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Summary

e The ionome is the elemental composition of a tissue or organism. Phylogenetic variation in
the ionomes of plant shoots has been widely reported based on controlled experiments, vege-
tation surveys and literature meta-analyses. However, environmental effects on phylogenetic
variation in shoot ionomes have not been quantified. This study tests the hypothesis that
phylogenetic variation in shoot ionomes is robust to environmental perturbation and that
plant families can be distinguished by their shoot ionomes.

e Herbage was sampled from six subplots of the Rothamsted Park Grass Experiment. Subplots
had received contrasting fertilizer treatments since 1856. Herbage was separated into its
constituent species (n = 21) and concentrations of eleven mineral elements were determined
in dried shoot material.

e Shoot concentrations of calcium (Ca), zinc (Zn), manganese (Mn), magnesium (Mg) and
sodium (Na) showed significant variation associated with plant species, and responded
similarly to fertilizer treatments in diverse plant species. Species x treatment interactions were
indicated for phosphorus (P), potassium (K), nickel (Ni), copper (Cu) and iron (Fe). Plant
families could be distinguished by their shoot ionomes. The most informative elements for
discriminant analysis were Ca > Mg > Ni > S > Na > Zn > K > Cu > Fe > Mn > P.

e Whilst shoot ionomes were sensitive to fertilizer treatment, phylogenetic variation in a

subset of the shoot ionome (Ca, Zn, Mn, Mg) was robust to this environmental perturbation.

Introduction

The elemental composition of a subcellular compartment, cell,
tissue or organism is termed its ionome (Salt ez al., 2008). The
ionome includes all mineral elements, whether essential or non-
essential for life, in whatever chemical form these occur. Many
studies indicate that the concentrations of mineral elements in
shoot tissues differ between plant species growing in the same
environment. Such studies have been combined using residual
maximum likelihood (REML) procedures and employed in
meta-analyses to determine phylogenetic effects on shoot concen-
trations of mineral elements (Broadley ez 4/, 1999, 2001, 2003,
2004, 2007; White et al., 2004; Hodson et al., 2005; Willey &
Wilkins, 2006). Knowledge of the systematic variation in shoot
concentrations of mineral elements can be used both in agricul-
ture, to optimize the application of fertilizers to crops (Broadley
et al., 2004) and the delivery of mineral elements to the diets of
humans and livestock (White & Broadley, 2005, 2009), and in
ecology, to improve our understanding of the structure and func-
tion of plant communities (Thompson ez al, 1997; Broadley
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et al., 2004; Kerkhoff et 2/, 2006; White & Hammond, 2008;
Fyllas ez al., 2009; Elser et al., 2010; Kattge ez al., 2011; Zhang
et al., 2012) and the cycling of natural and anthropogenic
mineral elements in the environment (Broadley eral, 2001,
2004; Beresford ez al, 2004; Reich, 2005; Kerkhoff er al,
2006; Watanabe et al., 2007; Amatangelo & Vitousek, 2008,
2009; Kattge ez al., 2011). In addition, information from these
meta-analyses can provide insight into the evolution of differ-
ences in shoot tissue concentrations of mineral elements between
plant taxa (Broadley eral, 2001, 2004, 2007; White &
Broadley, 2003; Hodson et al, 2005; Kerkhoff et al, 2006;
White ez al., 2007; Kattge er al, 2011; Metali ez al., 2012;
Zhang et al., 2012).

It has long been recognized that shoot mineral concentrations
are also influenced by environmental conditions and, in particu-
lar, fertilizer applications (Marschner, 2012). The aim of this
study was to test whether the relative differences in shoot concen-
trations of mineral elements between plant species were consis-
tent under contrasting fertilization regimes. The study used data
on the concentrations of mineral elements in shoots of 21 plant
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species growing in six subplots of the Park Grass Continuous
Hay Experiment at Rothamsted, which have had contrasting fer-
tilizer treatments for many decades (Warren & Johnston, 1964;
Crawley ez al., 2005; Silvertown ez al., 2006). These data suggest
that, although fertilizer practice influences shoot concentrations
of mineral elements profoundly, the rank order in shoot concen-
trations of many mineral elements among plant species is consis-
tent under contrasting fertilization regimes and that litte
variation in the concentrations of many mineral elements in plant
shoots can be attributed to genotype X environment interactions.
Thus, conclusions pertaining to the phylogenetic effects on shoot
concentrations of mineral elements derived from meta-analyses
of combined literature data are robust for these elements.

Materials and Methods

The Park Grass Experiment was established by Lawes and Gilbert
at Rothamsted in 1856 on ¢ 2.8 ha of parkland that had been
permanent pasture for at least two centuries (Warren &
Johnston, 1964; Crawley ez al., 2005; Silvertown ez al., 2000).
The treatments imposed in 1856 included control plots, with no
additions of either fertilizer or manure, and plots receiving
annual applications of various combinations of phosphorus (P),
potassium (K), magnesium (Mg), sodium (Na), sulphur (S) and
nitrogen (N) fertilizers, the latter being supplied as either sodium
nitrate or ammonijum salts. In 1903 many plots were halved, to
test the effects of liming every 4 yr, and a further modification
was made in 1965 when most plots were divided into four sub-
plots. Three of these subplots have been limed to first establish
and then maintain pHs of 7, 6 and 5 on Subplots a, b and ¢,
respectively. The fourth subplot, Subplot d, receives no lime and
soil pHs now range from 5.7 to 3.5 depending on the fertilizer
treatment and natural acidifying inputs (Warren & Johnston,
1964; Johnston et al., 1986). The calcium carbonate (CaCO3)
required to maintain plots at a given pH is substantially less
for those receiving nitrate than for those receiving ammonium
(Warren & Johnston, 1964; Silvertown et al., 2006). The herb-
age on each plot is cut each year, usually in June, and made into
hay on the plot. A second cut is taken in the autumn and the pro-
duce is weighed green and removed from the plot. Each year
from 1991 to 2000 the herbage on each plot was sampled imme-
diately before being cut for hay, separated into individual plant
species, and the contribution of each plant species to dry matter
yield was determined as described by Crawley ez /. (2005). Both
the biomass attributed to individual plant species and the con-
tributions of different plant species to the total dry matter yield
of a plot varied greatly between plots (Supporting Information
Table S1).

The annual fertilizer applications to the six subplots used in
this study are described in Table 1. The soil pH of the six sub-
plots is intended to be pH 7.0 and, when sampled in 1991, their
soil pH ranged from 6.2 to 7.0. Herbage from the subplots was
separated into shoot material from individual plant species by
Crawley and co-workers in their field campaign of 1993 (Crawley
et al., 2005). These subplots were selected by maximizing three
criteria: (1) the number of plant species in common between the
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Table 1 Fertilizer treatments, number of plant species present and (in
parentheses) the number of species contributing 10% or more to the total
dry matter yield over the period 1991-2000, and the annual yield of
subplots of the Park Grass Continuous Hay Experiment

Number Mean annual yield,
Fertilizer of 2000-2004
Subplot treatment® species® (t DM ha™")°
3a 39 (5) 33
4/2a N2, P 22 (3) 5.5
7a P, K, Na, Mg 27 (4) 7.4
9/2a N2, P, K, Na, Mg 22 (5) 7.8
14/2a N*2, P, K, Na, Mg 24 (3) 75
18a N2, K, Na, Mg 30 (5) 3.9

2Fertilizer treatments: N2 = 96 kg N y™" as (NH,),50,; N*2 = 96 kg N y™"
as NaNOs; P = 35 kg Py ™" as triplesuperphosphate; K = 225 kg Ky~ as
K,SO4; Na = 15 kg Nay™" as Na,SO,; Mg = 10 kg Mg y™" as MgSO,.
bData from Crawley et al. (2005).

“Data from Rothamsted Research (2006).

subplots, (2) the number of plant species in common with previ-
ous studies of phylogenetic effects on shoot concentrations of
mineral elements, and (3) the number of plant families repre-
sented in the subplots. The six selected subplots covered 21 plant
species representing seven plant families. The Poaceae were repre-
sented by Agrostis  capillaris L., Alopecurus pratensis L.,
Arrhenatherum elatius (L.) P. Beauv. ex J. Presl & C. Presl,
Dactylis glomerata L., Festuca rubra L., Holeus lanatus L., Poa
pratensis L., and Poa wmivialis L., the Ranunculaceae by
Ranunculus acris L., the Fabaceae by Lathyrus pratensis L., Lotus
corniculatus L., and Trifolium pretense L., the Polygonaceae by
Rumex acetosa L., the Plantaginaceae by Plantago lanceolata L.,
the Asteraceae by Achillea millefolium L., Centaurea nigra L.,
Leontodon hispidus L., Taraxacum officinale F.H. Wigg, and
Tragopogon pratensis L., and the Apiaceae by Anthriscus sylvestris
Hoffm., and Heracleum sphondylium L.

Dried herbage samples from each plant species in each subplot
were milled to a powder using a ball-mill. Accurately weighed
powdered subsamples (c. 50 mg DW) were digested in closed
vessels using a microwave digester (MARS Xpress, CEM Micro-
wave Technology, Buckingham, UK). Samples were first digested
with 10 ml concentrated nitric acid (HNQOj3), before 3 ml of
30% hydrogen peroxide (H,O,) was added to each vessel and
digestion completed. Digested samples were diluted with milliQ
(sterile, 18.2 MQ cm) water before elemental analyses. Total K,
calcium (Ca), Mg, P, S, Na, iron (Fe), manganese (Mn), zinc
(Zn), copper (Cu) and nickel (Ni) concentrations were deter-
mined on digested material by inductively-coupled plasma mass
spectrometry (ICP-MS, ELAN DRCe, PerkinElmer, Waltham,
MA, USA). For these analyses, a tomato leaf standard (Reference
1573a; National Institute of Standards and Technology, NIST,
Gaithersburg, MD, USA) was used as an internal control.
Duplicate subsamples of herbage exhibiting high concentrations
of Ca, S, Fe or Ni were processed and analysed to confirm that
outliers in these data were not attributed to sample preparation
or analytical process.

Estimates of variation in concentrations of mineral elements in
shoots were assigned to species, treatment and species—treatment

© 2012 The Authors
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interactions using residual maximum likelihood (REML) proce-
dures. Spearman rank correlation analysis was used to determine
whether the shoot concentration of a mineral element responded
similarly to fertilizer treatments in all plant species and discrimi-
nant analysis was used to investigate whether shoot mineral
element composition was characteristic of particular plant fami-
lies. All statistical analyses were performed using GenStat (v12,
VSN International, Oxford, UK).

Results

Different fertilizer treatments produced different amounts of
herbage with contrasting concentrations of mineral elements in
the subplots of the Park Grass Experiment (Table 2, Fig. 1). The
application of P-fertilizer increased mean herbage P concen-
trations of plant species in Subplots 4/2a, 7a, 9/2a and 14/2a,
and the application of K-fertilizer has increased mean herbage K
concentrations of plant species in Subplots 7a, 9/2a, 14/2a and
18a (Table 2, Fig. 1). Mean Na concentrations in herbage of
plant species from Subplots 3a, 4/2a, 9/2a and 14/2a were
higher than those from Subplots 7a and 18a. The highest mean S
and Mn concentrations were found in Subplots 4/2a, 9/2a
and 18a, which were supplied with ammonium sulphate
((NH4),SOy). A lower mean Zn concentration was found in
herbage from Subplot 7a than in herbage from other subplots,
although the range of Zn concentrations in shoots of different
plant species was comparable. Differences in mean Ca, Mg and
Ni concentrations in herbage from different subplots can also be
observed.

Research 103

Within-plot variation in the concentrations of mineral
elements in shoots of diverse plant species appears to differ
between subplots in an element-specific manner (Fig. 1). For
example, subplots to which P or K fertilizer have been applied
have greater variation in shoot concentrations of the element
supplied than unfertilized plots, shoot Na concentrations are less
variable in plots whose mean herbage Na concentrations are low,
and shoot Mg concentration in the unfertilized plot shows more
variation than in all other subplots. Plantago lanceolata harvested
from Subplot 9/2a had exceptionally high shoot S and Ca
concentrations. Lathyrus pratensis and Taraxacum officinale had
exceptionally high shoot Ni concentrations in Subplots 9/2a and
18a, respectively. Agrostis capillaris, Taraxacum officinale and
Arrhenatherum elatius had exceptionally high shoot Fe concen-
trations in subplots 7a, 14/2a and 18a, respectively. However,
the concentration of no element in the herbage sampled from the
Park Grass Experiment exceeded that thought to be toxic to
plants (White & Brown, 2010).

In order to quantify the sources of variation affecting each
mineral element a REML analysis, with treatment (subplot) and
species as random effects, was performed (Table 3, Fig. S1). The
coefficient of variation (CV = SD/mean) for shoot concen-
trations of mineral elements increased in the order Zn (0.35)
<Cu<P<S<Mg<K<Ni<Mn<Cax<Fe<<Na (1.28).
The CV for the residual variation, excluding the major factors of
treatment and species, increased in the order Zn (0.17) < P < K
<Ca<Cu<S<Mg<Mn<Ni<Fe<Na (0.78). Thus,
shoot Zn concentrations had both the least variation across the
experiment and the least variation attributed to residual variation.

Table 2 Concentrations of mineral elements in the dry matter (DM) of shoots of plant species harvested from six subplots of the Park Grass Experiment,

expressed as mean + SE of n species

Subplot 3a Subplot 4/2a Subplot 7a Subplot 9/2a Subplot 14/2a Subplot 18a
Element (n =15) (n=11) (n =15) (n=13) (n=14) (n=13)
P (mg g~' DM) Mean 1.16 4.66 3.67 3.81 3.39 1.44
SE 0.09 0.31 0.28 0.20 0.22 0.10
K (mg g~' DM) Mean 15.06 11.46 40.35 40.18 39.91 36.56
SE 1.39 1.01 3.30 5.04 3.70 3.29
Na (mg g’1 DM) Mean 5.91 8.80 0.60 1.87 4.91 0.53
SE 1.17 1.69 0.16 0.96 1.37 0.17
S(mg g~ DM) Mean 1.85 3.22 2.09 3.70 2.27 3.97
SE 0.17 0.35 0.26 0.77 0.29 0.30
Mn (ug g’1 DM) Mean 46.35 87.82 58.32 86.88 54.91 106.96
SE 7.48 12.60 12.71 12.67 7.73 12.62
Zn (ug g_1 DM) Mean 29.41 30.79 24.69 34.25 30.77 36.30
SE 2.63 2.43 2.51 2.98 2.94 2.88
Ca(mg g’1 DM) Mean 11.30 10.43 7.54 8.60 6.57 6.16
SE 1.60 1.80 1.36 2.41 1.28 1.41
Mg (mg g~ DM) Mean 293 2.38 1.54 1.76 1.58 1.48
SE 0.48 0.24 0.18 0.16 0.16 0.24
Ni (ng g_1 DM) Mean 0.43 0.62 0.35 0.48 0.35 0.53
SE 0.04 0.06 0.05 0.10 0.06 0.12
Fe (ug g_1 DM) Mean 76.24 63.94 64.83 94.62 89.15 95.85
SE 5.63 6.09 11.77 10.23 16.15 28.94
Cu (ng g_1 DM) Mean 6.74 8.55 5.89 7.75 8.14 8.83
SE 0.61 1.00 0.65 1.28 0.95 0.94

© 2012 The Authors
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Fig. 1 Concentrations of mineral elements in shoots of diverse plant species from six subplots of the Park Grass Experiment. Each datum indicates the con-
centration of an element in the shoot of an individual species in a particular subplot. Outliers are indicated by their genus.

Table 3 Estimated trait means and variances obtained from a residual
maximum likelihood (REML) analysis of 81 observations for concentrations
of each of 11 mineral elements in shoots of plant species sampled from six
subplots of the Park Grass Experiment

Mean Variance Species (%) Treatment (%) Residual (%)

Calcium 9.4 405 70.8 8.2 21.0
Zinc 315 1242 643 13.4 223
Manganese 68.9 2096.2 36.3 23.4 40.3
Magnesium 2.0 1.3 328 19.9 47.3
Copper 8.0 115 308 6.6 62.6
Nickel 0.5 0.09 29.6 12.6 57.8
Sodium 3.8 23.7 2438 37.8 37.4
Sulphur 2.8 26 2438 275 41.3
Potassium 309 3260 19.6 53.9 26.5
Phosphorus 3.1 26 107 77.0 12.3
Iron 79.4 3097.0 2.3 -0.7 98.4

Data are expressed as mg g~ DM for Ca, Mg, Na, S, K and P, and as
ug g~ " DM for Zn, Mn, Cu, Ni, and Fe. Variances are partitioned as
percentages of the total variance attributable to plant species, fertilizer
treatment (subplot) and residual components. The residual component
includes species x treatment interactions due to lack of plot replication.

New Phytologist (2012) 196: 101-109
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Most of the variance in shoot P, K, Ca and Zn concentrations in
the Park Grass Experiment can be attributed to a combination of
species and treatment effects, with relatively little residual varia-
tion. Most of the variance in shoot P and K concentrations can
be attributed to fertilizer treatment, whereas most of the variance
in shoot Ca and Zn can be attributed to characteristic differences
between plant species. By contrast, a large proportion of the
variation in shoot concentrations of other elements was attributed
to residual variation, which includes species X treatment inter-
actions. For several elements, such as Mn, Mg, Cu and Ni, the
variance attributed to characteristic differences between species is
higher than that attributed to fertilizer treatments, whereas the
variance attributed to fertilizer treatments is greater than that
attributed to differences between species for S and Na. Using the
residual variation to test the significance of the additional varia-
tion associated with the treatment term, then P, K, Na, S, Zn,
Mn (P < 0.1%), Mg, Ca (P < 1%), and Ni (P < 5%) concen-
trations all showed significant variation among treatments.
Similarly, using the residual variation to test the significance of
the additional variation associated with the species term, then Ca,

© 2012 The Authors
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Zn (P<0.1%), Mn, P (P< 1%), K, Mg and Na (P < 5%)
concentrations showed significant variation among plant species.
In order to investigate further whether the shoot concentration
of a mineral element responded similarly to fertilizer treatments
in all plant species, a Spearman rank correlation analysis was
performed (Table 4). Pairwise Spearman rank correlations of
plant species between fertilizer treatments were significant for the
shoot concentrations of most mineral elements (Table 4). This
suggests that the shoot concentration of a mineral element gener-
ally behaves similarly in the plant species studied in response to
fertilizer treatments imposed here (Table 4). In particular, this
analysis indicated that shoot concentrations of Ca, Zn, Mg, S,
Na, Mn and Ni behaved similarly in the plant species studied in
fertilizer implying
substantial effects of plant genotype on the relative shoot concen-
trations of these mineral elements. Fewer pairwise Spearman

response to the treatments  imposed,

Rank Correlations were significant for shoot concentrations of
Fe, Cu, P and K, suggesting significant species X treatment inter-
actions for these elements in some circumstances.

In order to identify those aspects of shoot mineral element
composition characteristic of particular plant families a discrimi-
nant analysis was performed on 81 observations of the concen-
trations of 11 mineral elements in shoots of plant species
sampled from the six subplots of the Park Grass Experiment
using the estimated trait means obtained from the REML analysis
(Figs 2, S2). The discriminant analysis was performed in two
dimensions using plant family as the grouping of each training
set. The discriminant analysis separated data from the seven plant
families studied, suggesting that plant families have characteristic
shoot ionomes. The 95% confidence intervals of the mean scores
for each plant family indicated that data for the Poaceae, Poly-
gonaceae and Plantaginaceae were statistically unique (Fig. S2).
However, the 95% confidence interval for the Asteraceae

Table 4 Significance of the Spearman rank correlations in 15 pairwise
comparisons of the rankings of shoot concentrations of each mineral
element in 21 plant species across the six subplots of the Park Grass
Experiment

P<00001  P<0001 P<001  P<0.05
(****) (***) (**) (*) ns
Ca 15 0 0 0 0
Zn 13 2 0 0 0
Mg 10 4 1 0 0
S 11 2 1 1 0
Na 6 4 5 0 0
Mn 6 3 5 1 0
Ni 4 6 2 3 0
Fe 5 5 2 2 1
Cu 5 3 4 1 2
P 5 3 3 3 1
K 1 3 5 4 2

Rank orders for 21 plant species were based on the estimated trait means
obtained from a residual maximum likelihood (REML) analysis of 81
observations for concentrations of each of the 11 mineral elements in
shoots of plant species sampled from six subplots of the Park Grass
Experiment.

© 2012 The Authors
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Fig. 2 Discriminant analysis of the shoot mineral composition of diverse
plant species. Discriminant analysis was performed on 81 observations of
the concentrations of 11 mineral elements in shoots of plant species
sampled from six subplots of the Park Grass Experiment using the
estimated trait means obtained from a REML analysis of the raw data

(Fig. 1). Symbols represent individual data, from species in the Poaceae
(white circles), Polygonaceae (grey triangles), Plantaginaceae (blue circles),
Asteraceae (green circles), Ranunculaceae (pink circles), Fabaceae (black
circles) and Apiaceae (red circles). Score 1 accounts for 62% of the
variation and Score 2 accounts for 22% of the variation.

overlapped that for the Ranunculaceae, the 95% confidence
interval for the Fabaceae overlapped those for the Apiaceae and
the Ranunculaceae, and the 95% confidence interval for the
Apiaceae overlapped with those of the Fabaceae and Ranuncula-
ceae (Fig. S2). The most informative mineral elements were Ca
>Mg>Ni>S8>Na>Zn>K>Cu>Fe>Mn>P. In this
analysis, Scores 1 and 2 accounted for 84% of the variation in
shoot mineral element concentrations. Score 1, which accounted
for 62% of the variation in shoot mineral element concen-
trations, separated data from species in the Poaceae (Agrostis
capillaris, Alopecurus pratensis, Arrhenatherum elatius, Dactylis
glomerata, Festuca rubra, Holcus lanatus, Poa pratensis, Poa
trivialis) and Polygonaceac (Rumex acetosa) from those of
other angiosperm families (Figs 2, S2). The driving element
in Score 1 was Ca, which is consistent with previous studies
indicating that species from the Poales have consistently lower
shoot Ca concentrations than those from eudicot orders
(Broadley ez 4l., 2003, 2004; White & Broadley, 2003). Score
2, which separated data for Plantago lanceolata (Plantagina-
ceae) from those of other angiosperm species, was not domi-
nated by any single mineral element.

In general, species from the Poaceae had lower REML-
estimated shoot Ca and Mg concentrations than the other angio-
sperm  species studied irrespective of the fertilizer treatment
(Table 5; Fig. 3). This is consistent with previous studies (Broadley
et al., 2003, 2004; White & Broadley, 2003). Species from the
Poaceae also had higher shoot Mg/Ca quotients than most
other angiosperm species, with the exception of Rumex acetosa
(Fig. 3). This is consistent with previous studies indicating that
members of the Caryophyllales often have exceptionally high

New Phytologist (2012) 196: 101-109
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Table 5 Concentrations of mineral elements in the shoot dry matter (DM) of seven plant families calculated from estimated trait means of species
obtained from a residual maximum likelihood (REML) analysis of 81 observations for concentrations of each of the 11 mineral elements in shoots of plant

species sampled from six subplots of the Park Grass Experiment

Ca Cu Fe K Mg Mn Na Ni P S Zn
mgg' pgg' pgg' mgg' mgg' wgg' mgg' pgg' mgg' mgg' ugg
n DM DM DM DM DM DM DM DM DM DM DM
Asteraceae Mean 30 12.33 10.53 94.29 36.57 2.59 51.96 6.07 0.57 3.61 3.42 36.61
SE 0.58 0.44 8.58 3.06 0.24 5.11 0.94 0.05 0.27 0.20 2.06
Poaceae Mean 48 3.33 6.83 65.67 24.19 1.33 93.59 2.61 0.36 2.63 2.43 26.95
SE 0.25 0.37 9.20 1.92 0.07 6.82 0.53 0.03 0.20 0.15 0.89
Apiaceae Mean 12 15.41 7.02 79.17 48.30 2.50 67.60 1.33 0.47 3.58 2.31 37.15
SE 1.00 1.05 8.80 4.70 0.35 10.77 0.73 0.06 0.43 0.30 5.33
Fabaceae Mean 18 13.75 8.31 93.46 26.89 2.43 47.08 2.57 0.85 3.31 2.50 30.83
SE 0.87 0.69 5.31 3.14 0.22 5.24 0.72 0.06 0.34 0.20 1.45
Plantaginaceae Mean 6 17.38 9.13 88.18 32.35 1.69 33.92 8.41 0.34 3.08 5.80 43.25
SE 3.59 1.02 11.31 9.52 0.13 9.38 2.39 0.04 0.68 1.43 3.14
Ranunculaceae Mean 6 13.50 8.52 77.18 33.35 2.25 62.31 5.82 0.56 3.23 2.34 32.96
SE 1.39 0.56 7.68 7.33 0.40 9.01 1.47 0.08 0.66 0.37 3.20
Polygonaceae Mean 6 5.90 3.85 66.91 28.73 2.87 65.77 3.49 0.27 2.32 1.68 19.63
SE 1.23 0.38 13.92 4.70 0.41 20.86 1.61 0.04 0.45 0.40 1.50
Data are expressed as mean + SE of n species x subplot combinations.
10 . ; ; Discussion
% s . _ For the five subplots for which it is possible to make comparisons
L — Subplots 3a, 4/2a, 7a, 9/2a and 14/2a — shoot P, K, Ca and
o 6 N - Mg concentrations averaged across plant species for each subplot
% ° (Table 2) were similar to values in the hay samples reported by
24 anr ‘o ] Warren & Johnston (1964) of 1.6, 3.6, 3.0, 2.7, 2.5 mg P g~
g 2} ,3..?‘“ o dry matter (DM), 13.4, 6.4, 31.7, 27.6, 26.6 mg K g~' DM,
» o 10.3, 6.1, 7.0, 3.6, 3.6 mg Ca g~' DM, and 3.3, 2.8, 1.8, 1.3,
0 L ! ! 1.3 mg Mg g71 DM, respectively. However, shoot Na concen-
0 10 20 30 40

Shoot Ca (mg g-1 DM)

Fig. 3 Relationship between shoot Ca concentration and shoot Mg
concentration among 81 observations of plant species from the Poaceae
(white circles), Polygonaceae (grey triangles) and other plant families
(black circles) sampled from six subplots of the Park Grass Experiment.

shoot Mg/Ca quotients (White & Broadley, 2003; Broadley
et al., 2004, 2008; Karley & White, 2009). Data from the
Poaceae can be separated from data from Rumex acetosa using
Score 2 (Fig. 2). It is noteworthy that shoots of the Poaceae
generally have higher REML-estimated Cu, Ni, Zn and S
concentrations than Rumex acetosa (Table 5). Data from Plantago
lanceolata (Plantaginaceae) suggest that this species has higher
REML-estimated shoot Zn and S concentrations and lower
REML-estimated shoot Mg and Mn concentrations than other
angiosperm species (Table 5). The Apiaceae (Anthriscus sylvestris,
Heracleum  sphondylium) are characterized by high REML-
estimated shoot K and Ca concentrations and low REML-
estimated shoot Na concentrations, the Fabaceae (Lathyrus
pratensis, Lotus corniculatus, Trifolium pretense) by high REML-
estimated shoot Ni and Fe concentrations, and the Asteraceae
(Achillea  millefolium, — Centaurea nigra, Leontodon hispidus,
Taraxacum  officinale, Tragopogon pratensis) by high REML-
estimated shoot Cu and Fe concentrations (Table 5).
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trations averaged across plant species for each of the five subplots
(Table 2) were consistently higher than the values reported by
Warren & Johnston (1964) of 3.4, 3.4, 0.3, 0.2, 2.1 mg Na g~
DM for hay samples from Subplots 3a, 4/2a, 7a, 9/2a and
14/2a, respectively. Nevertheless, shoots of plants grown on Sub-
plots 7a and 9/2a had low Na concentrations, as was observed
previously (Warren & Johnston, 1964). Zhao eral (1998)
reported concentrations of 1.1 mg P g~' DM and 2.4 mg S g~
DM in herbage sampled from the unlimed control Subplot 3d
between 1993 and 1995, which are comparable with the data
obtained here for Subplot 3a (Table 2).

The shoot concentrations of other mineral elements averaged
across plant species for the subplots sampled here (Table 2) were
generally lower than those for composite herbage samples from
subplots of the Park Grass Experiment reported previously (Blake
et al., 1994; Blake & Goulding, 2002). Although the range of
shoot Zn (16-53 pg g~' DM), Cu (3.0-10.7 pg g~' DM) and
Mn (18-130 ng g_1 DM) concentrations for plant species grow-
ing in Subplot 3a fall within the ranges reported previously for
herbage from this subplot, values for shoot Ni concentrations
(0.29-0.75 ng g_] DM) are conspicuously low. Blake &
Goulding (2002) reported concentrations of 37-50 pg Zn g_1
DM, 9-13 ug Cu g' DM, 66-140 pg Mn g~' DM and
1.6-2.7 ug Ni g~' DM in herbage sampled from subplot 3a

between 1856 and 1991. Blake eral (1994) reported

© 2012 The Authors
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concentrations of 55 pg Zn g~' DM, 13 ug Cug™' DM, 650 pg
Mn g' DM and 9 pug Ni g=' DM in herbage sampled from
Subplot 3d between 1986 and 1989. The reasons for these dis-
crepancies are unclear, but they might be attributed to differences
in analytical techniques, differences in concentrations of elements
in herbage between years or between subplots, or related to differ-
ences in shoot mineral concentrations between species and the
contribution of each to the harvested herbage.

Spearman rank correlation analysis indicated that plant species
generally followed the same rank order for the shoot concentra-
tion of a particular mineral element in subplots of the Park Grass
Experiment (Table 4). According to this analysis, plant species
responded similarly in their shoot concentrations of Ca, Zn, Mg,
S, Na, Mn and Ni to the fertilizer treatments imposed in the
Park Grass Experiment, although some species X treatment
interactions were indicated in the responses of shoot Fe, Cu, P
and K concentrations to these fertilizer treatments. This is consis-
tent with a smaller proportion of the variation in shoot concen-
trations of Ca, Zn, Na, S, Mn and Mg being attributed to
residual variation, which includes species X treatment interac-
tions, than in shoot concentrations of Ni, Cu and Fe (Table 3,
Fig. S1).

The analysis of variation (Table 3), Spearman rank correlation
analysis (Table 4) and the discriminant analysis (Figs 2, S2) all
indicate that the relative concentration of many mineral elements
in the shoots of plants growing in the same environment is deter-
mined, to an extent, by the species and/or family to which they
belong. These observations are consistent with previous reports
of large phylogenetic effects on shoot concentrations of several
mineral elements. Experiments in hydroponics (Broadley ez al.,
2003, 2004), meta-analyses of comparative studies in the litera-
ture (Broadley ez al,, 2001, 2003, 2007) and ecological surveys
(Thompson et al., 1997; Watanabe ez al., 2007; Zhang et al.,
2012) have often indicated that a large proportion (> 40%) of
the variation in shoot Ca, Mg, K, Ni and Zn concentrations can
be attributed to phylogenetic effects at the level of the family or
above. Linear regressions indicated significant correlations
between REML-means for shoot Ca concentrations of plant
species reported by Broadley ez a/. (2003) and those reported for
the Park Grass Experiment (R =0.772, n=10 common
species), but not for REML-means for shoot Zn concentrations
of plant species reported by Broadley ez al. (2007) and those
reported for the Park Grass Experiment (R = 0.066, n=11
common species). There were insufficient species in common for
comparison of REML-means for shoot Mg, K or Ni concen-
trations from previous meta-analyses with data from the Park
Grass Experiment. It is noteworthy that the most informative
mineral elements in the discriminant analysis (Ca, Mg, Ni) were
elements for which considerable variation in leaf element concen-
trations has been attributed above the family level (Thompson
et al., 1997; Broadley ez al., 2001, 2003, 2004; Watanabe ¢z 4/,
2007), whilst the least informative mineral elements in the discri-
minant analysis (Cu, Fe, Mn, P) were those elements for which
least phylogenetic variation in leaf element concentrations has
been attributed above the family level (Broadley ez al, 2001,
2004; Watanabe ez al., 2007; Zhang et al., 2012).

© 2012 The Authors
New Phytologist © 2012 New Phytologist Trust

Research 107

Aspects of the ionome have previously been observed to differ-
entiate angiosperm taxa (e.g. Markert, 1992; Jansen et al., 2002;
Broadley eral, 2004; Shtangeeva et al, 2009), fern taxa
(Amatangelo & Vitousek, 2008) and lichen taxa (Bennett,
2008). The discriminant analysis reported here (Figs 2, S2) sepa-
rated plant families on the basis of their shoot ionomes even
when plant species were grown in contrasting environments,
which confirms its potential as a taxonomic character. The
uniqueness of the ionomes of angiosperm taxa could have far
reaching consequences. For example, the biofortification of edi-
ble produce or the adaptation of species to metalliferous soils
might be restricted by inherited constraints (Broadley e al,
2001, 2004; White & Broadley, 2009). In addition, the general
similarity of the ionomes of species from a particular angiosperm
family, but the distinctness of the ionomes of different families,
has important implications for the design of ecological studies of
plant composition, which cannot now assume that plant species
provide independent samples. However, grouping plants into
families might simplify incorporating the effects of biodiversity
into models that predict the cycling of natural and anthropo-
genic mineral elements in the environment (Beresford er /.,
2004; Kattge er al., 2011).

In summary, residual maximum likelihood (REML) analyses
indicated that variation associated with species was significant
for shoot Ca, Zn (P < 0.1%), Mn, P (P < 1%), K, Mg and
Na (P < 5%) concentrations, but that a large proportion of
the variation in shoot Ni, Cu and Fe concentrations was
attributed to residual variation, which includes species X treat-
ment interactions. Spearman rank correlation analyses indicated
that shoot concentrations of Ca, Zn, Mn, Mg, Na, S and Ni
behaved similarly in diverse species in response to fertilizer
treatments, but that some species X treatment interactions
occurred for P, K, Cu and Fe. Thus, meta-analyses that com-
bine data from experiments performed in contrasting environ-
ments will be most robust for shoot Ca, Zn, Mn and Mg
concentrations and least robust for shoot Cu and Fe concen-
trations. Discriminant analysis indicated that plant families
could be distinguished by their unique shoot ionomes.
The most informative mineral elements in this analysis were
Ca>Mg>Ni>S>Na>Zn>K> Cu> Fe>Mn > P. Thus,
shoot Ca and Mg concentrations have the potential to discrim-
inate between plant families and these traits are robust to
combining experiments performed in different environments.
Whilst shoot Zn and Mn concentrations are less informa-
tive in discriminating between plant families, these traits are
still robust to combining experiments performed in different
environments.
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Supporting Information

Additional supporting information may be found in the online
version of this article.

Fig. S1 The coefficients of variation for shoot concentrations of
mineral elements and residual variation in shoot concentrations
of mineral elements excluding the major factors of treatment and
species.
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Fig. S2 Discriminant analysis of the shoot mineral composition
of diverse plant species sampled from six subplots of the Park
Grass Experiment.

Table S1 Fertilizer treatments, number of plant species present,
annual yield over the period 20002004, and the percentage con-
tribution of plant species studied in this paper to the total dry

Research 109

matter yield over the period 1991-2000 of subplots of the Park
Grass Continuous Hay Experiment
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