sensitivity as reported by Oxley et al. (2008), so resistance management guidance should be 

followed and prothioconazole should not be used alone (Blake et al. 2011). The incomplete 

cross-resistance between triazoles, especially between the intermediate and less-sensitive 

isolates, demonstrates the importance of chemical diversity with the triazoles. 

The mechanism responsible for these further sensitivity shifts among intermediate and less- 

sensitive isolates is still not known. Therefore, molecular diagnostics are not available and 

monitoring still requires sensitivity bioassays to be carried out. The high-throughput 

sensitivity bioassay developed in this project would be useful for such monitoring. However, 

it is possible that less selection for reduced triazole sensitivity has taken place in some areas 

outside of North-Western Europe, so isolates with CYP51A may not yet form the majority of 

the population and assays developed for the detection of CYP51A would be useful in 

sensitivity monitoring. Furthermore, triazoles can be used against R. secalis on rye and 

grasses, with propiconazole and tebuconazole currently approved for use on grasses or 

amenity grassland, and triazoles including propiconazole, tebuconazole, epoxiconazole and 

prothioconazole currently approved for use on rye, in the UK (Chemicals Regulation 

Directorate 2010). Therefore, the occurrence of CYP51A in R. secalis lineages infecting these 

194 



hosts should also be investigated, to assess the risk of CYP5JA-related sensitivity shifts in R. 

secalis affecting these crops. 

6.2.3 Other fungicide groups 

A shift in triazole sensitivity has taken place in R. secalis, but more slowly than in some 

pathogens such as B. graminis (Fletcher and Wolfe 1981), whereas Qol resistance has not yet 

spread in R. secalis. Along with the previously reported relatively slow spread of MBC 

resistance (Taggart et al. 1999), this supports the designation of R. secalis as a medium-risk 

pathogen (FRAC 2005). 

Of the other groups of fungicides widely used against R. secalis, the SDHIs are considered to 

be at medium to high risk of resistance development, anilinopyrimidines including cyprodinil 

are considered medium risk, morpholines medium to low risk and chlorothalonil low risk. 

Therefore, the combined pathogen and fungicide risk means resistance management is 

important for the SDHIs and cyprodinil, and this is reliant on the availability of suitable 

mixing partners including the triazoles. 

6.3 Emergence and spread of mutations conferring fungicide resistance in 

R. secalis 
Prior to the occurrence of G143A in R. secalis, there was some debate as to why target site 

resistance to Qols had not yet arisen in the species, with possible explanations including low 

mutation rates or high fitness penalties preventing the emergence of the mutation, or the 

population biology of R. secalis limiting its spread. Now G143A has been reported once 
(FRAC QoI Working Group 2008), but not found since (FRAC Qol Working Group 2010), it 

must be concluded that emergence of G143A is possible but further selection or spread is 

limited. 

Both MBC resistance and reduced triazole sensitivity have arisen and spread more slowly 

than in higher resistance risk pathogens such as B. graminis. Studies of MBC resistance in R. 

secalis found the spread of resistance to be "erratic" (HGCA 2000). When attempting to 

study the effects of fungicide treatment on levels of MBC resistance levels, treatment 

differences were masked by high levels of variability between sites and between growing 

seasons (Holloman 1997). Taggart et al. (1999) also tested initial frequency of resistant 
isolates, and found that this had a greater effect on final frequency of resistant isolates at 
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different sites than treatment during the growing season, although the effects of fungicide 

treatment were apparent within sites. 

Variation in the level of resistance in the initial R. secalis inoculum between sites and years 

suggests that the main inoculum source does not comprise widely-dispersed airborne spores. 

This is consistent with the lack of a known ascospore-producing stage in R. secalis, and the 

lack of R. secalis spores found in spore trapping experiments (Fountaine et al. 2010). 

Furthermore, fluctuations between years at a single site suggest that a large proportion of the 

initial population is brought into the site each year, as would be the expected for a primarily 

seed-borne disease, rather than persisting on site between growing seasons, for example on 

crop debris. Therefore resistance management is especially important on barley crops to be 

used for seed, and resistance monitoring in seed could prove useful. 

Similar fluctuations between years were observed for the frequency of CYPSIA in the R. 

secalis populations from the Hoosfield spring barley experiment. The proportion of isolates 

with CYP51A increases between 1995 and 1998 and between 1998 and 2002, then decreases 

again by 2005, and increases further by 2008. This also indicates that it takes more than one 

growing season for the proportion of isolates with CYP51A to increase from pre-selection 

levels to the majority of the population, which could indicate lower selective pressure, 

smaller population size or fewer generations than in pathogen-fungicide combinations for 

which selection of resistant isolates has taken place more rapidly. 

If the seed-borne nature of R. secalis is a major factor limiting the spread of new mutations, 

this would be consistent with the selection of CYP51A from a low frequency within each 

local R. secalis population, rather than a hard selective sweep of new point mutations from a 

single or few origins across the entire metapopulation. Population genetic approaches would 

shed more light on this, by investigating the occurrence of CYP51A in pre-selection 

populations, as discussed in section 6.6. 

6.4 Role of multiple CYPSI paralogues in filamentous ascomycetes 

Phylogenetic reconstruction suggests CYP51 gene duplication took place around the origin of 

the filamentous ascomycetes, with subsequent losses of CYP51A from some lineages. This 

raises two questions: why the gene duplication emerged in the first place, and why it was then 
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lost from some lineages and retained in others. Some recent studies have investigated the 

purpose of multiple CYP51 s through functional genetic approaches, such as assessing the 

effect of CYP51 A deletion on pathogenicity (Mellado et al. 2005; Yan et al. 2011), but 

evolutionary studies may complement this functional approach. 

Selection testing found evidence of functional divergence between all Pezizomycotina CYP51 

paralogues. However, the split between CYP51A and CYP51B was not supported when 

regions with length variation were excluded from the sequence alignment, and the substrate 

recognition sites are conserved in CYP51 A and CYP51 B. In contrast, CYP51C is consistently 

recovered as a separate Glade based on sequence variation within the core structural regions, 
including residues within substrate recognition sites SRS 1 and SRS4 which are conserved 

across other fungal CYP51s. Furthermore, R. secalis CYP51A is able to complement S. 

cerevisiae CYP51, and isolates with only CYP51B are viable but sensitive to triazoles, so both 

paralogues encode a functional sterol 14a-demethylase. However, expression analysis shows 

divergence in transcriptional regulation of R. secalis CYP51A and CYP51B, and similar 

results have been reported in F. graminearum (Becher et al. 2011). Therefore CYP51 B and 

CYP51A both catalyse the same step in sterol biosynthesis, but CYP51B is present in all 

species and expressed at a relatively constant level, whereas CYP51A is present in some 

species as an extra CYP51, the expression of which is readily inducible. 

This raises questions as to why additional induced CYP51 expression may be needed. 
Intrinsic Qol resistance is found in species such as S. tenacellus and Mycena galopoda that 

produce natural strobilurins (Kraiczy et al. 1996). Therefore, the presence of CYP51A, 

reducing intrinsic triazole sensitivity and responding transcriptionally to the effects of 

triazoles, raises the possibility that CYP51A is an adaptation to a naturally-occurring CYP51 

inhibitor, although it has been demonstrated that induction of CYP51A expression is 

proportional to the effects of the fungicide on a fungal isolate, so the transcriptional response 
is presumably induced by altered sterol content rather than direct detection of the inhibitor. 

Therefore other causes of sterol stress, such as higher requirements at particular points in the 

fungal life cycle, for example sporulation (Yan et al. 2011), could also induce CYP51 A 

expression. Further studies of expression levels of other genes in the ergosterol biosynthesis 

pathway, and of sterol composition, would reveal whether CYP51A induced expression is part 

of a general upregulation of sterol biosynthesis, or specific to that step. Microarray studies of 

F. graminearum showed some increase in expression of most ergosterol biosynthesis genes in 
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response to tebuconazole treatment, but upregulation was greatest in CYP5JA (Becher et al. 
2011). 

If CYP51A has evolved as an adaptation to natural CYP51 inhibitors, these may be defence 

compounds produced by hosts, allelopathic compounds from competing micro-organisms or 

toxins produced by the fungi themselves. The gene duplication giving rise to CYP5JA and 

CYP51 B took place around the time the Pezizomycotina diverged from the 

Saccharomycotina. It has been estimated that the crown Pezizomycotina (Lecanoromycetes, 

Sordariomycetes and Eurotiomycetes) diverged 320-400 million years ago, during the late 

Devonian or early Carboniferous period, whereas the basal pezizomycotina (crown 

Pezizomycotina plus Pezizomycetes) diverged 400-520 million years ago, during the late 

Cambrian to early Ordovician (Lucking et al. 2009). These estimates may be refined in future 

as rate models are improved and if more calibrator fossils are identified (Berbee and Taylor 

2010), but the time range for CYP51 paralogue divergence could also be narrowed by 

investigating whether basal Pezizomycotina, such as Pezizomycetes and Orbiliomycetes, 

possess a differentiated CYP51B (and possibly CYP51A) or an undifferentiated CYP51. A 

tBLASTn search of the draft genome assemblies of the Pezizomycetes Phymatotrichum 

omnivorum (University of Oklahoma Advanced Center for Genome Technology, 

http: //www. genome. ou. edu) and Tuber melanosporum (Genoscope, 

http: //www. genoscope. cns. fr) identified fragments of a single CYP51 in each species, and 

preliminary phylogenetic analyses placed these amino acid sequences together on a branch 

between the yeast and crown Pezizomycotina CYP51 Is, branching off from the crown 

Pezizomycotina prior to CYP51 paralogue divergence, but further analyses are needed once 

full sequences are available. An Orbiliomycete, Orbilia auricolor, is currently awaiting 

sequencing (Joint Genome Initiative, http: //www. jgi. doe. gov/). However, all estimates place 

the divergence of CYP51A and CYP51B long before the evolution of flowering plants or of 

mammals, so if the divergence was an adaptation to hosts, different host taxa should be 

considered. The current estimate for the divergence time of CYP51A and CYP51B 

encompasses the origin of land plants, from liverworts through to the establishment of fern 

and lycophyte forests, forming soils and altering atmospheric composition (Kenrick and 

Crane 1997). It also encompasses the origin and diversification of fish from the first 

vertebrates to the origin of amphibians (Rowe 2004), and the early origins of terrestrial 

arthropods including insects (Wheeler et al. 2004). These changes enabled fungal 

diversification into a wide range of niches, and it would be easy to be drawn into story-telling 
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as to why one of these niches required additional CYP51 s, but such suggestions would only 
be testable based on the biology of extant species. 

CYP51A was subsequently lost from several lineages, but retained in others. It could be 

hypothesised that some lineages experienced continued exposure to natural CYP51 inhibitors 

or other sterol stress and other lineages did not. This could be investigated by analysis of 

correlations between current fungal metabolites, hosts or environmental factors and presence 

of CYP51A. Any such studies should use phylogenetic comparative methods, rather than 

species-by-species comparisons, to correct for phylogenetic autocorrelation. For example, all 

Aspergillus species possess CYP51A, and share many other features due to being closely 

related. Therefore, species-by-species comparison may conclude that these features are 

correlated with presence of CYP51A, whereas phylogenetic comparative methods correct for 

shared features of species within a single lineage. 

However, even with a phylogenetic comparative approach, there is an assumption that the 

pattern of loss or retention of CYP51A is predominantly adaptive, rather than being affected 

by chance process such as genetic drift. Furthermore, current knowledge of which species 

have retained CYP51A is based largely on the single isolates used for genome sequencing, 

with a few exceptions such as A. fumigatus for which CYP51A has been sequenced from 

many isolates to study target site mutations (Diaz-Guerra et al. 2003). It has been 

demonstrated in the current study that presence of CYP51A can vary within species. Whole 

genome resequencing projects currently underway or planned for some fungal species, using 

second generation sequencing methods, will give a fuller picture of intraspecific variation. 

6.5 Constraints and contingency in molecular evolution 
An ongoing debate in evolutionary biology concerns the extent to which evolution is 

predictable. For crop protection, attempts to predict resistance have focussed on how quickly 

resistance is likely to emerge and how this may be managed (Brent and Hollomon 2007b). 

However, when evolutionary biologists discuss predictability, they are generally considering 

which adaptations will emerge: whether functional and developmental constraints result in 

convergent evolution of a limited number of adaptive solutions, or whether chance events and 

historical contingency make evolution inherently unpredictable. The evolution of fungicide 

resistance may provide some valuable insights into this debate, since similar selective 

199 



pressures (i. e. fungicide application) have been applied repeatedly to different populations 

and species. Therefore, repeated emergence of the same mechanism would be indicative of 

constrained, predictable evolution, whereas the occurrence of disparate adaptations to the 

same selective pressure would suggest unpredictability due to chance events or historical 

contingency. 

6.5.1 Predictability in molecular evolution: the debate so far 

While examples of morphological convergence have long been known, in recent years 

increasing attention has been paid to constraints and convergence in molecular evolution, 

such as the constraints on ß-lactamase substitutions in the evolution of antibiotic resistance 

(Weinreich et al. 2006), the concentration of mutations in restricted regions of genes and 

genomes due to constraints on other regions (Stern and Orgogozo 2009), or convergent 

recruitment of the same genes during the multiple origins of C4 photosynthesis (Christin et 

al. 2010). These examples have been countered by claims of contingency in molecular 

evolution. The evolution of citrate utilisation in one population of E. coif in the Long-Term 

Evolutionary Experiment (LTEE) was found to be dependent upon an earlier enabling 

mutation, and therefore described as historically contingent (Blount et al. 2008). While this is 

true for a literal definition of historical contingency, it must be presumed until shown 

otherwise that the rare potentiating mutation could still arise in other populations, after which 

citrate metabolism could also evolve: it is still a question of when or whether an adaptation 

might emerge, rather than alternate adaptive paths being followed. Clearer evidence of 

alternative adaptive paths was obtained when experimental evolution was carried out with 

fluctuating environmental conditions, with different populations showing different fitness 

responses interpreted as "distinct adaptive peaks", although the molecular adaptations 

responsible have not yet been reported (Cooper and Lenski 2010). 

One possible molecular mechanism for path-dependent historicity (Desjardins 2011) is sign 

epistasis. Sign epistasis is an interaction between mutations whereby a mutation is either 
beneficial or deleterious depending on the presence of another mutation, whereas negative or 

antagonistic epistasis means one mutation has a quantitatively smaller effect in the presence 

of another mutation (Khan et al. 2011). Sign epistasis has been reported between two 

mutations in an experimentally evolving yeast population (Kvitek and Sherlock 2011). Both 

mutations evolved multiple times, but were never found together, and testing in near-isogenic 

mutants confirmed that either mutation alone was beneficial but the combination was 
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deleterious. Therefore each mutation represented a separate adaptive peak, and mutants that 

first gained the less fit of the two mutations were confined to a local optimum. Another 

example of sign epistasis resulting in path-dependent evolution, contingent upon which 

mutation arises first, has recently been reported in the experimental evolution of cefotaxime 

resistance in E. coli (Salverda et al. 2011). Most lines evolved three mutations conferring the 

greatest reduction in cefoxatime sensitivity, but two lines each gained a different initial 

mutation, resulting in reduced cefoxatime sensitivity but sign epistasis with mutations from 

the global optimum set. Therefore these lines only evolved a smaller reduction in cefoxatime 

sensitivity, have become trapped at a local adaptive peak. 

It should be noted that in both of these cases, evolution was constrained, not to a single 

solution but a more complex set of possible solutions. These varying, interacting constraints 

resulted in a rugged fitness landscape, with the possibility of lineages being trapped by a local 

adaptive peak (Kvitek and Sherlock 2011). Therefore the question is not whether 

evolutionary pathways depend upon constraints or contingency, but whether the constraints 

are universal or dependent on genetic background; that is, whether the constraints are 

contingent. 

Apart from the level of contingency, the predictability of evolution also depends upon the 

role of chance. In large populations, with high mutation rates or common mutations, a 

particular mutation is almost certain to arise, and evolution is effectively deterministic. 

Smaller populations or rare mutations result in stochastic sensitivity. In a simple constraint 
dependent pathway, evolution is predictable, but where there is stochastic sensitivity this can 

only be a probabilistic rather than a deterministic prediction. In a more contingent pathway, 

evolution may still be predictable, if each step is likely to occur (Dick et al. 2009), and if the 

nature of the contingency is known. The greatest intrinsic unpredictability would result from 

a combination of stochasticity and contingency, whereby the pathway is dependent on chance 

events at preceding steps. However, even a deterministic, simply constrained pathway may be 

unpredictable in practise if the constraints are not known: for example, UV mutagenesis 

studies to identify mutations that could result in fungicide resistance often generate a wider 

range of mutants than are subsequently found in the field, due to in planta fitness costs 

associated with some mutations. 

201 



6.5.2 Predictability in evolution of fungicide resistance 
The evolution of Qol resistance in cytochrome b is a relatively simple constraint-dominated 

pathway. In most cases, the G143A substitution gives optimum fitness under selection by Qol 

fungicides, whereas F 129L confers a lower reduction in Qol sensitivity. However, there is 

sign epistasis between the G143A mutation and the intron at codon 143 in some fungi. 

Therefore, constraints on cytochrome b are contingent on the loss or gain of this intron, but as 

this contingent relationship is known, the evolution of Qol resistance is still predictable for a 

given lineage subject to knowing whether the intron is present. 

In the case of triazole resistance, the situation is more complicated. Mutations in CYP51 have 

different effects on fitness depending on the compounds used, and epistatic interactions with 

other CYP51 mutations (Cools et al. 2010). Therefore it would be difficult to predict which 

adaptations to selection by azole use will emerge in any given species without detailed 

knowledge of CYP51 structure and the impact of each possible mutation. Additionally, in 

some species, mutations and overexpression of CYP51A confer reduced triazole sensitivity 

(Diaz-Guerra et al. 2003), whereas in species without CYP51A this is not possible and only 

CYP51B and non-target-site mutations can occur, and so the mutations available are 

contingent upon whether CYP51A has been lost from that lineage. Furthermore, epistasis 
between mutations, coupled with selection of different mutations by different azoles, means 

the range of mutations that can emerge at a given time may be dependent on the triazoles 

used in the past. For example, in M graminicola, the S524T substitution in a wild-type 

CYP51 background appears advantageous under selection by prothioconazole, but it is not 

found in a wild-type background as other mutations had been selected by previous triazole 

use (Cools et al. 2011). The re-emergence of CYP51A in R. secalis, demonstrated in the 

present study, provides a further example of historical contingency. Phylogenetic 

reconstruction suggests a single origin of CYP51A followed by multiple losses, and it appears 

that R. secalis CYP51A was almost lost. However, before it was lost completely, a change in 

selective pressure due to azole use appears to have resulted in the re-emergence of CYP51A. 

Had it been lost completely, that particular adaptive pathway would not have been available 

in R. secalis. Therefore the adaptive pathway taken by R. secalis in response to selection by 

triazoles was contingent on chance events. 
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6.6 Future research directions 

The R. secalis genome has been sequenced, and assembly and annotation are currently 

underway before public release. Two isolates from barley, and one from each of the other two 

R. secalis host-specialised lineages and R. orthosporum, were selected for sequencing 
(Navarro-Quezada et al. 2011). 

Of the barley isolates being sequenced, one was collected before 1997 and the other is more 

recent. It is likely that the more recent isolate contains CYP51A and the older isolate does not. 
If this is the case, analysis of the sequenced genomes will reveal the size of the genomic 

region missing in isolates without CYP51A, whether it is a single gene, a region of genes or 

an entire chromosome. Whether the other lineages contain CYP5JA could reveal how 

recently R. secalis ancestors started losing that paralogue. There is evidence that host shifts 

resulted in genetic bottlenecks (Zaffarano et al. 2008), so if CYP51A was already being lost 

from the ancestral species as bottlenecks occurred, it may be absent from some lineages. 

Presence of CYP51A in other lineages would also have implications for triazole resistance 

risk of Rhynchsporium spp. on grasses and rye. However, these lineages may also be 

polymorphic for the presence of CYP51A, so the presence or absence in the sequenced isolate 

cannot be assumed to mean universal presence or absence across the lineage. 

Availability of full genome sequences, including the promoter regions of genes of interest, 

will also allow the generation of gene knockouts or reporter lines. For example, AOX 

promoter-reporter lines would allow induced expression to be monitored over a greater 

number of time points, to avoid missing maximum expression. CYP5JA knockouts would 

confirm the impact of CYP5JA on triazole sensitivity in a uniform genetic background, and 

gene replacement with CYP5JB, or recombinant constructs containing the coding sequence of 

one paralogue with the promoter of the other, would enable further investigation of the 

contribution of sequence differences and overexpression to the reduced triazole sensitivity 

conferred by CYP5JA. 

Genome sequences may also provide potential markers for population genetic studies. This 

would be especially useful for assessing pre-selection levels of CYP51A, since the accuracy 

of direct measurement from pre-selection samples is limited by the presence of the highly 

similar and more abundant CYP51A p. Diversity of genes located close to CYP51A could be 
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compared to diversity in unlinked genes, to infer whether a hard or a softer selective sweep 

has taken place. 

In addition to further scientific developments, future research directions may result from 

evolutionary developments in R. secalis. This may include re-emergence of G143A, 

sensitivity shifts against new fungicide groups such as SDHIs, or new mechanisms resulting 

in further shifts in triazole sensitivity. 
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Appendices 

Appendix 1. Azoxystrobin EC50s of R. secalis isolates. 
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Appendix 2. cytochrome b sequences from R. secalis isolates. 
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Appendix 3. Azoxystrobin EC50s of R. secalis isolates. 

.. a 

öb 

Con 
W 

Or 

ON ^^^Oý N oo N 000000 00 v1 ONOVO v1 OM 
N- 00 O^ OO 

000000 00 N. --ý00Cý 
00000 NOOO 00- N. 

00 
V-ýýýý 

1-1 ýý .ý 1-1ý ,-ý. %-., ýOOOO O" OO OH O ýN OO 
0 v_1 M v1 "t ý-ý N et O\ O 00 00 Cý 00 . --00 \O -d, kn ^' - kr) 

0 
ÖOO0.00_ ýý-- 

ÖO oONN 
Ö -I 

ýv1Ö 
O Cl I'D 

4 

G+. 0000 c) C) _66 "" O_" 6 N~ ÖÖOÖÖM 

N ÖOýÖNOOý_- 
n0(D V) ýnOvn01^^M ý' výOvýýn OO v1 

c0 00000 0= N 
ýýý ÖN. ÖÖo cý 

Ov ÖÖÖÖÖÖ 
Ü0 'j Z; c:: > p Ö_O_Ö_O Ö_vc, -i c> CD OCD OOpO 

ýNýnýtlýooO ýc V-ý 
vOývý"- ý"ýv 

cN ýM 
ÖO f4) le le 1-- (N 

fi 
y00000 

r--: -- 
Ö op -ý "-, lý oo O-ý 

pM= 

ÖÖOÖÖÖOÖ6 -n -- "" 
NOO-0 

'"" et Ile 

0 

MN 00 ÖNNNNNOONO 00 r- N ýV 
O- 

Ö 
W) 

ÖC 
OOOOOOMOOOÖOOII 000000OMO 

öÖÖÖÖÖÖOÖÖÖÖÖOOÖOÖÖÖÖÖÖÖÖÖÖÖ 

0M 
C) 110 

N 
Vii Co TC CD mONNN Q"ýý N- 

r- 
000 

MNMNN 
N- NN- 'tN ýMý"t v1ýOýNNýri. V1 lý ýo-Oýv1 - V1 ä 
000000'-""" O "" OOOO'-"-" Öý pOOO OOO OOOO 

a) -.. -..., . -.. -. , . -.. -, . -, .ý , -.. -. e- .. -. ^ -, , -. 1-1 1-1 ., , -ý . -. en C) W) IT-ItTenr-0-NOONI'OM W') 
- 

[N -v) - 00 O -0 (Z W 1 'RtOOv1ýDOl- MC' Ö Ö 
OO ýO 00 ON I- OOOOOONOOOOOOOOO OOO IO O 

Ü OO Ooo Ooo O OHO 0000000000 MO Oro Ov Ov 
`ý OOMMN ýn 00s sý ýn Oý ýp oO Vý tý . -+ 00 ON 

Ö Ö N O 
Q. O OQCDW) W i00It 00 een tnO M O 00 
W 666 ÖÖ6 000000OÖ6 0O Ö ÖO -O O 

00 C' CNOIC 000000000000 oN(7 ON (71 c, a, CD oCD oooCD o0000 0 0 0 0 0(OO 
ooCD 0 

O 
o Q O 0 O ------ NNNNNNNNNNNN N N NNNN N N N 

U a" 

N 
O 

OÖ v> v) ÖÖ 
NOOOOM 
1 O 

eq 

7 OOONý 
00 

No 
NMN , 

Or. cc 
ý ý - 00 00 M O 

N 
N 

ýt 
N 

ýMN 
cy" 

N Ö 
M M' 

' "' 00 
er 

ý 
-- t-- ý 

N 

ýy N 
fit 

TmTmTTC) 
Qý Oý OýOýCýOý ö Ü Ü 

0-4 ' ' Wp(pýi p OO8 

aaa aa04 UU x x xxxx ö ö a oU U 04 0 (A 
U 
r 

241 



0C 
oo "t W) D0 CS ýf OMNNN N 

I-W -"In, 
ÖOOM- ýt M -" N 

11-1 0 
V1 00 all et -NCN 00 

vý 
v1 Iý vM -N 

9D. . CD 
ADO 1ýýýýd MMýýMO°Oý'? MOýýclo 

j~ äM_; 
NN -- - ýC '-- vi 00 MNO 

, -. 

to -m 

W 
u ý.. r 

o_ p 

0y 

0 oar O r- v, ot- 00 V, ov, o0o v -C)C>0o OO V, t- o Oto^ M[-Oýo0000V1Q', -v1 ýo OmN' Ov1- I" Oý Wý "-+ 00 M pp 00 ý- NOOO co) V1 j ýp NN 
,_ýON 

00 O 
0 co 0- "O O Z, Ö000ÖOOO .OOÖo Ö'ýo ÖOOO 

zzoo r) ýo N .C ýO o0 c r, o0 l- . --+ .- ý') O pOO 00 N l- r. " ö 'ct 
noo00o0-Oc,, ý t- %ý 

O 
y_od ýo 000^. 

2 
-- Qý lý ý/ 1 ýO v1 v1 NM-O 01 NNv-NOO Cý N ýn 0 ýn ýN ýO V1MON "-+ ONOem 00 N00 NOM OO 00 O. - i, 000OOOOO O- OMOO ö OOO OHO OHO OC CC C_wOVO O1-. 

ý 
O1-1O1-ýO-ýOC CO Ov0 OOi 

Oý 
Ö M to) r- 

ÖNNOONMÖýOÖMN 

'- 
NN 

p OýIýOýýt '1 c0 NýN000 CN NýMý'. D . NQý: 
ä OOOM O"" O"-"000ÖÖO ýÖ 00000 ýÖO 

N OEM It ONOS -Oý, O"ANON ýOd'1. DON "OOqt I- ýOI, NM- 
C 

O tn v1. M- NO V*l O, OOt- dO M"-ýMN'CMOll- c 00 - 000000 = 000000"-- 00000 
OOO, O O0O OOOO Ov0 OOOO , c; O op O O6Ov66ý O 

IL) 
Ö 

9 -M MN -0 W's0-"tM O I'- M Q0 N ýO 
" 

N r, t- t" 
00 O N to . -, 00 ýO vn OM l'- "-ý "--ý ON ON W-1 O a NS to ýN. " -- ^"M M ýýMNOýýnýý0 v1OC NN 

(mal C> C) O OO ÖOÖÖ CC ÖOOÖÖÖÖÖÖÖÖÖO 

4-4 
0 .0 

U 
U 

U 

aý 
ö 
y 

-------NNNNNNNNNNNNNNNNNNNN OOOOOOOOOO00OOOO0OO000000000 
OOOOOOOOOOOOOOOOOOO000000000 
NNN Cl NNNNNNNNNNNNNNNNNNNNNNNN 

In 

NMMNM "ý NM ý" (ý1 -iNNN 
,. ýNNNMMMMNýIT 0y 

Q', 41C, 
-- - 0000C* OÖOÖ0ÖÖOÖ2 00 N v1 N, 

. --, ----NN--NN et 
QQ 

MMMýnýlrC7C7C7C7UUC~%OOýpO 
OOO 

OC 

en w! - r4 j-, 
i ?NEErN 

ýýýýOCÖ 

rz 
x 

242 



,ý 

to -a 

wö o . ý, U 
Uý 

o 
U 

0 

0 N 

N M ,ýO o0 00 CO Oý O'-' OO ,ý 
ýý O vi 00 iÖv Oý IO 00 

M O ^ ý-w Wý 

0 ~ MNMMN 
O N 

M 

a 
00 v1 i/ pý Q0 

O 

00 . rnOON -0 
t- 
W)iý -- 00 (= m" 

0Lt 
c "D 

ö `. o o ýö ööö-0 
W) o rl- 

(0 M C-i "-, N kn .4- vi 6N vi 

r "o OMMOOOlÖO 
Ü1Ö ÖÖ ÖýOvOý, v00O 

'T 
Ol00 

OO 00 [ý M -- Qý OM öNm, 
--: ON. -. gym"o 

0 
W) MOOM't N 

2 , -. . -. -- ... -.. -.. -.. - . -.. -. .. , -, . -, , -.., OM ýO N [- It NO of --M l- vi co v- 0 lýN-Ol- Ný--ý O It Ntr -N OOOO r-+ O-OOOOvOOOO 
Ü O, 000Oc; c; OO00 OO0 0 

ýD Wn N O'ý IO 00 NS00 vi 00 N '0 Stn0N[ýýDOen MS-s. n*cn 
- 110WnNv1en M0 Oa NN- en 06 W*i 

wÖ060066000O0606 

r- SSSSNSSSt 't nt 00 00 00 Co 000 0 000000 000000 NNNNNNNNNNNNNNN c> CD 
N 

00 
N 00 

~ 
Me -MMM 

01 

NNNN 

MM 
le nt 111: Ct 

Kt Izt gý Cm, 
OM 00 

15 ÖÖ Ö vQÖ 
n 

mNNN 
- 

2 
VVV 0 " UUUUV " (A vi vi vi 

243 



Appendix 4. CYPSI sequences of R. secalis isolates. (a) CYP51B translated sequences, (b) 
CYP51A translated sequences, (c) CYPSIA p sequences. 
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Appendix 5. Fungal and outgroup CYP51 sequences from Broad Institute genome sequences 
listed in Table 5.2. 
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