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1. ABSTRACT 

We have developed an integrated pest management strategy (IPM) for pollen beetles in winter 

oilseed rape (OSR) based on risk assessment, monitoring and alternative crop management that 

can be used as a framework by growers and crop consultants to manage pollen beetles with 

reduced insecticide inputs - and the confidence to do so.  This will prolong insecticide life by 

reducing selection for resistance, reduce environmental impacts and contribute towards the 

sustainability and profitability of OSR in the UK.  One of the major limitations to the use of action 

thresholds is that proper monitoring of the populations is time consuming and has to be conducted 

over a prolonged period.  To encourage and facilitate their use, we tested and developed tools to 

improve risk assessment and monitoring. We conducted a pollen beetle monitoring study over 4 

years in 178 OSR crops across the UK.  Pollen beetles were sampled using sticky traps and plant 

sampling along transects in the crop.  The data were used to help test a decision support system 

(DSS) for pollen beetles and to develop a monitoring trap.  proPlant Expert is a DSS available in 

mainland Europe that uses a model of pollen beetle immigration and local meteorological data to 

forecast the start and end of pollen beetle immigration into the crop and main risk periods and 

advises when to monitor.  We tested the model under UK conditions using data from our study and 

compared monitoring advice with the current advice system on the CropMonitor website (advises 

monitoring when the crop is at green-yellow bud stage and temperature >15°C).  Both performed 

reassuringly well in prompting monitoring that would detect breaches of spray thresholds. However 

there were considerable reductions provided by proPlant in the need for consultation of the system 

(30%) and advised monitoring days (34-53%) in comparison with current advice.  Use of the 

proPlant DSS could therefore focus monitoring effort to when it is most needed.  It could also help 

to reduce unnecessary sprays in cases where beetle numbers are approaching threshold but 

consultation of the system returns a poor immigration risk forecast or an immigration complete 

result.  The proPlant tool is now freely available to growers and crop consultants in the UK via the 

Bayer CropScience website.  A monitoring trap for pollen beetles would help to more easily and 

accurately identify when spray thresholds have been breached than monitoring plants in the crop.  

We developed a baited monitoring trap for pollen beetles which will be commercially available from 

Oecos. The trap comprises a yellow sticky card mounted at 45°, baited with phenylacetaldehyde, a 

floral volatile produced naturally by several plant species. Unfortunately using data from our study 

we were unable to calibrate the trap catch to a given action threshold expressed as the number of 

beetles per plant using a simple linear relationship.  However, the monitoring trap still has value for 

risk assessment, especially if used together with DSS.  We tested the potential of turnip rape (TR) 

trap crops, planted as borders to the main OSR crop to reduce pollen beetle numbers in a field 

scale experiment conducted over three years on two sites.  We found evidence that the strategy 

worked well in some years, but not others.  This tactic is probably practically and economically 

worthwhile only for organic growers.   
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2. SUMMARY 

2.1. Introduction/Background and aims  

Resistance to pyrethroid insecticides in pollen beetles (Meligethes aeneus), a major pest of oilseed 

rape (OSR), is now widespread in Europe including the UK.  Pollen beetles are almost exclusively 

controlled by pyrethroids, many applied prophylactically and sometimes repeatedly, exerting 

selection pressure for resistance. At a time of increasing demand for rapeseed oil for biofuel and 

food use and as increasing areas are grown, the risk of resistance presents a significant threat to 

the sustainability of the UK OSR crop and to farm incomes. Measures are urgently required to 

ensure that insecticide treatments are used only when required and to optimal effect.   

 

If we examine data on the historic number of pollen beetles per plant and relate them to the action 

thresholds of the time (5 or 15 beetles/plant), it is clear that pyrethroids are often sprayed 

unnecessarily, as action thresholds are rarely breached in the UK.   Because of their relatively low 

cost, many treatments are probably applied prophylactically in tank mixes with spring fungicides. 

Many growers and crop consultants are reluctant to use monitoring methods and action thresholds 

due to time constraints and may lack confidence in them.  Current advice on monitoring the 

population of beetles in the crop recommends that at least 10 plants should be sampled along a 

transect at least 30m long starting from the headlands towards the centre of the crop.  However the 

crop is often at its damage-susceptible green-yellow bud stage for several weeks and pollen beetle 

immigration occurs sporadically over prolonged periods of c. 4 weeks; so monitoring is time 

consuming and requires several visits to the field to do properly.  Better risk assessment and 

decision support could help to focus monitoring effort to when it is most needed, but systems used 

by our competitors in mainland Europe that forecast the risk of immigration up to 2 days in advance 

were not available in the UK before this project.   

 

Where thresholds are used, they may be inaccurate as the number of beetles active on the crop 

(that can be dislodged easily) depends on weather conditions and the time of day of the sample.  

Plant sampling represents only a snapshot in time of what is cumulative immigration. Furthermore 

as pollen beetles are not evenly distributed on the crop, the average number derived from plant 

sampling may depend on where in the field transects are selected.  It is possible that the numbers 

of beetles per plant are often overestimated, especially if, for ease, plants are selected for crop 

monitoring mainly from the crop edge.  Beetles are naturally more abundant here as they infest the 

crop from the edges.  Reliable, quick and simple methods of monitoring densities of pollen beetles 

are therefore needed. Easy to use, accurate monitoring traps for pollen beetles would help to refine 

the identification of threshold levels of these pests, but there were none commercially-available 

before this project.   
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In 2007 the European Plant Protection Organization (EPPO) workshop on insecticide resistance of 

pollen beetles on OSR produced a set of recommendations to help reduce selection for insecticide 

resistance in pollen beetle. As well as recommending the reduction in number of applications 

through use of action thresholds, it was recognized that clear and scientifically robust methods of 

monitoring populations were needed to achieve this.  It was also highlighted that non-chemical 

control measures needed to be developed including trap cropping.  This meeting was the stimulus 

for the current Project.   

 

Aims 
This project aimed to develop an integrated pest management (IPM) strategy for control of pollen 

beetles based on monitoring, risk assessment and crop management to reduce the number of 

insecticide applications and area treated, thereby maximising profit margins, and minimising 

development of resistance and the environmental footprint of pest control.  

 

Objectives 
 

1.  Develop and test monitoring and risk assessment systems for pollen beetles to enable 
use of action thresholds  
Task A. Develop a reliable monitoring trap for pollen beetles to enable easy and effective 

detection of threshold levels of these pests  

Task B. Assess and improve the ability of existing decision support systems to identify risk 

periods for pollen beetle  

Task C. Assess the potential of using turnip rape as a sentinel plant system for risk 

assessment in oilseed rape  

 

2. Demonstrate the extent to which trap cropping can reduce the number of insecticide 
sprays applied and area treated  

Task D. Evaluate on a field scale the potential of a turnip rape trap crop for reducing the 

abundance of pollen beetles in winter oilseed rape crops 

Task E. Assess the cost effectiveness of the trap cropping tactic  

 

3. Develop a future IPM strategy for pollen beetles in winter oilseed rape  

Task F. Initiate a programme to develop a trap cropping strategy based on winter oilseed 

rape to replace the less practical turnip rape component   

Task G. In small plot experiments test any plants derived from Task F for their relative 

attractiveness to pollen beetles compared with turnip rape cultivars used in Objective 2  

Task H. Propose an IPM strategy for controlling pollen beetles in winter oilseed rape based 

on the combination of the most effective elements tested in this project  
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2.2. Materials and methods 

2.2.1. Develop a monitoring trap for pollen beetles (Objective 1, Task A) 

Investigate responses of pollen beetles to colour to optimize trap colour 

The general mechanisms underlying pollen beetle colour choice behaviour were investigated to 

optimize trap colour.  The electrophysiological responses of the pollen beetle light receptors in the 

eye to light flashes given at varied wavelengths and intensities were measured using the 

electroretinogram technique in the laboratory.  In the field, attraction (landing response) of pollen 

beetles to colour cues was tested using coloured water traps with known spectral reflectance.  One 

hundred water traps (two each of 50 different colours) were placed in the field in a randomized 

design. The number of pollen beetles in each trap was recorded after 24h. A colour choice model 

was developed using data from the results the two experiments.    

 

Identify and develop semiochemical lures for a monitoring trap with minimum catch of non-targets 

Several field experiments were performed to test the best coloured trap to maximise pollen beetle 

catch while minimizing catch of non-target parasitoids, and to find the most effective volatile lure to 

bait the trap.  In the final year, a commercial trap mount and dispensers for the bait were field 

tested against those used in experiments in years 1-3.    

 

To compare beetle and parasitoid response to colours, white and blue sticky card traps (Oecos) 

and a prototype trap painted grass green were compared to a standard yellow sticky card trap, 

each with and without a 2-phenylethyl isothiocyanate lure (2-PE ncs; this is a compound released 

by damaged OSR plants which has been found in previous experiments to be very attractive to 

pollen beetles, but it is toxic so not ideal for a lure for a commercial trap).  For experiments testing 

the volatile baits, each experiment comprised yellow sticky card traps (Oecos) which were either 

unbaited (control) or baited with test compounds or a lure of 2-PE ncs.  To identify new compounds 

as potential lures, the volatiles of 10 different OSR types were collected by air entrainment. 

Compounds that were detected by the beetles in electrophysiological experiments were tested at 

different release rates in the field.  In the final year, the experimental dispensers used in years 1-3 

to release the lures were tested against commercial dispensers obtained from International 

Pheromone Systems (IPS).  In each experiment, experimental traps were angled at 45° to the 

vertical using a plastic mount and raised to crop canopy height using a metal post.  In the final year 

this system was tested against the commercial angled mount for the carrot fly trap produced by 

Oecos.  In all experiments traps were placed 10m apart from each other in any direction and set 

out in a randomized orientation in OSR crops.  Sticky cards were changed approximately weekly 

from the green bud stage of the crop until it was fully in flower and insects were identified and 

counted in the laboratory.  
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Calibrate trap catch with numbers of beetles per plant in oilseed rape crops to enable use of action 

thresholds 

 

Pollen beetle monitoring study This experiment addressed 3 experimental aims: 

1. To establish a relationship between the numbers of pollen beetles caught on traps with the 

number of beetles per plant in the OSR crop (this section) 

2. To establish a relationship between trap catch and position of the trap with respect to prevailing 

wind direction and surrounding landscape features (see the following subsection) 

3. To assess the relationship between immigration of pollen beetles into the OSR crop through 

time relating to climatic conditions and the growth stage of the crop (phenology) (see Section 2.2.2) 

 

We ran a pollen beetle monitoring study in each of the 4 years of the project (2008-2011).  In each 

year, winter OSR fields were selected on Rothamsted Farm, Woburn Farm and on as many other 

farms as possible across the UK.  At each site, two yellow sticky traps were placed on different 

sides of the field; one was placed upwind and the other downwind along the plane of an assumed 

west-south-west prevailing wind.   The traps were angled at 45° and placed on top of a metal pole 

so that the trap could be maintained at crop canopy height throughout the trapping period. Traps 

were placed 3m into the crop from the edge and orientated to face away from the crop centre, in 

order to trap incoming beetles.  Monitoring started on March 1st each year and continued until the 

crop was at BBCH growth stage 61.  Traps were changed either once or twice each week.  Each 

time the traps were changed the growth stage of the crop and weather variables were recorded 

then the average number of pollen beetles per plant in the crop at each trap position was 

calculated from 10 plants selected at random every ~5m along a 50m transect from the crop edge 

towards its centre.  Volunteers were also asked to map the positions of the traps on the study field, 

and provide information on the surrounding landscape within a 1km radius of each trap/transect, 

including positions of OSR crops in both the current and previous year.  

 

Correlation analysis The following correlations were calculated: between pollen beetle numbers on 

traps vs. numbers on plants in the crop; between upwind traps vs. upwind numbers in the crop; 

between downwind traps vs. downwind numbers in the crop.  We also calculated correlations 

between pollen beetle numbers in upwind vs. downwind traps; and between numbers on plants in 

the crop on upwind vs. downwind.  Analyses were restricted to data recorded from crops at the 

damage susceptible stage (between GS 50-59). 

 

Develop models to determine the best trap position 

We attempted to model the effect on pollen beetle trap catch of meteorological conditions and 

landscape features using data on the trap catch of pollen beetles from the Pollen beetle monitoring 
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study (see previous subsection), meteorological data, and landscape information derived from 

information collected during the Monitoring study.   

 

Digital mapping of environmental features surrounding sticky trap sites Landscape features that 

were hypothesised to influence beetle immigration were digitally mapped within a 1km-radius 

around each trap in the Monitoring study. Trap locations (upwind and downwind) were found using 

the maps provided by the volunteers hosting field sites, and were marked using place-marker 

‘points’ in Google Earth (Summary Figure 1). Hedgerows, lines of trees, woodlands, residential 

gardens and OSR fields were marked on the map. ArcGIS was then used to extract information on 

the areas or lengths of these features from within eight directional segments (each 45 degrees) of 

the circular area mapped surrounding each trap (Summary Figure 1).   

 

Summary Figure 1. Mapping environmental features surrounding the pollen beetle traps.  Areas of 
woodlands, residential gardens, oilseed rape crops in the current year or previous year and the 
length of tree-lines and hedges were mapped (white lines) within a 1km radius of each trap (surround 

of downwind trap shown) and calculated for each of 8 segments (shown in red).  

Weather data Weather data (temperature, wind speed and direction, rainfall) for Rothamsted and 

Woburn farms was obtained from the UK Environmental Change Network (http://www.ecn.ac.uk/). 

For the other sites it was obtained from the UK Meteorological Office ‘Daily Sites’ data set for the 

weather stations closest to each site.    

 

Modelling As meteorological variables, particularly temperature, are known to strongly affect 

pollen beetle catch within crops it is necessary to adjust for these variables when trying to detect 

the effect of landscape. We expect that temperature, rainfall and wind speed might affect the 

number of beetles coming into the crop, and that wind direction might affect the direction from 

which beetles enter the crop, with beetles tending to fly upwind towards the crop. We also 

hypothesize that landscape features may affect the numbers of pollen beetles entering the crop – 

http://www.ecn.ac.uk/
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we assume that beetles fly reasonably directly towards the crop, and so landscape features in the 

3 landscape segments facing each trap were used as explanatory variables for that trap.  

The first step in the modelling process is to build a model of daily counts for trapped beetles; these 

numbers can then be added across the trapping period. An initial model was fitted using weather 

variables only.  The model included terms for the accumulated temperature (day-degrees), daytime 

rainfall, and windspeed at 12:00 each in a given field on a given day, and accounted for the 

discrepancy between the segment faced by the trap and the downwind segment from which 

beetles are expected to arrive (flying upwind). The overall constant included the effect of zero 

rainfall and no discrepancy between the trap and wind direction. The model was then extended by 

adding terms for field, trap and day variation. Terms for the weather variables temperature, rainfall 

and wind speed were added then landscape variables were added into the model. This gave the 

full model which was then simplified, dropping the variable with the least significant effect at each 

step. 

 

2.2.2. Assess and improve the ability of existing decision support systems to 
identify risk periods for pollen beetle (Objective 1, Task B) 

CropMonitor 

Advice on pollen beetle management is currently available to UK growers through the 

CropMonitorTM website http://www.cropmonitor.co.uk/ (hereafter referred to as ‘current advice’). 

The period of risk from pollen beetles to OSR is defined in current advice in the UK as ‘green-to-

yellow bud stage’ (BBCH 51-59) and it is advised that ‘backward crops are most at risk’. Current 

advice states that ‘pollen beetles fly at temperatures of 15°C or above’. Monitoring is therefore 

recommended by current advice on all days with a temperature ≥15°C during growth stages 51-59.  

 

proPlant expert Decision Support System 

proPlant expert www.proplantexpert.com  (hereafter referred to as proPlant) provides local three-

day forecasts of pest immigration risk that indicate whether monitoring is needed.  Its forecasts are 

based on phenological models parameterised by daily records of air temperature, rainfall, sunshine 

and wind speed. proPlant output gives a graphical display of weather data together with an 

‘immigration’ bar on which forecasts are given of the start, peaks and end of immigration 

(Summary Figure 2). The immigration bar indicates the daily level of risk of immigration with a 

traffic-light system of coloured dots (green = immigration possible, yellow = good conditions for 

immigration and red = optimal conditions for immigration Summary Figure 2). proPlant advises that 

monitoring is necessary only on days when the model indicates yellow or red dots (risk of 

significant immigration) during growth stages 51-59. Monitoring should start on the day with the 

first yellow or red dot. Thereafter, if a contiguous series of such days occurs, proPlant advises that 

monitoring is needed only every third day and the last day in the series. 

http://www.cropmonitor.co.uk/
http://www.proplantexpert.com/
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Data 

For this study data from the OSR crops sampled in the Pollen beetle Monitoring study (see section 

on trap calibration in 2.2.1) were used. Observations following any spring insecticide applications 

were excluded from the analysis. The average number of pollen beetles per plant was calculated 

for each field site on each sample date and compared to the standard spray thresholds of 2, 5 and 

15 beetles per plant.  It was not possible to sample crops daily so it was assumed that any 

threshold breach took place on the sampling date on which it was observed.   Weather data were 

obtained from the closest UK Meteorological Office station to each sampled field.   

 

 
 

 

 
Summary Figure 2. Example of proPlant output for the Bedford weather station 2011 (greyscale). 

 

DSS performance measures and analysis 

Advice derived from the two DSS’s was compared in relation to the phenology of pollen beetles in 

the field from the Monitoring experiment and any breaches of the thresholds. The following 

performance measures were compared: (i) Number of monitoring days recommended, (ii) No. of 

breaches of threshold detected by the recommended monitoring, (iii) Risk of pollen beetle 

immigration - start  (the first date that the DSS’s forecasted immigration risk; temperature ≥15°C for 

current advice and the first dot of any colour for proPlant, were compared against the date at which 

the first pollen beetles were caught in the Monitoring study), (iv) Risk of pollen beetle immigration – 

no. days significant risk forecasted prior to each threshold breach (or until the end of GS 59).  
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2.2.3. Assess the potential of using turnip rape as a sentinel plant system for risk 
assessment in oilseed rape (Objective 1, Task C)   

Approach and Data set  

The early flowering character of turnip rape (TR) plants grown as trap crops offers two scenarios 

for the potential use of TR as a sentinel plant for risk assessment in OSR: (1) predictive: the 

number of pollen beetles on the TR at its green-yellow bud stage could be used to predict future 

infestation levels of the OSR crop when it reaches its susceptible growth stage; (2) real-time 

monitoring: sentinel plants of flowering TR could be used as ‘living monitoring traps’ at the 

damage-susceptible stage of OSR to estimate the level of infestation in the OSR crop to enable 

use of action thresholds. For both scenarios, data were used from the Trap crop experiment 

(Section 2.2.4), extracted from Treatment 1 (in which plots of OSR had a TR trap crop which was 

not treated with insecticide; OSR-/TR-) and Treatment 2 (in which plots of OSR had a TR trap crop 

which was sprayed for pollen beetle (OSR-/TR+); in this case data were used up until the point 

where the TR was sprayed).  For each analysis data from experiments done in 2009-2011 were 

combined.  

 

Sentinel turnip rape plants for risk prediction in oilseed rape crops 

The relationships between pollen beetle numbers in TR borders during the bud phase (GS 50-59) 

against the numbers in the OSR centres of the same fields 1 week and 2 weeks later were 

examined.  

 

Sentinel turnip rape plants as ‘living monitoring traps’ for threshold detection in oilseed rape 

The relationship between the numbers of pollen beetles on OSR plants in the centres with the 

numbers on TR plants in the trap crop at the same point in time was investigated. 

 

2.2.4. Evaluate on a field scale the potential of a turnip rape trap crop for reducing 
the abundance of pollen beetles in oilseed rape crops (Objective 2, Task 
D) 

We tested the potential of a turnip rape trap crop planted as a border around the main OSR crop 

for reducing the abundance of pollen beetles in the OSR crop in comparison with untreated crops 

without a trap crop. We also compared the effect of spraying the turnip rape trap crops with 

insecticide and compared trap cropping treatments with a scenario of prophylactic insecticide 

treatment on OSR crops. A replicated experiment was done on two farms (Rothamsted and 

Woburn Farms) over three years (2009-2011).   In each year, four treatments were established on 

each site (see Summary Figure 3); each was grown as a 1 ha plot in a separate field.  In each year 

winter OSR cv. Astrid was used and for treatments with a trap crop and Pasja (a hybrid cross 

between a forage turnip and forage rape) was used as a model ‘turnip rape’ (hereafter referred to 
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as the TR trap crop).  The TR trap crop was sown as a 9 m border around the main OSR crop and 

therefore represented approximately 10% of the area of the whole plot.  Both OSR and the trap 

crop were autumn-sown on the same day. 
 

  
  
 
 
 

                Treatment 1               Treatment 2            Treatment 3           Treatment 4 
                    OSR-/TR-               OSR-/TR+               OSR-/OSR-             OSR+/OSR+ 
 

Summary Figure 3. Diagrammatic representation of treatments in the trap crop field experiment.  1. 
OSR-/TR- oilseed rape with a turnip rape trap crop border (both untreated); 2. OSR-/TR+ oilseed rape 
(untreated) with a turnip rape trap crop border treated with an insecticide at its green-yellow bud 
stage; 3. OSR-/OSR- oilseed rape with no trap crop (i.e. with an OSR border; all untreated); 4. 
OSR+/OSR+ oilseed rape with no trap crop, all treated with insecticide at green-yellow bud stage. 
 

The number of pollen beetles was assessed using the plant beating method.  In each year 

assessments took place c. weekly starting when the temperature first reached 10ºC after March 1st 

and continued until mid-flowering of the OSR crop (GS 63).  On each assessment date the growth 

stage of the OSR and TR plants was recorded.  At the end of the experiment in each year, seed 

samples were taken at harvest and yield (t/ha) was calculated. 

 

2.2.5. Assess the cost effectiveness of the trap cropping tactic (Objective 2, Task E) 

Approach 

This analysis compared the relative costs and benefits of a number of different trap cropping and 

insecticide use scenarios for the control of pollen beetles. The core of the analysis was based on 

the treatments investigated in the Trap cropping experiment (Section 2.2.4); oilseed rape (OSR) 

with an unsprayed turnip rape (TR) trap crop border (OSR-/TR-), OSR with a TR trap crop border 

sprayed with a pyrethroid insecticide (to the border only; OSR-/TR+), OSR unsprayed, no trap crop 

(OSR-/OSR-) and insecticide-treated oilseed rape, no trap crop (OSR+/OSR+). Other options 

investigated include OSR treated with a more expensive insecticide (i.e. a neonicotinoid, 

indoxacarb or pymetrozine class), and TR trap crop options where the trap crop is harvested or 

destroyed.  

 

Calculation of margins 

A gross margin for each option was initially calculated.  The costs of the field operations for a 

typical schedule of operations involved in growing an OSR crop from primary cultivations through 
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to harvest were subtracted from this figure, giving a ‘margin less costs of field operations’ figure. 

This was used for each scenario for comparative purposes (but would not represent a profit or loss 

until further fixed costs, such as buildings, interest and rent were considered). Summary Figure 4 

shows an example of the calculation for the OSR-OSR- treatment, along with notes on calculations 

and sources of data.  Margin calculations were performed using yields achieved for the different 

treatments in the trap cropping experiment (see section 2.3.4 Summary Table 3). Yield 

measurement samples were taken from the border area of each plot (irrespective of whether or not 

the plot had a TR border), and also from the centres. Throughout the analysis, it is assumed that a 

border represents 10% of the total area of the plot. The ‘combined yield’ value shown in Summary 

Figure 4 assumes that a 10% contribution to total yield will be made at the level achieved in the 

border, and a 90% contribution will be made at the yield achieved in the centre. The combined 

yield value was used in the gross margin calculation. A price of £355 per tonne (spot price, 18th 

May 2012; source Farmer’s weekly) was assumed in making initial calculations.  

 

 
 

Summary Figure 4. Calculation of the ‘margin less costs of field operations’ figure for an untreated 
oilseed rape crop management scenario (OSR-/OSR-). 

 

Standardisation of margin values 

During the analysis, it became apparent that variation in the yields achieved in the experimental 

plots may be masking the effects on the margin of the cost differences associated with each 

scenario. To address how the differences in costs associated with each option would affect the 

margin at a standard yield and price, margins were calculated at a standardised yield (OSR) of 3.5 
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t/ha and standardised price of £350/t using the costs (variable + operations) associated with each 

scenario. For TR treatments we calculated a standard yield of 1.54 t/ha.  

 

2.2.6. Initiate a programme to develop a practical and efficient trap cropping 
strategy for winter oilseed rape (Objective 3, Tasks F&G)  

Approach 

To improve practicality and maximize yield from the area cropped in a trap cropping strategy, 

higher yielding and later ripening cultivars of turnip rape (TR) are needed or highly attractive early-

flowering cultivars of oilseed rape (OSR) are needed to replace the TR component of the strategy.  

Since there is little research into breeding new TR cultivars, and several growers have expressed a 

dislike to the idea of using TR in a trap cropping strategy, we decided to focus on the latter, with 

the ultimate aim of developing a trap cropping tactic based on two cultivars of OSR; one a highly 

attractive cultivar as the trap crop and one highly unattractive cultivar as the main crop.  

A ‘wish’ list was drawn up of the varietal characteristics that are of most interest so that the plant 

breeders participating in this project could look for promising lines from their records and in current 

field trials: 

1. Time to flowering (early for potential trap crop;  late for improved main crop) 

2. Leaf/bud colour (light yellow-green for trap crop; dark blue-green for improved main crop) 

3. Flower colour (UV/bright yellow for potential trap crop;  apetalous, not yellow or ‘light’ yellow 

for improved main crop 

4. Inflorescence size (many, large and dense for potential trap crop;  few, small and widely 

spaced for improved main crop 

 

It was evident from a visit to Elsoms Seeds (13/5/2009) that there was very little phenological 

variation in any of the characteristics on the wish list other than flowering time.  The agreed 

approach was therefore to focus effort on identifying early flowering lines of OSR that could be 

used in place of early flowering TR in a trap cropping strategy.  This line should ideally fit in with 

any OSR cv selected by growers as their main crop.  Seed from four early flowering lines identified 

from the Elsoms visit was bulked-up and provided by them for small plot trials on Rothamsted farm 

in the final year of the project to assess the potential of these lines in comparison with TR.   

 

Field assessment of early flowering oilseed rape lines 

The four early-flowering experimental lines supplied by Elsoms were tested in comparison with 

winter turnip rape cv. Jupiter, Pasja (the hybrid cross between a forage turnip and forage rape 

used as a model early flowering ‘turnip rape’ in experiments in Section 3.5), and a standard winter 

OSR cultivar, Castille.  Plots were assessed weekly and the date that they reached green bud 

GS51, when they started flowering ( GS 60) and when they finished flowering was recorded.  
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2.3. Results 

 

2.3.1. Develop a monitoring trap for pollen beetles (Objective 1, Task A) 

Investigate responses of pollen beetles to colour to optimize trap colour 

 

Electrophysiological determination of spectral sensitivity The mean spectral sensitivity curve in 

pollen beetles peaked at 520 nm; however, a model revealed a peak around 540 nm (green). The 

data also revealed the probable existence of blue and UV receptors.  

 

Field experiment A total of 2,492 pollen beetles were caught in the different coloured water 

traps.  Yellow traps caught many beetles and the pure fluorescent yellow traps attracted the 

highest numbers (306 in total). The number of beetles caught in red, blue, white, grey or black 

traps was generally very low (Summary Figure 5) 

 

Colour choice model The colour choice model was built using information on the spectral 

sensitivity of pollen beetles with spectral reflectance data of the traps and information about the 

relative attractiveness of the trap colours from the field experiment. The number of beetles in a trap 

relative to the average number of beetles that had been caught with a reference colour (yellow, 

labelled Y01) was calculated.   This had a positive correlation with the ‘yellowness index’ of the 

trap colour, expressed as the ratio of the input to Green vs. Blue receptors in a colour opponent 

mechanism model (Summary Figure 6).  The model also indicated that higher UV reflection of a 

trap tended to increase beetle catch. 
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Summary Figure 5. Mean (± SE) number of trapped pollen beetles caught in selected trap colours in 
the field trapping experiment. The “yellow” trap was used as the reference trap (Y01). 
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Summary Figure 6. Colour opponency model of the behavioural response of pollen beetles to 
colours in the field: relationship between the no. pollen beetles in traps relative to the standard 
yellow trap (Y01) and the ‘yellowness index’ (a ratio between the input to Green: Blue receptors in the 
beetle). The theoretical position of a commercial yellow sticky card used to trap insects is marked by 
a grey square for comparison. The two reference traps (Y01) are shown with black circles. 
 

Identify and develop semiochemical lures for a monitoring trap with minimum catch of non-targets 

 

Optimise pollen beetle catch and minimize beneficial catch by investigating colour x odour 

interactions The different coloured sticky traps tested were much less effective at capturing 

pollen beetles than the yellow trap but they also caught more parasitoids.  The addition of a lure 

increased pollen beetle catch on traps of less attractive colours and seemed to have little effect on 

parasitoids, such that with the exception of green, baiting the trap increased the proportion of 

pollen beetles with respect to parasitoids.  The highest proportion of pollen beetles:parasitoids was 

found on baited yellow traps (Summary Table 1).  Therefore we decided to proceed with 

developing a baited yellow sticky trap.   

 

Collect, identify and field test volatiles for use as the trap bait We identified several new 

compounds that have not been collected previously from cut OSRplants. In the field experiment 

testing these new compounds, only the low release rate of phenylacetaldehyde (a common floral 

volatile) attracted significantly more beetles than the unbaited trap.  These results supported those 

in previous experiments testing potential volatile baits (not detailed here) and low release 

phenylacetaldehyde was therefore selected for use in experiments in Year 4.   

 

Testing commercial trap mounts and lure dispensers There was no difference in the 

performance between the Oecos carrot fly trap mount and the RRes experimental mount, 

indicating that the commercial mount is suitable for use.  It was clear that both commercial IPS 

phenylacetaldehyde lures were as attractive as the RRes low release phenylacetaldehyde lure and 

all baited traps generally caught more beetles than unbaited traps (Summary Figure 7). There was 

a significant difference between the attractiveness of the treatments over time.  On the last two 



21 
 

sample dates when the crop was in flower there was no significant difference between trap catch 

between baited and unbaited traps (Summary Figure 7).  This effect was also found in the trap 

mount experiment and suggests that once the crop comes into flower the volatiles compete with 

those from the trap, making it less effective at catching pollen beetles.   
 

 

Summary Table 1. Proportion of pollen beetles : parasitoids caught between 20 May – 9 June 2009 on 
yellow, white, blue or green sticky traps unbaited or baited with a 2-phenylethyl isothiocyanate lure  

 Yellow 1 White Yellow 2 Blue Yellow 3 Green 

Unbaited 2.0 0.3 2.0 0.5 2.3 0.1 

Baited 3.1 1 2.9 0.9 3.5 0.1 

 
 

Summary Figure 7 Number of pollen beetles caught in yellow sticky traps baited with two types of 
commercial lure and the RRes experimental lure releasing phenylacetaldehyde compared to an 
unbaited control  

 

Calibrate trap catch with numbers of beetles per plant in oilseed rape crops to enable use of action 

thresholds 

 

Pollen beetle trapping study  Pollen beetles were trapped on a total of 178 sites over the 4-year 

study and a total number of 155,727 pollen beetles were caught.  The mean number of beetles 

caught per trap increased dramatically from years 1-4 of the study (Summary Table 2).  These data 

may represent increasing size of the pollen beetle infestations from one year to the next.  As 

beetles fly upwind to colonize OSR fields, we expected to catch more beetles in the traps placed 
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downwind than upwind on the field sites.  However, we found little evidence to support this 

hypothesis (Summary Table 2, but see the following section on modelling trap position, which 

showed that this was the case when wind direction is accounted for). 
 
Summary Table 2.  Number of pollen beetles caught on yellow sticky traps in oilseed rape crops in a 
pollen beetle trapping study 2008-2011  

Year Total number of 

pollen beetles 

caught 

Mean (±SE) 

number of beetles 

caught per trap 

Mean (±SE) 

number of beetles 

caught per trap -

upwind 

Mean (±SE) 

number of beetles 

caught per trap -

downwind 

2008   3,142   8.12 (0.82)  7.54  (1.32)  7.24 (1.30) 

2009 16,344 18.85 (1.74) 15.64 (2.01) 15.96 (3.40) 

2010 60,301 29.46 (2.08) 20.61 (3.04) 25.00 (3.61) 

2011 75,670 40.49 (2.49) 45.76 (5.05) 28.76 (3.11) 

 

Correlation analysis There was evidence for a correlation between the numbers of pollen beetles 

trapped in the upwind and downwind traps and a strong positive correlation between the numbers 

of beetles per plant in the upwind and downwind crop scouting transects.  Unfortunately there was 

no significant correlation between the trap catch and numbers on plants in the crop transects. 

 

Develop models to determine the best trap position 

 

Thirty fields were selected for modelling. These fields each had good landscape data provided by 

site hosts and several positive trap catches within the green bud period. They encompassed 12 

sites across four years (2008-2011) with 616 trap catches in total.  The final model contained terms 

for several meteorological variables: accumulated temperature, wind speed, daytime rainfall, and 

discrepancy between wind and trap direction. Several landscape variables were also retained in 

the model: area of residential gardens, length of hedgerow and length of treeline. Temperature, 

wind speed and direction were clearly the dominant explanatory variables. No beetles were found 

in traps when the temperature was <10°C  and beetle numbers increased as temperatures 

increased from 0 to 3.5 day-degrees (corresponding to a constant temperature of 13.5°C); they 

then decreased as temperatures increase further (Summary Figure 8). Beetle numbers decreased 

as wind speed increased, and as the amount of rainfall increased.  Beetle numbers increased as 

the area of residential gardens increased, as the length of treeline increased and as the length of 

hedgerow decreased, but these effects were much smaller than those for the meteorological 

variables.  
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Summary Figure 8. Expected trap catch of pollen beetles in response to accumulated temperature 
(day-degrees above 10°C) for no rainfall and other explanatory variables at their mean values. 

 

2.3.2.         Assess and improve the ability of existing decision support systems to 
identify risk periods for pollen beetle (Objective 1, Task B) 

 

In total data from 44 sites were used in the comparisons.  Although the 15 beetle threshold was 

breached at only one site, the 2 and 5 beetle thresholds were breached at 82% and 43% of sites, 

respectively, providing a good test of the performance of each DSS.   

 

Number of monitoring days recommended up to the date that a threshold breach would 

be detected  At every threshold level, proPlant consistently advised fewer pollen beetle 

monitoring days (34-53%; Summary Figure10) than did current advice.   

Number of breaches in threshold detected  The performance of both current advice and proPlant 

in prompting monitoring that would lead to recognition of threshold breaches was very good. All 

threshold breaches at the 5 and 15 beetle thresholds would have been recognised using either 

DSS, as would almost all breaches of the 2 beetle thresholds.  

Forecast of the start of immigration  proPlant consistently preceded or accompanied the first 

recorded immigration of beetles to experimental fields with a risk warning in the form of a green 

dot. By contrast the first immigration was only preceded by temperatures of ≥15°C on 57% of 

occasions for current advice and by red or yellow dots (proPlant) on 40% of occasions.  

Number of days of immigration risk   At every threshold level, proPlant consistently advised fewer 

days of good immigration conditions (14-21%; Summary Figure 10). 
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Summary Figure 9.   Number of monitoring days recommended up to the date that a threshold  
Breach(2, 5 or 15 beetles/lant) would be detected. 

 

 

 
 

Summary Figure 10.  Forecasted days of good immigration conditions up to breaches of different 
Thresholds (2, 5 or 15 beetles/plant) (back-transformed means are given above each bar). 

 

2.3.3. Assess the potential of using turnip rape as a sentinel plant system for risk 
assessment in oilseed rape (Objective 1, Task C)   

Sentinel turnip rape plants for risk prediction in oilseed rape crops 

There was a significant positive relationship between the number of beetles on plants in the TR 

border when they were in the green-yellow bud stage and on OSR plants one week later.  

However, there was no significant relationship 2 weeks later.  

 

Sentinel turnip rape plants as ‘living monitoring traps’ for threshold detection in oilseed rape 

There was a positive correlation between the mean number of beetles on plants in the OSR crop 

during the damage susceptible stage (GS 50-59) and the number on TR plants in the trap crop at 

the same point in time.  This indicates that it may be possible to use the TR trap crop as a ‘living 



25 
 

monitoring trap’.  An action threshold of 2 beetles on OSR plants in the main crop would be 

identified when approximately 7 beetles are found in the TR.  A threshold of 5 beetles in the main 

crop would be identified by a mean number of 34 beetles in the TR.  The data collected did not 

allow the model to accurately predict beyond 5 beetles/plant in the main crop, so a figure for the 15 

beetles/plant threshold cannot be predicted at this stage.  

 

It must be noted for both scenarios that there were influential observations in the 2011 data and 

more data are required to improve the models before we can be confident enough to recommend 

these approaches for risk assessment to growers. 

 
 

2.3.4. Evaluate on a field scale the potential of a turnip rape trap crop for reducing 
the abundance of pollen beetles in oilseed rape crops (Objective 2, Task 
D)  

After all the treatments had been applied and the OSR crop was within the damage susceptible 

green-yellow bud stage, it was clear that turnip rape plants in the border were more attractive than 

OSR plants in the border; unsprayed TR plants (1. OSR/TR-) had a significantly greater number of 

beetles/plant than did unsprayed OSR plants in the border (3. OSR-/OSR-) (Summary Figure 11, L 

left hand side).  This suggests that TR has good potential to act as a trap crop.  Note that there 

were relatively large numbers of beetles on TR plants that had been sprayed (2. OSR-/TR+), 

compared with sprayed OSR plants (4. OSR+/OSR+) (Summary Figure 11, LHS).  Data from 

observations in the plots immediately and c. 1 week after the TR had been sprayed showed a clear 

reduction in numbers – here we see evidence of continued beetle immigration and re-colonization 

c. 2 weeks after the treatment.  In the OSR plot centres it is clear that the pyrethroid treatment had 

significantly fewest beetles (Summary Figure 11, Right hand side).  There were more beetles on 

OSR plots without the trap crop (3. OSR-/OSR-) than on plots with trap crops (1. OSR-/TR- and 2 

OSR-/TR+) but the difference was not significant (Summary Figure 11, RHS).    

 

Yield 

The treatments had no significant effect on the yield of the OSR main crop in the plot centres 

(Summary Table 3).  The yield in the plot borders did differ significantly between treatments.  This 

was due to different species (OSR or TR) grown in the borders; the yield of borders comprising TR 

yielded less than the borders comprising OSR.  There was no effect of the insecticide sprays 

applied to the borders (Summary Table 3).  
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Summary Figure 11 Mean (±SE) number of pollen beetles per plant in the borders and centres of 
plots with the following four treatments 1. OSR-/TR- oilseed rape with a turnip rape trap crop border 
(both untreated) (black circles); 2. OSR-/TR+ oilseed rape (untreated) with a turnip rape trap crop 
border treated with an insecticide at its green-yellow bud stage for pollen beetle (red diamonds); 3. 
OSR-/OSR- oilseed rape with no trap crop (i.e. with an OSR border; all untreated) (green stars); ( 4. 
OSR+/OSR+ oilseed rape with no trap crop, all treated with insecticide at green-yellow bud stage 
(yellow triangles) - at key time points of the trap crop experiment: before any insecticide applications 
(A); following the treatment to the turnip rape trap crop border in Treatment 2 (OSR-/TR+) and 
following the insecticide application to the centre and border of Treatment 4 (OSR+/OSR+).   

 

 
Summary Table 3.  Mean (±SE) yield (t/ha) from 4 treatments in a trap crop experiment for the plot 
centres (main oilseed rape crop) and the borders (either turnip rape for treatments 1 and 2 or oilseed 
rape in treatments 3 and 4).  Treatments were: 1. OSR-/TR- oilseed rape with a turnip rape trap crop 
border (both untreated); 2. OSR-/TR+ oilseed rape (untreated) with a turnip rape trap crop border 
treated with an insecticide at its green-yellow bud stage for pollen beetle 3. OSR-/OSR- oilseed rape 
with no trap crop (i.e. with an OSR border; all untreated); 4. OSR+/OSR+ oilseed rape with no trap 
crop 
         Treatment: 

Position 

1. OSR-/TR-   2 OSR-/TR+                3 OSR-/OSR-     4 OSR+/OSR+ 

Centres 4.143 (0.32) 4.461 (0.35) 4.389 (0.29) 4.019 (0.35) 

Borders 1.908 (0.32) 1.872 (0.35) 3.853 (0.29) 3.603 (0.35) 
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2.3.5. Assess the cost effectiveness of the trap cropping tactic (Objective 2, Task E) 

Our analysis indicates that the best crop management strategy to maximize net margin return is to 

have an OSR crop (without a trap crop) and spray according to thresholds (net margin of £482/ha if 

the crop is not sprayed; note this does not include the cost of advice or monitoring aids associated 

with determination of thresholds) (Summary Table 4).  If insecticides are used, the margin will be 

reduced to £466 if pyrethroids are used and to £455 if another more expensive insecticide class is 

used.  The net margin for a strategy with a trap crop to reduce beetles to below spray threshold is 

£407.  If trap crops are grown, they should be harvested; margins are reduced from £407 to £367 if 

the trap crop is destroyed (Summary Table 4).   
       
Summary Table 4.  Summary of the combined yield per plot, costs and margin for different crop 
management scenarios with and without trap crops and with and without insecticide applications.  

Scenario Combined 

yield (t/ha) 

based on 

experimental 

results  

Costs £ 

(variable + 

field 

operations)  

Margin less costs of field 

operations £ (based on 

experimental results)  

Standardised 

net margin £ @ 

3.5 t/ha and 

£350/t 

OSR-/OSR- 4.335 742.35 796.72 482.45 
OSR+/OSR+ 

(Pyrethroid) 
3.977 758.64 653.34 466.36 

OSR+/OSR+  

(e.g. Neonicotinoid) 
3.9771 769.12 642.86 455.85 

OSR-/TR- 3.920 748.73 642.70 407.672 
OSR-/TR-  

(un-harvested) 
3.729 735.17 588.52 367.332 

OSR-/TR+ 4.202 751.56 740.19 404.852 
OSR-/TR+  

(un-harvested) 
4.015 738.00 687.30 364.512 

1 assumed no difference in yield when sprayed with a pyrethroid versus a non-pyrethroid (neonicotinoid, indoxacarb or pymetrozine) 
2 Standardised margin adjusted for TR yield loss 

 

2.3.6. Initiate a programme to develop a practical and efficient trap cropping 
strategy for winter oilseed rape (Objective 3, Tasks F&G) 

 

Field assessment of early flowering oilseed rape lines 

The early flowering experimental OSR lines got off to a promising start, with all four lines reaching 

green bud GS 51 before the standard OSR cv Casille (Summary Figure 12A).  However, these 

lines did not start flowering earlier than the standard OSR cv Castille, and were considerably later 

than Pasja and TR cv. Jupiter (Summary Figure 12B).   
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Summary Figure 12 Average date plots of Pasja, winter turnip rape cv. Jupiter, Elsoms winter oilseed 
rape experimental lines FD 808, RA244DH39, RA180DH55 and RA126DH20 and winter oilseed rape cv 
Castile (A) reached the green bud stage (GS 51) and (B) started flowering (GS 60) in a replicated field 
plot trial. 

 

2.3.7. Propose an IPM strategy for controlling pollen beetles in winter oilseed rape 
based on the combination of the most effective elements tested in this 
project (Objective 3, Task H) 

An IPM strategy for pollen beetles is proposed based on the use of decision support systems to 

forecast immigration risk, monitoring methods to enable the use of action thresholds and 

alternative crop management (trap crops) to reduce the number of insecticide sprays needed.  It is 

intended for use by growers, crop consultants and policy makers. 

 

The damage susceptible stage of the crop is the green-yellow bud stage only (BBCH GS 50-
59).  Monitoring of pollen beetle populations should be concentrated within this period and any 

insecticide applications should not be applied after flowering has started.     

Action thresholds should be used.  Insecticides should only be applied if action thresholds have 

been breached.  For many years the accepted HGCA action thresholds were: 2 beetles/plant for 

varietal associations, 5 beetles/ plant for backward crops and 15 beetles/ plant for otherwise good 

crops.  However, a recent HGCA-funded study proposed a threshold scheme in which pollen 

beetle threshold is negatively related to plants/m2.  As a rule of thumb, new action thresholds are 

c.30 beetles/plant for thin crops (<20 plants/m2), 20 beetles/plant for optimal crops with 40 



29 
 

plants/m2 and c. 10 beetles/plant for thick crops with >60 plants/m2.  There is no distinction 

between spring and winter sown crops (see HGCA Information sheet 13, 2012).   

Risk  of crop damage is related to pollen beetle immigration risk.  As a rule of thumb, the crop 

is at a lower risk due to pollen beetle immigration when temperatures <10°C, when there are 

strong winds and if it is raining.  The crop is at greatest risk when temperatures >15°C.  

Forecasting risk of pollen beetle immigration:  Decision support systems (DSS) that provide 

risk assessments of pollen beetle immigration should be used to minimize monitoring effort and 

focus it to when it is most needed. proPlant www.proplant.de is a decision support system that 

uses a phenological model of pollen beetle immigration and local meteorological data to produce 

forecasts of immigration risk and advises monitoring days for up to 2 days in advance.  As a result 

of this project, the proPlant forecasting tool is freely available on the Bayer CropScience website 

www.bayercropscience.co.uk.  The maps showing immigration risk for the next 2 days and % 

completion of migration should be used to help decide whether or not plant monitoring is 

necessary.  Use of these maps has great potential to save unnecessary ‘insurance’ insecticide 

applications.  

Detection of action thresholds (population monitoring): The recommended method for 

population monitoring of pollen beetles is from plant sampling in the crop; the main raceme of the 

plant is beaten firmly two or three times against the base of a tray.  Action thresholds are 

expressed as an average number of pollen beetles per plant. At least 10 should be sampled at 

random, taken along a transect of at least 30 m, starting at the headland and heading towards the 

crop centre.  Ideally four transects should be performed on each side of the crop however if there 

is only time to do one, it should be done on the down-wind side of the crop according to the wind 

direction at the time of sampling, as beetles fly upwind towards the crop.   

A baited monitoring trap for pollen beetles has been developed as part of this project and will 

be commercially available from Oecos  www.oecos.co.uk. Unfortunately at present the monitoring 

trap cannot be used to determine action thresholds in the crop and should not replace the 

monitoring of plants directly in the crop.  However, the uncalibrated monitoring trap still has value 

for risk assessment.  Traps can be used to detect the start of immigration, peaks of immigration 

and end of immigration and can be used to verify at a local level the forecasts provided by the 

DSS.  Ideally one monitoring trap should be placed on each side of the field but if only one is used 

it should be placed downwind of the prevailing wind on the site.  Monitoring traps should be used 

during the green-yellow bud stage of the crop only and should then be removed from the crop.   
Alternative crop management (trap cropping).  A turnip rape trap crop comprising c.10% of the 

area of the field planted as a border around the edge of the main OSR crop can be used to reduce 

the population of pollen beetles to below spray thresholds.  It is essential that the flowering 

differential between the trap crop and the main crop should be maximized; the earliest flowering 

cultivar of turnip rape possible should be selected as the trap crop (e.g. Buko) and the latest 

flowering OSR cv possible should be selected as the main crop.  Both the trap crop and the main 

http://www.proplant.de/
http://www.bayercropscience.co.uk/
http://www.oecos.co.uk/
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crop can be planted on the same day; do not plant the OSR crop before the TR trap crop.  Crop 

management can then proceed as normal until harvest.  We do not recommend spraying the trap 

crop for pollen beetle. We recommend that the trap crop should be harvested at the optimal time.  

This prevents seed shed leading to volunteer problems later and economically, the returns are 

worthwhile compared with management options where the trap crop is destroyed.     

Insecticide resistance management: Currently there are insecticides from four chemical groups 

registered for pollen beetle control: Pyrethroids, Noenicotinoids, Indoxacarb and Pymetrozine.  

Growers should rotate use of these such that successive generations of the pollen beetle are not 

treated with, or exposed to, compounds from the same group within the insecticide regime used 

over the life time of the crop.    
 

2.4. Discussion/Conclusions and implications 

The Integrated Pest Management (IPM) strategy for pollen beetles we propose is based on the use 

of decision support systems (DSS) to forecast immigration risk and focus monitoring effort, 

improved monitoring methods to enable the use of action thresholds and alternative crop 

management (trap crops) to reduce the pest population.  These three tactics represent the three 

major achievements of our project. 

 

One of the major limitations to use of action thresholds is that proper monitoring of the populations 

is time consuming and has to be conducted over a prolonged period.  Better risk assessment and 

decision support could help to focus monitoring effort.  proPlant is a decision support system 

available in mainland Europe that uses a phenological model of pollen beetle immigration and local 

meteorological data to forecast the start and end of pollen beetle immigration into the crop and 

main periods of risk up to 2 days in advance and advises when to monitor.  We tested the model 

under UK conditions using data from our pollen beetle monitoring study and compared monitoring 

advice given with the best current advice system on the CropMonitor website.  Both systems 

performed reassuringly well in prompting monitoring that would detect breaches of spray 

thresholds for pollen beetles in OSR. However there were considerable reductions provided by 

proPlant in the need for consultation of the system (30%) and advised monitoring days (34-53%) in 

comparison with current advice.  Use of the proPlant system could therefore save growers and 

crop consultants time and money.  It could help to reduce unnecessary insecticide applications by 

preventing insurance sprays when beetle numbers are approaching threshold, and by forecasting 

the end of migration, when sprays are not necessary even if the crop is still at the damage-

susceptible stage.  We are delighted that as a result of work in this Project, a simplified version of 

the proPlant model which forecasts start of migration, risk of significant immigration in the next 2 

days, and end of immigration is now freely available (2012/2013 seasons confirmed at time of 
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writing) to growers and crop consultants in the UK via the Bayer CropScience website 

www.bayercropscience.co.uk. 

 

Use of action thresholds is reliant on reliable and effective methods for monitoring populations of 

pollen beetles in the crop.  Current crop monitoring methods involve time consuming plant samples 

from transects 30m into the crop.  Unless several transects are performed, results can be 

inaccurate as a measure across the whole field and can vary according to the position of the plants 

sampled and the time of day and weather conditions.  A monitoring trap for pollen beetles would 

help growers and crop consultants to more easily and accurately identify when pollen beetle 

immigration has started and when spray thresholds have been breached.  A baited monitoring trap 

for pollen beetles has been developed as part of this project and will be commercially available for 

the 2013 season from Oecos  www.oecos.co.uk. The monitoring trap comprises a yellow sticky 

card mounted at 45° to the vertical, baited with phenylacetaldehyde, a floral volatile produced 

naturally by several plant species. Unfortunately at present the monitoring trap cannot be used to 

determine action thresholds in the crop.  There was no correlation between the number of beetles 

caught in the traps and the number of beetles present on plants in the crop and so we were unable 

to calibrate trap catch to a given action threshold expressed as the number of beetles per plant 

using a simple linear relationship.  However, the monitoring trap still has value for risk assessment, 

especially if used in conjunction with decision support systems. 

 

Trap crops of turnip rape (TR) planted as a border to an oilseed rape (OSR) crop consistently 

reduced populations of pollen beetles to below spray thresholds in a spring OSR system in 

previous studies.  We tested the strategy for a winter OSR cropping system on a realistic field 

scale over three years.  We found evidence that the strategy worked well in some years, but not in 

others.  In years when the tactic did not work, the growth stage differential between the main crop 

and the trap crop was probably too short.  To optimize efficacy, growers will be restricted to using 

the earliest of TR cultivars and the latest of OSR cultivars possible, and this tactic is probably 

practical and economically worthwhile only for organic growers.   

 
We believe that use of these IPM tools will facilitate use of action thresholds and help encourage 

more growers and crop consultants to use spray thresholds.  Use of the strategy or components of 

it will undoubtedly save growers time, money and prevent unnecessary insecticide sprays.   

 

As well as practical IPM tools, our project has also considerably increased the knowledge base of 

pollen beetle physiology and its behavioural and chemical ecology.  We have determined the 

spectral sensitivity of pollen beetles, identified putative green, blue and UV receptors and 

explained how their preference for yellow is physiologically determined.  As well as being of great 

academic interest, this work has produced a colour choice model that can be used to assess the 

http://www.bayercropscience.co.uk/
http://www.oecos.co.uk/
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relative attractiveness of traps, plants or other materials for use in IPM strategies that exploit colour 

preference – without the need to run expensive field trials.  We have identified several new volatile 

compounds not previously found in OSR plants and identified plant genotypes that may be useful 

in future plant breeding programmes to develop super attractive cultivars for trap plants or 

unattractive ‘resistant’ cultivars for improved main crops, each of which exploit the host-location 

process of pollen beetles.  Lastly, and perhaps most significantly, we have gained considerable 

additional knowledge on the immigration behaviour of pollen beetles into OSR crops.  This 

knowledge has several future practical applications.  Further analysis of our data will help to inform 

on better plant monitoring practices: are transects at least 30m long really needed?  Can we not 

correlate numbers on plants in headlands with numbers in the crop to enabling sampling just from 

the crop edge?  We have shown that pollen beetles fly at lower temperatures than previously 

thought (c. 13°C, rather than 15°C) and we have confirmed that they fly upwind towards crops.  We 

have shown immigration is also affected by wind speed and rain.  It is commonly understood that 

pollen beetles overwinter in woodland, but sites near to woodlands did not necessarily result in 

larger populations in the field.  Further work may enable growers to predict the likely direction of 

immigration on a site so that insecticide applications are better targeted spatially (reducing area 

treated), monitoring transects and traps could be more accurately selected and sited and fields 

most at risk from pollen beetles identified, all given the surrounding landscape features.   

 

We believe our project was a great success and we are proud of our achievements. We have 

worked together to develop an IPM for pollen beetles in winter OSR that can be used as a 

framework by growers and crop consultants to manage pollen beetles with reduced insecticide 

inputs and the confidence to do so.  This will prolong insecticide life by reducing selection for 

resistance, reduce environmental impacts and contribute towards the sustainability and profitability 

of OSR in the UK. 
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3. TECHNICAL DETAIL 

3.1. Introduction 

Management of insecticides in winter oilseed rape (OSR) is an increasingly urgent issue in the light 

of the increased area of the crop grown and the threat to its sustainability posed by insecticide 

resistance in pollen beetles. OSR is currently valued at over £350 /t (Farmers weekly spot prices, 

Oct 2012) and is no longer restricted to ‘break crop’ status; it is recognised as a valuable 

commodity in its own right.  Consequently, it is now the second most widely grown crop in the UK 

(after wheat), representing 47% of the area cropped; 641,562 ha were grown in 2010, 97% of 

which was winter sown (Garthwaite et al., 2011).  The frequency at which the crop is planted in 

rotations is also increasing (Booth et al., 2007). There are concerns over the environmental 

consequences of such increases, as well as implications for the severity of pest and disease 

problems that could threaten the sustainability of the crop in the UK.  In 2010 less than 1% of OSR 

crops were untreated with pesticides.  

 

The pollen beetle (Meligethes aeneus) is the most numerous of a suite of pests that attack OSR 

(Alford et al., 2003). It is economically the most important spring pest and is the major target of 

spring-applied insecticides (Garthwaite et al., 2011).  Adults migrate to OSR crops in spring.  They 

bite holes in the buds to feed on the pollen within the developing anthers and it is mainly this 

damage that causes bud abscission and yield loss.  Once the plant begins to flower the beetles 

feed on the pollen in the open flowers.  Females lay eggs in the flower buds and the first instar 

larvae feed within the bud.  This damage is usually only economically significant when populations 

are large.  Second instar larvae feed on pollen from open flowers and do not cause significant 

damage (Williams and Free, 1978). Only plants at the green-yellow bud growth stages are 

susceptible to yield-limiting damage (Tatchell, 1983; Axelsen and Nielsen, 1990). Backward OSR 

and spring OSR crops are most at risk, as the damage-susceptible growth stage occurs after 

pollen beetles have emerged from overwintering and populations immigrating into crops are often 

large.  If present in large enough numbers pre-flowering, the beetle can completely devastate the 

crop. The UK, to date, has not seen levels high enough to have such a catastrophic effect, but, in 

2006, Northern Germany experienced 100% crop loss in many fields (> 30,000 ha) and serious 

losses in a further 200,000 ha due to loss of control of pollen beetles which had become resistant 

to pyrethroid insecticides.  The estimated loss was in the region of € 22-25 M (Eppo, 2007). 

 

Chemical control of the pollen beetle has relied almost exclusively on the pyrethroid class of 

insecticides. Insecticide sprays were applied to 85% of crops in 2006, 13% receiving four or more 

sprays and >99% of applications being pyrethroids (Garthwaite et al., 2006).  Half of sprays were 

applied in spring and pollen beetles are often exposed to at least two treatments: once as a direct 

target at the green-yellow bud stage and again, when the larvae are also active, during flowering 
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(targeted at seed weevils (Ceutorhynchus assimilis), pod midge (Dasineura brassicae) and 

cabbage aphids (Brevicoryne brassicae). This practice has increased selection pressure for 

resistance to pyrethoids in populations of the pollen beetle.   

 

Resistance to insecticides can be defined as’ a heritable change in the sensitivity of a pest 

population that is reflected in the repeated failure of a product to achieve the expected level of 

control when used according to the label recommendation for that species’ (IRAC, 2012).  

Pyrethroid resistance in pollen beetle was first reported in the Champagne region of France in 

1997 (see Hansen, 2003) and resistant populations were later confirmed throughout France, 

Denmark, Germany and Poland, and in parts of Sweden, Switzerland, and Belgium (Thieme et al., 

2010). Resistance has been much slower to develop in the UK. The first case of pyrethroid 

resistance in pollen beetles was detected in Kent in 2006 (Thieme et al., 2010).  Monitoring 

programmes in 2007 found strongly resistant individuals at further sites in Kent and in East Anglia 

(Pollen beetle working group of the Insecticide Resistance Action Committee).  For the next few 

years resistance was confined to areas in the East and South-east of the UK, then in 2010, 

resistance in Herefordshire was detected in the West.  Resistance is has recently been confirmed 

in the North-east, borders and Scotland (HGCA 2012).  Resistance is now widespread and over 

50% of tested populations had some degree of resistance (Figure 1). 

 

The European Plant Protection Organization (EPPO) workshop on insecticide resistance of pollen 

beetles on OSR produced a set of recommendations to help reduce selection for insecticide 

resistance in pollen beetle. These included: reduce the number of applications (do not employ 

prophylactic sprays) and use action thresholds. It was highlighted that clear and scientifically 

robust methods of monitoring populations are needed; insecticide applications should aim to have 

minimal impact on beneficial organisms; cultural and biological control methods should be utilised 

alongside insecticides in IPM; and non-chemical control measures need to be developed including 

trap cropping (EPPO, 2007).  This meeting was the stimulus for the current Project.   

 

For many years the accepted action thresholds for pollen beetle in the UK were: 2 beetles/plant for 

varietal associations, 5 beetles/ plant for backward crops and 15 beetles/ plant for otherwise good 

crops (e.g. Oakley, 2003; HGCA, 2010).  These thresholds reflected the risk of the crop to the 

likely size of the beetle population.  However, varietal associations are no longer widely grown and 

results of a recent HGCA-funded study proposed a threshold scheme in which pollen beetle 

threshold is negatively related to plants/m2 (Ellis & Berry, 2011).  This scheme is based on the 

number of flowers that can be lost by plants and still produce maximum yield.  The ‘number of 

excess flowers’ could be predicted by plants/m2 at the bud stage.  Crops with fewer plants/m2 had 

more excess flowers than more dense crops; thus the threshold for thin crops is greater than that 

for a thick crop and the system therefore takes into account the compensatory ability of the crop.  
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As a rule of thumb, new action thresholds are c.30 beetles/plant for thin crops (<20 plants/m2), 20 

beetles/plant for optimal crops with 40 plants/m2 and c. 10 beetles/plant for thick crops with >60 

plants/m2.  There is no distinction between spring and winter sown crops.  Although this system 

requires further validation, the new thresholds have been adopted and published by AHDB-HGCA 

(HGCA 2012).   

 

If we examine data on the number of pollen beetles per plant and relate them to the action 

thresholds of the time, it is clear that pyrethroids are often sprayed unnecessarily (see Figure I).  

Although pollen beetle populations rarely exceed even the lower action threshold for backward 

crops, according to Defra data collected though the FERA CropMonitor project,  20% of insecticide 

treatments were targeted against them in 2006 (Garthwaite et al., 2006).  Because of their 

relatively low cost, many treatments are applied prophylactically in tank mixes with the spring 

fungicides. Where thresholds are used, it is possible that the numbers of beetles per plant are 

overestimated. Current advice on crop monitoring (scouting) is to walk a transect into the crop, but 

it is likely that, for ease, growers/advisors select plants mainly from the crop edge, where beetle 

density is naturally at its highest as these pests infest the crop from the edges (Free and Williams, 

1979; Cook et al., 2004).  

 
Figure I  Mean number of pollen beetles per plant on oilseed rape crops 1998-2006 in England and 
Wales (data courtesy of FERA).  Dotted lines represent action thresholds of 15 beetles/plant for good 
crops and 5 beetles/plant for backward crops. 

 

Many growers and crop consultants are reluctant to use monitoring methods and action thresholds 

due to time constraints and may lack confidence in them. Reliable, quick and simple methods of 

monitoring densities of pollen beetles are needed. Easy to use, accurate monitoring traps for pollen 

beetles would help to refine the identification of threshold levels of these pests, but there are none 

commercially-available at present.   
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Decision support systems that identify the main period of risk by modelling the population 

dynamics of insect pests could focus monitoring efforts and further reduce unnecessary 

treatments. No such system is commercially available to UK growers, although this approach has 

been adopted to great benefit in parts of mainland Europe. ‘proPlant Expert' www.proplant.de is a 

web-based decision support system produced in Germany that is used commercially throughout 

Germany, France, Austria, Finland and the Czech republic. It is used by OSR growers (up to 70% 

of users), major agrochemical companies including Bayer CropScience, DuPont and BASF, and 

crop consultants and growers’ support services including CETIOM (France). The system alerts the 

user to the start and progress of migration of pests, including pollen beetle and seed weevil. It is 

driven by data automatically downloaded from a local meteorological station and historical data on 

pest phenology related to weather. Users of proPlant in Germany apply less insecticide against 

spring pests than those not using this system (Johnen, 2006).  

 

Trap cropping can be used to reduce the area that needs to be treated with insecticides, and can 

potentially eliminate the need for insecticide use altogether. This tactic needs to be tested in winter 

OSR at a field scale. Trap crops are plant stands deployed to attract, intercept and retain insects 

thereby reducing damage to the main crop (Cook et al., 2007a). The trap crop, which comprises 

highly attractive host plants of a growth stage, cultivar or species preferred by the pest, is planted 

in proximity to the main crop to be protected. Defra-funded studies PS2107 & PS2113 identified 

turnip rape (Brassica rapa) as an effective trap crop for pollen beetles in spring OSR because it 

flowers ~3 weeks earlier and retains beetles until the OSR is past its damage-susceptible phase 

(Cook et al.., 2006b). A border trap crop was selected following modelling studies (Potting et al., 

2005) and reduced numbers of pollen beetles to below threshold levels (Cook et al., 2004). Work in 

PS2113 transferred the model to a winter OSR cropping system more relevant to UK agriculture, 

and it shows potential for control of flea beetle (Psylliodes chrysocephala) (Barari et al., 2005) and 

pollen beetle. However, these studies were conducted on small plots (30 x 30 m) and the tactic 

needs to be tested on a more realistic field scale before commercial uptake can occur.  

 
Aims 
 

This project aimed to develop an integrated pest management (IPM) strategy for control of pollen 

beetles based on monitoring, risk assessment and crop management to reduce the number of 

insecticide applications and area treated, thereby maximising profit margins, and minimising 

development of resistance and the environmental footprint of pest control. The project aimed to 

devise and evaluate a suite of tactics that could be implemented in the short-term in an IPM 

strategy to reduce the abundance of pollen beetles on winter oilseed rape and ensure that 

insecticide treatments are used only when required and to optimal effect.   

 

http://www.proplant.de/
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Objectives 
 

1.  Develop and test monitoring and risk assessment systems for pollen beetles to enable 
use of action thresholds  
 

Task A. Develop a reliable monitoring trap for pollen beetles to enable easy and effective 

detection of threshold levels of these pests  

Task B. Assess and improve the ability of existing decision support systems to identify risk 

periods for pollen beetle  

Task C. Assess the potential of using turnip rape as a sentinel plant system for risk 

assessment in oilseed rape  

 

2. Demonstrate the extent to which trap cropping can reduce the number of insecticide 
sprays applied and area treated  

 

Task D. Evaluate on a field scale the potential of a turnip rape trap crop for reducing the 

abundance of pollen beetles in winter oilseed rape crops 

Task E. Assess the cost effectiveness of the trap cropping tactic  

 

3. Develop a future IPM strategy for pollen beetles in winter oilseed rape  

 

Task F. Initiate a programme to develop a trap cropping strategy based on winter oilseed 

rape to replace the less practical turnip rape component   

Task G. In small plot experiments test any plants derived from Task F for their relative 

attractiveness to pollen beetles compared with turnip rape cultivars used in Objective 2  

Task H. Propose an IPM strategy for controlling pollen beetles in winter oilseed rape based 

on the combination of the most effective elements tested in this project (WP1-4) objectives. 

 

 

3.2. Develop a monitoring trap for pollen beetles (Objective 1, Task A) 

We need reliable, quick and simple methods to monitor the size of a pollen beetle population in an 

oilseed rape (OSR) crop in order to enable growers and crop consultants to use action thresholds.  

Currently, methods based on plant scouting are most commonly used, in which several plants are 

selected at random along a transect across the field and beaten into a tray; the pollen beetles 

dislodged are counted and the mean/plant calculated (Williams et al., 2003).  However there are 

several limitations to the accuracy of this method.  Firstly, the method is time consuming to do 

properly, requiring several visits to the field to check on the population levels as pollen beetle 
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immigration occurs over a prolonged period and crops are susceptible to damage throughout the 

green-yellow bud stage which can last up to 3-4 weeks.  Secondly, plant scouting only represents 

a snapshot in time of the number of beetles on the plants in the crop; pollen beetle catches in the 

crop vary according to time of day and weather conditions (Ferguson et al., in press).  Thirdly, as 

populations of beetles in the field are not homogenous, the method could lead to inaccurate 

values.   If plants for sampling are selected mainly from the crop edge (where they are most easily 

and quickly accessible) the average no. beetles/plant may be high and not representative of the 

rest of the crop, as beetles are naturally most numerous on plants at the crop edge (Williams et al., 

2003). This practice could result in unnecessary sprays.  Populations may also be underestimated, 

resulting in missed sprays, for example if only one transect is done and it is positioned in the part 

of the field that has received little beetle immigration. A simple, cheap monitoring trap that is easy 

to use would overcome many of these problems but there are none commercially available at 

present.   

 

There have been many recent developments in the behavioural ecology of pollen beetles and in 

technologies that assist monitoring. We know that pollen beetles locate their host plants using a 

combination of visual and olfactory cues (Blight & Smart, 1999; Jonsson et al., 2007). In a previous 

Defra funded project (PI038) extracts of volatiles from flowering racemes and leaves cut from an 

historically early (OSR) cultivar, Willi, were collected by air entrainment (Blight, 1990) and 25 

compounds, which stimulated the antennae of pollen beetles were located (Blight et al., 1995). 

Slow release dispensers were developed to test the responses of OSR pests to OSR volatiles in 

field trapping trials (Smart et al., 1997). These trials determined some effects of trap colour and the 

most attractive bait for pollen beetles (Blight & Smart, 1999; Smart & Blight, 2000). Trapping trials 

also determined the best trap design; sticky devices were found to be most effective and are 

considered more practical for growers and advisors compared with (for example) water traps 

(Blight and Smart, 1999). Beetles were most attracted to a yellow sticky card trap angled at 45° to 

the vertical and baited with a slow release dispenser of 2-phenylethyl isothiocyanate (ncs). 

However, trap catch of non-target species was high with this colour, and pollen beetle parasitoids 

were particularly attracted by this lure. The isothiocyanate is also toxic and therefore not suitable 

for use with a commercial trap. 

 

This project investigated optimization of trap colour (3.2.1) and bait (3.2.2) to pollen beetles whilst 

minimizing catch of non-target insects, particularly natural enemies. Trap calibration was also 

investigated to enable detection of action thresholds related to the number of beetles/plant in the 

crop (3.2.3) and studies were conducted to optimize trap positioning (3.2.4).  
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3.2.1. Investigate responses of pollen beetles to colour to optimize trap colour 

The pollen beetle is known to respond to colour cues during host plant location.  In particular, 

beetles are known to strongly prefer ‘yellow’ colours over others (Giamoustaris & Mithen, 1996; 

Blight & Smart, 1999; Cook et al., 2006a). Unfortunately, the value of this information is relatively 

limited when it comes to accurately predicting the response of the pollen beetle to any given colour 

(e.g. of traps or plants), because colour vision in insects is fundamentally different to colour 

perception in humans, and human colour names do not necessarily correlate with insect behaviour 

(Chittka & Döring, 2007).  We therefore aimed to improve the understanding of the general 

mechanisms that underlie colour choice behaviour in the pollen beetle in order to help develop and 

optimise strategies for control that rely on the disruption of colour-guided host finding behaviour. 

We combined electrophysiologically-determined spectral sensitivity functions in pollen beetles with 

behavioural experiments in the field.  We are able to show that the insect’s behaviour follows a 

green-vs.-blue colour opponent mechanism, resulting in a preference for colours that appear 

yellow to the human eye.  From this we developed a model specific to pollen beetles which can be 

used to predict the relative attractiveness of any given colour with known spectral reflectance. 

 

Materials & Methods 

 

Electrophysiological determination of spectral sensitivity  

To determine spectral sensitivity of pollen beetles we used the electroretinogram (ERG) technique 

(Kirchner, et al., 2005). The apparatus used for the ERG recordings was the same as described in 

two previous studies (Döring & Skorupski, 2007, Skorupski, et al., 2007) and was adapted for 

extracellular ERG recordings. Adult pollen beetles were collected from fields of OSR in spring 

2008.  Beetles were mounted individually onto a cork platform and immobilized with dental wax. A 

borosilicate glass electrode filled with 2 M potassium acetate was inserted into a hole in the insect 

eye using a micro-manipulator. The indifferent electrode, a chlorided silver wire, rested in the 

abdomen. After this preparation the beetle was left to dark-adapt for 30 min. Light flashes (0.1 s 

length) were varied over wavelengths (340 - 650 nm in 10 nm steps) and light intensities. The 

strength of the light stimuli, measured as relative quantum flux, was calibrated with a 

spectrophotometer. Responses were recorded with an AxoClamp 2B device, and analysed using 

the programme Spike 2 (CED, Cambridge, UK, version 5.07). Spectral scans from 10 beetles were 

chosen from all recordings for further analysis. Sensitivity calculations for the ERG recordings 

followed methods described elsewhere (Kirchner, et al., 2005). In order to identify the peak 

spectral sensitivities of the receptor with the longest wavelength sensitivity (i.e. a putative green 

receptor), exponential templates (Stavenga, et al., 1993) were fitted via least squares to the long 

wavelength tail (560–650 nm) of the normalized spectral sensitivity data.  
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Field experiment 

A field experiment to test the responses of beetles to coloured traps was conducted on 

Rothamsted Farm in spring 2008. Petri dishes (14 cm diameter) were used as traps and were 

painted 50 different colours (2 traps of each colour) (as in Döring et al. 2009). The colours were 

various mixtures of several water-based commercial masonry paints (yellow, three hues of blue, 

green, red, white and black). These mixtures resulted in several colour series ranging in hue 

(yellow, green, blue), saturation and brightness. In addition, colour treatments with a UV 

reflectance component were prepared by mixing yellow and green masonry paint with Barium 

sulphate (BaSO4) powder and a binder. The reflectance spectra of the traps when filled with water 

and detergent (Lipsol®,Bibby Sterilin Ltd., UK), were measured with a RAMSES-ARC 

spectrophotometer (from TriOS GmbH, Oldenburg, Germany, range 320–950 nm) against a 

BaSO4 white standard.  

 

The traps were set out within a field on bare soil in 4 rows with 25 traps in each, and with 2 m 

between each row and between each trap within a row.  Traps were maintained 30 cm above the 

ground on poles. The two replicates of each colour treatment were assigned to one of two blocks 

(consisting of two rows each), and within blocks the colours were randomised. Traps were filled 

with water and Lipsol and left in the field on three trapping dates in May 2008 (5-10, 15-18, and 22-

24 May). All insects were collected from the traps and stored and later the number of pollen 

beetles in each trap was counted.  

 

Colour choice model  

In order to build a colour choice model, the response variable y was calculated as the number of 

beetles nt in a trap t relative to the average number of beetles nref that had been caught with a 

reference colour (yellow, labelled Y01, for reflectance spectrum see Figure 2) thus, 

y = nt/nref         (eqn.1) 

From the field experiment, nref =109. To find the best explanatory variables in a colour-choice 

model we then converted reflectance spectra of the traps into quantum catch values PR(t) that a 

trap t elicits in a photoreceptor R, with 

PR(t) = ∫ It(λ) SR(λ) D(λ) dλ / ∫ Ib(λ) SR(λ) D(λ) dλ,   (eqn.2) 

where It(λ) is the reflectance spectrum of the trap t; SR(λ) the sensitivity function of the 

photoreceptor R, with the sensitivity peak of R varying between 320 nm and 610 nm in 10 nm 

steps; D(λ) the standard sunlight illumination spectrum D65; and Ib(λ) the reflectance spectrum of 

the background against which the trap is seen (Chittka et al., 1992) (bare soil). Photoreceptor 

sensitivity curves SR(λ) were generated using model templates (Stavenga et al., 1993).  

Physiological experiments revealed that the green receptor of the pollen beetle has a maximum 

sensitivity at 540 nm (see results). We therefore calculated output values of a colour opponency 

mechanism (COM) as a difference between the excitation of a fixed green receptor G peaking at 
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λmax =540 nm and a second opponent receptor Ropp, with the peak sensitivity of this second 

receptor varying between λmax =320 nm and λmax = 610 nm in 10 nm steps. 

COMt(Ropp) = log(Pt(G)) – log(Pt(Ropp))  (eqn.3) 

After plotting the normalized number of beetles y against COMt(Ropp) we then used split linear 

regression (Crawley, 2007) to determine the relationship between the colour opponency values 

and the behavioural response of the beetles. Ordinary Least Square optimization was used to 

determine the optimal position λmax of the opponent photoreceptor Ropp. For all statistical 

calculations the programme R, v. 2.12.1 was used (R Development Core Team, 2011; Crawley, 

2007).  

 

Results & Discussion 

 

Determination of spectral sensitivity of the pollen beetle 

The maximal sensitivity determined from the ERGs was found at 520 nm (Figure 1). Most insect 

species measured so far show evidence of possessing two or more classes of photoreceptor 

(Briscoe & Chittka, 2001) i.e. as well as green receptors, many species have additional blue and 

UV receptors. The ERG response function stems from the summed response of all photoreceptor 

classes and it is therefore not possible from these measurements to determine the sensitivity of 

individual photoreceptor classes. However, using exponential templates for modelling sensitivity 

functions (Stavenga, et al., 1993), we determined the spectral sensitivity of a putative green 

receptor underlying the ERG response. This modelled sensitivity function peaked at λmax = 540 nm. 
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Figure 1 Spectral sensitivity functions from extracellular recordings of pollen beetle photoreceptors 
(filled squares, average ± standard error; n = 10), and modelled from the long wavelength tail of these 
measurements (bold line, no symbols). 
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Colour choice behaviour in the field 

In total, 2482 pollen beetles were caught in the traps. The pollen beetle showed a strong response 

to the colour of the traps (see Figure 2 for reflectance spectra). The most beetles were caught in 

the fluorescent yellow traps, whereas the number of beetles caught in red, blue, white, grey or 

black traps was generally very low (Figure 3). These results support those of previous studies 

which document a preference for colours appearing yellow to the human eye over other colours 

(Blight & Smart, 1999, Cook, et al., 2006a, Giamoustaris & Mithen, 1996).  However, the 

importance of the UV component is shown for the first time; fluorescent yellow traps were more 

attractive than yellow traps without fluorescence.   
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Figure 2 Reflectance spectra of selected traps. The dotted line shows the yellow fluorescent trap. The 

yellow reference trap (Y01) is indicated by the line with the filled squares. 
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Figure 3 Mean (± SE) number of trapped pollen beetles caught in selected trap colours, 
For reflectance spectra of these traps see Figure 2. The “yellow” trap was used as the reference trap 
(Y01). 
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Colour choice model  

When the number of beetles relative to the reference catch is displayed against the respective 

value of COMt(Ropp) of each trap (Figure 4), the relationship between the two variables can be 

modelled with a simple piecewise regression, with a split point at COMt(Ropp) = 0.2. In this case, 

the best fit (SED = 0.0977, R2=0.7982, df=94) was found for λmax(Ropp) = 440 nm, whereas λmax(G) 

was held fixed at 540 nm.  

 

Block effects were not significant. For the left-hand part of the model (i.e. left of the breakpoint 

where x<x0), the slope was found to be not significantly different from 0. The intercept of the right 

hand side of the graph (x>x0) was not significantly different from the intercept of the function left of 

the breakpoint (x<x0). Thus, with y being the number of beetles relative to the number caught in the 

yellow reference trap (eqn. 1), the model had the shape  

y = a (x-x0) + b, for x>x0, and y = b for x≤ x0,     (eqn.4) 

with x = log(P t(G)) – log (P t(B)), x0=0.2 (breakpoint), a = 1.2997 ± 0.0650 and b = 0.0425 ± 0.0152 

(mean ± s.e., R2=0.7982, df=94, p<0.001). Here, the green receptor G peaks at λmax = 540 nm and 

the opponent blue receptor peaks at λmax = 440 nm; x can be interpreted as a yellowness index. 

Finally, we tested whether residuals ut between the values ŷM predicted by the split linear 

regression model M and the observed values yi of the beetle catch  

ut = yt – ŷM        (eqn.5) 

were still correlated with the photon catch P t(R) of any modelled photoreceptors R (peak 

sensitivities at λmax = R). This was the case; in particular, there was a positive correlation between 

photon catch in the UV and the residuals ut indicating that higher UV reflection of a trap tended to 

increase beetle catch. 

 

The model suggests that pollen beetles use a Green vs. Blue colour opponent mechanism which 

results in their preference for ‘yellow’ (in effect a super green stimulus).  The model also confirms 

the possibility of a UV receptor in the pollen beetle.  The model could have potential in predicting 

the relative attractance of any coloured trap with known spectral reflectance, thereby saving the 

need for time consuming and expensive field trials.  The model could also be applied to other IPM 

strategies that exploit colour-guided host finding behaviour, for example the development of new 

OSR cultivars that have less attractive petals (e.g. Cook et al., 2006b) or leaves.   
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Figure 4 Colour opponency model (equation 4) of the behavioural response of pollen beetles to 
colours in the field. The theoretical position of a commercial yellow sticky card used to trap insects 
is marked by a grey square for comparison. The reference traps (Y01) are shown with black circles. 

 
 
Summary & Conclusions 

We confirmed the findings of previous studies which report a preference of the colour yellow in 

pollen beetles. However, we also demonstrated for the first time the importance of UV in this 

species.  Traps with a UV reflectance component were most preferred, so we can predict that 

yellow sticky traps with a UV reflectance would be most attractive.  After consultation with our 

Project partners at Oecos, this was considered to be too difficult to achieve for a plastic trap in the 

short term, so we conclude that until plastic colouration technology improves, the best colour for a 

monitoring trap is yellow, with the Oecos standard yellow sticky trap being relatively very attractive 

(Figure 4).    The model we have developed could be used to help predict the relative attractance 

of any colour to pollen beetles, once its spectral reflectance is measured, and therefore could be of 

use for plant breeders when developing new oilseed/turnip rape lines for trap crops (highly 

attractive colours sought) or main crops (less attractive colours sought). 
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3.2.2. Identify and develop semiochemical lures for a monitoring trap with minimum 
catch of non-targets 

 

Introduction 

 

Since the initial attempts to develop a monitoring trap for pollen beetles carried out in the 1990s 

(see Introduction), Rothamsted has acquired a more sensitive mass spectrometer capable of 

accommodating the very low levels of semiochemicals to which insects respond.  Methods of air 

entrainment have also been refined to enable plant volatiles to be sampled from intact plants in 

situ.  These techniques, in conjunction with improvements in electrophysiology, have enabled the 

quantities and ratios of the attractive volatiles discovered in PI308 to be confirmed and new 

components to be identified. Field trials with turnip rape as an early flowering attractive trap crop to 

protect OSR against pollen beetles at the vulnerable green/yellow bud stage have been very 

successful (Cook et al., 2004, 2006b). The attraction of pollen beetles to turnip rape was 

discovered to be due to not only its early flowering, but also to its production of different ratios of 

attractive plant volatiles, in particular, phenylacetaldehyde and indole (Cook et al., 2007a). These 

compounds have been field tested in this project, along with new compounds identified from 

modern OSR varieties, allowing us to establish the best component for use as an attractive lure for 

a monitoring trap 

 

Materials and Methods 

 

Air entrainment. Samples of the volatiles released by plants, grown under glass house conditions, 

were taken to isolate and identify the range of volatiles in the profiles at green and yellow bud 

growth stages and during flowering. Single racemes were enclosed in a custom made glass vessel 

open at the bottom and closed with a collection port at the top. The bottom of the vessel was 

closed with two semi-circular aluminium plates that fitted around the stem of the plant and were 

clipped to a flange on the open end enabling volatile collections to be made with live rather than 

cut material. One of the aluminium plates was drilled to accommodate an inlet port, and purified air 

that had passed through a charcoal filter was pushed into the vessel at a rate of 500ml/min. Air 

was drawn from the vessel at a rate of 400ml/min passing through a Porapak Q filter, inserted into 

the collection port on the top, on which volatiles were collected. Air flow rates were controlled so 

that more purified air was pumped in than was drawn out, ensuring that unfiltered air was not 

drawn into the vessel from outside and obviating the need for a tight seal around the stem, which 

would have caused damage to the plant. All connections were made with PTFE tubing and 

ferrules, and as much as possible the equipment, particularly the glassware, was heated at 180°C 

for at least 2 hr before use. Porapak Q tubes were conditioned at 140°C in a stream of purified 

nitrogen for at least 2 hr before use. Plants were entrained for 1 week to collect sufficient material 
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for subsequent analysis and bioassays. Porapak Q filters were eluted with 0.5 ml of redistilled 

diethyl ether, and the samples collected were stored in vials in a freezer (−20°C) and analysed by 

gas chromatography (GC). Where possible 4 entrainments of each plant/growth stage were made. 

  

Gas Chromatography (GC). Air-entrained volatiles were separated on a 50 m x 0.32 mm i.d. methyl 

silicone bonded-phase fused silica capillary column (HP-1) fitted in a Hewlett Packard 5890 gas 

chromatograph equipped with a split/splitless injector and a flame ionization detector (FID).  The 

carrier gas was hydrogen and the oven temperature was maintained at 40°C for 5 min and then 

programmed at 5°/min to 150°C, then at 10°/min to 250°C.  Co-injections with reference samples 

were made under the same conditions. 

 

Gas Chromatography-Mass Spectrometry (GC-MS). The capillary column (50 m x 0.32 mm i.d. HP-1) 

of the gas chromatograph was directly coupled to the MS and integrated data system (70-250 VG 

Analytical).  Ionization was by electron impact at 70 ev, 230°C.  The GC was maintained at 30°C for 5 

min and then programmed at 5°/min to 180°C and then held isothermally.  Identifications were made 

by comparison of the mass spectral data with those of authentic samples and confirmed by peak 

enhancement when the extracts of volatiles were co-injected with authentic compounds using GC, as 

above. 

 

Electrophysiology: To identify the volatiles from the entrainment samples that are perceived by pollen 

beetles, coupled gas chromatography-electroantennography (GC-EAG) recordings were made as 

described previously (Wadhams, 1990) using Ag-AgCl glass electrodes filled with saline solution 

(composition as in Maddrell, 1969, but without glucose).  Adult pollen beetles were field-collected by 

sweep-netting OSR and maintained overnight at 18°C, without food, before use and their sex was 

determined later by dissection. Antennae were excised and suspended between the two electrodes.  

The signals generated by the antenna were passed through a high impedance amplifier (Syntech UN-

06, Hilversum, the Netherlands), and data storage and processing were carried out with a PC-based 

interface and customised software package (Syntech). Separation of the entrained volatiles was 

achieved on an AI 93 gas chromatograph equipped with a cold on-column injector and a FID.  The 

carrier gas was hydrogen and the column (50 m x 0.32 mm i.d. HP-1) was maintained at 40ºC for 1 

min and then programmed at 5º/min to 100ºC and then at 10º/min to 250ºC.  The outputs from the 

EAG amplifier and FID were monitored simultaneously and analysed using Syntech software 

(Syntech, The Netherlands). Replicates for each compound comprised preparations from five 

individual insects 

 

Slow release dispensers. Possible attraction of pollen beetles to compounds, identified as being 

electrophysiologically active, was tested in the field using yellow sticky traps (Oecos) baited with 

dispensers releasing each compound at two different rates where possible. Each compound was 
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released individually by diffusion from polyethylene bags. Undiluted liquids were applied to pieces 

of cellulose sponge (3 mm thick or 10 mm thick, J Sainsbury plc) that were heat-sealed into bags 

made from polyethylene bags or  tubing (A1 Packagings Ltd., London) or in closed lid polythene 

vials (Just 001: Just Plastics Ltd, UK). Indole lures were formulated with the antioxidant butylated 

hydroxytoluene (BHT). Acetone solutions of indole and BHT were applied to pieces of sponge and 

the acetone allowed to evaporate before the treated sponges were sealed into bags. Different 

release rates were obtained by altering the type and surface area of the cellulose sponge and the 

gauge of the polyethylene. Nominal release rates were measured by weight loss in the laboratory 

at 20°C and 0.2 m/ sec airflow. 

 

Field Trapping Experiments. The orientation responses of pollen beetles to electrophysiologically 

active odours and to different coloured traps were tested in a series of replicated field trapping 

experiments conducted on Rothamsted Farm.  To compare beetle response to odours, each 

experiment comprised yellow sticky card traps (10 x 20cm Oecos, UK), angled at 45° to the vertical 

using a plastic mount maintained on a metal post (Oecos).  Traps were maintained at crop canopy 

height and were 10m apart from each other in any direction. Traps were unbaited (control) or baited 

with slow release dispensers (see above) of test compounds or a lure of 2-phenylethyl isothiocyanate 

(NCS) released at 5 mg/day (Smart and Blight, 1997).  The latter compound, a component of OSR 

volatiles, had been shown in previous field experiments (Blight and Smart, 1999) to attract pollen 

beetles and was used here as a standard.  Trials were set out as a Latin square (Experiments 1 and 

2) or using a replicated Latinized row-column design (experiments 4 and 5).  Sticky cards were 

changed approximately weekly until the crop was fully in flower and were stored in a freezer at -

20°C, and insects were identified and counted in the laboratory.  Total trap catch data were 

transformed by log10(x+1) and analysed using ANOVA or, for the Latinized row-column design, by 

REML using GenStat (14th edition, VSN International, 2011).    The mixed model accounted for the 

different sources of variation: fields, replicates within fields and position of plots within reps.  The 

data were log10 (n+1) transformed and LSD differences at the 5% level on the transformed scale 

are presented.   

 
Experiment 1 Optimise pollen beetle catch and minimize beneficial catch by investigating colour x 

odour interactions using commercially available coloured traps  

Although experiments in Section 3.2.1 indicated that the most effective trap for pollen beetles was 

yellow (and preferably with a component of UV), we explored the possibility that the relative trap 

catch of pollen beetles : beneficial parasitoids could be improved by the use of a different coloured 

trap.  Pollen beetle and parasitoid catch on commercially available white and blue sticky card traps 

(Oecos) and a prototype trap painted grass green were compared to the standard yellow sticky 

card trap, each with and without a 2-phenylethyl ncs lure (2-PE ncs) in field experiments (see 

Materials & Methods section above) using 4 x 4 Latin square designs in spring OSR crops during 



48 
 

the green-yellow bud growth stage in 2009. The ratio of pollen beetles:parasitoids was calculated 

and compared between the differently coloured traps with and without the bait.   

 

Experiment 2.  Compare the standard 2-phenylethyl isothiocyanate lure with lures of turnip rape 

volatiles 

In order to improve the safety and attractiveness of the prototype yellow sticky trap, slow release 

dispensers (see Materials & Methods section above) were designed to release different ratios of 

phenylacetaldehyde and indole, the key odours identified from previous work as accounting for the 

obvious difference between the increased attraction of TR over OSR plants (Cook et al.,2007b). 

These were compared to the standard 2-phenylethyl ncs lure (2-PE ncs) in a field trapping trial 

(see Materials & Methods section above) in replicated 5 x 5 Latin square designs.  The baited 

yellow sticky traps were tested during the main colonising period of winter OSR crops (March – 

April) in two different winter OSR crops over two seasons (2008 and 2009) to determine if they 

could be used in place of the 2-PE ncs lure (which is toxic). They were also deployed in 

combination with the 2-PE ncs lure to determine if the efficacy of the trap could be improved by use 

of a multilure.  Release Ratios of Phenylacetaldehyde : Indole were as follows 

2 : 1 equivalent to that found in TR buds 

3 : 1 equivalent to that found in TR flowers 

1 : 10 equivalent to that found in OSR flowers 

 

Experiment 3.  Collect, identify and field test volatiles from different rape varieties 

To improve our understanding of the importance of volatiles released by host plants for the 

attraction of pollen beetles and to identify any new active compounds, the volatiles of 10 different 

rape types were collected by air entrainment (see Materials & Methods section above) at the green 

bud and flowering growth stages. Included were spring turnip rape cv Agena and Agat; spring 

oilseed rape cv Heros; Pasja winter turnip rape; winter oilseed rape cv Astrid and Grizzley; and 

some experimental lines kindly provided by project partner Dr Peter Werner of KWS Ltd, which 

included a white petalled and an apetallous line together with their near-isogenic yellow-petalled 

counterparts. The volatiles collected were identified using gas chromatography-mass spectroscopy 

(GC-MS) (see Materials & Methods section above) and tested in electrophysiological studies using 

female pollen beetles (see Materials & Methods section above). New compounds not found in 

volatiles collected previously from cut plants (Blight et al., 1995) included: nonane, nonanal, methyl 

benzoate and acetophenone and, specifically from green bud samples, methyl benzene.  

 

Dispensers releasing the new compounds, at two different release rates where possible, were 

produced for testing in field trials. Fifteen volatile bait treatments plus an unbaited control were 

tested in trapping trials (see Materials & Methods section above).  A Latinized row-column trial 

design was used in which traps were arranged in 2 rows of 8 treatments and replicated twice per 
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field on 3 OSR sites in April 2010, to test the response of the over wintered generation of beetles, 

and four times on 1 wheat site in May/June 2010, to test the response of new generation beetles. 

 

Experiment 4.  Towards the development of a commercial trap 

Trap mounts: Project partner Oecos produce an angled sticky trap for use with a lure for carrot fly 

monitoring. This trap was compared in field trapping trials (see Materials & Methods section above) 

with the RRes 45° angled trap used in Experiments 1-3.  Both were used to mount yellow sticky 

cards (Oecos) and the RRes low release phenylacetaldehyde lure (300ul/ thick sponge/ 250 gauge 

bag, pre-conditioned for 5 days to obtain a steady release of 1.7mg/day over 35 days).  

 

Lure dispenser: International Pheromone Systems (IPS Ltd) supply lures for a range of commercial 

pheromone trapping systems and they developed prototype phenylacetaldehyde lures for possible 

commercial use. They provided samples of the lures, initially for release rate determination by air 

entrainment and weight loss over time. Two of the prototype lures released the volatile at similar 

rates per day as the RRes low release phenylacetaldehyde lure (see Appendix A) and were 

chosen for testing in comparative field trials (as above) with the RRes 45° angled yellow sticky 

trap. Both trapping trials used the Latinized row-column trial design described in Experiment 3 

above. 

 

Results & Discussion 

 

Experiment 1 Optimise pollen beetle catch and minimize beneficial catch by investigating colour x 

odour interactions using commercially available coloured traps  

It is important to minimise non-target catch, particularly that of beneficial insects so to conserve as 

many individuals for biocontrol services as possible, but mainly to make it as simple as possible to 

count the target pest on the trap.  This becomes increasingly difficult as non-target catch 

increases.  The different coloured sticky traps tested were much less effective at capturing pollen 

beetles than the yellow trap (Figure 5A-C). The addition of a bait increased pollen beetle catch on 

traps of less attractive colours, but numbers caught remained very low in comparison to the 

unbaited yellow trap (Figure 5A-C). The coloured traps caught fewer parasitoids than the yellow 

traps and in these trials the lure had little effect (Figure 6A-C).  With the exception of green, baiting 

the trap increased the proportion of pollen beetles with respect to parasitoids.  The highest 

proportion of pollen beetles:parasitoids was found on baited yellow traps (Table 1).  Therefore we 

decided to proceed with developing a baited yellow sticky trap.   
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Table 1 Proportion of pollen beetles : parasitoids caught between 20 May – 9 June 2009 on yellow,  
white, blue or green sticky traps unbaited or baited with a 2-phenylethyl isothiocyanate lure  

 Yellow 1 White Yellow 2 Blue Yellow 3 Green 

Unbaited 2.0 0.3 2.0 0.5 2.3 0.1 

Baited 3.1 1 2.9 0.9 3.5 0.1 

 

 

Experiment 2: Compare the standard 2-phenylethyl isothiocyanate lure with lures of turnip rape 

volatiles 

Results for both years were similar and are presented for 2009 in Figures 7 & 8. Trap catch was 

very variable within and between sites, but showed that the baited traps were more attractive than 

the unbaited trap; the P:I ratio of 1:10, representative of the volatiles found in OSR flowers, was 

most attractive (Figure 7 A&B) and phenylacetaldehyde:indole lures were as effective as the 

standard 2-phenylethyl ncs lure (Figure 7A).  Addition of 2-phenylethyl ncs did not improve the 

efficacy of the lure (Figure 7B). The baited traps caught more non-target parasitiods than the 

unbaited trap, but parasitoids were not caught until one week after the peak pollen beetle catch 

and overall numbers caught were low, therefore unlikely to have much impact on local populations 

or swamp the traps  (Figure 8A&B). These results suggest that the bait with the toxic 2-PE ncs lure 

developed in previous studies can be replaced with a lure based on low release rates of 

Phenylacetaldehyde, a floral volatile common in several species.  As indole is difficult to formulate, 

(as it is relatively unstable) we decided to attempt to further simplify the bait and test the effects of 

these volatiles individually in 2010. 
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Figure 5A-C Mean number of pollen beetles caught between 20 May – 9 June 2009 on sticky traps 
baited with a 2-phenylethyl isothiocyanate lure or on unbaited traps coloured yellow versus (A) 
white, (B), Blue or  (C) or green  
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Figure 6A-C Mean number of non-target parasitoids caught between 20 May – 9 June 2009 on sticky 
traps baited with a 2-Phenylethyl isothiocyanate lure or on unbaited traps coloured yellow versus (A) 
white (B) Blue or (C) or green.  
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Figure 7 Mean number of pollen beetles caught on yellow sticky traps baited with different 
volatiles  (31 March – 15 April 2009) (A) unbaited traps tested against 3 different ratios of 
phenylacetaldehyde : indole (P:I) and 2-phenylyethyl isothiocyanate (2-PE) (B) unbaited traps tested 
against 3 different ratios of P:I + 2-PE and 2-PE alone.  Rations of P:I represent volatiles as released 
in nature from: turnip rape buds (2:1), turnip rape flowers (3:1) and oilseed rape flowers (10:1)  
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Figure 8A&B Mean number of parasitoids caught on yellow sticky traps traps baited with different 
volatiles  (31 March – 15 April 2009) (A) unbaited traps tested against 3 different ratios of 
phenylacetaldehyde : indole (P:I) and 2-phenylyethyl isothiocyanate (2-PE) (B) unbaited traps tested 
against 3 different ratios of P:I + 2-PE and 2-PE alone.  Rations of P:I represent volatiles as released 
in nature from: turnip rape buds (2:1), turnip rape flowers (3:1) and oilseed rape flowers (10:1)  

 

 

Experiment 3.  Collect, identify and field test volatiles from different rape varieties 

There was quantitative and qualitative variation in the volatiles collected from the different OSR 

and TR types tested.  Some new electrophysiologically active compounds were detected from the 

in vivo entrainment samples and provide a more detailed picture of the natural volatile profiles that 

the pest encounters in the crop. Those not found in volatiles collected previously from cut plants 

(Blight et al., 1995) included: nonane, nonanal, methyl benzoate and acetophenone and 

specifically from green bud samples, ethyl benzene.  
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In the field experiment testing these new compounds, there was a significant difference between 

treatments in the mean number of pollen beetles caught in the traps (F15, 132.5 = 5.49 P<0.001).  

Only the low release rate (1.7 mg/day) of phenylacetaldehyde attracted significantly (LSD = 

0.1663) more beetles than the unbaited trap on the OSR sites (Figure 9). The indole, when 

released individually at the high rate as in 2008/09 was not significantly more attractive than the 

control, and when released at a lower rate it attracted significantly fewer (LSD = 0.1663) (Figure 9).  

Both rates of nonanal, the high rates of acetophenone and methyl benzoate also attracted 

significantly fewer beetles than the unbaited trap (LSD = 0.1663). These may provide leads for 

further investigation towards developing crop cultivars that are less attractive to pollen beetles.  

 

In the absence of competition from the crop, the 2-phenylethyl isothiocyanate lure attracted the 

highest number of beetles in the wheat crops (Figure 10) followed by the low rate of 

phenylacetaldehyde.  The low release rate of phenylacetaldehyde (LSD = 0.1958) and indole - low 

rate (LSD = 0.1989) and indole - high rate  (LSD = 0.1958) both also attracted significantly more 

beetles than the unbaited trap. The high rates of nonanal (LSD = 0.1989) and of acetophenone 

(LSD = 0.1988) attracted significantly fewer beetles than the unbaited control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 9 Mean number of pollen beetles caught on yellow sticky traps baited with dispensers 
releasing different oilseed rape volatiles (mg/day) set out in crops of oilseed rape (2010). Stars above 
bars represent a significant difference from the unbaited control according to LSD values  

 

 
 
 
 
 

per day 
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Figure 10 Mean number of pollen beetles caught on yellow sticky traps baited with dispensers 
releasing different oilseed rape volatiles (mg/day) set out in crops of wheat (2010). Stars above 
bars represent a significant difference from the unbaited control according to LSD values on the 
transformed scale. 
 

The low release of phenylacetaldehyde (1.7 mg/day) performed most consistently overall and was 

further investigated as the possible lure for the baited commercial trap at Rothamsted field sites in 

2011. 

 

Experiment 4.  Towards the development of a commercial trap 

Trap mounts: There was no difference in the performance between the Oecos carrot fly trap mount 

and the RRes experimental mount (F6,125 = 1.38; P = 0.228) (Figure 11). However, the 

performance of the baits changed over time (F6,142 = 4.19; P<0.001) in that more beetles were 

generally caught earlier in the trapping period than in the final couple of assessments.  This 

could be due to the baits becoming less effective over time. 

 

Lures: One of the field sites for this experiment was excluded from the analysis as the crop was 

poor; ANOVA rather than REML was used.  However, it was clear that both commercial IPS 
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phenylacetaldehyde lures were as attractive as the RRes low release phenylacetaldehyde lure and 

all baited traps generally caught more beetles than unbaited traps (Figure 12). As with the trap 

mounts experiment, there was a significant difference between the treatments over time (F12,48 = 

3.57; P<0.001).  On the last two sample dates there was no significant difference between trap 

catch between baited and unbaited traps.  Given the results of the Trap mount experiment, this 

suggests that it is not only the bait that is responsible for the loss in attraction of the trap in relation 

to the crop in flower.  The IPS lures were shown to release relatively constant amounts over c. 30 

days (Appendix A).  It is more likely that the traps became relatively less attractive as competition 

from the crop increased as it came into flower and became relatively more attractive to beetles in 

comparison to the trap than when the crop was at the green bud stage.  However, as the traps 

would normally be used for monitoring during the damage-susceptible green-yellow bud stage of 

the crop, the reduction in attraction is not a problem.  Relatively low numbers of non-target species 

were trapped in these experiments (data not shown), however it was noted that traps that were left 

out beyond the period of the experiment caught extremely high numbers of parasitoids of the 

wheat blossom midge.  Traps should therefore be removed as soon as possible at the start of 

flowering, and certainly before the end of May to avoid this.  Furthermore, as the crop develops it 

gets taller and there is a danger that traps will get swamped by the crop and difficult to locate and 

remove later in the season. 

 

 
Figure 11 Pollen beetles caught by RRes and modified Oecos trap mounts with sticky traps baited 
with a low release dispenser of phenylacetaldehyde (1.7 mg/day). 
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Figure 12 Comparison of IPS phenylacetaldehyde lures (1 mg and 2 mg/day) with the standard RRes 
phenylacetaldehyde lure (1.7 mg/day).  

 

Summary & Conclusions 

These results suggest that a modified Oecos yellow sticky trap baited with an IPS commercial type 

lure are suitable for a commercial trapping system for pollen beetles.  We are delighted that a trap 

with these components will be made commercially available for the 2013 season by Oecos.   

 
 

3.2.3. Calibrate trap catch with numbers of beetles per plant in oilseed rape crops 

 
Introduction 

 

Commercial monitoring traps usually have a given number of target insects or a threshold above 

which action is taken.  Currently, action thresholds for pollen beetles are related to the number of 

beetles on oilseed rape (OSR) plants during the damage susceptible green-yellow bud stage of the 

crop.  Throughout the duration of the project the action threshold for pollen beetles was 15 beetles 

per plant for good crops and 5/plant for backward crops.  However, the threshold has recently 
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changed to relate to crop plant density plants/m2; 20 beetles per plant for optimal crops (40 

plants/m2), 30/plant for thin crops and 10/plant for thick crops (Ellis & Berry, 2011; HGCA, 2012). 

We therefore hoped to be able to determine a linear correlation between the trap catch and the 

number of beetles present on plants in the crop to enable calibration of trap catch to any given 

action threshold.  We used data from trap catches and no. beetles/plant data derived from plant 

scouting along monitoring transects on 178 fields of winter OSR across the UK over 4 years.  

Unfortunately, we were unable to find a simple correlation between beetle numbers on the traps 

and numbers on plants in the crop. 

 

Materials & Methods 

 

Pollen beetle monitoring study 

There were 3 aims to the monitoring experiments: 

1. To establish a relationship between the numbers of pollen beetles caught on traps with the 

number of beetles per plant in the OSR crop (this section) 

2. To establish a relationship between trap catch and position of the trap with respect to prevailing 

wind direction and surrounding landscape features (see section 3.2.4) 

3. To assess the relationship between immigration of pollen beetles into the OSR crop through 

time relating to climatic conditions and the growth stage of the crop (phenology) (see section 3.3) 

 

We ran a pollen beetle monitoring study in each of the 4 years of the project (2008-2011).  In each 

year, sites (winter OSR fields) were selected on Rothamsted Farm, Woburn Farm and on as many 

other farms as possible across the UK.  At each site, two yellow sticky traps were placed on 

different sides of the field; one trap was placed upwind and the other downwind along the plane of 

an assumed west-south-west prevailing wind (Figure 13).   Upwind and down-wind designated 

traps remained fixed for the duration of the trapping period (i.e. even though the wind direction may 

have changed at a local level).   The traps (yellow sticky cards, Oecos) were mounted on the RRes 

plastic mount so that they were angled at 45° and placed on top of a metal pole (Oecos) so that 

the trap could be maintained at crop canopy height throughout the trapping period. Traps were 

placed 3m into the crop from the edge and orientated to face outwards, away from the crop centre, 

in order to trap incoming beetles (Figure 13).  Trapping started on March 1st each year and 

continued until the crop was at BBCH growth stage 61 (early flowering, when ~ 10% flowers on the 

main raceme were open). Traps were then removed from the site.  

 

Traps were changed either twice each week (every 3-4 days preferable) or once each week, 

depending on time availability of the volunteers running each site.  Each time the traps were 

changed the mean number of beetles per plant in the crop at each trap position was calculated 

using a plant scouting method based on that recommended by CropMonitor 
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www.cropmonitor.co.uk.  Pollen beetles were sampled from 10 plants selected at random every 

~5m along a 50m transect from the crop edge towards its centre using the beating method 

(Williams et al., 2003).  The results were recorded on an assessment form together with the growth 

stage of the crop using the BBCH scale (Lancashire et al., 1991).  Weather variables (temperature, 

wind direction, whether or not it had rained within 12h prior to the assessment and general weather 

conditions at time of assessment) and notes on crop damage or insecticide treatments were also 

recorded. Spent traps were carefully labelled (upwind or downwind trap, site name and dates set 

out and taken in) and returned with the transect assessment form by post to Rothamsted for 

processing; each assessment form and trap was logged and traps were stored in a freezer at -

20°C until the number of pollen beetles, pollen beetle parasitoids, beneficial insects (bees, 

butterflies, hoverflies etc) and ‘other non-targets’ were counted and recorded.     

 

 

 
 

 
Figure 13.  Trap assembly and positioning on field sites in the pollen beetle monitoring study.  Each 
site assumed a west-south west prevailing wind.  Potential sites for upwind and downwind traps are 
marked and the orientation of the traps (facing out of the crop) shown. 

 

In order to help establish a relationship between trap catch and position of the trap with respect to 

the prevailing wind direction and surrounding landscape features (Monitoring Experiment aim no. 2 

above; and see section 3.2.4), volunteers were also asked to provide information on their site 

including the co-ordinates of the field (if known), a map indicating the positions of the upwind and 

downwind traps on the study field, and information on the surrounding landscape within a 1km 

radius of each trap including positions of OSR crops in both the current and previous year.  

http://www.cropmonitor.co.uk/
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Statistical analysis: correlation of the numbers of pollen beetles on the traps with the numbers on 

plants in the crop 

Data from traps and plants in the crop were log transformed (log10 (x+1)) and analysed by 

calculating the Pearson’s correlation coefficient using GenStat (14th edition, VSN International, 

2011).  The following correlations were calculated: between pollen beetle numbers on traps vs. 

numbers on plants in the crop; between upwind traps vs. upwind numbers in the crop; between 

downwind traps vs. downwind numbers in the crop.  We also calculated correlations between 

pollen beetle numbers in upwind vs. downwind traps; and between numbers on plants in the crop 

on upwind vs. downwind.  For the correlation analyses the sites with very low counts (mean trap 

count of <5) were excluded. Analyses were also restricted to data recorded from crops at the 

damage susceptible stage (between GS 50-59). 

 

Results & Discussion 

 

Pollen beetle monitoring study 

As a result of HGCA and AICC meetings, pieces in the farming press (Abel, 2010; ADAS, 2010; 

Case, 2010, 2011; Cook & Ferguson, 2007; Henly, 2010, 2011) and a little arm twisting, the 

number of volunteers increased in each year of the study; in 2008, 17 sites participated, in 2009 

there were 27 sites, in 2010, 57 sites and in 2011, 77 sites - from all over the major OSR-growing 

regions of England and Scotland (Figure 14). The enthusiasm shown and willingness of these very 

busy people to freely give up their time towards this study is evidence of the scale of the pollen 

beetle problem in their view, and their desire to have alternative management tools such as a 

monitoring trap at their disposal. 
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Figure 14.  Positions of the oilseed rape sites participating in the pollen beetle monitoring study 
2008-2011 [2008 (white), 2009 (red), 2010 (blue) and 2011 (yellow)].  Names and counties of each 
volunteer are given in the Acknowledgements section (3.11) 

 

Over the duration of the study a total number of 155,727 pollen beetles were caught on traps.  As 

expected, the total number caught each year increased as the number of sites participating in the 

study increased, but the mean number of beetles caught per trap also increased dramatically from 

years 1-4 of the study (Table 2).  To some extent this may represent selection of sites that had 

good (i.e. large) trap catches for participation in following years.  However, it is also likely that 

these data represent increasing size of the pollen beetle infestations from one year to the next.  

Data collected by FERA on the abundance of pollen beetles in crops across England & Wales is 

published on the CropMonitor website for 2005 and 2008 

http://www.cropmonitor.co.uk/wosr/surveys/wosr.cfm but otherwise there is little information on the 

size of pollen beetle populations from one year to the next and this may warrant further 

investigation. 

 

As beetles are known to fly upwind to colonize OSR fields (Williams et al., 2007) we expected to 

catch more beetles in the traps placed downwind than upwind on the field sites.  However, we 

found little evidence to support this hypothesis (Table 2) (but see section 3.2.4 which explored this 

in more detail, and found that the hypothesis cannot be rejected if wind direction is accounted for). 

http://www.cropmonitor.co.uk/wosr/surveys/wosr.cfm
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Table 2.  Number of pollen beetles caught on yellow sticky traps in oilseed rape crops in a pollen 
beetle monitoring study 2008-2011  

Year Total number of 

pollen beetles 

caught 

Mean (±SE) 

number of beetles 

caught per trap 

Mean (±SE) 

number of beetles 

caught per trap -

upwind 

Mean (±SE) 

number of beetles 

caught per trap -

downwind 

2008   3,142   8.12 (0.82)  7.54  (1.32)  7.24 (1.30) 

2009 16,344 18.85 (1.74) 15.64 (2.01) 15.96 (3.40) 

2010 60,301 29.46 (2.08) 20.61 (3.04) 25.00 (3.61) 

2011 75,670 40.49 (2.49) 45.76 (5.05) 28.76 (3.11) 

 

 

Statistical analysis: correlation of the numbers of beetles on the traps with the numbers on plants in 

the crop 

There was evidence for a correlation between the numbers of beetles trapped in the upwind and 

downwind traps and a strong positive correlation between the numbers of beetles per plant in the 

upwind and downwind crop scouting transects.  However, there was no significant correlation 

between the trap catch and numbers on plants in the crop transects (Table 3).  

 
Table 3.  Pearson’s correlation coefficients between pollen beetle numbers caught on traps (traps) 
and the mean number per plant derived from plant scouting from 10 plants along a 50 m transect 
from the crop edge towards the centre (transects)  

Correlation  R  n 

Total trap catch vs. total in transects 0.2249 280 

Upwind traps vs. upwind transects 0.2423 280 

Downwind traps vs. downwind transects 0.2484 280 

Upwind vs. downwind traps 0.5609 280 

Upwind vs. downwind transects 0.8044 280 

 

 

Summary & conclusions 

 

Unfortunately there was no simple correlation between the number of beetles caught in the traps 

and the number of beetles present on plants in the crop. We are therefore unable to calibrate trap 

catch to a given action threshold expressed as the number of beetles per plant using a simple 

linear relationship.  There may be other factors that could help to explain the variance in the data, 

such as landscape factors and/or meteorological effects (see section 3.2.4) and work conducted in 

the Extension to this project (see Appendix C) will attempt to model these effects to improve 
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calibration efforts.  It should also be noted that the results presented here are based on numbers of 

beetles caught on a simple yellow sticky trap and not the prototype trap with a bait developed in 

Objective 1 of the project, which was shown to increase trap effectiveness (see Section 3.2).  

There may be value in repeating calibration experiments using the commercial traps.  Furthermore, 

there may be great value in further work to calibrate the trap catch with actual crop damage, rather 

than numbers of beetles in the crop as a more direct action threshold to prevent crop loss. This will 

be investigated in the Extension to this project (see Appendix C). 

 

In the meantime, it is important to point out that the monitoring trap still has value for pollen beetle 

management.  The trap can be used at the start of the season (early March) to detect the start of 

immigration; if there are none on the trap there will be none in the crop, and there is no need to 

treat with insecticide.  It may also be used to focus monitoring on crops (which is time consuming); 

as a rough rule of thumb if there are c.10 beetles on the trap, it is probably worthwhile monitoring 

the plants in the crop.  It may also be used to detect peaks of immigration, but these will be relative 

to previous trap catches on the site, and completion of immigration, when the numbers on the traps 

do not increase, or begin to decrease.    

 

 

3.2.4. Develop models to determine the best trap position 

 

Introduction 

 

We know from previous work that pollen beetles migrate to OSR crops upwind (Williams et al., 

2007) and generally colonize the crop from one direction, starting at the crop edge (Williams & 

Ferguson, 2010) resulting in an uneven distribution of beetles throughout the crop during its 

damage-susceptible stage (Ferguson et al., 2003a,b).  This poses a problem for crop scouting 

methods and for the positioning of monitoring traps, as unless several transects are performed or 

more than one trap placed on different sides of the field, values based on one sample position only 

could run the risk of under-estimating the pest population.  However, in the interests of costs, it is 

preferable for growers to minimize sampling effort.  A better understanding of the immigration 

behaviour of pollen beetles into OSR crops could help growers and crop consultants to know 

where best to place a monitoring trap or perform a crop scouting transect if only one sample is to 

be used to determine whether or not action thresholds have been breached or not.  Such 

knowledge would also help to inform on where best to place trap crops (see section 3.5) or help to 

identify fields that may be at particular risk of pollen beetles.    

 

We hypothesise that pollen beetle immigration into a given field will be influenced by 

meteorological conditions such as wind direction and temperature, and environmental features 
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such as woodlands or hedgerows (where pollen beetles may hibernate) (Williams, 2010), the 

presence of OSR crops in the previous year (if they hibernate close to previous crops) and the 

presence of OSR crops in the current year (may increase attraction to a given field if block-cropped 

with other OSR if it is perceived by beetles to be a ‘super-stimulus’, or conversely this may have a 

‘dilution effect’ resulting in fewer beetles on a given field than if that field was the only OSR crop in 

the near-locality).   

 

We attempted to model the effect on pollen beetle trap catch of meteorological conditions and 

landscape features using data on the trap catch of pollen beetles from the pollen beetle Monitoring 

study (see section 3.2.3), meteorological data from the Environmental Change Network and UK 

Meteorological Office, and landscape information derived from information collected during the 

Monitoring study.  We found strong evidence that meteorological conditions (temperature, wind 

direction and speed and daytime rainfall) and some evidence that landscape features (area of 

residential gardens, length of hedgerow and length of treeline) affect trap catch. 

 

Materials & Methods 

 

Digital mapping of environmental features surrounding sticky trap sites and the extraction of area 

and length data                                                                                                                                  

In order to provide data to help determine the influence of landscape factors on trap catches of 

pollen beetles, relevant landscape features surrounding were digitally mapped within a 1km-radius 

around each trap using Google Earth. GIS software was then used to extract information on the 

areas or lengths of these features from within eight directional segments of a 1km circular buffer 

area mapped surrounding each trap.  

Trap locations (upwind and downwind) were initially found using either coordinates or maps 

provided by the volunteers hosting field sites, and were marked using place-marker ‘points’ in 

Google Earth (Figure 15). Mapping was then carried out within a radius of approximately 1.1 km of 

each trap point (a slightly larger radius than that of the buffer area was used to ensure that the 

mapped area was of sufficient size for data extraction). The features to be mapped were chosen 

on the basis of their potential to provide overwintering habitats for the beetles, or were important as 

sites for feeding and reproduction (i.e. OSR crops). Linear features (hedgerows and lines of trees) 

were marked by drawing a line, or ‘path’ along them. Non-linear features (woodlands, residential 

gardens and OSR fields) were mapped by drawing ‘polygons’ around their perimeters, enclosing 

them. The features were usually clearly visible from the most recent Google Earth satellite 

photographs, but if they were not, images taken at earlier dates could be viewed to support the 

presence or absence of a particular feature. OSR fields within the area around each trap were 

mapped both for the trapping year, and for the previous year, using information provided by the site 
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hosts. Once digitization was complete, the points, paths and polygons were converted into 

‘shapefile’ format for use in ArcGIS. 

Background maps, or ‘basemaps’ for the areas of interest were obtained from the EDINA OS 

Digimap service, and imported into the GIS software. The trap locations and the associated 

mapped landscape features were added and superimposed over the relevant basemap, ensuring 

that compatible geographical projections were used for data from different sources. At this point it 

was possible to visually check the correct alignment of the digitized data and the basemap. 

A custom template for the 1 km-radius buffer was created using a spread sheet designed to plot 

the perimeter and segments of the buffer for any inputted pair of coordinates. The coordinates 

were read off for the trap location in ArcGIS, and then used within the spread sheet to plot the 

template. The template was then imported into ArcGIS, and a visual check made to ensure that it 

was centred on the desired trap location. The template was then used within ArcGIS as a buffer to 

extract the area and length data of individual features from within each of the eight segments. The 

segments were 45 degrees wide and centred on NNE, ENE, ESE, SSE, SSW, WSW, WNW and 

NNW bearings.  The final ArcGIS output was a table of area and length data for the fragments of 

landscape features located within each of the directional segments around a trap. A visual check of 

the GIS map was performed on each occasion to confirm that the data extraction had been 

successful. 

 

Figure 15 Mapping environmental features surrounding the pollen beetle traps.  Areas of woodlands, 
residential gardens, oilseed rape crops in the current year or previous year and the length of tree-
lines and hedges were mapped (see white lines) within a 1km radius of each trap (surround of 

downwind trap shown) and calculated for each of 8 segments  
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Weather data  

Hourly weather data (temperature, wind speed and direction, rainfall) for Rothamsted and Woburn 

farms was obtained from the UK Environmental Change Network (www.ecn.ac.uk). Daily weather 

data (minimum and maximum temperature, daytime rainfall, wind speed and direction at 1200) 

were obtained from the UK Meteorological Office ‘Daily Sites’ data set for the weather stations 

closest to each field. Daily weather variables were calculated for Rothamsted and Woburn to 

match the variables obtained for the other sites. Wind directions were identified with the segments 

used to define to landscape sectors.  

The temperature variables were then transformed into a quantity thought more likely to relate to 

insect behavior. Accumulated temperature for each day (day-degrees above 10°C) was derived 

from min and max temperature per day using a saw-tooth approximation. The daily minimum 

temperature was assumed to occur at 5am; the daily maximum was assumed to occur at 3pm; with 

interpolation by straight lines between these points. The accumulated temperature was calculated 

as the integral of this saw-tooth function during the period 0600-1800 (daylight hours) when 

temperature > 10°C. The baseline temperature of 10°C was used as no trap catches were 

observed unless the maximum temperature exceeded this value. 

Modelling 

Since meteorological variables, particularly temperature, were known to strongly affect pollen 

beetle catch within crops (Ferguson et al., in press) it is necessary to adjust for these variables 

when trying to detect the effect of landscape. We expect that temperature, rainfall and wind speed 

might affect the number of beetles coming into the crop, and that wind direction might affect the 

direction from which beetles enter the crop, with beetles tending to fly upwind towards the crop. We 

also hypothesize that landscape features may affect the numbers of pollen beetles entering the 

crop – we assume that beetles fly reasonably directly towards the crop, and so landscape features 

in the 3 landscape segments facing each trap were used as explanatory variables for that trap.  

The first step in the modelling process is to build a model of daily counts for trapped beetles; these 

numbers can then be accumulated across the trapping period. This model was implemented as a 

GLMM (generalized linear mixed model, Breslow & Clayton, 1993) with a composite link function 

(Thompson & Baker, 1981) used to implement the accumulation step. Random effects were used 

to define the structure of the data set as traps and days within fields, and this ensures that the 

correct denominator degrees of freedom are used in F tests for testing fixed terms. An initial model 

was fitted using weather variables only, written as 

 

 

 

 

http://www.ecn.ac.uk/
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log(μijk)=c+αTik+βv(ik) + γWik+ δu(ijk)  

where: 

μijk is the expected number of beetles in field i, on a trap in quadrant j, on day k 

c is an overall constant 

Tik is the accumulated temperature (day-degrees) for field i on day k  

βv are a set of factor effects (v=2,3,4) for daytime rainfall (Rik) in field I on day k. The index v is 

classified as 2 for 0.01 < Rik ≤ 1, 3 for  1 < Rik ≤ 2.5, and 4 for 2.5 < Rik . 

Wik is the wind speed at 12:00 in field i on day k 

δu is a set of factor effects (u=2,3,4) for the discrepancy between the segment faced by the trap          

and the downwind segment from which beetles are expected to arrive (flying upwind). The index u 

is equal to the discrepancy in direction (measured as segments) with u=1 for no discrepancy.  

The unknown parameters to be estimated in this model are c, α, βv for v=2,3,4, γ  and δu for 

u=2,3,4. This model uses first-level-zero parameterization, so the overall constant includes the 

effect of zero rainfall (Rik≤0.01) and no discrepancy between the trap and wind direction. All 

explanatory variables were standardized (to zero mean and unity standard deviation) before 

analysis. The distribution of the trap counts was assumed to be negative binomial, to allow for 

spatial clustering (heterogeneity) that had been observed previously. 

 

This model was extended by adding random terms for field, trap and day variation. Quadratic terms 

for the weather variables temperature, rainfall and wind speed were added to allow for curvature in 

these relationships. Landscape variables (areas of woodland, residential gardens and OSR crops 

in the current and previous year, lengths of treeline and hedgerow) were then added into the 

model, also using a quadratic form in order to detect curvature. This gave the full model which was 

then simplified using backwards selection, dropping the variable with the least significant marginal 

F-test (p>0.1) at each step.  

 

Results & Discussion                                                                                                                                   

Thirty fields were selected for modelling. These fields each had good landscape data provided by 

site hosts and several positive trap catches within the green bud period. These 30 fields 

encompassed 12 sites across four years (2008-2011) with 616 trap catches in total (108 in 2008, 

210 in 2009, 150 in 2010 and 148 in 2011). For these sites, the minimum trap catch was zero, with 

maximum catch = 1368; median catch = 10 and mean catch = 55.27.  

Summary statistics for landscape variables are given in Table 4. A large range of values is present 

for each of the variables and in most cases, the distribution of values is skewed (mean > median).  
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Table 4. Summary statistics for landscape variables for traps included in analysis  

Summary 

statistic 

Area (m2) Length (m) 

Wood Garden 
OSR crop 

current year 

OSR crop 

previous year 
Hedge Treeline 

Minimum 0 0 21 0 0 0 

Mean 135337 157789 88306 51678 3139 8846 

Median 99452 50743 31449 28698 3006 534 

Maximum 628402 955574 822312 600601 9376 3210 

 

The final model contained terms for several meteorological variables: accumulated temperature 

(quadratic), wind speed (linear), daytime rainfall (as a factor) and discrepancy between wind and 

trap direction (as a factor). Several landscape variables were also retained in the model: area of 

residential gardens (linear), length of hedgerow (linear) and length of treeline (linear). Parameter 

estimates and their SEs are shown with t-statistics in Table 5. Clearly temperature, wind speed and 

direction are the dominant explanatory variables. The response to temperature (back-transformed 

onto the natural scale) is shown in Figure 16;  beetle numbers increase as temperatures increase 

from 0 to 3.5 day-degrees (corresponding to a constant temperature of 13.5°C) and then decrease 

as temperatures increase further.  Sedivy & Kocourek (1994) also reported that mass flight could 

occur at temperatures >13.5°C and recently Ferguson et al. (in press) found pollen beetle flight 

within a plot of OSR at 12°C. Beetle numbers decrease as wind speed increases, and as the 

amount of rainfall increases. Beetle numbers also decrease for a 3-segment discrepancy between 

trap and wind direction but then increase for a 4-segment discrepancy. This may reflect wind 

influence on beetle flight direction: beetles may fly upwind towards a crop, or be carried downwind 

towards it.  

 

Beetle numbers increased as the area of residential gardens increased, as the length of treeline 

increased and as the length of hedgerow decreased, but these effects were much smaller than 

those for the meteorological variables.  
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Table 5 Estimated fixed effect from fitted generalized linear mixed model. Temperature, windspeed, 
area and length variables all standardized. Linear and quadratic terms fitted as orthogonal 
polynomials 

Term Estimate SE t 

Constant 0.3065 1.2245 0.25 

Accumulated temperature (linear) 1.1433 0.1305 8.76 

Accumulated temperature (quadratic) -0.7558 0.1325 -5.71 

Windspeed -1.4306 0.1412 -10.13 

Rainfall 0.01-1mm -0.7020 0.3769 -1.86 

Rainfall 1-2.5mm -1.2056 0.6763 -1.78 

Rainfall >2.5mm -2.2864 1.1410 -2.00 

2 segment discrepancy in wind direction -0.2584 0.1355 -1.91 

3 segment discrepancy in wind direction -1.0132 0.1494 -6.78 

4 segment discrepancy in wind direction -0.4845 0.1820 -2.66 

Area of residential gardens 0.1676 0.0870 1.93 

Length of hedgerow -0.2540 0.0919 -2.76 

Length of treeline 0.1767 0.0930 1.90 

 

 

 
Figure 16. Expected trap catch of pollen beetles in response to accumulated temperature (day-
degrees above 10°C) for no rainfall and other explanatory variables at their mean values. 
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As for all regression models, this model is based on observed correlations between the 

explanatory variables and the response, and may not reflect any causal mechanism. Given this 

caveat, these results are biologically interpretable in terms of causation with respect to the weather 

variables. The correlation with increased treeline could be interpreted as suggesting that pollen 

beetles may overwinter in treeline in preference to hedgerow, but this hypothesis would require 

further testing. 

 

Summary & Conclusions  

 

We have found that trap catches are strongly affected by weather conditions and weakly affected 

by landscape features. The effect of temperature suggests that there is no need to trap when the 

maximum temperature is below 10°C. The effect of wind direction suggests that traps should be 

placed on the down-wind side of a crop. However, variation in wind direction means that this 

position may vary between sample dates.  

 

 

3.3. Assess and improve the ability of existing decision support 
systems to identify risk periods for pollen beetle (Objective 1, 
Task B) 

 

3.3.1. Introduction 

A decision support system (DSS) that accurately identifies the period of risk by modelling pollen 

beetle population dynamics could focus monitoring (crop scouting and use of monitoring traps), 

making it less onerous. This could increase take-up of decision support systems and IPM tactics as 

a whole, and lead to reductions in unnecessary insecticide treatments to oilseed rape (OSR). 

 

Advice on pollen beetle management is currently available to UK growers through the 

CropMonitorTM website www.cropmonitor.co.uk. CropMonitorTM is a collaboration between 10 

organisations, including government agencies, levy bodies and industry. It provides up-to-date 

measurements of crop pest and disease activity in arable crops across England and acts as portal 

for access to a wide range of information on pests and pest risk assessment. Advice is compiled by 

Farming Online www.farming.co.uk from reports received from members of the Association of 

Independent Crop Consultants www.aicc.org.uk.   Advice obtainable through the CropMonitorTM 

website is hereafter referred to as ‘current advice’. The period of risk from pollen beetles to OSR is 

defined in current advice in the UK as ‘green-to-yellow bud stage’ (BBCH growth stage 51-59; 

Lancashire 1991) and it is advised that ‘backward crops are most at risk’. Monitoring effort can be 

further focussed using current advice in the UK that states that ‘pollen beetles fly at temperatures 

http://www.cropmonitor.co.uk/
http://www.farming.co.uk/
http://www.aicc.org.uk/
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of 15°C or above’. However a simple temperature threshold is unlikely to take account of all 

significant factors governing the timing of immigration, and crop scouting every time the 

temperatures exceed 15°C is onerous, if not impractical for most growers and crop consultants.  

Improved DSS are needed. 

 

‘proPlant expert' http://www.proplantexpert.com/  (hereafter referred to as ‘proPlant’) is a web-

based DSS developed in Germany that alerts the user to the start of pest immigration and its 

progress. Its forecasts are based on phenological models developed from historical pest data and 

a sophisticated use of weather variables (Johnen et al., 2010). The proPlant model for pollen 

beetles is parameterised by daily records of air temperature, rainfall, sunshine and wind speed, 

automatically downloaded from local meteorological stations. It provides local three-day forecasts 

of pest immigration risk that indicate whether monitoring is needed. proPlant is widely used 

commercially for OSR in Germany, Austria, the Czech Republic, France and Sweden. Users of this 

DSS in Germany apply less insecticides against spring pests than those not using the system 

(Johnen et al., 2006).  

 

The performance of proPlant was tested for pollen beetles in UK conditions and compared with 

current advice in relation to pollen beetle management in the UK. We assessed the accuracy with 

which the two DSS’s identified immigration risk by reference to data from four years of field 

observations and compared the monitoring effort each recommended. 

 

3.3.2. Materials and methods 

 
Field observations 

 

For this study 44 OSR crops that were intensively sampled in the Pollen beetle Monitoring study for 

pollen beetle phenology (see section 3.2.3) were chosen (2, 10 , 12 and 20 fields in 2008, 2009, 

2010 and 2011, respectively). At these fields pollen beetles were sampled both by scouting on 

plants and by sticky traps.  Samples were taken approximately twice-weekly during the green-to-

yellow bud stage of the crop. Observations following any spring insecticide applications were 

excluded from the analysis as pollen beetle mortality following treatment would influence counts on 

plants in the transects and the reliability of detecting further immigration. The mean number of 

pollen beetles per plant was calculated for each field site on each sample date and compared to 

the standard spray thresholds of two, five and 15 beetles per plant for normal crops, backward 

crops and varietal associations, respectively (Oakley, 2003). It was not possible to sample crops 

daily so it was assumed that any threshold breach took place on the sampling date on which it was 

observed. This conservative assumption is independent of either DSS and the weather data on 

which they are based and any delay in the recognition of a threshold breach is likely to affect the 

http://www.proplantexpert.com/expert/index.jsp
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performance assessment of each DSS equally.The timing of growth stages 51 and 59, which 

delimit the period of plant vulnerability to pollen beetle damage, were estimated by interpolation 

from growth stage data recorded on the twice-weekly sample dates, taking into account the 

progression of growth stages at other sites in the same year.  

 

Weather data 

 

Weather data were obtained from UK Met Office or farmer-operated meteorological stations within 

1-80 km (average 16 km) of each sampled field. The proPlant phenological model requires daily 

measurements of minimum and maximum air temperature (°C), average air temperature (°C), 

rainfall (mm), sunshine (h) and average wind speed (m/s).  

 

proPlant expert Decision Support System 

 

proPlant expert provides forecasts for the day the system is consulted and the following two days. 

proPlant output gives a graphical display of weather data (max and min temperature, sunshine 

hours and rainfall) together with an ‘immigration’ bar on which forecasts are given of the start, 

peaks and end of immigration (Figure 17). The immigration bar also indicates the daily level of risk 

of immigration with a traffic-light system of coloured dots (green = immigration possible, yellow = 

good conditions for immigration and red = optimal conditions for immigration; here presented in 

grayscale, Figure 17).  

 

The version of the proPlant model used in this UK study was the same as that used in all European 

countries where it is marketed. In 2011 the model was adjusted globally, extending the period to 

completion of immigration to give a better fit to observed data from Germany. Also in 2011, the 

model was refined to allow the user to tailor the model to local conditions of wind exposure, using a 

simple choice of two settings, open to wind or not. Finally, the graphical display of proPlant output 

was modified to indicate the days on which monitoring is advised. Monitoring days are indicated by 

vertical lines beneath the immigration bar (Figure 17). The monitoring indicator is accompanied by 

a figure giving an estimate of the percentage of the population of beetles that is predicted to have 

migrated from overwintering sites. This information is intended to allow the user to estimate the 

potential magnitude of any further immigration, relative to the size of beetle populations already in 

the crop.   
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Figure 17. Example of proPlant output for the Bedford weather station 2011. 

 

Criteria for assessment and comparison of DSS’s 

 

For both DSS’, standard UK recommendations on spray thresholds and the susceptibility of crops 

to damage were followed. Advice derived from the two DSS’ was compared in relation to the 

phenology of pollen beetles in the field from the Monitoring experiment and any breaches of the 

three thresholds (two, five and 15 beetles per plant). For each site and for each DSS, the dataset 

used was delimited by the period between the start of growth stage 51 and day on which the 

breach of threshold would be detected, had the advice of the DSS been followed. If no threshold 

breach was detected, the dataset was taken from the whole period delimited by growth stages 51 

and 59. 

 

Most assessments and comparisons of DSS’ were made a posteriori, using known pollen beetle 

phenology and known weather data. To check the validity of this approach, an analysis of the 

performance of the two DSS’ in real-time in 2011 was also made. proPlant uses weather forecasts 

to model future risk and therefore to forecast sampling days. Current advice states that beetles fly 

above 15°C so the risk of immigration can again be assessed from the weather forecast. Weather 

data from the UK Met Office Bedford site were used to provide daily three-day forecasts of weather 

parameters using the German Weather Service forecast model from 2 March to 21 April 2011. 

These data were used to provide three-day proPlant prognoses and forecasts of maximum 

temperature. Using this data, the performance of the each DSS in real time was assessed in 

relation to field monitoring data from nine sites within 50km of Bedford. This approach provides a 

more rigorous test of both DSS’ as it takes into account the uncertainty inherent in weather 

forecasts.  
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DSS performance measures 

 

Four performance measures were compared for current advice and for proPlant: 

 

i) Number of days when consultation of the DSS was required 

For current advice, all days during the susceptible plant growth stage (51-59) were designated as 

‘consultation days’, i.e. days when the weather forecast should be consulted as to whether the 

temperature was likely to reach 15°C. proPlant was first consulted on the day that the crop 

reached growth stage 51. Thereafter, proPlant was consulted every either third day or on any day 

when a dot (of any colour) had been indicated by the previous consultation, whichever was more 

frequent. If proPlant indicated that immigration was complete, the last consultation was made on 

the following day, otherwise consultations stopped after growth stage 59. 

 

ii) Number of monitoring days recommended 

Monitoring is recommended by current advice on all days with a maximum temperature ≥15°C 

during growth stages 51-59. proPlant advises that monitoring is necessary only on days when the 

model indicates yellow or red dots (risk of significant immigration) during growth stages 51-59. 

Monitoring should start on the day with the first yellow or red dot. Thereafter, if a contiguous series 

of such days occurs, proPlant advises that monitoring is needed only every third day and the last 

day in the series. 

 

iii) No. of breaches of threshold detected by the recommended monitoring 

It was assumed that a breach of threshold would be detected by the first monitoring day to be 

advised by each DSS on or after the date when experimental sampling had shown the threshold 

(2, 5 or 15 beetles/plant) to have been breached.  

 

iv) Relative timeliness of detection of threshold breaches 

The number of days difference (if any) between current advice and proPlant in prompting the 

detection of threshold breaches was calculated.  

 

Measures of immigration risk 

Two measures of immigration risk were also compared between DSS’. The accuracy with which 

the start of pollen beetle immigration was indicated by each DSS was assessed by comparing the 

phenology of pollen beetle numbers on sticky traps with the first dates that the DSS’ forecasted 

immigration risk (temperature ≥15°C for current advice and the first dot of any colour for proPlant). 

The number of days each DSS forecasted significant risk of pollen beetle immigration prior to each 

threshold breach (or until the end of growth stage 59) was also compared (all days with maximum 

temperature ≥15 °C for current advice and all days with yellow or red dots for proPlant expert).  
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Predictive accuracy of proPlant and current advice 

The accuracy of current advice in forecasting pollen beetle immigration due to temperatures 

exceeding 15°C was assessed by comparing real-time three-day temperature forecasts (for days 

0, +1 and +2) at the Bedford weather station in 2011 with the temperatures actually recorded. 

Similarly, the accuracy of proPlant three-day forecasts of significant immigration (yellow or red 

dots) at Bedford in 2011 was tested by comparison with the risk levels determined from the model 

a posteriori using recorded weather data. 

 

Statistical analysis 

 

The data were transformed (log10 (n + 1).  The number of consultation days advised, the number of 

monitoring days advised and number of days of immigration risk prior to each threshold breach 

was analysed using a bivariate mixed model accounting for variation between the sites (GenStat, 

Version 14, VSN International 2011).   

 

3.3.3. Results 

 
The dataset  

 

The number of sites with sufficient intensity of sampling for inclusion in the DSS comparison 

increased in each year of the study, providing a total of 44 (Table 6).  Although the 15 beetle 

threshold was breached at only one site, the 2 and 5 beetle thresholds were breached at 82% and 

43% of sites, respectively, providing a good test of the performance of each DSS.  The average 

distance between the sampling site and the nearest weather station was 16 km with a mode of 1 

km and a range of 1-80 km. The average duration of the DSS comparison at each site was 17 

days, this period being limited by the duration of the green-yellow bud stage, the date that 

sampling commenced and the date of any insecticide application (after which no data was 

accepted for use in this comparison). The interval between field samples was 3.7 days, reflecting 

the selection of sites where sampling was approximately twice weekly.  
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Table 6. Summary of the dataset used for the DSS comparison  

 
 
 

Relative performance of the DSS’: 

 

Prompting appropriate monitoring 

The performance of both current advice and proPlant in prompting monitoring that would lead to 

recognition of threshold breaches was very good. All threshold breaches at the 5 and 15 beetle 

thresholds would have been recognised using either DSS, as would almost all breaches of the 2 

beetle thresholds. The analysis suggested that the 2 beetle threshold would have been 

unrecognised by one or both DSS’ at three sites in 2010. At one site the apparent failure of both 

DSS’ was probably an artefact of the sampling regime. The threshold breach was detected by 

experimental sampling on 12 April, a day when maximum temperature did not reach 15°C and 

when sampling was recommended by neither DSS; no further sampling was recommended before 

the crop began to flower. Had sampling been done every day (impractical) or in accordance with 

either DSS (risking experimental bias), experimental sampling would almost certainly have 

detected the threshold breach on 10 April, as would sampling according to the recommendations of 

either DSS. At two sites at Woburn, proPlant failed to detect the breach of the 2 beetle threshold. 

Here, proPlant estimated that immigration was complete by 23 April, although transect counts of 

beetles on plants in fact continued to rise thereafter. In 2011, the proPlant pollen beetle model was 

globally adjusted in response to data from Germany to extend the model’s estimation of the period 

of immigration.  
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Figure 18.  Forecasted days of good immigration conditions up to breaches of different 
Thresholds (back-transformed means are given above each bar) 

 

 

 
 

 

Figure 19.   No. consultation days recommended up to the date that a threshold breach 
would be detected 

 

 
Figure 20.   Number of monitoring days recommended up to the date that a threshold breach would 
be detected 
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Number of days of immigration risk, DSS consultation and monitoring 

At every threshold level, proPlant consistently advised fewer days of good immigration conditions 

(14-21%; Figure 18), fewer days of DSS consultation (31-33%; Figure 19) and fewer pollen beetle 

monitoring days (34-53%; Figure 20) than did current advice.  

 

Timeliness of threshold breach detection 

On average the use of proPlant led to a delay in threshold breach detection of less than a day 

compared to using current advice (Figure 21).  

 

 
Figure 21 Relative delay in recognition of breached thresholds by proPlant compared to 
current advice (note that the 15 beetle threshold was breached at only one site). 

 

Forecast of the start of immigration 

proPlant consistently preceded or accompanied the first recorded immigration of beetles to 

experimental fields with a risk warning in the form of a green dot. By contrast the first immigration 

was only preceded by temperatures of ≥15°C on 57% of occasions and by red or yellow dots 

(proPlant) on 40% of occasions.  

 

Accuracy of forecasts of the risk of pollen beetle immigration 

proPlant responded appropriately to different weather conditions early in each year. For example, 

the greatest temperature difference in the early spring was between 2008 and 2011 (Figure 22). In 

2011, proPlant accurately forecasted an earlier start to immigration, earlier peaks and greater 

percent of immigration in this period in 2011 (Figure 22). The main immigration period fell within 

the period 1-20 April each year, when the temperature was more variable between years. This 

period was markedly warmer in 2011 than in 2010. Nevertheless, proPlant accurately predicted the 

period when infestation increased in each year and prompted monitoring on critical dates. 
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Figure 22 proPlant output for 10-31 March 2008 and 2011, indicating the daily maximum 
temperature (upper line) and immigration predictions. 

 

 

As expected, the accuracy of forecasts declined the further they predicted into the future. In 

relation to current advice, 7.3% of weather forecasts predicted wrongly that the air temperature 

would exceed 15°C on the day that the forecast was issued or wrongly predicted that it would not. 

This rose to 15.4% for the forecast for two days ahead. The levels of inaccuracy of proPlant 

forecasts were also greatest for two days ahead but were remarkably similar to those for the 

temperature forecast alone (Table 7). There was no consistent tendency to either under-estimate 

or over-estimate the risk of immigration but employing current advice would have led to some over-

estimation of risk for the day of the weather forecast and both DSS’ tended to under-estimate the 

risk for two days ahead. 

 

Validating a posteriori DSS comparisons 

When using both DSS in real-time at nine sites in 2011, the reduction in monitoring effort if using 

proPlant was 52% and 65% relative to current advice at the two most commonly used thresholds 

(5 and 15 beetles per plant, respectively; Figure 23). These reductions were almost exactly the 

same as when comparing the two DSS using a posteriori weather data at the same sites, validating 

the approach of the main study.  

T max 2008 

T max 2011 

Immigration bar 

Immigration bar 
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Table 7 Percent accuracy of prediction of good pollen beetle immigration conditions using 
forecasted temperature (current advice) or using proPlant. 

 Current advice: forecast of 

maximum temperature ≥15°C  

 proPlant: forecast of good migration 

conditions (yellow or red dot) 

 day 0 day +1 day +2  day 0 day +1 day +2 

% predictions inaccurate  7.3 10.0 15.4  7.3 7.5  12.8 

% predictions over-estimate 7.3  7.5   5.1  2.4 2.5   0.0 

% predictions under-estimate 0.0  2.5 10.3  4.9 5.0  12.8 

n 41 40 39  41 40 39 

 

 

 
 
Figure 23 Comparison of number of monitoring days recommended when using DSS’s in real- 
time and a posteriori  (Error bar = SED; back-transformed means given above each bar). 

 
 

3.3.4. Discussion 

 

Both DSS’ performed reassuringly well in prompting monitoring that would detect breaches of 

spray thresholds for pollen beetles in OSR. However the remarkable reductions provided by 

proPlant in the need for DSS consultation (30%) and for pollen beetle monitoring (34-53%) in 

comparison with current advice are potentially of great significance to time-pressured growers and 

crop consultants. These benefits are achieved without loss of effectiveness in detecting breaches 

of threshold, and with an average delay in threshold breach detection of less than a day. This small 

delay is due to less frequent monitoring during contiguous days of immigration. It seems likely that 

this would be accompanied by little additional risk to yield, given the compensatory ability of the 

crop, and would probably be outweighed by the benefit of using the DSS. 
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Markedly different winter and spring conditions in different years over the four years of this study 

did not affect the accuracy of the proPlant model which predicted pollen beetle immigrations into 

OSR crops in England and Scotland remarkably well. The greater sophistication of proPlant’s use 

of weather data is probably responsible for its ability to give earlier warning of pollen beetle activity 

than current UK advice. Its data-rich phenological model provides reduced estimates of 

immigration days, taking into account, for example, days that may be warm enough for flight but 

too windy or too wet. Although close proximity of source of weather data to the associated rape 

field is desirable, acceptably accurate proPlant prognoses were derived even when using data 

from a weather station 50 km distant.  

 

As expected, the accuracy of forecasts declined the further they predicted into the future for both 

DSS. It is reassuring that the levels of inaccuracy of proPlant forecasts were remarkably similar to 

those for the temperature forecast alone. Modern weather forecasting models achieve high 

degrees of accuracy in predicting temperature, the basis of the pollen beetle immigration risk 

prediction on current advice. The proPlant model appears to introduce no more inaccuracy to its 

prognoses than is inherent in the weather forecast data used to parameterise its model. 

 

Most assessments and comparisons of DSS’s presented here were made a posteriori, using 

known weather data and known pollen beetle phenology. The validity of this approach was 

confirmed by the real-time study in 2011 where reductions in monitoring effort matched those 

found a posteriori. Mixed modeling (REML) analysis will improve this validation in the Extension 

work to this project (see Appendix C).    

 

During the course of the project, two adjustments to proPlant were made to improve accuracy and 

fit to local conditions. The first modification allowed the user to tailor the model to local wind 

exposure and the second delayed the progress and extended the period of immigration. It was not 

possible to validate proPlant’s estimate of the end of immigration in the UK because the crop 

flowers earlier in relation to immigration than in continental Europe, but the model predicted the 

progress of immigration well. No special adjustment was necessary to adapt proPlant to the UK, 

despite the more maritime, less continental climate than Germany where it was developed.  

 

It should be emphasised that, although proPlant provides an estimate of the percent completion of 

immigration, it does not give an estimate of the level of infestation. As when using current UK 

advice, the decision as to whether to treat the crop with insecticide is made by the farmer or his 

adviser, with reference local thresholds and the results of the monitoring prompted by the DSS. 
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Our findings suggest that proPlant expert reliably models pollen beetle phenology in the UK and 

that its introduction to the UK would reduce the monitoring time, effort and cost required to assess 

pollen beetle infestations according to thresholds. This could in turn increase DSS uptake by 

farmers, leading to better targeting of insecticides, reductions in insecticide use and costs and less 

risk of insecticide resistance. In spring 2012, Bayer CropScience ran a trial version of proPlant on 

their website as part of their Stewardship activities. This is a clear mark of the success of this LINK 

project which played a significant role in leading to this trial. A small impact assessment of the 

effects of the proPlant maps on the 2012 season will be made in an Extension of this project (see 

Appendix C). 

 

3.4. Assess the potential of using turnip rape as a sentinel plant 
system for risk assessment in oilseed rape (Objective 1, Task C)   

 

Sentinel plants are usually used as bio-indicators of environmental pollution (e.g.Felsot et al., 

1996; Beeby & Richmond, 2003) or as early warning systems to detect invasive species (e.g. 

Britton et al., 2010).  This project assessed the potential of using such plants in risk assessment for 

crop protection.  The turnip rape (TR) plants in the trap crop must develop faster and flower a few 

weeks before the oilseed rape (OSR) crop for the system to work (Cook et al., 2006b).  This early 

flowering character offers two scenarios for the potential use of TR as a sentinel plant for risk 

assessment in OSR: (1) predictive: the number of pollen beetles on the TR at its green-yellow bud 

stage could be used to predict future infestation levels of the OSR crop when it reaches its 

susceptible growth stage; (2) real-time monitoring: sentinel plants of flowering TR could be used as 

‘living monitoring traps’ at the damage-susceptible stage of OSR to estimate the level of infestation 

in the OSR crop. Use of the trap crop in this way may offer additional benefits and further improve 

its value to growers.   

 

3.4.1. Sentinel turnip rape plants for risk prediction in oilseed rape crops 

 

Introduction 

 

We investigated the possibility that the mean number of pollen beetles on the TR plants during 

their green-yellow bud stage could be used to predict future infestation levels of the OSR crop 

when it reached a similar growth stage (green-yellow bud i.e. the damage-susceptible stage).  We 

found evidence of a correlation between the numbers of beetles on TR plants at the bud stage with 

the numbers present in OSR crops one week later, suggesting some merit in this approach to risk 

assessment. 
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Materials & Methods   

 

Simple linear regression was used to investigate the relationship between the TR border and the 

OSR plants in the centres of the same fields. Two different approaches of treating growth stage 

information were investigated. The first explored the relationship between pollen beetle numbers in 

TR borders during the bud phase (GS 50-59) against the numbers in the centres of the same fields 

1 week later and 2 weeks later (regardless of the OSR growth stage, but assuming OSR is 1or 2 

weeks behind in its development compared with TR). The second approach examined the 

relationship between OSR and TR at specific growth stages, using the data from the first dates at 

which a given growth stage (e.g. 51) was reached in TR and OSR.    

 

For both approaches, data were used from the Trap crop experiment (Section 3.5), extracted from 

Treatment 1 (in which plots of OSR had a TR trap crop which was not treated with insecticide; 

OSR-/TR-) and Treatment 2 (in which plots of OSR had a TR trap crop which was sprayed for 

pollen beetle (OSR-/TR+); in this case data were used up until the point where the TR was 

sprayed).  For each analysis data from experiments done in 2009-2011 were combined. The mean 

number of beetles within borders and centres for each field were calculated and then data were 

transformed using log10(x+1). 

 

Results & Discussion 

 

Relationship between pollen beetle numbers on plants in TR borders during the bud phase (GS 50-

59) against the numbers in the OSR centres of the same fields 1 week later and 2 weeks later 

Analysis of the number of beetles on plants in the TR border and on OSR plants one week later 

gave a significant regression slope (F1,38 = 17.68; P<0.001; adjusted R2=30.0; n=40) (Figure 24).  

However, there was no significant relationship between 2 weeks later (F1,36 = 2.88; P = 0.1; R2=4.8; 

n=38). These results must be treated with some caution as the data contained some influential 

observations and growth stages were often recorded as ranges so this also complicated the 

analysis and introduced additional variation.  This variation will be explored and the model 

improved in the Extension to this project (see Appendix C). 

 

Relationship between pollen beetle numbers in TR borders at a given growth stage and OSR in the 

centres of the same fields when it reaches the same growth stage   

The relationship between the number of beetles on TR plants in the trap crop when at a certain 

growth stage and on OSR plants when they reached the same growth stage was inconsistent 

between growth stages; at GS 50, 51, 57 and 59 a significant relationship was found (P<0.05; 

Table 8) but for GS 52, 53 and 55 the relationship was not significant (P>0.05; Table 8).  These 

results must be treated with some caution as the analysis is based on only a few observations 
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(n=12) and the data contained some influential observations, particularly in 2011.  Growth stages 

were often recorded as ranges and this also complicated the analysis and introduced additional 

variation. This variation will be explored and the model improved in the Extension to this project 

(see Appendix C). 

 
Figure 24 Fitted regression line and observed values showing the relationship between the mean 
number of pollen beetles in turnip rape trap crop plants at the green-yellow bud stage and the mean 
number of beetles on oilseed rape plants in the same field 1 week later (2009-2011). Regression line 
Y= log (mean pollen beetles in OSR centre +1) = 0.16 + 0.46 x log (mean number of pollen beetles in 
TR border). 
 

Summary & Conclusion 

 
Turnip rape plants in trap crops at the bud stage could act as early warning sentinel plants for risk 

assessment to alert growers to potentially large populations of pollen beetles in the OSR crop one 

week later.  However, the relationship is probably not robust enough to be of practical value at 

present.  More data are needed to improve the confidence in the analysis, specifically more 

frequent and more intensive sampling with more accurate recording of growth stages would give 

more observations for each growth stage. 
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Table 8 Results for linear regression analyses between the mean number of pollen beetles on turnip 
rape plants at a given growth stage and the number on oilseed rape plants when they reached the 
same growth stage. 

Growth stage Adjusted R2 F1,10 P n 

50 50.69 12.307 0.0056 12 

51 71.28 28.295 0.0003 12 

52 * 0.731 0.4124 12 

53 13.53 2.721 0.1300 12 

55 * 0.702 0.4216 12 

57 28.35 5.352 0.0433 12 

59 53.94 13.882 0.0039 12 

* R2 variable could not be estimated 

 

 

3.4.2. Sentinel turnip rape plants as ‘living monitoring traps’ for threshold detection 
in oilseed rape 

 

Introduction 

 

We investigated the hypothesis that the mean number of pollen beetles on flowering TR plants 

growing in the trap crop border can be used to estimate the mean number of beetles per plant in 

the OSR crop during its susceptible green-yellow bud stage in order to facilitate action threshold 

detection.  This would save the need for time consuming plant scouting transects for monitoring, 

and could also save costs by eliminating the need for a commercial monitoring trap.   

 

Materials & Methods   

 

Simple linear regression was used to investigate the relationship between the numbers of pollen 

beetles on OSR plants in the centres GS 50-59 with the numbers on TR plants in the trap crop at 

the same time.  The data were used from the Trap crop experiment (Section 3.5) exactly as 

described in Section 3.4.3 above.  As in 3.4.3, the mean number of beetles per plant on plants in 

the trap crop borders and on OSR plants in the crop centres for each field were calculated and 

then data were transformed using log10(x+1). 

 

Results & Discussion 

 

There was a positive correlation between the mean number of beetles on plants in the OSR crop 

with the number on TR plants in the trap crop (F1,31 = 41.37, P <0.001, adjusted R2 = 55.8) (Figure 
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25).  This indicates that it may be possible to use the TR trap crop as a ‘living monitoring trap’.  

According to the regression model, an action threshold of 2 beetles on OSR plants in the main crop 

would be identified when approximately 7 beetles are found in the TR.  A threshold of 5 beetles in 

the main crop would be identified by a mean number of 34 beetles in the TR.  The data collected 

did not allow the model to accurately predict beyond 5 beetles/plant in the main crop, so a figure 

for the 15 beetles/plant threshold cannot be predicted at this stage. It must be noted however, that 

like 3.4.1, there were influential observations in the 2011 data and more data are required to 

improve the model before we can be confident enough to recommend this as an approach to 

growers. We aim to improve the model as part of the work in the Extension to this project (see 

Appendix C). 

 
Figure 25 Fitted regression line and observed values showing the relationship between the mean 
number of pollen beetles on turnip rape plants in a trap crop and the mean number of beetles on 
oilseed rape plants in the main crop when it is at the damage-susceptible green-yellow bud stage (GS 
50-59) Regression line Y= log (mean pollen beetles in OSR centre +1) = 0.096 + 0.45 x log (mean 
number of pollen beetles in TR border). 

 

Summary & Conclusion 

 
Turnip rape plants in trap crops could act as ‘living monitoring traps’ to facilitate pollen beetle 

monitoring in associated OSR crops.  As the number of beetles in the OSR crop was correlated 

with the number on trap crop plants, it should be possible for growers to sample the trap crop 
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plants (in the border of the crop where they are easily accessible) instead of doing a transect into 

the field of OSR.  This would save time and would also negate the need (and cost) of commercial 

plastic monitoring traps, giving growers that use trap crops an additional benefit.  However, the 

relationship is probably not robust enough to be of practical value at present.  More data are 

needed to improve the confidence in the analysis before this approach could be recommended to 

growers.  

 

3.5. Evaluate on a field scale the potential of a turnip rape trap crop for 
reducing the abundance of pollen beetles in oilseed rape crops 
(Objective 2, Task D)  

 
3.5.1. Introduction 

 

Trap crops are plant stands deployed to attract, intercept and retain insect pests thereby reducing 

damage to the main crop (Cook et al., 2007a). Use of trap crops can reduce the area that needs to 

be treated with insecticides, and can potentially eliminate the need for insecticide use altogether.   

Trap crops exploit the host-plant location processes of pests and comprise highly attractive host 

plants of a growth stage, cultivar or species preferred by the target pest, and are usually planted in 

close proximity to the main crop to be protected. They have been used successfully in a variety of 

cropping systems (Hokkanen, 1991; Cook et al., 2007a, Shelton & Badenes-Perez, 2006) but are 

not currently available for OSR.  Previous work in Defra-funded studies PI0340, PS2107 and 

PS2113 identified turnip rape (Brassica rapa) (TR) as an effective trap crop for pollen beetles in 

spring OSR because it is early flowering (flowers ~3 weeks earlier than spring OSR); exploiting the 

colour attraction of pollen beetles to yellow; see also section 3.2.1).  It also has a more attractive 

odour at the bud stage, due to increased levels of phenylacetaldehyde and indole (Cook et al., 

2006b).  The trap crop therefore retains beetles until the OSR is past its damage-susceptible 

phase (Cook et al., 2006b). A trap crop planted as a border surrounding the main crop was 

selected following modelling studies (Potting et al., 2005) and reduced numbers of pollen beetles 

to below threshold levels (Cook et al., 2004). Work is currently underway to transfer the model to a 

winter OSR cropping system more relevant to UK agriculture, and it shows potential for control of 

flea beetle (Psylliodes chrysocephala) (Barari et al., 2005) and pollen beetle (Defra PS2113). 

However, these studies have been conducted on small plots (30 x 30 m) and the tactic needed to 

be tested on a more realistic field scale.    

 

We evaluated, in a replicated field scale experiment conducted over three years, the potential of a 

turnip rape trap crop planted as a border around the main OSR crop for reducing the abundance of 
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pollen beetles in the OSR crop in comparison with untreated crops without a trap crop. We also 

compared the effect of spraying the turnip rape trap crops with insecticide and compared trap 

cropping treatments with a scenario of prophylactic insecticide treatment on OSR crops. We found 

that the trap crop performance was inconsistent; the tactic reduced pollen beetle populations in 

some fields in some years but overall the population of pollen beetles in the main OSR crop was 

not different from fields with no trap crop. 

 

3.5.2. Materials & Methods 

 
Field experiment set up 

 

A replicated experiment was done on two farms (Rothamsted Experimental Farm, Hertfordshire 

and Woburn Experimental Farm, Bedfordshire) over three years (2009-2011).   In each year, four 

treatments were established on each site; each treatment was grown as a 1 ha plot in a separate 

field with a minimum of 500m between each treatment and any other OSR fields.  Treatments 

were: 1. OSR-/TR-: oilseed rape with a turnip rape trap crop border (both untreated); 2. OSR-/TR+: 

oilseed rape (untreated) with a turnip rape trap crop border treated with a pyrethroid insecticide 

(Hallmark with Zeon Technology - lambda-cyhalothrin- at 75ml/ha) at green-yellow bud stage for 

pollen beetle and at early flowering for seed weevil (regardless of pest population); 3. OSR-/OSR-: 

oilseed rape with no trap crop (i.e. with an OSR border; all untreated); 4. OSR+/OSR+: oilseed 

rape with no trap crop, all insecticide treated as above (Figure 26).  In each year  winter OSR cv. 

Astrid was used (sown at 6.8kg/ha with approx. 120 seeds/m2).  For treatments with a trap crop, 

Pasja (a hybrid cross between a forage turnip and forage rape) was used as a model ‘turnip rape’, 

as this was found to be the earliest flowering turnip TR type in previous experiments done in Defra 

project PS2113 and flowering differential between the main crops and the trap crop is crucial to 

function of the trap crop (Cook et al., 2007b).  The Pasja turnip rape trap crop (hereafter referred to 

as the TR trap crop) was sown at 3.3Kg/ha with approx. 100 seeds/m2) as a 9 m border around the 

main OSR crop and therefore represented approximately 10% of the area of the whole plot.  Both 

OSR and the trap crop were autumn-sown on the same day. 

 

Assessments 

 

Adult pest infestation and presence of natural enemies (parasitoids) and other beneficial insects in 

the borders and the OSR main crop were assessed at 36 spatially referenced points in a 6x6 grid 

pattern throughout the field (Figure 27).  At each point, the main racemes of 3 plants were sampled 

using the beating method (Williams et al., 2003).  In each year assessments took place every 3-4 

days, starting when the temperature first reached 10ºC after March 1st and continued until mid-

flowering of the winter OSR crop (BCCH GS 63).  On each assessment date the growth stage of 
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the OSR and TR plants was recorded for each treatment using the BBCH scale (Lancashire et al., 

1991).  At the end of the experiment in each year, seed yields were taken; samples of seed 

harvested from 4 ‘cuts’ (2 m wide by 10m long) were taken from the OSR centres of each 

treatment and 4 cuts from the borders, one from each side of the plot (either OSR or TR; TR yields 

were taken earlier than those for OSR at the optimum time).  Yield (t/ha) was calculated. 

 

 

  
  
 
 
 
                Treatment 1               Treatment 2            Treatment 3           Treatment 4 
                    OSR-/TR-               OSR-/TR+               OSR-/OSR-             OSR+/OSR+ 
 
Figure 26 Diagrammatic representation of treatments in the trap crop field experiment.  1. OSR-
/TR- oilseed rape with a turnip rape trap crop border (both untreated); 2. OSR-/TR+ oilseed rape 
(untreated) with a turnip rape trap crop border treated with an insecticide at its green-yellow bud 
stage for pollen beetle; 3. OSR-/OSR- oilseed rape with no trap crop (i.e. with an OSR border; all 
untreated); 4. OSR+/OSR+ oilseed rape with no trap crop, all treated with insecticide at green-yellow 
bud stage. 
 

 

Data analysis 

 

Distribution and abundance of pollen beetles  

The data were analysed using a mixed model analysis (REML) where the data were combined 

over the three years (2009,2010 & 2011) and two sites (Rothamsted and Woburn). To combine the 

data three sampling occasions were used: 1. the sample before any spray was applied; 2. the 

sample after the TR spray had been applied to treatment 2 OSR-/TR+ but before an OSR spray; 

and 3. the sample after the OSR spray had been applied to treatment 4 OSR+/OSR+. An analysis 

was performed on each of the three sampling occasions in a mixed model that accounted for the 

different sources of variation: variation associated with years, sites, fields, samples and individual 

plants. To assess treatment differences the mixed model included terms for the position of the 

sample (plot border or centre) and the trap cropping treatment combination used in the field. 

Where overall differences were found LSD values were used to examine individual comparisons. 

 

 

 



91 
 

Shade plots  

The mean number of beetles for the three plants sampled at each of the 36 spatially explicit 

sampling points was calculated and the data transformed (log10 n+1) and plotted as a shade plot 

on a 6x6 grid using GenStat for each of the treatments on each of the sampling assessments.   

 

Yield   

The yield data were analysed using a mixed model analysis (REML). The data were combined 

over the three years (2009, 2010 & 2011) and two sites (Rothamsted and Woburn) in a mixed 

model that accounted for the difference sources of variation: variation associated with years, sites, 

fields, position within fields and samples. Three contrasts were formed to test for an overall 

difference between border and centre yield, differences between yields for treatments 

positioned within the borders, and differences between yields for treatments positioned within the 

centres of the fields. 

 

3.5.3. Results & Discussion 

 

Pollen beetle distribution and abundance 

 

As the number of beetles on plots was sampled on a grid pattern across the whole plot, by plotting 

the abundance of beetles combined with their distribution across the plot as a shade plot makes it 

possible to easily visualize the effects of the treatments on pollen beetles and how this changes 

through time.  Figure 27 shows an example of these data for a plot with a trap crop (Treatment 1 

OSR-/TR-) and without a trap crop (Treatment 3 OSR-/OSR-).  From these it can be seen how 

beetles start to colonize the plots mainly from the edge and often from one particular direction. This 

supports earlier studies that suggest that pollen beetles colonize the crop from the edge (Williams 

& Ferguson, 2010). The effect of the trap crop is clear as beetles tend to heavily colonize these 

plants (suggesting they are remaining there after arrival) whereas without a trap crop they colonize 

the field more evenly.  This is similar to distribution and abundance patterns observed in spring 

trap cropping systems (Cook et al., 2004).   

 

However, from this example (Figure 27) it is not clear that the trap crop reduced the number of 

beetles in the OSR centre of the plot compared with the plot without the trap crop, but this did 

occur on some fields in some years.  The effect of TR trap crop was inconsistent across years.  We 

believe this is attributed mainly to growth stage differential; in plots where the trap crop strategy 

worked, there was a greater differential between the growth stages of the trap crop and the main 

crop (c. 2 weeks).  Growth stages were only c. 1-week apart in some cases where the strategy did 

not work.  Early-flowering cultivars of TR which flower consistently 2-3 weeks earlier are needed 

for the strategy to be more reliable.   
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Figure 27 Shade plots showing the distribution and abundance of pollen beetles in a plot with a trap 
crop (A) and a plot without a trap crop (B).  Figure A shows Treatment 1, an oilseed rape plot with a 
trap crop, both unsprayed (OSR-/TR-) on Fosters field, Rothamsted Farm on 7 dates at weekly 
intervals between 25/3/10-4/5/10. Figure B shows Treatment 3, an oilseed rape plot without a trap 
crop, i.e. with an OSR border, both unsprayed (OSR-/OSR-) on Great Field field, Rothamsted Farm on 
7 dates at weekly intervals between 25/3/10-4/5/10.  In both A &B the top right square shows the 
sample positions done within a 6x6 grid across the plot.    
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 Although results were inconsistent between years, there was not enough statistical power to 

analyse differences between treatments for each year separately.  We therefore combined data 

from all three years in the overall analysis (as intended in the original experimental design).  One 

field at Woburn (Horsepool) (treatment 4 OSR+/OSR+) in 2009 was removed from the analysis 

due to very low observations.  

 

At the start of the experiment before any of the insecticide treatments were applied the data from 

plots with trap crops were combined (1. OSR/TR- and 2. OSR/TR+) and those without TR trap 

crops were combined (3. OSR-/OSR- and 4. OSR+/OSR+).  The number of pollen beetles in plots 

differed according to treatment and position (F1,760 = 233.26, P<0.001).  The number of beetles on 

plants in the TR trap crop in the border was significantly greater than the numbers on OSR plants 

in the plot borders (LSD95%=0.1812) (Figure 28A, left hand side).  This supports our previous 

findings in a spring OSR system, that TR plants are more attractive than OSR plants and therefore 

have good potential as trap crop plants for OSR crops (Cook et al. 2006b 2007b).  The numbers of 

beetles on plants in the OSR crop centres were fewer on treatments with a trap crop than without, 

but the difference was not significant (LSD95% = 0.1824) (Figure 28A, right hand side). 

 

When the plants in the trap crop borders came into green-yellow bud they were sprayed with 

insecticide on Treatment 2 OSR-TR+ plots.  The number of pollen beetles in plots differed 

according to treatment and position (F2,760 = 286.93, P<0.001). As the Rothamsted beetle 

populations had been tested each year for their pyrethroid insecticide resistance status and were 

found to be susceptible, spraying had the expected effect of significantly reducing the mean 

number of beetles per plant on these treatments compared with the untreated TR plants (1. OSR-

/TR-) (LSD95% = 0.2131) (Figure 28B, left hand side).  Spraying the trap crop border (2. OSR-/TR+) 

had no significant effect on the numbers of beetles per plant in the OSR crop in the centre in 

comparison with the untreated trap crop (1. OSR-/TR-) (LSD95% = 0.2787) (Figure 28B, right hand 

side).  Populations on the OSR centre plants were still lower in treatments with a trap crop (1. 

OSR/TR- and 2. OSR/TR+) than without (Combined treatments 3. OSR-/OSR- and 4. 

OSR+/OSR+) but not significantly (contrast t15.06 = 1.74; P=0,103) (Figure 28B, left hand side).   

 

At the damage-susceptible stage of the main OSR crop, the crop in Treatment 4 OSR+/OSR+ was 

treated with insecticide.  As expected, numbers in both the borders and centres of this plot were 

drastically reduced (Figure 28C).  The numbers of pollen beetles on TR plants in the border that 

had been sprayed (2. OSR-/TR+) were quickly recolonized.  Unsprayed TR plants in the trap crop 

(1. OSR/TR-) were significantly more infested than unsprayed OSR plants in the border (3. OSR-

/OSR-) (LSD95% = 0.2202) (Figure 28 C left hand side), again demonstrating the increased 

attractiveness of TR plants over OSR plants at their damage susceptible stage and supporting their 

potential as trap crop plants.  In the OSR plot centres there were more beetles on OSR plots 
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without the trap crop (3. OSR-/OSR-) than on plots with trap crops (1. OSR-/TR- and  2 OSR-/TR+) 

(contrast t13.63 =1.38; P=0,189), but the difference was not significant.  

 

Our results suggest that having a trap crop is slightly better than not having one in terms of 

reducing populations of beetles to below spray threshold levels.  In some cases, the population of 

beetles in plots with trap crops were reduced to below the 5 beetle/plant spray threshold compared 

with plots without a trap crop (Figure 28C) and would have therefore saved the cost of an 

insecticide application if this action threshold was used.  However, alternatives to insecticides 

usually carry some risk of failure, and many growers find this risk acceptable.  However, we admit 

to feeling disappointed that we could not demonstrate a lower risk of failure of this strategy in our 

experiment.  Further work to identify the reasons for the failures of the strategy in our experiment is 

necessary.    Given the economics of the trap cropping strategy (see Section 3.6) the most 

promising way of delivering the benefits of a trap crop to growers may be through crop margin 

management (i.e. using flowering margins containing Brassicas to act as trap crops).  This 

possibility is being addressed in Defra-funded project IF0139, and will require further work in 

addition to enable delivery to growers.   

 

 
Figure 28 Mean (±SE) number of pollen beetles per plant in the borders and centres of plots with the 
following four treatments 1. OSR-/TR- oilseed rape with a turnip rape trap crop border (both 
untreated); 2. OSR-/TR+ oilseed rape (untreated) with a turnip rape trap crop border treated with an 
insecticide at its green-yellow bud stage for pollen beetle 3. OSR-/OSR- oilseed rape with no trap 
crop (i.e. with an OSR border; all untreated) 4. OSR+/OSR+ oilseed rape with no trap crop, all treated 
with insecticide at green-yellow bud stage at key time points of the trap crop experiment: before any 
insecticide applications (A); following the treatment to the turnip rape trap crop border in Treatment 
2 (OSR-/TR+) and following the insecticide application to the centre and border of Treatment 4 
(OSR+/OSR+).   
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Yield 

In the first year of the experiment (2009) one treatment, (3. OSR-/OSR-), on White horse field at 

Woburn failed to establish and the other three treatments had very poor establishment and the 

resulting crop was extremely thin, so this site was excluded from the yield analysis.  In 2011 

another field site at Woburn, Stackyard (1 OSR-/TR-) was also very thin and this too was excluded 

from the analysis.  The treatments had no significant effect on the yield of the OSR main crop in 

the plot centres (F3,15.3 = 0.41, p=0.746) (Table 9).  The yield in the plot borders did differ 

significantly between treatments (F3,18.5 = 31.69, p < 0.001).  This was due to the plant effect, with 

the yield of borders with TR yielding less than the borders with OSR (LSD value for TR vs OSR 

both sprayed = 1.0139 and LSD for TR vs OSR both unsprayed = 0.8706); yield in OSR borders 

did not significantly differ (LSD value 0.9349) and yield in TR borders did not significantly differ 

(LSD value 0.9820) (Table 9). These results were not unexpected as yield differences are rarely 

shown in insecticide studies and it is known that the yield of TR is less than OSR.  The yield data 

were used in the cost:benefit analysis to assess the cost effectiveness of the trap cropping tactic 

(section 3.6) and section 3.7 addresses the search for an OSR cultivar to replace the TR 

component of this system. 

 
Table 9  Mean (±SE) yield (t/ha) from 4 treatments in a trap crop experiment for the plot centres (main 
oilseed rape crop) and the borders (either turnip rape for treatments 1 and 2 or oilseed rape in 
treatments 3 and 4) .  Treatments were: 1. OSR-/TR- oilseed rape with a turnip rape trap crop border 
(both untreated); 2. OSR-/TR+ oilseed rape (untreated) with a turnip rape trap crop border treated 
with an insecticide at its green-yellow bud stage for pollen beetle 3. OSR-/OSR- oilseed rape with no 
trap crop (i.e. with a OSR border; all untreated); 4. OSR+/OSR+ oilseed rape with no trap crop. 
         Treatment: 

Position 

1. OSR-/TR-   2 OSR-/TR+                3 OSR-/OSR-     4 OSR+/OSR+ 

Centres 4.143 (0.32) 4.461 (0.35) 4.389 (0.29) 4.019 (0.35) 

Borders 1.908 (0.32) 1.872 (0.35) 3.853 (0.29) 3.603 (0.35) 

 
 

3.6. Assess the cost effectiveness of the trap cropping tactic 
(Objective 2, Task E) 

3.6.1. Introduction 

 
The trap cropping tactic can reduce pollen beetle populations on plants in the main oilseed rape 

(OSR) crop centres, often to below spray thresholds.  For organic growers it offers the only realistic 

solution at present towards effective pest control; as well as pollen beetle, it has also been shown 

to be effective at reducing population levels of cabbage stem flea beetle (Psylliodes 
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chrysocephala) (Barari et al., 2005) and possibly cabbage seed weevil (Ceutorhynchs assimilis) 

(Cook et al., 2004, 2006) in OSR crops.  But does trap cropping represent a viable option for 

conventional growers? In March 2008 when this project started, the only alternative to the 

pyprethroid group of insecticides was the neonicitinoids. Now, in 2012, there are also the inoxacarb 

and pymetrozine groups.  So, can trap cropping ever be more than the last resort in the unlikely 

situation that resistance spreads to all other active ingredients or that EU legislation revokes all the 

current products available?    We conducted a small cost:benefit analysis in which we assessed 

the cost effectiveness of the trap cropping tactic in terms of the reduction in area sprayed and the 

financial cost in comparison with insecticide-treated crops.   

 

3.6.2. Materials & Methods 

 
Approach 

 

This analysis compared the relative costs and benefits of a number of different trap cropping and 

insecticide use scenarios for the control of pollen beetles. The core of the analysis was based on 

the treatments investigated in the Trap cropping experiment (Section 3.5), namely oilseed rape 

(OSR) with an unsprayed turnip rape (TR) trap crop border (OSR-/TR-), oilseed rape with a turnip 

rape trap crop border sprayed with a pyrethroid insecticide (to the border only; OSR-/TR+), oilseed 

rape unsprayed (OSR-/OSR-) and insecticide-treated oilseed rape (OSR+/OSR+). Other options 

investigated include OSR treated with a more expensive insecticide (i.e. a neonicotinoid, 

indoxacarb or pymetrozine; for this study the neonicitinoid Biscaya was selected at random as an 

example for this purpose), and TR trap crop options where the trap crop is harvested or destroyed. 

This option was considered as the possibility existed that the extra costs associated with drilling 

and harvesting a turnip rape border may outweigh the value of the yield of the turnip rape 

proportion of the crop. 

 

Gross margins, defined as total output (yield x price) less variable costs (costs which vary directly 

in proportion to the enterprise, e.g. seed, fertiliser, pesticides) can be useful in making 

comparisons between different enterprises or when trying to determine the effects of making 

adjustments to the levels of inputs, for example, to a particular enterprise. Gross margins, 

however, do not take into account fixed costs, for example machinery, labour and general 

overheads. Due to the nature of the different trap cropping options compared here, adjustments 

were made to both variable costs (for example the costs or savings of using or omitting an 

insecticide application) and to a proportion of the fixed costs which can be attributed to a particular 

operation, such as spraying or harvesting. The proportion of fixed costs attributable to these 

operations will vary drastically from farm to farm, but for these purposes, the ‘Farmer’s average 

cost per ha’ for machinery operations as quoted in Nix (2012) were used to enable comparisons to 
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be made between trap cropping and insecticide options. Where the figures for farmer’s average 

cost were unavailable, average contractor rates for the operation are used instead. 

 

Calculation of margins 

 

For the purpose of these comparisons, a gross margin for each option was initially calculated.  The 

costs of the field operations (for a typical schedule of operations involved in growing an OSR crop 

from primary cultivations through to harvest) were taken from this figure, giving a ‘margin less costs 

of field operations’ figure. This  was used for each scenario for comparative purposes (but would 

not represent a profit or loss until further fixed costs, such as buildings, interest and rent were 

considered). Figure 29 shows an example of the calculation for the OSR-/OSR- treatment, along 

with notes on calculations and sources of data. 

 

 
Figure 29 Calculation of the ‘margin less costs of field operations’ figure for an untreated oilseed 
rape crop (OSR-/OSR-). 

 

Margin calculations were performed using yields achieved for the different treatments in the trap 

cropping experiment (see section 3.5, Table 9). Yield measurement samples were taken from the 

border area of each plot (irrespective of whether or not the plot had a TR border), and also from 

the centres. Throughout the analysis, it is assumed that a border TR as in Treatments 1 and 2 and 

effectively OSR in treatments 3 and 4) represents 10% of the total area of the plot. The ‘combined 

yield’ value shown in Figure 29 assumes that a 10% contribution to total yield will be made at the 

level achieved in the border, and a 90% contribution will be made at the yield achieved in the 
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centre. The combined yield value was used in the gross margin calculation. A price of £355 per 

tonne (spot price, 18th May 2012; source Farmer’s weekly) was assumed in making initial 

calculations.  

 

Standardisation of margin values 

During the analysis, it became apparent that variation in the yields achieved in the experimental 

plots may be masking the effects on the margin of the cost differences associated with each 

scenario. To answer the question of how the differences in costs associated with each option 

would affect the margin at a standard yield and price, margins were calculated at a standardised 

yield (OSR) of 3.5 t/ha and standardised price of £350/t using the costs (variable + operations) 

associated with each scenario. For TR treatments we used the following logic to calculate a 

standard yield that accounted for yield reduction in TR border (or lack of any yield at all in OSR-

/TR+(un-harvested trt); we took our average TR yield (1.89 t/ha) and adjusted down to account for 

the fact that the standard OSR yield (3.5 t/ha) is lower than our average (4.3.t/ha) i.e. TR yield was 

adjusted proportionally by 3.5/4.3 = 0.184 to give a standard yield of 1.54 t/ha.   

 

Increase in yield required to offset the extra costs of each scenario  

With yield variation eliminated, costs alone could be looked at and the increase in yield (in the plot 

centres, based the standard OSR price) required to offset the extra costs of each scenario (adding 

in borders, sprays etc) compared with the baseline control (the OSR-/OSR- treatment) were 

calculated and converted into a percentage.  This was simple for the treatments with no TR 

because the increase in yield is over whole area of plot, but another calculation was needed to 

transfer the overall yield increases onto the centres only in the case of scenarios involving TR 

borders.  The yield needed for centres only was calculated as =(unadjusted yield -(proportion of 

trap crop area x standard TR yield)/proportion of crop centre) [i.e., =(unadjusted yield -(0.1 x 

1.54))/0.9)]. 

 

 

3.6.3. Results & Discussion 

 

Combined yields for scenarios including TR trap crops were less than those for OSR as the yield of 

this species is less than that for OSR (Table 10).  The standard OSR crop with no treatments 

(OSR-/OSR-) was obviously among the lowest scenarios in terms of costs but the lowest was 

actually the un-harvested, untreated TR trap crop option, followed by the un-harvested, treated trap 

crop option; due mainly to savings on the cost of seed plus combining.  Even if the trap crop was 

harvested and sprayed, however, the TR options still had lower costs than the insecticide options 

when applied to the whole crop, due mainly to a 90% reduction in the costs of insecticide (Table 

10). 
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The profit margin, when based on experimental results for yield was best for the untreated OSR 

standard (OSR-/OSR-) at £796 (Table 10).  The next best option was the OSR with a treated TR 

trap crop (OSR-/TR+) at £740, considerably better than either of the options without trap crops 

where the whole crop is sprayed with insecticides.  However we know from our field experiment 

results that the yield of the OSR plot centres did not differ significantly between treatments (see 

Section 3.5), so margins based on experimental results may be a little misleading.  When 

standardised net margins are considered (at a standard yield of 3.5t/ha and a price of £350/t) the 

standard OSR treatment still comes out on top at £482 (Table 10) but the next best margin is for 

the OSR option without a trap crop with a pyrethroid spray.  Either way, it is clear that if a trap crop 

is sown, it is worthwhile harvesting it; margins for both OSR-/TR- and OSR-/TR+ options were 

greater when the TR was harvested than without (Table 10). 

     
Table 10  Summary of the combined yield per plot, costs and margin for different crop management 
scenarios with and without trap crops and with and without insecticide applications  

Scenario Combined 

yield (t/ha) 

based on 

experimental 

results  

Costs £ 

(variable + 

field 

operations)  

Margin less costs of 

field operations £ 

(based on experimental 

results)  

Standardised 

net margin £ 

@ 3.5 t/ha and 

£350/t 

OSR-/OSR- 4.335 742.35 796.72 482.45 

OSR+/OSR+ 

(Pyrethroid) 

3.977 758.64 653.34 466.36 

OSR+/OSR+  

(e.g. Neonicotinoid) 

3.9771 769.12 642.86 455.85 

OSR-/TR- 3.920 748.73 642.70 407.672 

OSR-/TR-  

(un-harvested) 

3.729 735.17 588.52 367.332 

OSR-/TR+ 4.202 751.56 740.19 404.852 

OSR-/TR+  

(un-harvested) 

4.015 738.00 687.30 364.512 

1 assumed no difference in yield when sprayed with a pyrethroid versus a non-pyrethroid (neonicotinoid, indoxacarb or pymetrozine) 
2 Standardised margin adjusted for TR yield loss 

 

With standardized yields, we can calculate the increases in yield (at a given price) that are required 

to offset the additional costs of each cropping scenario compared to the OSR standard (OSR-

/OSR-) which had the greatest margin.  A c.1.5% increase in yield is required to offset the costs 

associated with treating the crop with cheap pyrethroids; this rises to c.2.25% when the more 

expensive alternatives to pyrethroids are used (Table 11).  An increase of c.7% in yield would be 

needed for the best trap cropping scenario to offset the costs associated with harvesting.  This 



100 
 

represents only an approximate 4.5% increase in yield needed over and above what many growers 

are happily accepting when they spray prophylactically with a non-pyrethroid.    

 
Table 11. Increase in yield required to offset the extra costs of each cropping scenario  

Scenario Yield (t/ha) required to 

Match OSR-/OSR- 

Standard margin 

Centre yield 

increase needed 

(t/ha) 

% increase 

needed to better 

 OSR-/OSR- (t/ha) 

OSR-/OSR- 3.50 -  - 

OSR+/OSR+ (pyrethroid) 3.55 - 1.43 

OSR+/OSR+ 

(e.g. neonicotinoid) 3.58 - 2.29 

OSR-/TR- 3.52 3.74 6.86 

OSR-/TR- (un-harvested) 3.48 3.87 10.57 

OSR-/TR+ 3.53 3.75 7.14 

OSR-/TR+ (un-harvested) 3.49 3.88 10.86 

 

 

Summary & Conclusion 

 

Our analysis indicates that the best strategy is to have an OSR crop and spray only when 

necessary according to threshold (returning a net margin of £482/ha, note this does not include the 

cost of advice or monitoring aids).  If insecticides are used the margin will be reduced to £466 if 

pyrethroids are used and to £455 if another insecticide class is used.  The net margin for a strategy 

with a trap crop to reduce beetles to below spray threshold is £407.  The margin calculations do 

not include to cost of advice in spraying to threshold, but nor do they include benefits of trap 

cropping (such as use of the trap crop as a monitoring trap (see section 3.4.2)) or benefits from 

biocontrol when the crop is not sprayed.  A more refined cost:benefit analysis is required to 

account for these factors, and a value of the damage caused by pollen beetles is also needed to 

determine the economic consequences of spraying according to different thresholds.    
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3.7. Initiate a programme to develop a practical and efficient trap 
cropping strategy for winter oilseed rape (Objective 3, Tasks 
F&G)  

 

3.7.1. Introduction 

 

The trap cropping strategy tested as part of this project (Section 3.5) is based on a winter turnip 

rape (TR) trap crop planted as a border to the winter oilseed rape (OSR) crop.  Both the TR and 

OSR can be sown at the same time but the TR ripens earlier and does not yield as well (see 

Section 3.5). To improve practicality and maximize yield from the area cropped, higher yielding and 

later ripening cultivars of TR or highly attractive early-flowering cultivars of OSR are needed to 

replace the TR component of the strategy. Ultimately, a trap cropping tactic based on two cultivars 

of OSR could comprise one highly attractive cultivar as the trap crop and one highly unattractive 

cultivar as the main crop. Together with the Project partners involved in plant breeding, we 

screened experimental lines for useful germplasm or potential lines and field tested the most 

promising in a small plot field trial. 

 

3.7.2. Materials & Methods 

 

Approach 

 

The approach to finding useful germplasm or improved cultivars for the trap cropping strategy 

started with discussions during project meetings in the first year.  A ‘wish’ list was drawn up of the 

varietal characteristics that are of most interest so that the breeders could look for promising lines 

from their records and in current field trials: 

1. Time to flowering (early for potential trap crop;  late for improved main crop) 

2. Leaf/bud colour (light yellow-green for trap crop; dark blue-green for improved main 

crop) 

3. Flower colour (yellow for potential trap crop;  apetalous, not yellow or ‘light’ yellow for 

improved main crop 

4. Infloresence size (many, large and dense for potential trap crop;  few, small and widely 

spaced for improved main crop 

 

Two visits by Rothamsted Project staff members were made to field trial sites being run by KWS 

(1/4/2009) and Elsoms Seeds (13/5/2009).  The KWS site was of interest as strips of winter TR cv. 

Buko were sown at two edges and in the centre of a field of winter OSR cv. Epure.  This site was 
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sampled to assess the performance of TR cv Buko as a potential trap crop.  Buko was clearly more 

attractive than the OSR plants on the day of our visit and therefore shows good potential for use as 

a trap crop.  We also found evidence to support the theory that beetles fly upwind to field sites 

(Section 3.2.4) (Methods and Results presented in Appendix B). The Elsoms trials site was of 

interest as it comprised many trial lines of OSR that we could observe for interesting phenological 

variation. It was evident from this visit that there was very little phenological variation in any of the 

characteristics on the wish list other than flowering time.  Following these visits, the breeders 

advised that as little research effort is given to breeding new lines of winter TR it would be more 

fruitful to focus on finding an OSR line to do the job of the TR plant, rather than to spend effort 

trying to improve TR lines. Also it was felt that there was little value in identifying late flowering 

OSR lines as a main crop as ‘growers will grow what they want to grow as a main crop, based on 

their local conditions, yield etc.’, The agreed approach was therefore to focus effort on identifying 

early flowering lines of OSR that could be used in place of early flowering TR in a trap cropping 

strategy.  This line should ideally fit in with any OSR cv selected by growers as their main crop.  

Seed from early flowering lines identified as a result of the Elsoms visit was bulked-up and 

provided by Elsoms for small plot trials on Rothamsted farm in the final year of the project to 

assess the potential of these lines in comparison with TR.  In addition, lines present in the OREGIN 

trial were screened for potentially useful early flowering characters. 

 

Assessment on the OREGIN demonstration plot trials 2010 

 

The Oilseed Rape Genetic Improvement Network project (OREGIN) www.oregin.info has 

assembled key genetic resources to enable researchers and breeders to explore the relevant 

gene-pool for enhanced traits to incorporate into breeding programmes. This includes establishing 

diversity fixed foundation sets for B. napus (BnaDFFS).  The set of founder lines within the 

BnaDFFS was compiled to represent a structured sampling of the genetic diversity across the 

global B. napus genepool, and to encompass winter and spring OSR, swedes, and fodder, forage 

and salad kales. OREGIN established small-scale demonstration trials in 2009/10 and 2010/11 to 

gather baseline information on plant performance and properties of the BnaDFFS Hopkins et al., 

(2010-2011).  In year 1 of the trial, the diversity demonstration trial comprised 48 winter OSR 

varieties, 8 winter kales, 4 winter swedes, and 1 synthetic line.  Two replicates of each type were 

grown for each treatment (low and high N) in a randomized block design.    We assessed the 

flowering periodicity to identify early flowering lines and pollen beetle infestation to identify potential 

lines that are highly preferred or less preferred than others.   

 

The plots were observed weekly and the start of flowering (defined as the date when 25% of the 

plot had reached GS60) and end of flowering (defined as the date when 95% of the plot had no 

http://www.oregin.info/
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more flowers) was recorded.  At the green bud stage a single Vortis suction sample was taken 

from each plot and the number of pollen beetles and parasitoids recorded.   

 

Field assessment of early flowering oilseed rape lines 

 

The four early-flowering experimental lines supplied by Elsoms FD 808, RA244DH39, RA180DH55 

and RA126DH20 were tested in a small field plot experiment in Rothamsted in the final year of the 

experiment (2011) in comparison with winter turnip rape cv. Jupiter, Pasja (the hybrid cross 

between a forage turnip and forage rape used used as a model early flowering ‘turnip rape’ in 

Experiments in Section 3.5), and a standard winter OSR cultivar, Castille.  Plots (3m long x 1.8m 

wide) were autumn sown at the same time at 120 seeds/m2.  Three replicates were established in 

separate blocks.  Plots were assessed weekly and the date that they reached green bud GS51, 

(defined as the date when 25% of the plot had buds visible from above), when they started 

flowering GS 60 (defined as the date when 25% of the plants in the plot had some flowers) and 

when they finished flowering (defined as the date when 95% of the plants on the plot had no 

flowers).  

 

3.7.3. Results & Discussion 

 

Assessment on the OREGIN demonstration plot trials 2010 

 

The full dataset from these assessments is recorded on the OREGIN database.  There was a wide 

variation in the start of flowering between the lines (F60,140 = 78.42; P<001) .  (Figure 30) Several 

plots were heavily damaged by pigeons; as this would affect flowering so these plots were 

excluded from the analysis.   In general, pollen beetles were most abundant on the early-flowering 

lines (Figure 30), but note that pigeon damaged plots were not accounted for in this analysis.  

There were several lines (Ningyou 7, Huashuang 5, 102 and B-104-2 that flowered early and may 

be worth considering further in future studies as these also had high numbers of beetles; however, 

no cultivars of OSR flowered earlier than any of the swedes or fodder brassicas tested in the study, 

and so are not of further interest in this study in terms of development of a trap crop. There were 

several lines that had relatively low numbers of beetles in comparison with others of similar 

flowering time  (Huashuang 5, Eyou changjia, TN172, Hansen x Gaspard DH line, Royal Darmor, 

Slovenska Krajova and Palu); these could be of interest for future studies to identify less preferred 

OSR cultivars (but caution must be applied as this could be due to pigeon damage).  Nitrogen 

significantly affected the start of flowering F60,140 = 2.01; P<001 with flowering appearing to be 

slightly earlier on the high-N compared to the low-N treatment.  There was no significant effect of 

the two nitrogen treatments (low and high) on pollen beetle infestation (F60,140 = 1.13; P=0.279). 
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Figure 30 Average number of pollen beetles per plot in the OREGIN Brassica napus diversity fixed 
foundation sets demonstration trial 2010 (red line, left hand axis), Start of flowering time as number 
of days after 24/3/2010 when assessments began (black line) and number of plots (out of a possible 
4) the analysis is based on (green dots).  
 
 

Field assessment of early flowering oilseed rape lines 

 

The experimental OSR lines got off to a promising start, with all four lines reaching green bud 

GS60 before the standard OSR cv Casille (Figure 31A).  However, these lines did not start 

flowering earlier than the standard OSR cv Castille, and were considerably later than Pasja and TR 

cv. Jupiter (Figure 31B).  Pasja finished flowering first, followed TR cv. Jupiter, Elsoms 

RA180DH55 then Castille; FD 808, RA244DH39, and RA126DH20 all finished flowering last.  The 

success of the trap cropping strategy depends on having a good distinction between the flowering 

time between the trap crop and the main crop.  It is therefore unlikely that any of these cultivars 

would be effective as trap crop plants.   
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Figure 31 Average date plots of Pasja, winter turnip rape cv. Jupiter, Elsoms winter oilseed rape 
experimental lines FD 808, RA244DH39, RA180DH55 and RA126DH20 and winter oilseed rape cv 
Castille reached the green bud stage (GS 51) (A) and started flowering (GS 60) (B) in a replicated field 
plot trial. 

 

Summary & Conclusions  

 

We focused on identifying early flowering lines of OSR that would function as trap plants to replace 

the less practical TR element of the trap cropping tactic. We screened lines in the OREGIN 

experiments and those from our breeding partners but were unable to find a suitable winter OSR 

genotype for this purpose.  Early-flowering brassicas were identified and these could be 

incorporated into OSR breeding programmes in the future together with lines that were less 

preferred by pollen beetles to develop new cultivars for the trap crops of the future.  However, in 

the meantime, the strategy will have to remain based on early-flowering TR types as trap crop 

plants.    
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3.8. Propose an IPM strategy for controlling pollen beetles in winter 
oilseed rape based on the combination of the most effective 
elements tested in this project (Objective 3, Task H)  

 

As a result of this study, an IPM strategy for pollen beetles is proposed to facilitate the judicious 

use of insecticides; it is based on the use of decision support systems to forecast immigration risk, 

monitoring methods to enable the use of action thresholds and alternative crop management (trap 

crops) to reduce the number of sprays needed.  This IPM strategy can be used by growers as 

good practice and its use could also gain points awarded under the Defra Entry Level Stewardship 

(ELS) Scheme - Option EM4 ‘Develop a crop protection management plan’.  The ELS scheme is 

aimed at promoting best environmental practice and EM4 should include ‘making full use of 

biological, cultural and chemical methods on the farm and inspection of crops for pest problems’.  

The IPM strategy proposed here could also be of use to policy makers to contribute towards 

National Action Plans (section on ‘Adoption of IPM techniques’) required under the EU Sustainable 

use of pesticides Directive (2009/128).   

 

Damage-susceptible growth stage of the crop 
 

Pollen beetles feed and oviposit in the buds of OSR.  Yield loss due to pollen beetles is largely 

through feeding damage as the beetles chew large holes into the bud and feed on the pollen from 

the developing anthers within, often damaging the ovary in the process, leading to bud abscission.  

However, when the crop starts to flower, beetles feed on pollen from the open flowers (it is easier 

than chewing holes in buds!) and by this stage the plant has well developed lateral shoots and so 

is well able to compensate for any damage caused.  The accepted damage susceptible stage of 
the crop is therefore the green-yellow bud stage only (BBCH GS 50-59).  Insecticide 
applications for pollen beetles should not be applied after GS 60.     
 

Action thresholds 
 

Insecticides should only be applied if the crop is within its damage-susceptible growth 
stage and action thresholds have been breached.  For many years the accepted HGCA action 

thresholds were: 2 beetles/plant for varietal associations, 5 beetles/ plant for backward crops and 

15 beetles/ plant for otherwise good crops (e.g. Oakley, 2003; HGCA, 2010).  However, varietal 

associations are no longer widely grown and results of a recent HGCA-funded study proposed a 

threshold scheme in which pollen beetle threshold is negatively related to plants/m2 (Ellis & Berry, 

2011).  This scheme is based on the number of flowers than can be lost by plants and still produce 

maximum yield and takes into account the compensatory ability of the crop; thus the threshold for 
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thin crops is greater than that for a thick crop.  As a rule of thumb, new action thresholds are 
c.30 beetles/plant for thin crops (<20 plants/m2), 20 beetles/plant for optimal crops with 40 
plants/m2 and c. 10 beetles/plant for thick crops with >60 plants/m2.  There is no distinction 
between spring and winter sown crops.  Although this system requires further validation, the 

new thresholds have been adopted and published by AHDB-HGCA (HGCA 2012).   

 

Risk & forecasting risk of pollen beetle immigration 
 

Monitoring of the size of pollen beetle populations in the crop is needed to enable detection of any 

breaches of action thresholds, but it is very time consuming to do properly.  The crop can be at its 

damage-susceptible stage for several weeks and the period of immigration of the pollen beetle to 

OSR crops can also stretch over 3-4 weeks.   

 

As a rule of thumb, the crop is at a lower risk due to pollen beetle immigration when 
temperatures <10°C, when there are strong winds and if it is raining or has rained in the 
past 12h as beetles do not fly until temperatures reach c.13°C, and the other factors were each 

shown to negatively affect pollen beetle populations in the crop in our experiments.  The crop is at 
greatest risk when temperatures >15°C.  
 

Decision support systems (DSS) that provide risk assessments of pollen beetle immigration 
should be used to minimize monitoring effort and focus it to when it is most needed. Current 

advice on the CropMonitor website www.cropmonitor.co.uk advises monitoring beetle populations 

when the crop is at the green-yellow bud stage and the temperature is >15°C.  However, proPlant 

www.proplant.de is a decision support system that uses a phenological model of pollen beetle 

immigration and local meteorological data to predict the start, peaks and end of pollen beetle 

immigration.  It produces forecasts of immigration risk and advises monitoring days for up to 2 days 

in advance using a traffic-light system of coloured dots (green = immigration possible, yellow = 

good conditions for immigration and red = optimal conditions for immigration.  It can reduce 

monitoring effort by up to 50% in comparison to following the advice on CropMonitor.  As a result 
of this Project, the proPlant forecasting tool is freely available on the Bayer CropScience 
website http://www.bayercropscience.co.uk/ (confirmed for at least the 2012 & 2013 seasons). 

The site shows a series of maps of the UK showing for each area start, risk and % completion of 

immigration predicted.  The start of migration maps are particularly useful for academics and those 

involved in field trials of plant protection products against pollen beetle.  For growers and crop 

consultants they can give an indication of when the system needs to be consulted more frequently 

in readiness to detect large peaks of immigration that could result in breaches of the action 

threshold.  Hovering the mouse over the coloured dot given for the area of interest will return the 

exact % completion of immigration.  The maps showing immigration risk for the next 2 days 

http://www.cropmonitor.co.uk/
http://www.proplant.de/
http://www.bayercropscience.co.uk/
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and % completion of migration should be used to help decide whether or not plant 
monitoring is necessary.  Use of these maps has great potential to save unnecessary 
‘insurance’ insecticide applications. For example, if monitoring had taken place and returned a 

mean number of say, 8 beetles/plant, a spray might have been applied if conditions were good as 

‘tomorrow there may be 15 beetles’.  The use of the forecast may give growers and crop 

consultants the confidence to hold off a spray if poor conditions are predicted for immigration over 

the next few days.  Similarly in this situation if consultation of the % completion of migration map 

returned 100%, a spray would not be necessary at any point in the future, even if the crop is within 

the damage susceptible stage as further increases in the pollen beetle population would not be 

expected.   

 

proPlant is a decision support tool, not a decision making tool.  The proPlant phenological model is 

built using numbers of beetles on plants in the crop, and is designed to prompt population 

monitoring in the crop after which a decision is made as to whether to spray or not.  However, the 

system could also be used in conjunction with commercially available monitoring traps.  In this 

case, traps should be placed in the crop as soon as possible after proPlant forecasts the start of 

migration, and monitoring trapping can cease after immigration is predicted to be complete. 

 
Detection of action thresholds (population monitoring) 
 

The recommended method for population monitoring of pollen beetles is from plant 
sampling in the crop and is based on the beating method; the main raceme of the plant is 
beaten firmly two or three times against the base of a tray (ideally white with a deep lip).  This 

dislodges the beetles and they can then be easily counted.  A white tray helps the black beetles to 

be easily visible and the deep lip helps to prevent them becoming lost before counting is complete 

(CropMonitor, Oilseed rape pests encyclopaedia:Pest sampling methods).  Breathing out over the 

raceme also helps to dislodge the beetles.  Action thresholds are expressed as a mean number of 

pollen beetles per plant. At least 10 plants for sampling should be selected at random, taken 
along a transect of at least 30 m, starting at the headland and heading towards the crop 
centre (HGCA 2012).  Plants should not be sampled in the headland alone as pollen beetles 
are often more abundant at the crop edge, and this will not reflect the average across the field.  

Ideally four transects should be performed on each side of the crop, as beetles are not evenly 

distributed across the field and often come into the crop from one main direction.  If only one 

transect is performed the mean could be an under-estimate if the wrong side is selected.  However 

if there is only time to do 1 transect, it should be done on the down-wind side of the crop 
according to the wind direction at the time of sampling, as beetles fly upwind towards the crop.   
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A baited monitoring trap for pollen beetles has been developed as part of this Project and 
will be commercially available in 2013 from Oecos  www.oecos.co.uk. The monitoring trap 

comprises a yellow sticky card angled at 45° to the vertical and is baited with phenylacetaldehyde, 

a floral volatile produced naturally by several plant species. Unfortunately at present the 
monitoring trap cannot be used to determine action thresholds in the crop and should not 
replace the monitoring of plants directly in the crop.  There was no correlation between the 

number of beetles caught in the traps and the number of beetles present on plants in the crop and 

so we were unable to calibrate trap catch to a given action threshold expressed as the number of 

beetles per plant using a simple linear relationship.  However, the monitoring trap still has value 
for risk assessment, especially if used in conjunction with decision support systems.  If the 

traps are set out in early March they can detect the start of immigration (and verify at a local level 

any DSS forecasts); if there are none on the trap there will be none in the crop, and there is no 

need to spray!  The trap may also be used to focus time-consuming plant monitoring in crops; as a 

rough rule of thumb if there are c.10 pollen beetles on the trap, it is probably worthwhile monitoring 

the plants in the crop.  It may also be used to detect peaks of immigration (and therefore risk), but 

peaks will only be detected relative to previous trap catches on the site (again the trap can be used 

to verify forecasts of immigration peaks issued by DSS).  Completion of immigration can be 

detected (or DSS forecasts verified), when the numbers on the traps do not increase further, or 

begin to decrease (~May).   Ideally one monitoring trap should be placed on each side of the 
field but if only one per field is used it should be placed downwind of the prevailing wind on 
the site, and users should be aware that trap catch will vary as the actual wind direction may 

change between sample dates.  Monitoring traps should be used during the green-yellow bud 
stage of the crop only and should then be removed.  The lure is designed to last c.30 days, 

which should be sufficient to cover the intended period of use of the trap.  After this time the lure 

will become less attractive and the crop itself begins to compete with the trap.  If traps are not 

removed promptly as flowering starts, they may become swamped and difficult to retrieve as the 

crop grows taller.   

 

Alternative crop management (trap cropping) 
 
Turnip rape (TR) flowers earlier than oilseed rape (OSR) and is more attractive to pollen beetles.  

A TR trap crop comprising c.10% of the area of the field planted as a border around the edge of 

the main OSR crop can be used to reduce the population of pollen beetles to below spray 

thresholds. However, given the economics of this management option (a net margin of £407 

compared to £482 if an OSR crop is sprayed according to threshold and remains untreated) it is 

likely that this option will only be of interest to organic growers, especially if the action threshold 

used is high (10-30 beetles according to HGCA, 2012 rather than 5 for a backward crops according 

to HGCA, 2010). 

http://www.oecos.co.uk/
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If this crop management option is to be used for management of pollen beetles, it is essential that 

the flowering differential between the trap crop and the main crop should be maximized; the 
earliest flowering cultivar of TR possible should be selected as the trap crop (e.g. Buko) and 
the latest flowering OSR cv possible should be selected as the main crop.  Both the trap cop 

and the main crop can be planted on the same day; do not plant the OSR crop before the TR trap 

crop.  Crop management can then proceed as normal until harvest.  We do not recommend 
spraying the trap crop for pollen beetle. We recommend that the trap crop should be 
harvested at the optimal time.  Although this represents another farm operation, this prevents 

seed shed leading to volunteer problems later and economically, the returns are worthwhile (net 

margin is reduced to £367 for management option where the trap crop is destroyed).     

 

Insecticide resistance management 
Repeated use of the same insecticidal active ingredient or active ingredients with the same mode 

of action can lead to the development of insecticide resistance.  To help prevent this insecticide 

resistance management is important.  Each class of insecticide has been classified and assigned a 

mode of action (MoA) group by the Insecticide Resistance Action Committee (IRAC, 2012) 

http://www.irac-online.org/wp-content/uploads/MoA-classification.pdf  Alternations, sequences, or 

rotations of compounds with different MoA groups in a pest management strategy will help to 

ensure that selection for resistance to compounds in any one MoA group is minimized.  Currently 

there are insecticides from four chemical groups registered for pollen beetle control Pyrethroids, 

Noenicotinoids, Indoxacarb and Pymetrozine.  Each of these has been classified into a different 

MoA group: 3A (sodium channel modulators), 4A (nicotinic acetylcholine receptor antagonists), 9B 

(selective homopteran feeding blockers) and 22A (voltage-dependent sodium channel blockers), 

respectively (IRAC, 2012). Growers should therefore consider rotating use of these such that 

successive generations of the pollen beetle are not treated with or exposed to compounds from the 

same group within the insecticide regime used over the life time of the crop.    

 

 

 

 

 

 

 

 

 

 

 

http://www.irac-online.org/wp-content/uploads/MoA-classification.pdf
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3.9. General Discussion/Conclusions and implications 

 
3.9.1. Develop a reliable monitoring trap for pollen beetles to enable easy and 

effective detection of threshold levels of these pests (Objective 1,Task A) 

 
A monitoring trap for pollen beetles would help growers and crop consultants to more easily and 

accurately identify when pollen beetle immigration has started and when spray thresholds have 

been breached.  This would save time and money and help to prevent unnecessary insecticide 

applications.  
 
Investigate responses of pollen beetles to colour to optimize trap colour 

 

• Our results indicate that pollen beetles have three types of photo-receptors, a 

green, a blue and a UV receptor.  In this respect they are similar to other flower-

visiting insects studied so far such as honey bees.   

• In our field studies we showed that pollen beetles are attracted to yellow colours, 

but are most attracted to fluorescent yellow (with UV reflectance).  Such traps would 

be optimal for use as a pollen beetle monitoring trap in order to maximize trap catch.   

• We developed a colour choice model which showed that the beetles use a green vs. 

blue colour opponent mechanism in their colour choice, which explains their 

preference for yellow (a ‘super green’ signal).   

• The colour choice model could have applications in the development of other 

integrated pest management approaches that exploit the colour-guided host finding 

behaviours of the pollen beetle.  For example it could be used to predict the relative 

attractiveness of new trap materials for potential monitoring traps without the need 

to perform time consuming and costly field experiments.  It could also be used in the 

development of new crop cultivars which are of a more attractive colour to beetles 

(for trap crops) or less attractive colours (for ‘resistant’ main crops. 

 

Identify and develop semiochemical baits for a monitoring trap with minimum catch of non-targets 

 

• Our experiments indicated that a yellow sticky trap had the highest pollen 

beetle:non-target parasitoid proportion compared with other coloured traps.  Baiting 

the trap with host plant volatiles further increased this proportion.  We conclude that 

a baited trap will therefore help to maximize target catch and make counting target 

pollen beetles less difficult by reducing the non-target catch   
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• We identified several new compounds from OSR plants in situ that are 

electrophysiologically active (i.e. detected) in pollen beetles.  This information will 

help us to better understand the host-plant interactions between the crop and the 

pollen beetle.  Some of these compounds attracted significantly fewer beetles than 

the unbaited controls and could provide leads in the development of ‘resistant’ crop 

cultivars 

• Low release rates of phenylacetaldehyde, a non-toxic, floral volatile commonly 

found in several plant species, consistently attracted significantly higher numbers of 

pollen beetles than the unbaited controls in trapping experiments.   

• Commercially available trap mounts and lure dispensers performed as well as our 

experimental materials.  The Oecos carrot fly trap mount and the IPS 

phenylacetaldehyde lure (low release rate, 1 mg/day) were selected for the final trap 

design.  

• We are delighted that a monitoring trap for pollen beetle will be made 
commercially available for the 2013 season by Oecos  www.oecos.co.uk as a 
direct result of this project.  

 

Calibrate trap catch with numbers of beetles per plant in oilseed rape crops 

 

• A pollen beetle Monitoring study was performed during the project (2008-11) to 

provide data to help calibrate the monitoring trap, help determine the best position 

for the trap (see below) and to help test improved decision support systems (see 

3.9.2).  Volunteers from across England and Scotland volunteered to host sites for 

this study.  Data were collected from a total of 178 sites.  The enthusiasm shown 

and willingness of these very busy people to freely give up their time towards this 

study is evidence of the scale of the pollen beetle problem in their view, and their 

desire to have alternative management tools such as a monitoring trap at their 

disposal. 

• There was evidence for a correlation between the numbers of beetles trapped in the 

upwind and downwind traps and a strong positive correlation between the numbers 

of beetles per plant in the upwind and downwind crop scouting transects.   

• Unfortunately there was no significant correlation between the trap catch and 

numbers on plants in the crop transects.  We are therefore unable to calibrate trap 

catch to a given action threshold expressed as the number of beetles per plant 

using a simple linear relationship.  There may be other factors that could help to 

explain the variance in the data, such as landscape factors and/or meteorological 

effects (see below) and future will attempt to model these effects to improve 

calibration efforts (Appendix C). 

http://www.oecos.co.uk/
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• The uncalibrated monitoring trap still has value as part of an integrated pest 

management strategy for pollen beetles.  The traps can be used to detect the start 

of pollen beetle immigration on a field and could help to focus more time consuming 

plant monitoring effort to when it is most needed.  Comparing relative trap catch on 

a site may indicate immigration peaks thus highlighting periods of risk, and when the 

trap catch levels off or begins to decrease this can indicate that immigration is 

coming to an end.  The trap may be most useful when used in conjunction with 

decision support systems (see 3.9.2).   

• Future work to calibrate trap catch to actual crop damage rather the number of 

beetles per plant may provide a more direct and accurate action threshold to 

prevent crop loss from pollen beetle (see Appendix C). 

• An uncalibrated monitoring trap still has value for risk assessment in IPM for pollen 

beetle.  It can be used to detect the start, peaks and completion of pollen beetle 

migration at a local level, and validate forecasts of these variables gained from 

decision support systems (see 3.9.2)  

 
Develop models to determine the best trap position 

• We found strong evidence that meteorological conditions (temperature, wind 

direction and speed and daytime rainfall) and some evidence that landscape 

features (area of residential gardens, length of hedgerow and length of treeline) 

affect trap catch 

• Our model did not support the hypothesis that beetles overwinter in woodland, 

although they may overwinter in treelines in preference to hedgerows 

• Our model supports previous work suggesting pollen beetles fly upwind towards 

crops and that they fly at c.13°C   

• Monitoring traps (and by analogy, positions for plant scouting transects) are 

therefore best placed down-wind of the prevailing wind on a field site to maximize 

trap catch  

• There is no need to trap when temperatures are ≤10°C 

• More work is needed to define properly the flight threshold for pollen beetles and 

more importantly the relationship between weather variables and crop damage 

 

 

3.9.2. Assess and improve the ability of existing decision support systems to 
identify risk periods for pollen beetle (Objective 1, Task B) 

• Better risk assessment and decision support could help to focus monitoring effort, 

but the best system available in the UK is advice on the CropMonitor website 
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www.cropmonitor.co.uk.  Monitoring is advised when the crop is at the green-yellow 

bud stage and the temperature is >15°C  

• Growers and crop consultants on the Continent can use proPlant www.proplant.de, 

a decision support system that uses a phenological model of pollen beetle 

immigration and local meteorological data to predict risk of immigration.  We tested 

the model under UK conditions using data from our pollen beetle monitoring study 

(3.9.1) and found that it accurately predicted the start of immigration, the main 

periods of risk and the end of immigration.   

• We compared monitoring advice between the current advice system and proPlant.  

Both systems performed reassuringly well in prompting monitoring that would detect 

breaches of spray thresholds for pollen beetles in OSR. However there were 

considerable reductions provided by proPlant in the need for consultation of the 

system (30%) and advised monitoring days (34-53%) in comparison with current 

advice.   

• Use of the proPlant system could therefore save growers and crop consultants time 

and money.  It could help to reduce unnecessary insecticide applications by 

preventing insurance sprays when beetle numbers are approaching threshold, and 

by forecasting the end of migration, when sprays are not necessary even if the crop 

is still at the damage-susceptible stage.   

• We are delighted that as a result of work in this Project, a simplified version of 
the proPlant model which forecasts start of migration, risk of significant 
immigration in the next 2 days, and end of immigration was made freely 
available to growers and crop consultants via the Bayer CropScience website 
in the 2012 and 2013 seasons.  www.bayercropscience.co.uk 

• It would be valuable to conduct an impact survey of the proPlant tool on the Bayer 

website and to test its predictions against actual data on pollen beetle immigration 

to give growers and consultants confidence in the tool, and to further improve 

uptake in the future (see Appendix C). 

 

3.9.3. Assess the potential of using turnip rape as a sentinel plant system for risk 
assessment in oilseed rape (Objective 1, Task C)  

 

• The early flowering character of turnip rape (TR) trap crop plants offers two 

scenarios for the potential use of TR as a sentinel plant for risk assessment in 

oilseed rape (OSR): (1) predictive, (2) for real time monitoring 

• Scenario 1 Predictive: We found some evidence that the number of pollen beetles 

on TR plants at the green-yellow bud stage were correlated with infestation levels of 

http://www.cropmonitor.co.uk/
http://www.proplant.de/
http://www.bayercropscience.co.uk/
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the OSR crop one week later.  Thus large infestations in TR at the green bud stage 

could act as an early warning of future risk in OSR.  However, the relationship is 

probably not robust enough to be of practical value at present; more data are 

needed to improve the confidence in the analysis.  We aim to improve the model as 

part of the work done in the Extension to this project (Appendix C).  

• Scenario 2 Real-time monitoring: There was a positive correlation between the 

mean number of beetles on plants in the OSR crop at the damage-susceptible 

green-yellow bud stage with the number on flowering TR plants in the trap crop.  It 

may therefore be possible to use the TR trap crop as a ‘living monitoring trap’.  A 

mean of 7 and 34 beetles per TR plant would relate to an action threshold of 2 and 

5 beetles/plant, respectively in the main OSR crop. Further work is needed to 

extend the model to be able to predict action thresholds relating to 15 beetles in the 

main crop and to improve confidence in the analysis (see Appendix C).  However, 

this approach could provide added value for growers that use TR trap crops, 

negating the need for scouting transects to be performed in the main crop and the 

need to purchase plastic monitoring traps.   

 

3.9.4. Evaluate on a field scale the potential of a turnip rape trap crop for reducing 
the abundance of pollen beetles in winter oilseed rape crops (Objective 2, 
Task D)  

 

• Our previous work showed that spring turnip rape (TR) planted as a border to a spring 

oilseed rape (OSR) crop could reduce the populations of pollen beetles to below spray 

thresholds.  We tested the strategy on a realistic field scale (1ha plots in individual fields) 

using winter cultivars on two sites over three years.  We also examined the effect of 

spraying the trap crop and compared efficacy of trap cropping against prophylactic sprays 

on OSR. 

• Winter TR plants in the border were more heavily infested than winter OSR plants in the 

border, suggesting that TR plants are more attractive.   

• The effect of TR trap crop was inconsistent across years.  In some replicates on some sites 

in some years the population of beetles in OSR plots with trap crops was significantly lower 

than in plots without trap crops.  However, overall, although populations were lower in plots 

with trap crops than without, the difference was not significant.  We believe this is attributed 

mainly to growth stage differential; in plots where the trap crop strategy worked, there was 

a greater differential between the growth stages of the trap crop and the main crop.  Growth 

stages were only c. 1-week apart in some cases where the strategy did not work.  Early-
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flowering cultivars of TR which flower consistently 2-3 weeks earlier are needed for the 

strategy to be more reliable.   

• Spraying the TR trap crop reduced the populations of beetles in the trap crop but did not 

affect the populations in the main crop; this approach is therefore not recommended.  

• Populations of beetles were significantly lowest on the OSR treated prophylactically with 

insecticide.   

• There was no significant difference in the yields between treatments 

• Given the economics of the trap cropping strategy as it currently stands (see Section 3.9.8) 

it is likely that this option is most useful to organic growers.  The most promising way of 

delivering the benefits of a trap crop to conventional growers may be through crop margin 

management (i.e. using flowering margins containing Brassicas to act as trap crops).  This 

possibility is being addressed in Defra-funded project IF0139, and will require further work 

in addition to enable to delivery to growers.   
 

3.9.5. Assess the cost effectiveness of the trap cropping tactic (Objective 2, Task E) 

 

• We performed a simple cost:benefit analysis which explored the costs and net margin 

returns of different cropping scenarios, with and without trap crops and with and without 

insecticides  

• Our analysis indicates that the best strategy is to have an OSR crop (without a trap crop) 

and either not treat it or only treat when necessary (returning a net margin of £482/ha if the 

crop is not sprayed; note this does not include the cost of advice or monitoring aids 

associated with determination of thresholds).  If insecticides are used, the margin will be 

reduced to £466 if pyrethroids are used and to £455 if another insecticide class is used.  

The net margin for a strategy with a trap crop to reduce beetles to below spray threshold is 

£407.   

• If trap crops are grown, they should be harvested; margins are reduced from £407 to £367 

if the trap crop is destroyed. 

• An increase in yield of 1.4% is needed if a pyrethroid insecticide is used to break even in 

comparison with margins returned from an untreated crop; this rises to 2.3% if the more 

expensive non-pyrethroid insecticide classes are used.  A 6.9% increase in yield is 

necessary if a trap crop is grown for control of pollen beetle.  

• To refine the cost:benefit analysis a figure for the yield loss caused by a given amount of 

pollen beetle damage is required; there is no economic threshold available.  Future 

analyses should also take into account the costs of advice and monitoring to enable 

thresholds to be determined and the economic, environmental and political benefits of 

reduced insecticide use   
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3.9.6. Initiate a programme to develop a practical and efficient trap cropping 
strategy for winter oilseed rape (Objective 3, Tasks F&G)  

 

• The trap cropping strategy tested as part of this project (Section 3.9.6) is based on a winter 

turnip rape (TR) trap crop planted as a border to the winter oilseed rape (OSR) crop.  Both 

the TR and OSR can be sown at the same time but the TR ripens earlier and does not yield 

as well as OSR (see Section 3.5). To improve practicality and maximize yield from the area 

cropped, earlier-flowering, later-ripening and higher yielding cultivars of winter TR or highly 

attractive early-flowering cultivars of winter OSR are needed to replace the TR component 

of the strategy. We focused on identifying early flowering lines of OSR that could function 

as trap plants in the trap cropping tactic.  

• We screened lines in the OREGIN 2010 demonstration trial www.oregin.info and those from 

our Project partners involved in plant breeding but were unable to find a suitable winter 

OSR genotype to suit our purpose.   

• In the OREGIN trial, we identified some early-flowering brassicas, and these could be 

investigated further in the future together with lines that were less preferred by pollen 

beetles with the aim to develop new cultivars for trap crops of the future, based on highly 

attractive early flowering OSR cultivars as the trap crop and less attractive, pollen beetle 

‘resistant’ cultivars as the main crop.   

 

3.9.7. Propose an IPM strategy for controlling pollen beetles in winter oilseed rape 
based on the combination of the most effective elements tested in this 
project (Objective 3, Task H)  

 

An IPM strategy for pollen beetles is proposed to facilitate the judicious use of insecticides; it is  

based on the use of decision support systems to forecast immigration risk, monitoring methods to  

enable the use of action thresholds and alternative crop management (trap crops) to reduce the 

number of sprays needed.  It is intended for use by growers, crop consultants and policy makers. 

 

• The damage susceptible stage of the crop is the green-yellow bud stage only (BBCH 

GS 50-59).  Monitoring of pollen beetle populations should be concentrated within this 

period and any insecticide applications should not be applied after flowering has started.     

• Action thresholds should be used. Insecticides should only be applied if the crop is 

within its damage-susceptible growth stage and action thresholds have been breached.  

For many years the accepted HGCA action thresholds were: 2 beetles/plant for varietal 

associations, 5 beetles/ plant for backward crops and 15 beetles/ plant for otherwise good 

crops (e.g. Oakley, 2003; HGCA, 2010).  However, varietal associations are no longer 

http://www.oregin.info/
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widely grown and results of a recent HGCA-funded study proposed a threshold scheme in 

which pollen beetle threshold is negatively related to plants/m2 (Ellis & Berry, 2011).    As a 

rule of thumb, new action thresholds are c.30 beetles/plant for thin crops (<20 plants/m2), 

20 beetles/plant for optimal crops with 40 plants/m2 and c. 10 beetles/plant for thick crops 

with >60 plants/m2.  There is no distinction between spring and winter sown crops (HGCA 

2012).   

• Risk  of crop damage is related to pollen beetle immigration risk As a rule of thumb, 

the crop is at a lower risk due to pollen beetle immigration when temperatures <10°C, when 

there are strong winds and if it is raining or has rained in the past 12h.  The crop is at 

greatest risk when temperatures >15°C.  

• Forecasting risk of pollen beetle immigration Decision support systems (DSS) that 

provide risk assessments of pollen beetle immigration should be used to minimize 

monitoring effort and focus it to when it is most needed. proPlant www.proplant.de is a 

decision support system that uses a phenological model of pollen beetle immigration and 

local meteorological data to predict the start, peaks and end of pollen beetle immigration.  It 

produces forecasts of immigration risk and advises monitoring days for up to 2 days in 

advance .As a result of this Project, the proPlant forecasting tool is freely available on the 

Bayer CropScience website www.bayercropscience.co.uk  The maps showing immigration 

risk for the next 2 days and % completion of migration should be used to help decide 

whether or not plant monitoring is necessary.  Use of these maps has great potential to 

save unnecessary ‘insurance’ insecticide applications.  

• proPlant is a decision support tool, not a decision making tool.  The proPlant phenological 

model is built using numbers of beetles on plants in the crop, and is designed to prompt 

population monitoring in the crop after which a decision is made as to whether to spray or 

not.   

• Detection of action thresholds (population monitoring) The recommended method 
for population monitoring of pollen beetles is from plant sampling in the crop and is 

based on the beating method; the main raceme of the plant is beaten firmly two or three 

times against the base of a tray.  Action thresholds are expressed as a mean number of 

pollen beetles per plant. At least 10 plants for sampling should be selected at random, 

taken along a transect of at least 30 m, starting at the headland and heading towards the 

crop centre (HGCA 2012).  Plants should not be sampled in the headland alone as pollen 

beetles are often more abundant at the crop edge, and this will not reflect the average 

across the field.  Ideally four transects should be performed on each side of the crop, as 

beetles are not evenly distributed across the field and often come into the crop from one 

main direction.  If only one transect is performed the mean could be an under-estimate if 

the wrong side is selected.  However if there is only time to do 1 transect, it should be done 

http://www.proplant.de/
http://www.bayercropscience.co.uk/
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on the down-wind side of the crop according to the wind direction at the time of sampling, 

as beetles fly upwind towards the crop.   

• A baited monitoring trap for pollen beetles has been developed as part of this project 

and will be commercially available in 2013 from Oecos  www.oecos.co.uk. Unfortunately at 

present the monitoring trap cannot be used to determine action thresholds in the crop and 

should not replace the monitoring of plants directly in the crop.  However, the uncalibrated 

monitoring trap still has value for risk assessment.  They can be used to detect the start of 

immigration, peaks of immigration and end of immigration and be used to verify at a local 

level the forecasts provided by the DSS.  Ideally one monitoring trap should be placed on 

each side of the field but if only one per field is used it should be placed downwind of the 

prevailing wind on the site, and users should be aware that trap catch will vary as the actual 

wind direction may change between sample dates.  Monitoring traps should be used during 

the green-yellow bud stage of the crop only and should then be removed.   

• Alternative crop management (trap cropping)  A TR trap crop comprising c.10% of the 

area of the field planted as a border around the edge of the main OSR crop can be used to 

reduce the population of pollen beetles to below spray thresholds. The tactic in its current 

form will be of most interest to organic growers.  It is essential that the flowering differential 

between the trap crop and the main crop should be maximized; the earliest flowering 

cultivar of TR possible should be selected as the trap crop (e.g. Buko) and the latest 

flowering OSR cv possible should be selected as the main crop.  Both the trap crop and the 

main crop can be planted on the same day; do not plant the OSR crop before the TR trap 

crop.  Crop management can then proceed as normal until harvest.  We do not recommend 

spraying the trap crop for pollen beetle. We recommend that the trap crop should be 

harvested at the optimal time.  Although this represents another farm operation, this 

prevents seed shed leading to volunteer problems later and economically, the returns are 

worthwhile compared with management options where the trap crop is destroyed.     

• Insecticide resistance management Repeated use of the same insecticidal active 

ingredient or active ingredients with the same mode of action can lead to the development 

of insecticide resistance.  Currently there are insecticides from four chemical sub groups 

registered for pollen beetle control Pyrethroids, Noenicotinoids, Indoxacarb and 

Pymetrozine.  Growers should therefore consider rotating use of these such that 

successive generations of the pollen beetle are not treated with or exposed to compounds 

from the same group within the insecticide regime used over the life time of the crop.    
 
 
 
 

http://www.oecos.co.uk/
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3.9.8. General Discussion 

 

The integrated pest management  (IPM) strategy for pollen beetles we propose is based on the 

use of decision support systems (DSS) to forecast immigration risk and focus monitoring effort, 

improved monitoring methods to enable the use of action thresholds and alternative crop 

management (trap crops) to reduce the pest population.  These three tactics represent the three 

major achievements of our project. 

 

One of the major limitations to use of action thresholds is that proper monitoring of the populations 

is time consuming and has to be conducted over a prolonged period.  Better risk assessment and 

decision support could help to focus monitoring effort.  proPlant is a decision support system 

available in mainland Europe that uses a phenological model of pollen beetle immigration and local 

meteorological data to forecast the start and end of pollen beetle immigration into the crop and 

main periods of risk up to 2 days in advance and advises when to monitor.  We tested the model 

under UK conditions using data from our pollen beetle monitoring study and compared monitoring 

advice given with the best current advice system on the CropMonitor website.  Both systems 

performed reassuringly well in prompting monitoring that would detect breaches of spray 

thresholds for pollen beetles in OSR. However there were considerable reductions provided by 

proPlant in the need for consultation of the system (30%) and advised monitoring days (34-53%) in 

comparison with current advice.  Use of the proPlant system could therefore save growers and 

crop consultants time and money.  It could help to reduce unnecessary insecticide applications by 

preventing insurance sprays when beetle numbers are approaching threshold, and by forecasting 

the end of migration, when sprays are not necessary even if the crop is still at the damage-

susceptible stage.  We are delighted that as a result of work in this Project, a simplified version of 

the proPlant model which forecasts start of migration, risk of significant immigration in the next 2 

days, and end of immigration is now freely available to growers and crop consultants in the UK via 

the Bayer CropScience website www.bayercropscience.co.uk. 

 

Use of action thresholds is reliant on reliable and effective methods for monitoring populations of 

pollen beetles in the crop.  Current crop monitoring methods involve time consuming plant samples 

from transects 30m into the crop.  Unless several transects are performed results can be 

inaccurate as a measure across the whole field and can vary according to the position of the plants 

sampled and the time of day and weather conditions.  A monitoring trap for pollen beetles would 

help growers and crop consultants to more easily and accurately identify when pollen beetle 

immigration has started and when spray thresholds have been breached.  A baited monitoring trap 

for pollen beetles has been developed as part of this Project and from 2013 will be commercially 

available from Oecos  www.oecos.co.uk. The monitoring trap comprises a yellow sticky card held 

at 45°, baited with phenylacetaldehyde, a floral volatile produced naturally by several plant 

http://www.bayercropscience.co.uk/
http://www.oecos.co.uk/
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species. Unfortunately at present the monitoring trap cannot be used to determine action 

thresholds in the crop.  There was no correlation between the number of beetles caught in the 

traps and the number of beetles present on plants in the crop and so we were unable to calibrate 

trap catch to a given action threshold expressed as the number of beetles per plant using a simple 

linear relationship.  However, the monitoring trap still has value for risk assessment, especially if 

used in conjunction with decision support systems. 

 

Trap crops of turnip rape (TR) planted as a border to an oilseed rape (OSR) crop consistently 

reduced populations of pollen beetles to below spray thresholds in a spring OSR system in 

previous studies.  We tested the strategy for a winter OSR cropping system on a realistic field 

scale over three years.  We found evidence that the strategy worked well in some years, but not 

others.  In years when the tactic did not work, the growth stage differential between the main crop 

and the trap crop was probably too short.  To optimize efficacy, growers will be restricted to using 

the earliest of TR cultivars and the latest of OSR cultivars possible, and this tactic is probably 

practical and economically worthwhile only for organic growers.   

 
We believe that use of these IPM tools will facilitate use of action thresholds and help encourage 

more growers and crop consultants to use spray thresholds.  Use of the strategy or components of 

it will undoubtedly save growers time, money and prevent unnecessary insecticide sprays.   

 

As well as practical IPM tools, our project has also considerably increased the knowledge base of 

pollen beetle physiology and it behavioural and chemical ecology.  We have determined the 

spectral sensitivity of pollen beetles, identified putative green, blue and UV receptors and 

explained how their preference for yellow is physiologically determined.  As well as being of great 

academic interest, this work has produced a colour choice model that can be used to assess the 

relative attractiveness of traps, plants or other materials for use in IPM strategies that exploit colour 

preference – without the need to run expensive field trials.  We have identified several new volatile 

compounds not previously found in OSR plants and identified plant genotypes that may be useful 

in future plant breeding programmes to develop super attractive cultivars for trap plants or 

unattractive ‘resistant’ cultivars for improved main crops each of which exploit the host-location 

process of pollen beetles.  Lastly, and perhaps most significantly, we have gained considerable 

additional knowledge on the immigration behaviour of pollen beetles into OSR crops.  This 

knowledge has several future practical applications.  Further analysis of our data will help to inform 

on better plant monitoring practices: are transects at least 30m long really needed?  Can we not 

correlate numbers on plants in headlands with numbers in the crop to enabling sampling just from 

the crop edge?   We have shown that pollen beetles fly at lower temperatures than previously 

thought (c. 13°C, rather than 15°C) and we have confirmed that they fly upwind towards crops.  We 

have shown immigration is also affected by wind speed and rain.  It is commonly understood that 
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pollen beetles overwinter in woodland, but sites near to woodlands did not necessarily result in 

larger populations in the field.  Further work may enable growers to predict the likely direction of 

immigration on a site so that insecticide applications are better targeted spatially (reducing area 

treated), monitoring transects and traps could be more accurately selected and sited and fields 

most at risk from pollen beetles identified, all given the surrounding landscape features.   

 

We believe our project was a great success and we are proud of our achievements. We have 

worked together to develop an IPM strategy for pollen beetles in winter OSR that can be used as a 

framework by growers and crop consultants to manage pollen beetles with reduced insecticide 

inputs and the confidence to do so.  This will prolong insecticide life by reducing selection for 

resistance, reduce environmental impacts and contribute towards the sustainability and profitability 

of OSR in the UK. 
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3.12. Appendices  

 

3.12.1. Appendix A: Release rates of International Pheromone Systems 
commercial lure 

Release rates were determined by weight loss over time of standard under standard conditions of 

temperature and wind speed.  Several lures were tested and two, the phenylacetaldehyde low rate 

(Lure 1) and phenylacetaldehyde high ratete (Lure 2) gave values in the region of the Rothamsted 

experimental lure (1.7mg/24h over 30 days). 
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3.12.2. Appendix B  KWS field trials visit: Assessment of the potential of winter 
turnip rape cv Buko to act as a trap crop to protect against pollen beetles 
in winter oilseed rape 

Introduction 

 

In Section 3.7 we worked towards the initiation of a programme to develop a practical and efficient 

trap cropping strategy for winter oilseed rape (OSR) (Objective 3, Tasks F&G).  The trap 

cropping strategy tested as part of this project (Section 3.5) is based on a winter turnip rape (TR) 

trap crop planted as a border to the winter OSR crop.  Both the TR and OSR can be sown at the 

same time but the TR ripens earlier and does not yield as well (see Section 3.5). To improve 

practicality and maximise yield from the area cropped, higher yielding and later ripening cultivars of 

TR were initially sought.  A field trial site run by KWS was visited to assess the performance of TR 

cv Buko as a potential trap crop for OSR.  Buko plants were clearly more attractive than the OSR 

plants on the day of our visit and therefore show good potential for use as a trap crop.  We also 

found evidence to support the theory that beetles fly upwind to field sites. 
 

Materials & Methods 

 
A visit was made by Rothamsted Project staff members to a KWS field trial site in Cambridgeshire 

on 1/4/2009.  The KWS site was of interest as 0.5m-wide strips of winter turnip rape cv. Buko were 

sown on two opposite edges and in the centre of a crop of winter oilseed rape cv Epure (Figure A 

1).  The TR plants were at early flowering (GS 61) and the OSR plants were at GS 50 with buds 

visible.  We sampled along 8, 100m transects across the length of the field, at right-angles to the 

TR strips.  On each transect, 3 plants were sampled at each of 45 sample points along the 

transect.  The number of pollen beetles on each of the 45 sample points along the transects was 

totalled across the 8 transects (n=24) as pollen beetle numbers were low.   

 

Results & Discussion 

 

Clearly more beetles were found on TR plants (positions 1, 23 and 45 on the transects) than on 

OSR plants in the transects (Figure A2).  This indicates that cv Buko would make a good potential 

trap crop as these plants are more attractive than those of OSR at the damage susceptible stage 

of the crop.  There was some evidence that the function of the trap crop was acting at close range, 

because in general as the distance between a trap strip and OSR plants increased, so did the 

number of beetles on those plants (Figure A2; particularly between plants 24-44).  There was also 

some evidence that beetles were immigrating to crops upwind as more beetles were found 
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downwind of the WSW previaling wind on the site than upwind (i.e compare decrease in numbers 

between TR 45, 23 and 1).  Futher work is needed to investigate both these points. 

 
Figure A1  Lay-out of KWS field trial with trap crop strips shown as blue lines. 

 

Figure A2  Total number of pollen beetles found on 45 positions sampled across 8, 100m transects 
(n=24).  Turnip rape strips represent positions 1, 23 and 45.  Dots and squares represent the oilseed 

rape data only on a scale of 0-60 beetles (clearer in the absence of large TR values). 
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3.12.3. Appendix C:  LK09108 Extension - Development of an integrated pest 
management strategy for control of pollen beetles in winter oilseed rape: 
Improving monitoring, decision support and risk assessment  

 
Background 
 

LINK project LK09108 ‘Developing an integrated pest management strategy for pollen beetles in 

winter oilseed rape’ aimed to develop an IPM strategy for pollen beetles in oilseed rape (OSR).  

The project was extremely successful in addressing the objectives.  Further funding (£55,000) was 

made available from CRD and will add significant value to the outcomes by enabling some of the 

analyses to be fully completed and/or extended in an 11-month extension to the project. This 

extended work is backed by £24,240 in-kind support; it includes 10 days’ time from Andreas 

Johnen, proPlant (at £720 /day = £8,640 contribution, including VAT) and a high level of support 

for this project from stakeholders:  

• 15 farmers/crop consultants are giving their time in-kind to collect bud samples and run 

monitoring traps on a range of sites across the UK (2 hours/week each; 90 hours in total at 

£100/h = £9,000) 

• HGCA, LEAF, Farming Online, Rothamsted Research Association & Procam Agronomy 

gave their time in-kind to help promote the study to find growers and crop consultants 

willing to participate in an impact assessment of the proPlant pollen beetle forecasting tool 

(2 hours each at £100/h = £1000) 

• 14  farmers/crop consultants are giving their time in-kind to provide data for an impact 

assessment of proPlant pollen beetle forecasting tool (4 hours each at £100/h = £5,600) 

 

Project duration 11 months: 21/03/12 - 28/02/2013  
 

The results of the extension work will be reported as a supplementary report to the final report of 

LK09108 

 

Aims 
 

The aims of the extension funding are to work towards completion and/or extension of the following 

Objectives/Tasks from LK09108:  

Objective 1 Task A.  Develop a reliable monitoring trap for pollen beetles to enable easy and 

effective detection of threshold levels of these pests 

Objective 1 Task B.  Assess and improve the ability of existing decision support systems to identify 

risk periods for pollen beetle 
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Objective 1 Task C. Assess the potential of using turnip rape as a sentinel plant system for risk 

assessment in oilseed rape  

 

The work will be conducted to address 18 new milestones within 3 workpackages: 

 
Workpackage 1.  Modelling to quantify monitoring methods for pollen beetle  (LK09108 
Objective 1, Task A) 
 

Background & Approach  

 

Currently, pollen beetle numbers in the crop are monitored by walking a transect into the crop and 

calculating the mean number of beetles/plant from a minimum of 10 plants (HGCA advice).  This 

approach is time consuming and results are variable depending on the position and timing of the 

transect, as pollen beetles are unevenly distributed in the field and activity is affected by 

temperature.  A monitoring trap will alert growers and crop consultants as to when migration is 

occurring but potentially could also more easily and accurately identify when spray thresholds have 

been breached than the current monitoring methods.  In LK09108 we developed a monitoring trap 

for pollen beetles.  However we were unable to calibrate the trap as there was no simple 

relationship between the number of beetles/trap and the number of beetles/plant in the crop (to 

relate trap catch to control thresholds of 5 or 15 beetles/plant).   

We do, however, have additional data collected by a PhD student outside of the project.  The 

student carried out transect counts on 4 sides of a field every hour for 12h over a 5 day period.  A 

group of monitoring traps were also run on each side of the field, covering the 4 cardinal compass 

points; and these were changed hourly.  Weather data (wind speed, direction and temperature) 

were collected on an hourly basis throughout the study.  We will analyse these data (relating trap 

and transect counts to weather variables) to help to quantify the different sources of variation (trap 

or transect position, day and time of day) and to try to explain this variation using the weather 

variables. We can then use these relationships to test the hypothesis that transect counts are 

related to the cumulative influx of beetles into the crop – as measured by trap counts – modified by 

weather at the time of sampling. This analysis was beyond the scope of the original project and is 

based on understanding gained during the project.  This work will improve our understanding of the 

relationship between trap catch and numbers of beetles in the crop and help to determine how to 

solve the problem of trap calibration without further extensive large-scale experimentation.   

 

Objectives & Milestones 

 
Objective 1  Quantify variability in trap and transect data (to enable full completion of LK09108 

Objective 1, Task A) 



136 
 

Milestone 1  Analyse data from repeated trap and transect study  (delivery by 28/9/12) 

Milestone 2  Model trap and transect data (delivery by 31/12/12) 

Milestone 3  Re-assess pollen beetle monitoring trap calibration in light of information from 

Milestones 1-2;  Report on results, produce scientific papers and disseminate 

information as appropriate (delivery by 31/1/13) 

Objective 2 Assessment of potential use of turnip rape plants to protect oilseed rape crops 
(to enable full completion of LK09108 Objective 1, Task C) 
Milestone 4 Explore the variation in turnip rape trap cropping data and the potential of adding data 

from spring oilseed rape experiments done in PS2017 and PS2113 to improve 

correlations of numbers of beetles per plant on oilseed rape and turnip rape plants in 

winter oilseed rape systems (tested in LK09108) (delivery by 31/1/13) 

Milestone 5  Report on results, produce scientific papers and disseminate information as 

appropriate (delivery by 28/2/13) 

 
 
Workpackage 2. Extension of decision support system comparison 
 

Background & Approach 

 

Current advice available from HGCA and the CropMonitor website is that growers/ crop 

consultants should monitor their OSR crops during the damage-susceptible phase (green bud until 

start of flowering) and that pollen beetles fly at temperatures of 15°C or above.  In practice, 

monitoring for this period would involve an unrealistic commitment of time as the damage-

susceptible phase can often last 2-4 weeks and temperatures can often exceed 15°C in this 

period.  This may contribute to unnecessary ‘insurance’ spraying against pollen beetles.  For 

example, an isolated monitoring visit to the crop may indicate beetle populations at ~6 or 7 

beetles/plant and a decision could then made to spray because ‘tomorrow there may be more 

beetles…’.  proPlant Expert is a decision support system used widely by growers, crop consultants 

and advisory bodies in six countries across  mainland Europe.  It is based on a phenological model 

of pollen beetle migration and, using weather data, it can forecast the start, peaks and end of 

pollen beetle migration.   

In LK09108 we assessed pollen beetle phenology from trapping studies carried out on over 150 

fields across the UK over a 4-year period.  At the end of each season we obtained weather data for 

the most intensively sampled sites and compared a posteriori proPlant prognoses for migration 

with our trapping study results. We concluded that the system can accurately predict the start, 

peaks and end of beetle migration in the UK.  Comparing current UK advice with proPlant advice, 

we showed that using proPlant could halve the monitoring days required to identify a breach in 
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threshold.  The proPlant system is being made available to UK growers free via the Bayer website 

for the 2012 and 2013 seasons (after which the service will be reviewed by Bayer).   

During the final year of the project we conducted a trial in real-time, comparing the implementation 

of proPlant and current UK advice using 9 sites in the Bedford area, to validate our results using 

the a posteriori approach.  A preliminary analysis of this has been done for the final report, but we 

aim to refine and extend our comparison of monitoring days needed using REML and to extend the 

analysis to new objectives, analysing the number of days of immigration risk forecasted by each 

decision support system and the number of days during the risk period that each system required 

forecasts to be consulted.  A small impact assessment will also be conducted to evaluate how 

using the proPlant system in the 2012 season has influenced monitoring and spraying practices.  

 

Objectives & Milestones 

 
Objective 1 Extend decision support system comparison (to enable full completion of LK09108 

Objective 1, Task B) 
Milestone 6  Extend the comparison of monitoring days needed using REML (delivery by 31/1/12) 

Milestone 7  Analysis of the number of days of immigration risk forecasted by each decision 

support system and the number of days during the risk period that each system 

required forecasts to be consulted using real-time data (delivery by 31/12/12) 

 
Objective 2 Conduct impact assessment on proPlant expert map decision support system 
(to extend outcomes of LK09108 Objective 1, Task B) 
Milestone 8  Conduct a small survey amongst farmers and advisers on their evaluation of proPlant 

expert map and its influence on their practice  (delivery by 31/11/12) 

Milestone 9  Report on results, write scientific papers and disseminate information as appropriate 

(delivery by 28/12/13) 
 

 
Workpackage 3.  Extending proPlant to forecast pollen beetle damage risk  
 

Background & approach 

This workpackage aims to better understand the relationship between damage in the crop, 

population size and temperature with the view to extend proPlant to forecast pollen beetle damage 

risk in the UK.  An outcome of LK09108 was the identification of a major knowledge gap regarding 

how actual crop damage (feeding and oviposition damage to buds) relates to numbers of beetles in 

the crop (or on traps) and how this interacts with temperature.  We believe there is now the 

opportunity to refine the output of the proPlant model to include not only forecasts of pollen beetle 

immigration but also forecasts of damage risk, potentially leading to further reductions in pesticide 
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use. These objectives build on the success of the proPlant model for pollen beetles in the UK and 

the network of volunteer farmers’ sampling sites built-up during LK09108.  

There appears to be little differentiation between European populations of the pollen beetle, as the 

proPlant model does not require modification for the UK, yet the treatment threshold for the UK, at 

15 beetles per plant, differs greatly from the 2-5 beetles per plant advised in the northern European 

mainland. We hypothesise this is related to the feeding rate of pollen beetles on plants; the cooler 

spring weather in the UK leading to lower feeding rates and less damage, and is also related to the 

speed of crop development which is again temperature-dependent. Temperature is a critical 

component of the proPlant model.  We will investigate the potential for modifying the model to 

provide forecasts of damage risk as well as forecasts of immigration. This could be particularly 

important in the light of climate change and the potential for warmer UK springs. 

 

Methods 

 

Field work Pollen beetles in winter OSR will be sampled from green bud stage at ~10 sites in 

the UK, including one at Rothamsted until the start of flowering. Standard protocols developed for 

LK01908 will be used for sampling i.e. counts of beetles on yellow sticky traps and transect counts 

of insects on plants, with growth stage assessments of the crop for each transect.  Samples of 

main racemes taken from transects will be taken to assess pollen beetle feeding damage and 

oviposition. Weather data for each sampling site will be obtained by proPlant.  At the end of the 

season, the phenology of bud damage will be compared by proPlant with the phenology of pollen 

beetles and temperature to test the potential for modelling the risk of bud damage.  

 

Laboratory experiments  Replicated laboratory experiments will be conducted to 

investigate (i) the threshold temperature for flight and (ii) the effect of temperature on the rate of 

feeding and oviposition.  A series of lab experiments will be done using beetles collected from the 

field, glass-house grown plants and small cages in controlled environment facilities.   

 

 

Objectives & milestones 

 
Objective 1 Better understand the relationship between temperature, population size and 
damage in the crop, with a view to extending proPlant to forecast pollen beetle damage risk 
(to extend outcomes of LK09108 Objective 1, Task B) 
Milestone 10  Locate and run field work on ~10 sites across the UK (delivery by 30/3/12) 

Milestone 11  Run trap sites at Rothamsted (delivery by 31/5/12) 
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Milestone 12  Count the number of pollen beetles per trap on traps returned from field work sites 

and enter data into database together with numbers of beetles per transect from field 

sites (delivery by 30/9/12) 

Milestone 13  Assess feeding and oviposition damage on bud samples returned from field work 

sites and enter data into database (delivery by 31/8/12) 

Milestone 14  Conduct lab experiments to determine temperature threshold for flight (delivery by  

31/8/12) 

Milestone 15  Conduct lab experiments to determine the effect of temperature on feeding and 

oviposition rates (delivery by 31/8/12) 

Milestone 16  Collate field and laboratory data and forward to proPlant for modelling (delivery by 

30/10/12) 

Milestone 17  Initial modelling to assess the potential to forecast damage risk to oilseed rape 

crops from pollen beetles (delivery by 31/1/13) 

 
Objective 2 Disseminate results on the relationship between temperature, population size 
and damage in the crop (to extend outcomes of LK09108 Objective 1, Task B) 
Milestone 18  Report on results, write scientific papers and disseminate information as appropriate 

(delivery by 28/2/13). 

 

 


