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Abstract 

 

Some specialist microbes can deploy a range of mechanisms to cause 

disease on one or more host plant species. To identify entirely new classes 

of pathogenicity and virulence factors, a bioinformatics-reverse genetics 

approach has been applied to a plant pathogen where near complete 

genomic sequence information was available. A genomic region was 

identified on chromosome 1 of the important cereal pathogen Fusarium 

graminearum that contains a significant grouping of homologues of known 

virulence genes. Targeted deletion of these genes revealed a role for the 

neutral trehalase (NTH1) and protein kinase A regulatory subunit (PKAR) 

genes in the rate of disease symptom spread by F. graminearum, in addition 

to the previously reported SNF1 Ser/Thr protein kinase and STE7 MAP kinase 

kinase genes. Subsequent investigation of further genes at this locality 

revealed the presence of a gene, here named Fusarium graminearum 

Contributor to Virulence 1 (FCV1), which represent a novel class of gene 

required for a full rate of symptom spread. Targeted deletion of FCV1 led to a 

reduced rate of disease development by F. graminearum on wheat ears and 

Arabidopsis floral tissue, but did not affect trichothecene mycotoxin 

production. The fcv1 deletion mutant also exhibits altered hyphal growth, 

reduced asexual sporulation and altered sensitivity to oxidative and osmotic 

stress.  In the complemented strain, wild-type traits were completely or 

partially restored.   This micro-region of < 40 kb containing these five 

important genes represents a novel type of gene cluster containing genes 

required for a full rate of disease development. This micro-region is located 

in a genomic region of low recombination, is highly conserved in three other 

Fusarium species, but is less conserved in other plant pathogenic species. 

The micro-region is not defined by a distinct GC content or coordinated gene 

expression patterns, nor is it flanked by highly repetitive sequences. This 

micro-region is distinct from the previously identified fungal and bacterial 

virulence gene clusters and the clustered biosynthesis-associated genes 

required to synthesis metabolites which contribute to pathogenicity. This 

method for novel disease development-contributing gene identification is 

applicable to any sequenced pathogen species. 
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Chapter 1. Introduction 

 

1.1 Aims, Objectives and Results 

 

The aim of this study was to locate novel classes of gene that contribute to 

disease development by the plant pathogen F. graminearum (teleomorph 

Gibberella zeae) while demonstrating the feasibility of an approach designed to 

highlight genomic micro-regions for targeted gene deletion to investigate their 

roles in disease development. The objectives were as follows: 

 

 To locate a region of the F. graminearum genome that may show 

enrichment for genes contributing to disease symptom development. 

 

 To investigate one such region by bioinformatic and reverse genetic 

approaches, including: 

 

o Determining the distribution and degree of conservation of the 

region across different fungal species 

 

o Searching the region for features commonly found in previously 

described virulence gene clusters 

 

o Analysing published expression datasets to determine the in 

planta expression patterns of the genes in the region 

 

o Generating targeted single-gene strains that lack one of the genes 

in the region under study 

 

o Investigating the effect of gene deletion on disease development 

 

o Characterising further any strains exhibiting a reduced rate of 

disease symptom development for the production of mycotoxin, in 

vitro growth and other possible phenotypes 
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Bioinformatic analysis of the cluster indicated a series of features that 

distinguish this region from previously characterised virulence gene clusters, 

such as the lack of either flanking repetitive sequences, a distinct GC content or 

genes for secreted proteins. Of three homologues of known virulence genes in 

other species initially deleted, two showed a reduced rate of disease 

progression phenotype. Deletion of a further six genes, not previously known to 

be associated with virulence, revealed an additional strain with a reduced 

disease progression rate. The further examination of these three affected 

strains revealed additional defects that included reduced asexual sporulation, 

germination viability, mycotoxin production, virulence on Arabidopsis and 

altered stress sensitivity. 

 

 

1.2 Contributions Made to the Field 

 

This study has revealed three previously uncharacterised genes in F. 

graminearum that are required for a full rate of disease progression. One of 

these genes represents a class of gene not previously linked to disease 

symptom development. Two of the three genes also contribute to sporulation 

and one to mycotoxin production, which are important features of the Fusarium-

wheat pathosystem. These genes therefore constitute possible new targets for 

chemical intervention. The investigations described here have highlighted a 

novel genomic feature in fungi. The genes described above were found to 

reside in a new type of virulence gene cluster unlike any previously reported.  

 

This study has also demonstrated a new application of a technique for the rapid 

location of novel disease-contributing factors in sequenced pathogen species. 

Previous methods used to locate such factors have had to rely on either a trial 

and error or a large-scale mutant-screening approach. By highlighting genomic 

hotspots that are more likely to contain genes contributing to disease 

development, this technique increases the success rate and speed of locating 

novel classes of such genes, while greatly reducing labour and resource 

requirements.  
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This approach is applicable to all pathogens or any organism type or host range 

with a largely completed genome sequence. For pathogens with smaller 

genomes, and, due to the advent of next-generation sequencing technology, 

increasingly those with somewhat larger genomes, genome sequencing is 

becoming more rapid, simpler and cheaper, so increasing the potential for this 

technique further. 

 

By applying the technique to a key plant pathogen species, the study has been 

able to locate not only a new class of disease development-contributing gene in 

pathogenic fungi, but also a novel type of disease development-contributing 

gene micro-region. Genes of related sequence or function to FCV1 have not 

previously been shown to play a role in disease progression by pathogenic 

fungal species. FCV1 resides within a genomic locus that is distinctly different to 

the previously characterised pathogenicity islands of bacteria or the secreted 

protein and secondary metabolite biosynthesis clusters of fungi. 

 

 

1.3 Contribution to Co-authored Papers 

 

The results described in this thesis are in preparation for submission:  

Andrew M. Beacham, Martin Urban, John Antoniw, Amy Freeman, Sue 

Welham and Kim E. Hammond-Kosack (2011). Identification of a novel 

virulence contributor class located in a conserved Fusarium gene cluster. 

 

I curated data for the PHI-base database (www.PHI-base.org) that allowed a 

publication outlining the release of an updated version of the database and 

describing its new contents and features. I reviewed and amended the 

manuscript which was published as:  

 

*Winnenburg, R., *Urban, M., *Beacham, A., Baldwin, T.K., Holland, S., 

Lindeberg, M., Hansen, H., Rawlings, C., Hammond-Kosack, K.E., and 

Köhler, J. (2008). PHI-base update: Additions to the Pathogen-Host Interaction 

Database. Nucleic Acids Research 36 (Database issue): D572-6. 

 *Joint first authors 
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I wrote a paper for the Institute of Biology Biologist Journal discussing the 

growing problem of plant pathogens, the recently published F. graminearum 

genome, and new methods for investigating pathogens: 

 

Beacham, A.M., Antoniw, J., and Hammond-Kosack, K.E. (2009). A 

Genomic Fungal Foray. The Biologist 56 (2): 98-105. 

 

I contributed to the beta testing and further refinement of the functionality of a 

novel whole-genome display software called OmniMapFree developed by Dr 

John Antoniw at Rothamsted Research. A manuscript has recently been 

submitted to BMC Bioinformatics: 

 

John Antoniw, Andrew Beacham, Thomas Baldwin,   Martin Urban, Jason J. 

Rudd and Kim E. Hammond-Kosack 

OmniMapFree: A new tool to visualise and explore sequenced genomes 

(submitted Sept 2010) 
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1.4 Literature Review 
 
 
1.4.1 The Problem of Plant Pathogens 
 

With a rapidly increasing global population it is essential to improve the 

characteristics of food crops. An increase in the yield, drought tolerance or 

hardiness of a crop, for example, could vastly increase food supplies. However, 

crop diseases constitute a serious constraint on yield. These diseases cause 

billions of dollars worth of crop losses worldwide every year and, in the worst 

cases, lead to devastating food shortages. 

 

The problem of disease is not new. Perhaps the most familiar historical case is 

the Irish potato famine of the 1840s, caused by the potato late blight pathogen 

Phytophthora infestans (Agrios, 1997), but many other examples of dramatic 

crop losses are known. The black stem rust pathogen Puccinia graminis tritici 

caused the loss of large percentages of the American wheat crop in the 1950s. 

Resistant and high-yielding wheat varieties were soon developed to alleviate 

the problem, but the disease has since returned to prominence in Africa with the 

discovery of Ug99, a new and highly virulent strain, in Uganda in 1999. This 

strain is not controlled by the wheat varieties developed previously and so is 

currently spreading across Africa and could enter the Middle East (MacKenzie, 

2009). As well as mass food shortages, plant diseases can even lead to cultural 

alterations such as in the case of coffee rust (Hemileia vastatrix) in the 1870s. 

This rust disease decimated coffee production of Sri Lanka and led to the 

adoption of tea as the caffeinated drink of choice in Britain. Global banana 

production is currently under threat from black sigatoka (Mycosphaerella 

fijiensis), or black leaf streak, which can cause yield losses over 50% and result 

in prematurely ripening fruit which are difficult to export (Ploetz, 2001).  

 

Pathogens are not static, new species and strains can arise and spread rapidly 

across large areas. Emerging pathogens constitute a serious threat to regions 

that have to cope with the arrival of new pathogens which may in addition carry 

altered resistance to current antifungal treatments. To take one example: in 

Florida, enormous economic losses are predicted if newly acquired pathogens 

are able to spread and infect crops such as citrus, tomato and strawberry 
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(Emerging Pathogens Institute, Autumn 2010). The wide range of different 

ecosystems and diverse agriculture in this state may be particularly vulnerable 

to new pathogens, with wind-borne pathogens arriving or re-appearing from the 

Caribbean and Latin America via the action of hurricanes (Emerging Pathogens 

Institute, Autumn 2010). The University of Florida has highlighted a list of 17 

important new and emerging plant diseases in the state including bacterial wilt, 

karnal bunt, soybean rust and citrus greening (Harmon et al., 2002). This last 

disease, also known as Huanglongbing (HLB), affects all citrus cultivars and 

can rapidly destroy entire citrus groves. Infected trees can become non-

productive and can be killed by this bacterial disease. The insect psyllid vector 

of HLB and the disease itself have been detected in Florida and prevailing 

climate conditions would enable a rapid spread of HLB through the state 

(Chung and Briansky, 2005). 

 

Crop disease is now of increasing concern as world food supplies must 

continue to nourish a rapidly growing population. As the problem of disease 

grows, so new ways to protect crops are needed. As disease results from an 

interaction between a host plant and a pathogen, the fight against disease can 

be approached from two sides: that of the host and that of the pathogen itself. 

One approach is to understand how pathogens cause disease. This information 

may then allow the successful modification of either host defences, the 

virulence determinants of the pathogen, or both, in order to help reduce 

disease. One key aim of this approach is to understand the genetic basis of 

pathogenicity/virulence i.e. which of the genes in the genome of the pathogen 

allow successful colonisation of a plant and disease symptom development. 

Sequencing the entire genomes of plant pathogens can help in identification of 

such genes. It is hoped that, in addition to providing a large amount of 

information about a particular species and opening the door for many 

experimental techniques, further insights into pathogenicity/virulence can be 

gained through the comparison of genomes of different species. This can lead 

to the discovery of chemical control targets to help combat the pathogen, so 

reducing disease incidence and severity, both in the crop and post-harvest.  
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Fungi constitute a large proportion of the plant pathogenic microorganisms 

present in the temperate and sub-tropical regions of the world. Plant pathogenic 

fungi exhibit a wide range of lifestyles and infection mechanisms and frequently 

produce harmful toxins. In 2002, the first fungal plant pathogen genome was 

sequenced and the results published in 2005 (Dean et al., 2005). Magnaporthe 

oryzae was selected because this organism is responsible for the globally 

devastating rice blast disease (Agrios, 1997). Since then, the genome 

sequences of a number of pathogenic and related non-pathogenic fungal 

species have been made available. The sequenced pathogenic species 

represent a wide range of infection biology types that can successfully cause 

disease on many different plant species. The non-pathogenic species provide a 

useful comparison and can be investigated in parallel to highlight factors 

required for disease.  

 

The globally important pathogenic species Fusarium graminearum, a causative 

agent of Fusarium ear blight of wheat and barley and other plant diseases is 

one such species whose genome has been sequenced and recently published 

(Cuomo et al., 2007). This study has investigated the genetic basis of F. 

graminearum pathogenicity/virulence at a discrete chromosomal location and is 

described in the following chapters. 

 

 
1.4.2 Fusarium Ear Blight 
 

Fusarium ear blight (FEB) is a highly destructive disease that affects wheat, 

barley, maize, sorghum, oat and rye crops (Schroeder and Christensen, 1963; 

Steffenson, 2003). FEB now has been reported in most wheat-growing areas of 

the world (Parry et al., 1995).  The main causal agents of FEB are the 

filamentous ascomycetes Fusarium graminearum, F. culmorum and F. 

avenaceum, together with F. poae in parts of Europe (Snijders, 1994; Parry et 

al., 1995; Bai et al., 2003; Gale, 2003; Mesterhazy, 2003). F. graminearum and 

F. culmorum are regarded as some of the most pathogenic Fusarium species 

(Stack and McMullen, 1985; Mesterhazy, 2003). To date, F. graminearum is the 

more intensely studied species of the two and the biology of these two closely 
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related species has been determined predominantly from studies of F. 

graminearum.  

 

Infection by Fusarium leads to a reduction in kernel/grain set and weight, ear 

bleaching and a loss of starch granules and cell wall material that reduces yield 

and grain quality (Snijders, 2004). In addition, many Fusarium species produce 

trichothecene mycotoxins (such as deoxynivalenol (DON), its acetylated 

derivatives (3A-DON and 15A-DON) and nivalenol (NIV)) and other toxins, such 

as zearalenone, that contaminate grain, presenting a serious health hazard to 

humans and animals as well as exhibiting phytotoxicity (Stob et al., 1962; Ueno 

and Ishii, 1985; Wang and Miller, 1988; Wakulinski, 1989) (Figure 1.1). It has 

been estimated that around 25% of the world‟s food crops are contaminated to 

some degree by mycotoxins (Charmley et al., 1995), but this figure may be 

even higher for some toxins, such as DON (Bottalico, 1998). Due to the risk 

posed by such toxins, strict guidelines have been implemented such that grain 

with DON levels higher than around 1 ppm (even less in some cases) is 

rejected (Food Standards Agency, 2006). Current EU limits, in effect from 1 July 

2006, are as follows: 

 

Table 1.1. Current EU mycotoxin limits (Food Standards Agency, 2006). 

 
Legal limit (ppb) 

  
Deoxynivalenol 
(DON) 

Zearalenone 
(ZEA) 

Unprocessed wheat 1250 100 

Flour 750 75 

Finished products 500 50 

Infant food 200 20 

 

Infected grain is therefore harder to market and is more difficult to process, 

further increasing the impact on the wheat and barley industry and in addition, 

Fusarium fungal material can remain in soil on debris from a previous season‟s 

crop, aiding disease perseverance and making eradication more difficult 

(discussed in McMullen et al., 1997). 
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Figure 1.1. Fusarium ear blight (FEB) disease symptoms in the field (left) and the 

structure of the mycotoxin deoxynivalenol (right).  

 

 

1.4.3 Importance and Economic Effects 

 

The consequences of FEB infections are drastic. In the USA and China alone, 

this amounts to losses of millions of tons of grain, and hence billions of dollars. 

Over 7 million hectares of wheat in China have been affected by FEB, with 

severe epidemics causing losses of over 1 million tons (Wang and Miller, 1987; 

Lu et al., 2001; Bai et al., 2003; Leonard and Bushnell, 2003). Recent numerous 

epidemics in American wheat and barley crops, especially in the Northern Great 

Plains, and also Canada from 1991-1997 resulted in around $1.3 billion of direct 

losses and $4.8 billion of accumulated economic impact (Johnson et al., 2003), 

and have led to FEB being considered by the US Department of Agriculture 

(USDA) as the worst plant disease in the USA since stem rust in the 1950s 

(Wood et al., 1999). Between 1998 and 2000, yield reduction and price discount 

effects (due to poor quality and toxin-infected grain) of FEB in wheat and barley 

in the USA were estimated at $870 million, which is more than the annual value 

of all barley and oats produced in the USA in 1999 and 2000 (Nganje et al., 

2001). On average, 6.9 percent of the total value of all U.S. winter wheat 

production was lost due to FEB (Nganje et al., 2001). Such large losses force 

many farmers to switch to the production of different crop species or 

supplement their income with other work. Increasing debt (an average of over 

$400,000 in the Red River Valley in 1998) has led many to abandon farming 

(Windels, 1999). 
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It is not only the producers who suffer from the results of FEB. Businesses that 

depend on revenue from crop sales are also affected. For every $1 dollar of 

losses incurred by the producer, $2 in losses are incurred in other areas of rural 

and state economies (Nganje et al., 2001). In the USA, FEB occurs in many 

parts of the Great Plains that are predominately dependent upon small grain 

production. In addition, FEB is occurring during periods of depressed farm 

prices and low net farm income (Nganje et al., 2001).  

 

Europe and the UK 

 

Fusarium is found in all European cereal-growing areas, causing root, stem, 

and ear diseases and subsequent reductions in yield of 10-40% (Bottalico and 

Perrone, 2002). F. culmorum appears to dominate in cooler areas such as 

northern Europe, with F. graminearum predominating in the warmer south, but 

spreading northwards (Parry et al., 1995; Bottalico and Perrone, 2002).  

 

Wheat and barley comprise nearly 80% of European small grain production 

(Bottalico and Perrone, 2002). It is thought that almost all wheat and barley 

grown in northern Europe is contaminated by Fusarium mycotoxins to some 

extent. In Europe DON and its derivatives are the most common mycotoxins, 

which are produced by F. graminearum and F. culmorum (Bottalico and 

Perrone, 2002). The situation in Europe appears to have worsened over recent 

years, with increased levels of Fusarium colonisation and infection (Magan et 

al., 2002). An increase in the cultivation of bread wheat in Europe in the 1980s 

had led to an increase in FEB similar to that seen in Canada (Sutton, 1982; 

Parry et al., 1995) and the recent adoption of higher yielding but more 

susceptible winter wheat varieties in Western Europe has also heightened the 

problem of FEB in this area (Snijders, 2004).  

 

Reports from many countries have indicated the extent of the Fusarium problem 

in Europe and the effect of weather on disease severity. For example, in Italy, 

disease incidence is worst in the central regions of the country due to the larger 

influence of warmer maritime weather here (Bottalico and Perrone, 2002). In the 

Netherlands, FEB infection levels have been known to vary greatly – in 1991 

34% of cereal samples were infected but this rose to 83% in 1993. Such 
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differences are possibly due to weather conditions at anthesis (Bottalico and 

Perrone, 2002). Severe infections are also known in countries including 

Bulgaria (37.2% incidence) (Vrabcheva and Vrabchev, 1997), Poland 

(epidemics in the north in 1998 and west and south in 1999) (Tomczak et al., 

2002), Romania and Hungary (discussed in Parry et al., 1995). More precise 

data on disease impact in the field is available from experiments using 

inoculated crops, for example the finding that F. culmorum and the non-

mycotoxin producing species Microdochium nivale decreased wheat yield by 

60% and 15%, respectively, in Switzerland (Hani, 1981). 

 

In the UK, FEB was thought to be a potentially serious but sporadically 

occurring disease (Nicholson et al., 2003). Surveys in the years 1989-1990 

determined that F. culmorum, F. avenaceum, F. poae and Microdochium nivale 

(a Fusarium relative) were the main cause of FEB (Polley and Turner, 1995). 

However, the proportion of disease due to F. graminearum is increasing year on 

year and first exceeded that due to F. culmorum in 2002 (Figure 1.2) (HGCA 

Crop Monitor, 2010). By 2009, F. graminearum was responsible for 13% of FEB 

symptoms compared to just 5% for F. culmorum and is spreading northwards 

through the UK (HGCA Crop Monitor, 2010). F. graminearum now comprises a 

serious threat due to the high level of damage it can inflict (Jennings et al., 

2004). F. graminearum and F. culmorum are now the main cause of DON 

mycotoxin contamination of wheat grain in the UK, with F. graminearum 

generally being regarded as more aggressive and causing more contamination 

than F. culmorum (HGCA Crop Monitor, 2010). 

 

Results from the HGCA Crop Monitor Winter Wheat Survey indicate that FEB 

incidence levels fluctuate annually, being highly dependent upon weather 

conditions during crop flowering (Figure 1.3) (HGCA Crop Monitor, 2010). In 

years of particularly high FEB incidence, such as in 2007, over 80% of wheat 

samples were affected. Such surveys have highlighted the south west and East 

Anglia as the worst affected areas (Figure 1.4), however in 2009, the north east 

and south east were worst affected (HGCA Crop Monitor, 2010).  
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Figure 1.2. Species responsible for causing Fusarium ear blight symptoms in the UK 

(HGCA Cropmonitor, 2010). 

 

 

Figure 1.3. National incidence of Fusarium ear blight symptoms from 1994 to 2009. 

From HGCA Crop Monitor (2010). 
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Figure 1.4. Risk map based on incidence of FEB symptoms 1992-2006. From HGCA 

Crop Monitor (2010) 

 

Globally it is thought that unusually wet weather at anthesis, an increase in 

conservation tillage, which allows the fungus to survive on crop residues, and 

the use of maize in the rotation have helped increase the abundance of the 

disease in wheat crops (Windels, 1999; Dill-Macky and Jones, 2000; HGCA 

Crop Monitor, 2010). 

 

 

1.4.4 Disease Development 

 

F. graminearum produces both sexual (ascospores) and asexual (macro and 

microconidia) spores, while F. culmorum produces asexual spores only. 

Fusarium ascospores and conidia are thought to be the main infectious 

propagules, with the sequentially flowering wheat ears on each tiller comprising 

the route of infection (Stack and McMullen, 1985; Bai and Shaner, 1994; Miller, 

1994; Parry et al., 1995; McMullen et al., 1997; Shaner, 2003). Spores are 

generally thought to primarily infect spikelets during anthesis, a time when they 

are most susceptible (Pugh et al., 1933; Parry et al., 1995). Spore dispersal 

from fungus existing saprophytically on crop debris could be aided by rain 
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splash, wind and even arthropod vectors (discussed in Parry et al., 1995). 

Growth, reproduction and spore germination of Fusarium are all affected by 

water potential (Sung and Cook, 1981), which may help to explain why wet 

weather increases the occurrence of the disease (Andersen, 1948; Dill-Macky 

and Jones, 2000). 

 

Infection begins with the formation of brown spots on spikelets and eventually 

spreads up and down the rachis (Guenther and Trail, 2005), commonly leading 

to bleaching of the ear prior to natural senescence (Atanasoff, 1920; Pugh et 

al., 1933; Parry et al., 1995; Bushnell et al., 2003). The extent of disease 

development depends on host developmental stage, inoculum amount, 

exposure duration, air temperature and requires a period of high moisture level 

(Andersen, 1948). The fungus appears to form a hyphal network in the spikelet 

cavity and colonise the glume, ovary, palea and lemma and other tissues of the 

wheat ear (Pritsch et al., 2000; Wanyoike et al., 2002; Jansen et al., 2005; 

Brown et al., 2010). Subcuticular growth, including that along glume stomatal 

rows has also been observed (Pritsch et al., 2000) and may lead to direct 

penetration of epidermal cells (Kang and Buchenauer, 2000). Within 24-36 

hours of infection (hai), infection hyphae have formed (Wanyoike et al., 2002) 

and penetrate through stomata to the interior of the ear tissues (Pritsch et al., 

2000) . Entry via anthers may also be an important infection route for hyphae 

(discussed in Strange and Smith, 1978). Mass spectrometry of wheat extracts 

that stimulate F. graminearum growth in vitro and in vivo determined the active 

compounds as choline and betaine (Strange, 1972, 1974), which were present 

at the highest concentration in anther extracts (Pearce et al., 1976). A range of 

similar quaternary ammonium compounds (esters of choline) were later found to 

also stimulate the early stages of F. graminearum hyphal growth in vitro. 

Choline and betaine had no effect on macroconidial germination or resulting 

germling growth, however, their effects appeared to be restricted to an early 

stage of hyphal extension (Strange and Smith, 1978). 

  

In susceptible wheat genotypes, Fusarium hyphae grow through the cortex and 

vascular tissue and spread apically along the rachis, infecting neighbouring 

florets, and continue down the stem (Brown et al., 2010). The fungus grows 

both inter- and intracellularly, penetrating cell walls and leading to the collapse 
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of such cells (Wanyoike et al., 2002; Jansen et al., 2005; Brown et al., 2010). 

The infection destroys starch granules and damages cell walls, reducing 

detectable cellulose, xylan and pectin levels (Wanyoike et al., 2002) and also 

affects endosperm storage proteins (Snijders, 2004). At later infection stages, 

the fungus switches from vertical to predominantly lateral growth and 

accumulates below the rachis surface, degrading cells and rupturing the rachis 

surface (Brown et al., 2010), where, within 48 to 76 hours after inoculation (hai), 

the fungus sporulates, allowing further spread of infection via the release of 

spores (Pritsch et al., 2000; Guenther and Trail, 2005). Macroconidia can be 

produced on florets and glumes, and (in the case of F. graminearum) perithecia 

can eventually form and propel ascospores into the air to be dispersed by wind 

and rain (discussed in Bushnell et al., 2003). Trichothecene mycotoxins 

produced by Fusarium species have the ability to inhibit plant growth and cause 

lesions, and may spread through the host ahead of the developing fungus 

(Kang and Buchenauer 1999). Toxins are transported through the xylem and 

phloem of the rachis to uninfected florets and are widely distributed in infected 

spikelets (Kang and Buchenauer, 1999). However in a recent study, death of 

cells ahead of the infection front was only noted in the chlorenchyma (Brown et 

al., 2010). The toxins may therefore serve to combat host defence responses 

rather than, or in addition to, causing host cell death per se (Jansen et al., 

2005). 

 

Fusarium genes expressed during initial disease development include those 

encoding a two-component sensing response regulator homologue (Rrr1; 

whose mutation slightly delays spread of the disease on wheat and reduces 

sporulation), an ABC transporter (Abc2) and lysine permease (Lyp1) (Goswami 

et al., 2006). From observation of gene expression changes made by the 

fungus during infection, it has been suggested that mitochondria may play an 

important role in pathogenesis, perhaps for increased energy provision or 

catabolism of plant material (Goswami et al., 2006). Other genes whose 

expression is altered upon infection include those that could be used to 

overcome a plant oxidative attack and various metabolic enzymes, including 

some involved in glycolysis, possibly for utilisation of carbon sourced from the 

plant (Zhou et al., 2006). The fungus also produces a range of polysaccharide-

degrading enzymes to aid infection of the plant via the destruction of host cell 
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wall material. When the fungus is grown on hop cell walls, its exoproteome 

includes many proteins thought to be involved in the degradation of xylan, the 

main constituent of hemicellulose (Phalip et al., 2005; Hatsch et al., 2006). The 

complexity and variety of hemicellulose polymers would require a range of 

enzymes to break them down. The large number of xylan-degrading enzymes, 

coupled with differential expression patterns of their cognate genes is thought to 

allow greater flexibility in the response of the pathogen to its environment 

(Hatsch et al., 2006). The microscopy study by Brown et al. (2010) has, 

however, revealed that substantial plant cell wall degradation is only a feature of 

the later stages of the infection of wheat ears by F. graminearum. The fungus 

also secretes lipases during infection, some of which, such as FGL1, are 

required for successful ear colonisation (Voigt et al., 2005).  

 

Using an Affymetrix Gene Chip microarray, Güldener et al. (2006) analysed the 

expression of F. graminearum genes on infected barley plants at 24 hr intervals 

over a 144 hour time course and compared this to in vitro gene expression. In 

total, transcripts hybridising to 431 probe sets were detected exclusively in 

planta. Many corresponded to genes of unknown function, but also included 

were genes encoding proteins involved in carbohydrate metabolism, fatty acid 

metabolism, secondary metabolism, ion homeostasis, disease, virulence and 

defence functions. These included genes encoding plant cell wall-degrading 

enzymes, such as xylanases, mannanases, pectinases, glucanases, 

galactosidases and cutinases, and also trichothecene biosynthesis genes. 

Various patterns of gene expression were noted in planta, some genes 

appearing to be constitutively expressed (138 probe sets), while expression of 

others was only detectable after a period of time (48, 72, 96, or 144 hr). Other 

genes exhibited transient detectable expression for a 24 or 48 hr period at 

different sections of the time course. A similar time course for wheat ear 

infection has been generated but has not yet been published (E. Lysoe  and H-

C Kistler, pers comm.) 

 

Studies have also been made of the changes in host plant gene expression and 

protein levels upon infection. Defence response genes, including those 

encoding PR (pathogenesis-related) proteins have been noted to be up-

regulated in response to Fusarium infection (discussed in Pritsch et al., 2000). 
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For example, using the Barley1 Affymetrix GeneChip probe array, Boddu et al. 

(2006) observed changes in barley gene transcript levels upon infection by F. 

graminearum. 467 transcripts were differentially regulated in F. graminearum-

infected versus control plants. Up-regulated genes included those encoding 

defence response proteins, oxidative burst-associated enzymes and potential 

trichothecene catabolysis/transport proteins.  

 

Proteomic analysis of infected wheat ears has revealed the up-regulation of 

genes encoding proteins involved in oxidative burst (several antioxidant genes 

for a potential defence response) and jasmonic acid signalling pathways, 

pathogenesis-related response (such as antifungal chitinases and β-

glucanases), amino acid biosynthesis and nitrogen metabolism and down-

regulation of some photosynthetic protein-encoding genes (Zhou et al., 2005, 

2006). A comparison of wild-type and a trichothecene non-producing tri5 loss of 

function strain, showed that a subset of barley genes were up-regulated 

specifically in response to trichothecenes and were distinct from the basal 

defence response of this species (Boddu et al., 2007). These genes included 

some encoding proteins that may function in trichothecene export or 

detoxification. Other defence response genes whose expression is enhanced 

included those associated with cell death, a process which, for this necrotrophic 

pathogen, may actually help to promote disease. Proteomic analysis of the 

resistant wheat cultivar Wangshuibai after infection with F. graminearum 

revealed an increase in expression of genes specifying stress response and 

plant defence proteins (Wang et al., 2005). Pritsch et al. (2000) noted an earlier 

and larger accumulation of certain PR gene transcripts in a resistant cultivar 

compared to a susceptible one. A second study of a resistant wheat genotype 

indicated a series of genes whose expression was altered by the presence of F. 

graminearum, including several involved in defence responses or similar to 

disease resistance genes, whose expression appeared to be resistance-specific 

(Kong et al., 2007). A study of barley proteins that respond to the presence of F. 

graminearum in several genotypes of varying resistance indicated an increased 

abundance of PR proteins in resistant and intermediate barley genotypes but a 

decreased abundance in a susceptible genotype. Oxidative burst and oxidative 

stress response proteins increased in abundance in susceptible, intermediate 

and one resistant genotype. As noted in the earlier barley gene expression 
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study (Boddu et al., 2007), this response may contribute to susceptibility by 

increasing host cell death which could aid disease symptom progression by this 

pathogen (Boddu et al., 2007; Geddes et al., 2008). 

 

F. graminearum also appears to influence ethylene signalling during infection of 

both monocotyledonous (wheat and barley) and dicotyledonous (Arabidopsis) 

plants (Chen et al., 2009). Arabidopsis mutants with reduced ethylene signalling 

exhibited increased resistance to F. graminearum in leaf tissue while those with 

increased ethylene signalling levels were more susceptible than normal.  

However, in floral tissue, the various ethylene signalling mutations had no affect 

on infection (Cuzick et al.,2008b). In wheat, down-regulation of ethylene 

signalling increased resistance to F. graminearum, However, in this study, a full 

characterisation of the anti-transgenic wheat plants was not conducted and so 

the influence of unknown non-target effects cannot be discounted. The NPR1 

and EDS11 genes have been shown to contribute to resistance against 

Fusarium in Arabidopsis (Cuzick et al., 2008b). The npr1 and eds11 mutants of 

Arabidopsis exhibited enhanced susceptibility and increased mycotoxin 

contamination. In wheat, over-expression of the Arabidopsis NPR1 protein 

leads to enhanced resistance (Makandar et al., 2006).  Finally, the Arabidopsis 

signalling mutant sgt1b shows increased resistance to Fusarium infection but no 

reduction in mycotoxin accumulation (Cuzick et al., 2009).  

 

 

1.4.5 Mycotoxins 

 

The mycotoxins produced by Fusarium depend on both species and strain, with 

a range of trichothecenes, polyketides and other toxins known. The b-type 

trichothecenes (containing a keto group at carbon eight), the best-studied of the 

Fusarium toxins, are potent inhibitors of translation, interacting with the peptidyl 

transferase site of eukaryotic ribosomes (Ueno et al., 1973; Ehrlich and Daigle, 

1987). These trichothecenes, such as deo xynivalenol (DON), can also activate 

MAP kinases after ribosome binding via the ribotoxic stress response which 

mediates their effects on immune system cells: the upregulation of cytokines 

and other genes at low dose via modulation of transcription factor binding, 

leading to immunostimulation and promotion of leukocyte apoptosis and so 
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immunosuppression at high dose (Shifrin and Anderson, 1999, discussed in 

Pestka et al., 2004). In the host plant, DON appears to activate hydrogen 

peroxide production, programmed cell death and defence responses (Nishiuchi 

et al., 2006; Desmond et al., 2008). DON may induce reactive oxygen species 

(ROS) production in planta in order to stimulate host cell death that would aid 

the spread of the pathogen, however this signal would also appear to stimulate 

host defence responses (Desmond et al., 2008).  However, DON, when directly 

injected into the apoplast of plant tissue is only able to induce host cell death a 

high concentrations (millimolar range) compared to other mycotoxins produced 

by Fusarium species (Nishiuchi et al., 2006).  

 

Most genes required for the biosynthesis of the trichothecene mycotoxins of 

Fusarium are grouped together as the „TRI5 cluster‟, which in F. graminearum 

consists of 10 genes: TRI8, TRI3, TRI4, TRI6, TRI5, TRI10, TRI9, TRI11, TRI12 

and TRI14 (Brown et al., 2001, 2004), and is located on chromosome 2 in a 

region of moderate genetic recombination. Expression of this cluster of genes is 

under control of the transcriptional regulators TRI6 and TRI10 (Proctor et al., 

1995a, Seong et al., 2009). TRI6 has been shown by electrophoretic mobility 

shift assay to bind the promoters of various TRI biosynthesis genes in F. 

sporotrichioides, probably using Zn finger domains located at its C-terminus 

(Hohn et al., 1999). Mutation of the TRI6 gene lowers transcript production and 

site-directed mutagenesis of the Zn finger or mutation of the DNA-binding motif 

abolishes binding to TRI cluster promoters (Proctor et al., 1995a; Hohn et al., 

1999). Targeted deletion, meanwhile, of either TRI6 or TRI10 reduces the 

expression of most TRI genes and also the expression of isoprenoid 

biosynthesis genes involved the metabolic pathway preceding trichothecene 

biosynthesis (Tag et al., 2001; Peplow et al., 2003a; Seong et al., 2009). 

Deletion of TRI6 also increases the expression of TRI10, suggesting a level of 

negative regulation of this gene by TRI6. Conversely, deletion of TRI10 has little 

effect on the expression of TRI6 (Seong et al., 2009). TRI6 and TRI10 appear to 

regulate overlapping but distinct sets of genes that also include genes involved 

in virulence, defence, transport and secondary metabolism (Seong et al., 2009). 

A number of additional genes have been found to exhibit expression that is 

correlated with that of trichothecene biosynthesis genes in planta and are highly 

induced by agmatine, a stimulant of DON production (Gardiner et al., 2009a). 
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Many of these genes were found to possess predicted TRI6 binding sites in 

their promoter regions. Interestingly, two of these genes, FGSG_00007 and 

FGSG_10397 (which possess one and three predicted TRI6 binding sites, 

respectively) were found to highly negatively regulate DON production, their 

targeted deletion leading to large increases in DON production in both non-

inducing and inducing conditions (Gardiner et al., 2009). 

  

The expression of TRI genes appears to be influenced, at least in vitro, by 

ambient pH (Merhej et al., 2010, Gardiner et al., 2009b). Water activity and 

temperature have also been reported to affect the expression of TRI genes 

(Marin, et al., 2010; Schimidt-Heydt et al., 2010) as has the application of 

oxidative stress (Ponts et al., 2006, 2007, 2009), a situation which could, in the 

field, result from sub-lethal doses of fungicide (Audenaert et al., 2010). Amine 

compounds such as agmatine (described above) and putrescine also increase 

trichothecene production by F. graminearum (Gardiner et al., 2009a, c), while 

magnesium has been reported to decrease production of these compounds 

(Pinson-Gadais et al., 2008). 

 

The role of many TRI genes has been elucidated in the related species F. 

sporotrichioides, which produces the trichothecene T-2 toxin. However, many of 

the TRI genes are conserved across Fusarium species and are also found in F. 

graminearum (Brown et al., 2001; Kimura et al., 2003). Several such genes 

have been experimentally disrupted and the resulting accumulation of 

trichothecene intermediates analysed to determine the function of the particular 

gene. TRI5 encodes trichodiene synthase, which catalyses the first committed 

step in trichothecene biosynthesis and is required for full virulence on wheat, 

rye seedlings and maize (Proctor et al., 1995b; Desjardins et al., 1996; Harris et 

al., 1999) although this effect is dependent on wheat variety (Proctor et al., 

1995b). TRI4 encodes a multifunctional P-450 monooxygenase, disruption of 

which in either F. graminearum or F. sporotrichioides halts mycotoxin 

production. Precursor feeding experiments suggest that this enzyme appears to 

perform four steps in trichothecene biosynthesis (McCormick et al., 2006). 

TRI14, meanwhile is required for full virulence of F. graminearum and for 

detectable DON production in planta but not in vitro (Dyer et al., 2005). 
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Different Fusarium species and strains produce different trichothecenes and 

some differences in their TRI biosynthetic genes complement have been noted. 

For example, TRI13 is required for C-4 oxygen addition in T-2 toxin and NIV 

biosynthesis. In DON-producing F. graminearum strains this gene appears to be 

non-functional (possessing numerous stop codons and no start codon due to 

nucleotide deletions) but is functional in F. sporotrichioides and F. graminearum 

NIV strains, consistent with the requirement for a C-4 hydroxylase in T-2 toxin 

and NIV biosynthesis, but not for DON (Brown et al., 2002). Similarly, TRI7 is 

required by F. sporotrichioides for acetylation of the C-4 oxygen of T-2 toxin and 

is non-functional in DON-producing F. graminearum (Brown et al., 2001). 

Disrupting TRI13 in a NIV-producing F. graminearum strain leads it to produce 

DON instead, while expression of a TRI13 gene from a NIV-producing F. 

graminearum in a DON-producing strain caused it to produce NIV (Lee et al., 

2002).  Very recently, the sequence of the TRI8 enzyme was shown through 

yeast over-expression experiments to determine whether 3A-DON or 15A-DON 

arises from the intermediate diacetylated 3A,15A–DON precursor in the 

pathway (Alexander et al., unpublished). 

 

A small number of TRI genes have been discovered at loci unlinked to the main 

TRI cluster. TRI1 of F. sporotrichioides encodes a P-450 monooxygenase 

required for C-8 oxygenation not found in the main cluster (Meek et al., 2003). 

F. graminearum cDNA libraries from cultures grown in trichothecene production-

inducing conditions were used to identify additional TRI genes in this species 

and found a new P-450-encoding gene on chromosome 1 required for C-7 and 

C-8 oxygenation that is probably a homologue of TRI1 (McCormick et al., 2004). 

TRI16, required for C-8 OH group esterification, and located close to TRI1, 

appears to be non-functional in DON-producing F. graminearum, consistent with 

the presence of a C-8 keto rather than ester group in DON (Brown et al., 2003; 

Peplow et al., 2003b; McCormick et al., 2004). TRI101, a trichothecene 3-O-

acetyltransferase-endocing gene, is another TRI gene not found in the main 

cluster (Kimura et al., 1998a-c) and is located on chromosome 4 in F. 

graminearum. The precise role of TRI101 is currently under debate. A self-

defence role for TRI101 was proposed after trichothecene 3-O-acetyl 

derivatives showed significantly reduced toxic activity in an in vitro rabbit 

reticulocyte translation system (Kimura et al., 1998a). However, disruption of 
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this gene in F. sporotrichioides indicates it is not essential for self-protection in 

this species and may instead play a role in T-2 toxin biosynthesis. It has been 

suggested that TRI8 encodes a toxicity factor with TRI101 again acting in self-

protection as a free C-3 OH group is important for toxicity (McCormick and 

Alexander 2002). But the expression patterns of the two genes were not 

investigated, so no explanation could be made as to how the organism prevents 

cycling between acetylated and deacetylated forms of trichothecenes and how 

self-protection could actually be achieved when a C-3 deacetylase is present. 

Further evidence regarding the role of TRI101 is presented later. TRI15, which 

may encode a negative regulator of other TRI genes, is also unlinked to the 

main TRI cluster and located on chromosome 3 (Alexander et al., 2004). 

Comparison of the TRI cluster in a number of Fusarium species has revealed 

that in some species, the TRI1 and TRI101 genes appear to have moved into 

the main TRI cluster. The cluster also demonstrates gene loss as well as non-

functionalisation by rearrangement between different species (Proctor et al., 

2009). 

 
In addition to trichothecenes, Fusarium species also produce a range of other 

toxins. These include the polyketide zearalenone (ZEA), which shows 

estrogenic effects in farm animals (Stob et al., 1962). Polyketide synthase 

genes, such as ZEA1 and ZEA2, which appear to be transcribed divergently 

from a common promoter region, are required for ZEA synthesis (Gaffoor and 

Trail., 2006). Disruption of the polyketide synthase genes that are involved in 

the biosynthesis of ZEA and other polyketides such as aurofusarin and fusarin 

C, however, has little effect on the pathogenicity of the fungus (Gaffoor et al., 

2005; Lysoe et al., 2006). 

The precise role mycotoxins play in plant infection by Fusarium species is not 

entirely clear. While disruption of the TRI5 gene decreases Fusarium virulence 

to wheat (Proctor et al., 1995b; Desjardins et al., 1996) and DON has been 

shown to inhibit plant and seedling growth and regeneration (discussed in 

Rocha et al., 2005), infection is not completely prevented by TRI5 disruption 

and this effect is also dependent on cereal variety, suggesting trichothecenes 

play a role in virulence but are not essential (Proctor et al., 1995b). Further 

studies of F. graminearum TRI5 disruption mutants, which do not produce DON, 
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indicated that reduced infection on particular cereal varieties was limited to the 

inoculated spikelets and could not spread to uninoculated spikelets (Proctor et 

al., 1995b; Bai et al., 2002), due to the presence of plant cell wall thickenings 

blocking spread of the fungus in wheat (Jansen et al., 2005). The role of DON 

and similar trichothecenes may therefore be to suppress such a defence 

response by wheat or to combat other fungal species (Jansen et al., 2005), 

although the elicitation of hydrogen peroxide production by DON may also serve 

to activate host defences (Desmond et al., 2008). TRI5 expression in planta 

does not appear to be uniform, with increased expression in the developing 

kernel and rachis node (Ilgen et al., 2009) suggesting increased DON 

production at sites of increased host resistance or defence responses such as 

cell wall thickening. On barley ears, a loss of function tri5 strain appeared to 

show reduced virulence and fungal biomass in planta (Boddu et al., 2007). The 

loss of TRI5 does not, however, affect the infection of Arabidopsis by F. 

graminearum, indicating that DON does not play a role in disease symptom 

progression on this species (Cuzick et al., 2008a).  This later result indicated 

that despite its ubiquitous target site, the ribosome, DON belongs to the class of 

host-selective toxin (Agrios, 1997).  

 

1.4.6 Pathogenicity/Virulence Factors 

 

A number of F. graminearum genes have been disrupted/deleted by either 

forward or reverse genetics experiments in the search for 

pathogenicity/virulence factors required by the fungus for full disease-causing 

ability. These genes and the effect of their disruption on F. graminearum 

virulence are summarised in Table 1.2. Interestingly, the CHS5 and CHS7 

genes are predicted to bind chitin and may act as chitin synthases (Kim et al., 

2009). Alternatively, the proteins encoded by these genes could serve to 

prevent host detection of chitin released from invading hyphae in a manner 

similar to that of the Ecp6 protein of Cladosporium fulvum (de Jonge et al., 

2010). 
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Table 1.2. Characterised genes in F. graminearum. Accession numbers, where not otherwise available, are provided based on the gene locus ID number as 
defined in the first version of the F. graminearum genome gene call (FG1, Broad Institute, MIPS). 

Gene locus ID Gene name Accession Putative function encoded 
Phenotype of  
deletion/disruption Host tested Reference 

FGSG_02506 ADE5 XP_382682.1 Phosphoribosylamine-glycine ligase Reduced virulence Barley 
Kim et al., 
2007 

FGSG_01939 ARG2 XP_382115.1 Acetylglutamate synthase Reduced virulence Barley 
Kim et al., 
2007 

FGSG_02324 AUR1 XP_382500.1 Aurofusarin synthesis 
Unaffected 
pathogenicity Wheat 

Urban et al., 
2003 

FGSG_01932 CBL1 EAA68828 Cystathionine beta-lyase Reduced virulence Wheat 
Seong et al., 
2005 

    
Reduced virulence Maize 

Seong et al., 
2005 

FGSG_01364 Cch1 XP_381540.1 Voltage-gated calcium ion channel 
Unaffected 
pathogenicity Wheat 

Hallen and 
Trail, 2007 

FGSG_01964 CHS5 XP_382140.1 Chitin synthase Reduced virulence Barley 
Kim et al., 
2009 

FGSG_12039 CHS7 EAA69453 Chitin synthase Reduced virulence Barley 
Kim et al., 
2009 

FGSG_04355 CID1 XP_384531.1 Cyclin-C like Reduced virulence Wheat 
Zhou et al., 
2009 

    
Reduced virulence Maize 

Zhou et al., 
2009 

FGSG_06631 CPS1 XM_386807 Adenylate forming enzymes Reduced virulence Wheat 
Lu et al., 
2003 

FGSG_02095 FBP1 XP_382271.1 F-box protein Reduced virulence Barley 
Han et al., 
2007 

FGSG_05159 FET3 XP_385335.1 Ferroxidase 
Unaffected 
pathogenicity  Wheat 

Greenshields 
et al., 2007 
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FGSG_05906 FGL1 AAQ23181 Secreted Lipase Reduced virulence Maize 
Voigt et al., 
2005 

    
Reduced virulence Wheat 

Voigt et al., 
2005 

FGSG_01665 FSR1 EAA68366 Signalling scaffold protein Reduced virulence Barley 
Shim et al., 
2006 

FGSG_00332 FTL1 XP_380508.1 Transducin beta-like Reduced virulence Wheat 
Ding et al., 
2009 

 
FTR1 Not available Iron permease 

Unaffected 
pathogenicity Barley 

Park et al., 
2006 

 
FTR2 Not available Iron permease 

Unaffected 
pathogenicity Barley 

Park et al., 
2006 

FGSG_05955 GCS1 XP_386131.1 Glycosylceramide synthase Reduced virulence Wheat 
Ramamoorthy 
et al., 2007b 

    
Reduced virulence Maize 

Ramamoorthy 
et al., 2007b 

    

Unaffected 
pathogenicity 

Arabidopsis 
thaliana 

Ramamoorthy 
et al., 2007b 

    

Unaffected 
pathogenicity Tomato 

Ramamoorthy 
et al., 2007b 

FGSG_02328 GIP1 XP_382504.1 Putative laccase 
Unaffected 
pathogenicity Barley 

Kim, JE et al., 
2005 

FGSG_05535 GPA1 XP_385711.1 G protein alpha subunit 
Unaffected 
pathogenicity  Barley 

Yu et al., 
2008 

FGSG_09614 GPA2 XP_389790.1 G protein alpha subunit Reduced virulence Barley 
Yu et al., 
2008 

FGSG_04104 GPB1 XP_384280.1 G protein beta subunit Reduced virulence Barley 
Yu et al., 
2008 

FGSG_06385 GPMK1 AAL73403 MAPK 
Loss of 
pathogenicity  Wheat 

Jenczmionka 
et al., 2003 
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FGSG_06385 GPMK1 AAL73403 MAPK 
Loss of 
pathogenicity  Wheat 

Urban et al., 
2003 

    

Loss of 
pathogenicity  

Arabidopsis 
thaliana 

Urban et al., 
2003 

    

Loss of 
pathogenicity  Tomato 

Urban et al., 
2003 

FGSG_03964 GRS1 XP_384140.1 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_09988 GPA3 XP_390164.1 G protein alpha subunit 
Unaffected 
pathogenicity  Barley 

Yu et al., 
2008 

 
HIS7 Not available Glutamine aminotransferase 

Loss of 
pathogenicity Barley 

Seo et al., 
2007 

FGSG_09197 HMR1 XP_389373.1 HMG-CoA Reductase Reduced virulence Wheat 
Seong et al., 
2006 

FGSG_09612 HOG1 XP_389788.1 MAPK Reduced virulence Wheat 
Ramamoorthy 
et al., 2007a 

    

Unaffected 
pathogenicity  Tomato 

Ramamoorthy 
et al., 2007a 

 
LIP1 EAA67628 Secreted lipase 

Unaffected 
pathogenicity Wheat 

Feng et al., 
2005 

    

Unaffected 
pathogenicity Barley 

Feng et al., 
2005 

FGSG_06680 Mes1 XP_386856.1 
Homologue of Aspergillus nidulans 
MesA Reduced virulence Wheat 

Rittenour and 
Harris, 2008 

FGSG_05658 metE EAA75229 Homoserine O-acetyltransferase Reduced virulence Wheat 
Han et al., 
2004 

FGSG_10313 MGV1 AAM13670 MAPK 
Loss of 
pathogenicity  Wheat 

Hou et al., 
2002 

    

Loss of 
pathogenicity  Tomato 

Hou et al., 
2002 
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FGSG_10825 MSY1 EAA75179 Methionine synthase Reduced virulence Maize 
Seong et al., 
2005 

    
Reduced virulence Wheat 

Seong et al., 
2005 

FGSG_05593 MT2 XP_385769.1 Sphingolipid C-9 methyltransferase Reduced virulence Wheat 
Ramamoorthy 
et al., 2009 

    
Reduced virulence 

Arabidopsis 
thaliana 

Ramamoorthy 
et al., 2009 

    
Reduced virulence Tomato 

Ramamoorthy 
et al., 2009 

    
Reduced virulence Maize 

Ramamoorthy 
et al., 2009 

FGSG_00376 NOS1 XP_380552.1 Ubiquinone oxidoreductase Reduced virulence Wheat 
Seong et al., 
2005 

    
Reduced virulence Maize 

Seong et al., 
2005 

FGSG_03747 NPS6 XP_383923.1 Non-ribosomal peptide synthetase Reduced virulence Wheat 
Oide et al., 
2006 

FGSG_07118 OS1 XM_387294 Histidine kinase Not known  
 

Ochiai et al., 
2007 

FGSG_00408 OS4 XM_380584 MAP KKK Not known  
 

Ochiai et al., 
2007 

FGSG_08691 OS5 XM_388867 MAP K Not known  
 

Ochiai et al., 
2007 

FGSG_09182 PGL1 XP_389358.1 Black perithecial pigment synthesis 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_10548 PKS1 AAS57885 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_01790 PKS11 AAS57295 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 



 

   

  28 

FGSG_12040 PKS12 Not available Polyketide synthase Not known 
 

Kim et al., 
2007 

FGSG_02395 
PKS13 
(ZEA2) ABB90282 Zearalenone synthesis 

Unaffected 
pathogenicity Barley 

Gaffoor et al., 
2005; Kim, 
YT et al., 
2005 

    

Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_03340 PKS17 XP_383516.1 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_04694 PKS2 AAS57287 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_12126 PKS4 (ZEA1) ABB90283 Zearalenone synthesis 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005; Lysoe 
et al., 2006 

    

Unaffected 
pathogenicity Barley 

Gaffoor et al., 
2005; Lysoe 
et al., 2006 

FGSG_05794 PKS5 AAS57290 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_08208 PKS6 AAS57291 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_08795 PKS7 AAS57292 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_10464 PKS9 AAS57293 Polyketide synthase 
Unaffected 
pathogenicity Wheat 

Gaffoor et al., 
2005 

FGSG_08695 PLS1 XP_388871.1 Tetraspanin 
Unaffected 
pathogenicity Wheat 

Rittenour and 
Harris, 2008 

FGSG_05061 PPG1 XP_385237.1 Pheromone precursor Not known 
 

Kim et al., 
2008 
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FGSG_02655 PRE2 XP_382831.1 Peromone receptor Not known 
 

Lee et al., 
2008 

FGSG_04111 PTC1 XP_384287.1 Type 2C protein phosphatase Reduced virulence Wheat 
Jiang et al., 
2010 

FGSG_09778 RAS1 XP_389954.1 Ras GTPase 

Not known, 
appears to be 
essential 

 

Bluhm et al., 
2007 

FGSG_10114 RAS2 XP_390290.1 Ras GTPase Reduced virulence Maize 
Bluhm et al., 
2007 

    
Reduced virulence Wheat 

Bluhm et al., 
2007 

FGSG_05371 SID1 XM_385547 Siderophore biosynthetic gene Reduced virulence Wheat 
Greenshields 
et al., 2007 

FGSG_05484 STE11 XP_385660.1 MAPKKK 
Loss of 
pathogenicity  Wheat 

Ramamoorthy 
et al., 2007a 

    

Loss of 
pathogenicity  Tomato 

Ramamoorthy 
et al., 2007a 

FGSG_09903 STE7 XP_390079.1 MAPKK 
Loss of 
pathogenicity  Wheat 

Ramamoorthy 
et al., 2007a 

    

Loss of 
pathogenicity  Tomato 

Ramamoorthy 
et al., 2007a 

FGSG_00950 SYN1 XP_381126.1 Syntaxin-like SNARE Reduced virulence Barley 
Hong et al., 
2010 

FGSG_09928 SYN2 XP_390104.1 Syntaxin-like SNARE Reduced virulence Barley 
Hong et al., 
2010 

FGSG_00332 TBL1 EAA69638 Transducin beta-subunit Reduced virulence Maize 
Seong et al., 
2005 

    
Reduced virulence Wheat 

Seong et al., 
2005 

FGSG_06874 TOP1 XP_387050.1 Topoisomerase Reduced virulence Wheat Baldwin et al., 
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2010 

 
TRI10 AF365969 Transcription factor Reduced virulence Wheat 

Seong et al., 
2009 

FGSG_03543 TRI14 EAA72509 DON toxin biosynthesis Reduced virulence Wheat 
Dyer et al., 
2005 

FGSG_03537 TRI5 AAM90953 Trichodiene synthase 
Unaffected 
pathogenicity Oat 

Proctor et al., 
1995b 

    
Reduced virulence Rye 

Proctor et al., 
1995b 

    

Unaffected 
pathogenicity Maize 

Proctor et al., 
1995b 

    
Reduced virulence Wheat 

Proctor et al., 
1995b 

    

Unaffected 
pathogenicity 

Arabidopsis 
thaliana 

Cuzick et al., 
2008 

FGSG_03536 TRI6 BAA83722 Transcription factor Reduced virulence Wheat 
Seong et al., 
2009 

 
ZEB1 ABB90284 Zearalenone synthesis 

Unaffected 
pathogenicity Barley 

Kim, YT et al., 
2005 

FGSG_02398 ZEB2 EAA67238 Zearalenone synthesis 
Unaffected 
pathogenicity Barley 

Kim, YT et al., 
2005 

FGSG_01555 ZIF1 EAA68510 b-ZIP transcription factor Reduced virulence Maize 
Seong et al., 
2005 

    
Reduced virulence Wheat 

Seong et al., 
2005 

FGSG_00007 
 

XP_380183.1 Unknown 
Increased 
virulence Wheat 

Gardiner et 
al., 2009 

FGSG_00416 
 

XP_380592.1 
Major Facilitator Superfamily 
Transporter Reduced virulence Wheat 

Dufresne et 
al., 2008 
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FGSG_01974 
 

XP_382150.1 
Similar to HET-C2 glycolipid transfer 
protein Reduced virulence Wheat 

Dufresne et 
al., 2008 

FGSG_02077 
 

XP_382253.1 Unknown Reduced virulence Wheat 
Dufresne et 
al., 2008 

FGSG_02549 
 

XP_382725.1 Phosphoglycerate mutase family Reduced virulence Wheat 
Dufresne et 
al., 2008 

FGSG_04510 
 

XP_384686.1 Unknown 
Unaffected 
pathogenicity Wheat 

Dufresne et 
al., 2008 

FGSG_04610 
 

XP_384786.1 Similar to maltose permease 
Unaffected 
pathogenicity Wheat 

Dufresne et 
al., 2008 

FGSG_07062 
 

XP_387238.1 Unknown 
Unaffected 
pathogenicity Wheat 

Dufresne et 
al., 2008 

FGSG_08737 
 

XP_388913.1 Unknown 
Unaffected 
pathogenicity Wheat 

Dufresne et 
al., 2008 

FGSG_09759 
 

XP_389935.1 Cation efflux family 
Unaffected 
pathogenicity Wheat 

Dufresne et 
al., 2008 

FGSG_10057 
 

XP_390233.1 Unknown Reduced virulence Wheat 
Dufresne et 
al., 2008 

FGSG_10397 
 

XP_390573.1 Unknown 
Increased 
virulence Wheat 

Gardiner et 
al., 2009 

FGSG_12019 
 

Not available Unknown Reduced virulence Wheat 
Dufresne et 
al., 2008 

FGSG_12753   Not available Unknown Reduced virulence Wheat 
Dufresne et 
al., 2008 

 

 



 

   

  32 

1.4.7 Resistance to Fusarium Infection 

The resistance of wheat to infection by Fusarium species was last reviewed by 

Snijders (2004). Resistance in wheat is at best incomplete and varies between 

genotype, with no complete resistance having been discovered. Often, the most 

resistant genotypes possess the worst agronomic characteristics. For example, 

the highly resistant genotype Sumai 3 (origin China) lacks resistance to most 

other diseases and also has poor grain quality traits (Snijders, 2004). As such, 

both transgenic and marker-assisted breeding approaches aiming to increase 

resistance are under investigation. 

Resistance to FEB can be regarded as comprising of two components. Type I 

resistance against initial penetration and type II resistance against spread of the 

pathogen within the host (Schroeder and Christensen, 1963). Genotypes of 

wheat that exhibit resistance show a slower development and spread of disease 

symptoms (Snijders and Perkowski, 1990; Ribichich et al., 2000). Resistance 

mechanisms affecting kernel/grain DON content via degradation or tolerance 

may also be present (Miller et al., 1985; Mesterhazy et al., 2002). Resistance to 

FEB does not show specificity to either F. graminearum or F. culmorum 

(Snijders, 2004). 

In wheat, Fusarium resistance is a quantitative trait with relatively high 

heritability and is controlled by a few genes with major effect (Snijders, 1990; 

Singh et al., 1995; Van Ginkel et al., 1996). Identification of quantitative trait loci 

(QTLs) for resistance to FEB is a main focus of the international resistance 

research community, with the possibility of accumulating such loci in wheat lines 

to increase resistance. QTLs may in some cases be coincident for genes 

controlling morphology (e.g. lax ears and a lack of awns tend to show lower 

disease occurrence: Mesterhazy, 1987; Snijders, 2004). The Sumai 3 genotype, 

which originated as a transgressive segregant from a cross involving two 

parents with only moderate resistance to FEB, is the best-studied source of 

resistance. Breeding programmes rely heavily on this resistance source, and 

recently released genotypes with improved resistance such as Pioneer 25R18 

in the USA and Wonder in Canada are two such examples (Snijders, 2004). 

The recent detailed study of the infection of the entire ear of a susceptible 
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genotype has revealed an extensive symptomless phase to the infection 

process (Brown et al., 2010). It is currently not known whether resistance 

genotypes prevent or permit this symptomless phase of infection.  

It has recently emerged that a QTL affecting resistance to FEB appears to co-

localise with the green revolution semi-dwarfing Rht-D1 locus. In the resistant 

winter wheat cultivar Arina, it is thought that the linkage of other genes that 

confer increased susceptibility to the Rht-D1b (Rht2) locus is responsible, rather 

than resistance variation due to height (Draeger et al., 2007). In a mapping 

population from a cross between the resistant cultivar Spark and the susceptible 

cultivar Rialto, lines possessing the Rht-D1b allele showed reduced type I 

resistance but were unaffected in type II resistance (Srinivasachary et al., 

2008). Again, the variation in resistance appeared not to be due to height 

differences per se. A later study further supported the role of the Rht-D1b allele 

in FEB susceptibility in European winter wheat (Holzapfel et al., 2008). 

Recently, it has been found that both the Rht-D1b and the second semi-

dwarfing Rht-B1b allele also used extensively in global wheat breeding affect 

FEB resistance but in different manners. An investigation using the resistant 

variety Soissons showed a major FEB QTL linked to the Rht-D1 locus but no 

effect of the Rht-B1b allele on FEB resistance. However, using Mercia and 

Maris Huntsman, containing both both Rht-D1b and Rht-B1b, reduced type I 

resistance under high disease pressure. Rht-D1b did not affect type II 

resistance but Rht-B1b actually increased type II resistance (Srinivasachary et 

al., (2009). 

 

1.4.8 Infection Post-Harvest  

Production of mycotoxins during infection by Fusarium leads to contaminated 

grain which poses a serious health risk to the consumer. As well as aiming to 

reduce crop infection by Fusarium, control of grain contamination after harvest 

is also important in improving grain quality and safety. 

A large number of factors, both biotic and abiotic, affect the quality of grain after 

harvest. Such factors include grain and mould respiration, water availability, 

temperature and insect and fungal presence, and can influence contaminant 
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toxigenic fungi such as F. graminearum and F.  culmorum and their production 

of mycotoxins (Magan et al., 2003; Aldred and Magan, 2004; Schrodter et al., 

2004).  

The pre-harvest condition of the grain is important in determining its quality and 

contamination level post-harvest (Schrodter et al., 2004). Factors affecting the 

pre-harvest level of infection by Fusarium include climate conditions, crop 

cultivar, cutting height at harvest, the use of crop rotation, ploughing methods 

and fertiliser and fungicide use (Aldred and Magan, 2004; Schrodter et al., 

2004). Due to the lack of fully resistant wheat cultivars, a combination of 

fungicide use, partially resistant cultivars and specific farming practices (such as 

deep ploughing to remove surface contamination and crop rotation to break the 

infection cycle) have to be employed to try and reduce infection (Mesterhazy, 

2002; Aldred and Magan, 2004). 

At the post-harvest stage, maintaining grain at a low moisture content (aw 

<0.65-0.70) should prevent fungal spoilage (Magan et al., 2003; Aldred and 

Magan, 2004; Schrodter et al., 2004). As such, immediate drying after harvest 

should be implemented (Schrodter et al., 2004). It is thought that the chemical 

stability of trichothecenes is such that no significant decrease will occur during a 

drying operation itself (Schrodter et al., 2004). Mechanical damage to grain and 

an incorrect storage temperature (toxin production is much higher at 25˚C than 

15˚C) can also aid fungal infection (Magan et al., 2003; Schrodter et al., 2004). 

Competition with other fungal and bacterial species will also influence 

contamination by fungi and toxin production. Magan and Lacey (1984) 

developed an Index of Dominance to assist in analysis of fungal communities in 

grain, which was found to vary depending on temperature and water activity 

(aw). F. culmorum competed well with storage moulds at aw >0.93-0.95. Upon 

testing the interaction of this species with others, it was found that F. 

graminearum was more competitive in all water activity and temperature 

conditions, suggesting why these two species are such important pathogens in 

post-harvest cereal grain (Magan et al., 2003). More recently, Niche Overlap 

Indices calculated from carbon source utilisation patterns have been used to 

assess fungal competition in such environments, and have shown dynamic 

behaviour and dependence on temperature, water availability and nutrient 
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status (Magan et al., 2003). Fungal species such as Microdochium nivale have 

been found to enhance F. culmorum growth and DON production on grain, but 

at lower water activity, other species, such as Penicillium verrucosum can 

reduce DON production, while enhancing growth. Insects can also encourage 

the spread of fungi (Aldred and Magan, 2004). Due to the physiological and 

biochemical similarities between fungi and early insect development stages, 

combined insecticidal/fungicidal control may be possible (Magan et al., 2003).   

Good post-harvest management, such as maintenance of suitable low moisture 

conditions, detection and separation of contaminated from healthy grain and 

minimisation of pre-drying storage time will therefore help reduce mycotoxin 

contamination of grain (Aldred and Magan, 2004).  

 

1.4.9 Combating Fusarium Ear Blight (FEB) 

 

A range of techniques have been employed in attempts to combat FEB and 

reduce disease occurrence, mycotoxin accumulation and symptom severity. As 

yet, a complete cure or preventative measure for FEB has not been found. As 

described earlier, resistance in wheat is at best partial, often occurring in 

cultivars lacking traits favourable for commercial use (Snijders, 2004), such as 

high yield and tolerance of poor weather conditions.  

 

Other potential means to protect crops against FEB include the introduction of 

genes from heterologous organisms or over-expression of specific host genes. 

For example, the TRI101 trichothecene 3-acetyltransferase gene from F. 

sporotrichioides has been introduced to wheat plants where it provides partial 

resistance to F. graminearum spread in inoculated spikelets (Okubara et al., 

2002), but as yet provided no overall resistance in field trials. A similar result 

has been noted in tobacco, where the TRI101 gene product increases plant 

tolerance to the trichothecene diacetoxyscirpenol (DAS) in a seed germination 

assay (Muhitch et al., 2000). In rice, TRI101 expression prevented the inhibitory 

effects of DON on root growth, however, the activity of the transgene was only 

assayed in leaves rather than the roots themselves (Ohsato et al., 2006).  
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A series of pathogenesis-related (PR) genes isolated from a cDNA library of F. 

graminearum-infected resistant wheat cv. Sumai-3 have been introduced into 

susceptible wheat cv. Bobwhite in various combinations. By producing wheat 

expressing a rice thaumatin-like protein and a specific combination of a wheat 

chitinase and a wheat glucanase, partial resistance to FEB, indicated by a lower 

average number of infected spikelets, was achieved in greenhouse conditions. 

However, such resistance was not evident in field trials with heavy inoculum 

loads (Chen et al., 1999; Anand et al., 2003). A study using the over-expression 

of wheat defence-response genes alpha-1-purothionin, thaumatin-like protein 1 

and beta-1, 3-glucanase has also reported the production of lines exhibiting 

reduced ear blight severity and DON contamination (Mackintosh et al., 2007). 

Transgenic wheat cv. Bobwhite expressing the Arabidopsis thaliana AtNPR1 

gene, which regulates the activation of systemic acquired resistance, shows 

increased resistance to FEB caused by F. graminearum, associated with a 

faster defence response to infection with rapid, high-level expression of PR1 

(Makandar et al., 2006). However, under field conditions, resistance was not 

evident (Shah, pers comm.). Introduction of a barley chitinase into wheat also 

showed limited success against F. graminearum infection (Shin et al., 2008). 

The identification of a DON UDP-glycosyltransferase from Arabidopsis thaliana 

that is able to detoxify DON and 15-ADON may provide another route to follow, 

although no protective activity was noted against NIV (Poppenberger et al., 

2003). In Arabidopsis itself, over-expression of the Golden2-like (GLK1) 

transcription factor increased the expression of a series of defence-related 

proteins and increased resistance to F. graminearum despite a noted decrease 

in the expression of the defence gene PR-1 (Savitch et al., 2007). In maize, a 

transgenic line possessing a zearalenone-degrading enzyme has been reported 

to reduce levels of the toxin in infected kernels (Igawa et al., 2007). 

 

Compounds or proteins antagonistic to FEB have been obtained from a number 

of species. Alfalfa (Medicago sativa) seed defensin MsDef1 inhibits the in vitro 

growth of F. graminearum, disrupting hyphal elongation and leading to a hyper-

branching phenotype (Spelbrink et al., 2004). This activity requires the Arg 38 

residue and is diminished by Ca2+ presence. The corn defensin PDC1 has also 

be reported to show antifungal activity towards F. graminearum (Kant et al., 

2009). A Trichoderma isolate producing 6-pentyl-alpha-pyrone (6PAP) reduced 
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DON production by F. graminearum when grown in a competition assay system, 

as could F. subglutinans, but some strains of this latter species are also toxin 

producers and so would not represent suitable combat agents (Cooney et al., 

2001).  

 

Plant extracts and essential oils have been investigated in the search for means 

to reduce FEB incidence. Extracts of medicinal plants in ethyl acetate or 

methanol are claimed to exhibit growth-inhibiting properties towards F. 

culmorum, such as ethyl acetate extracts of Cineraria grandiflora, Coccinia 

adoensis and Pavonis urens, and methanol extracts of Pavonia urensa and 

Marattia fraxinea (de Boer et al., 2005). A series of essential oils were also 

claimed to inhibit F. graminearum growth and DON production, depending on 

environmental conditions and F. graminearum strain used (Velluti et al., 2004). 

The isoprenoid farnesol, interestingly, has also been reported to exhibit 

antifungal effects against F. graminearum (Semighini et al., 2008). 

 

Biological control methods using bacteria have also been examined for the 

possibility of reducing FEB symptoms and mycotoxin accumulation. Several 

Pseudomonas species have been claimed to reduce the severity of FEB 

symptoms caused by F. culmorum, reducing expression of the fungal 

trichodiene synthase (TRI5) gene that is required for mycotoxin synthesis, and 

possibly aiding plant resistance induction (Khan et al., 2006). Other bacteria 

that may antagonise FEB include Cryptococcus and Bacillus species  for FEB 

caused by F. graminearum (Khan et al., 2001, 2004) and Pseudomonas and 

Bacillus species for FEB caused by F. culmorum (Czaban et al., 2004).  

 

 

1.4.10 Fungal Pathogen Signalling  

 

The number of sequenced fungal pathogens available for study is increasing at 

an ever faster rate as sequencing technology progresses and next-generation 

procedures are adopted. This is allowing rapid progress in the comparison of 

conserved biological processes between species. Such processes include core 

signalling pathways common to many species and which in many cases are 

integral in disease development. 
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In order to convey changes in the environment to transcriptional, behavioural 

and morphological alterations that allow the fungus to adapt to such changes, a 

signal is required to pass from the surface of the organism to the internal 

machinery. Animal and plant pathogenic fungi require such signalling pathways 

to control virulence and response to the host. Some signalling pathways appear 

to be widespread and show a high degree of conservation between plant- and 

animal-pathogenic fungi, for example, MAP kinase and cAMP signalling 

cascades. 

 

MAP kinase signalling in fungal pathogens shows homology to MAP kinase 

cascades identified in the yeast Saccharomyces cerevisiae (Figure 1.5). 

Homologues of individual S. cerevisiae kinases and sometimes entire kinase 

cascades have been identified in both plant- and animal-pathogenic species.  In 

S. cerevisiae, MAP kinase pathways containing the PAK kinase (Ste20)-

MAPKKK (Ste11)-MAPKK (Ste7)-MAPK (Fus3/Kss1) cascade regulate 

pheromone response and filamentous growth. In the case of pheromone 

response, an upstream G-protein coupled receptor (GPCR) and heterotrimeric 

G-protein system is used, but in the case of filamentous growth, activation of 

the pathway is by Ras2, Cdc42 and 14-3-3 proteins (Mosch et al., 1996; 

Roberts et al., 1997; Xu, 2000). Other MAP kinase pathways include those 

regulating cell integrity (Bck1-Mkk1/2-Slt2 pathway) and high osmolarity 

response (Ssk2/Ssk22/Ste11-Pbs2- Hog1 pathway) (Xu, 2000, Hohmann 2002, 

Levin 2005). Some components of the pathways may act in more than one 

cascade (Hohmann 2002).   
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Figure 1.5. The core MAP kinase signalling pathways of fungi. Names shown are for 

the S. cerevisiae proteins but corresponding pathways are found in M. oryzae, C. albicans and 

other fungal species . These pathways regulate a variety of processes in response to a range of 

stimuli (as shown). 

 

The core signalling cascades of animal and plant pathogenic fungi are highly 

homologous to those of S. cerevisiae and outlined here using the examples of 

the animal pathogen Candida albicans and plant pathogen Magnaporthe 

oryzae. The causal agent of Candidiasis, C. albicans possesses a signalling 

pathway homologous to the S. cerevisiae pheromone response pathway with 

the CST20 PAK kinase and HST7-CEK1 MAPK cascade, but in this species the 

pathway instead regulates hyphal transition and pathogenicity (Kohler and Fink, 

1996; Leberer et al., 1997; Csank et al., 1998). Similarly, the rice blast fungus 

M. oryzae possesses the homologous MST11-MST7-PMK1 MAPK cascade 

which regulates pathogenicity and may interact with upstream components 

Ras1, Ras2 and Cdc42 via the Mst50 adaptor protein (Xu and Hamer, 1996; 

Zhao et al., 2005; Park et al., 2006). Homologues of both Slt2 (MKC1 in C. 

albicans and MPS1 in M. oryzae) and Hog1 (CaHOG1 in C. albicans and OSM1 

in M. oryzae) have also been identified in both animal and plant pathogenic 

fungi and regulate a number of processes such as cell wall biogenesis, 
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virulence and osmoregulation (Xu, 2000; Idnurm et al., 2005). In M. oryzae, 

OSM1 regulates turgor during hyperosmotic stress but not virulence (Dixon et 

al., 1999), while MPS1 is involved in host penetration (Xu et al., 1998). In C. 

albicans, HOG1 is essential for virulence (Alonso-Monge et al., 1999; Arana et 

al., 2007) and deletion of this gene increases osmotic and oxidative stress 

sensitivity (Alonso-Monge et al., 19999, 2003; Smith et al., 2004), while MKC1 

is involved in cell integrity and cell wall formation (Navarro-Garcia et al., 1995, 

1998), stress response (Navarro-Garcia et al., 2005) and virulence (Diez-Orejas 

et al., 1997).  

 

Other components of these MAPK signalling cascades have also been 

investigated in M. oryzae and C. albicans, for example, MCK1 of M. oryzae, 

homologous to the S. cerevisiae MAPKKK BCK1 of the Slt2 pathway regulates 

cell integrity and pathogenicity in this species (Jeon et al., 2008), while further 

elements of the Hog1 pathway homologous to those in yeast have been 

identified in C. albicans, including the two-component kinases YPD1 and SSK1, 

MAPKKK SSK2 and MAPKK PBS2 (Calera and Calderone, 1999; Calera et al., 

2000; Arana et al., 2005; Cheetham et al., 2007). 

 

cAMP-dependent signalling is frequently initiated by receptors, such as G-

protein-coupled receptors, (GPCRs) which serve to activate G proteins, that in 

turn activate adenylate cyclase. Adenylate cyclase catalyses the formation of 

cAMP, activating cAMP-dependent protein kinase (protein kinase A, PKA), 

which proceeds to phosphorylate a range of target proteins. M. oryzae 

possesses three Gα subunits, MagA, MagB and MagC (Liu and Dean, 1997), 

two Gβ, Mgb1 and Mgb2 (Nishimura et al., 2003) and one Gγ subunit (Dean et 

al., 2005). Disruption of MGB1 reduces conidiation and causes defective 

appressorium formation and consequent loss of pathogenicity (Nishimura et al., 

2003). Deletion of MagA or MagC does not affect growth, appressorium 

formation or virulence, although deletion of MagC reduces conidiation. 

However, disruption of MagB significantly reduces growth, conidiation, 

appressorium formation and virulence. In addition, magB mutants do not form 

perithecia, while both magA and magC mutants are unable to produce mature 

asci (Liu and Dean, 1997). MoRic8 interacts with MagB and appears to regulate 

cAMP-dependent signalling in pathogenicity and cell differentiation in 
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sporulation, sexual development and plant infection in M. oryzae (Li et al., 

2010). Deletion of the adenylate cyclase gene Mac1 reduces growth, 

conidiation, and conidial germination of M. oryzae and renders the fungus 

unable to form perithecia or appressoria, nor to penetrate host leaves. The 

application of exogenous cAMP derivatives is able to restore appressorium 

formation (Choi and Dean, 1997). In M. oryzae deletion of the catalytic subunit 

of PKA, CPKA, causes delayed appressoria formation and reduced virulence 

(Mitchell and Dean, 1995, Xu et al., 1997). The cpkA mutant forms smaller 

appressoria that are defective in penetrating plant cells, but inoculation of 

wounds still allows lesion formation indicating that post-penetration disease 

development may be unaffected (Xu et al., 1997, 1996). 

  

C. albicans possesses two Gα, one Gβ and one Gγ subunit. The Gα subunits 

appear to be involved in the response to pheromone signals and in mating 

(Sadhu et al., 1992; Bennett and Johnson, 2006; Dignard et al., 2008). The 

adenylate cyclase CDC35 is also required for wild-type growth rates, the yeast-

hyphal transition and pathogenicity in C. albicans. cAMP is able to restore the 

yeast-hyphal transition in cdc35 mutants. CDC35 may act downstream of Ras1 

and upstream of MAP kinase pathway components (Rocha et al., 2001). The 

small G proteins Ras1 and Ras2 also appear to regulate cAMP-dependent 

signalling in this species. Deletion of Ras2 alone does not affect hyphal growth 

but loss of this gene in a ras1 strain increases the growth defect of this strain. 

Deletion of Ras2 also restores the decrease in cellular cAMP found in the ras1 

strain. Ras1 deletion increases resistance to H2O2 and sensitivity to Co2+, 

however, ras2 strains have opposing phenotypes (Zhu et al., 2009). Ras1 is 

also required for the yeast-hyphal transition in C. albicans and consequently 

affects virulence (Feng et al., 1999; Leberer et al., 2001). Deletion of the TPK2 

gene, encoding a PKA catalytic subunit, results in reduced virulence 

(Sonneborn et al., 2000) while deletion of the PKA regulatory subunit-encoding 

gene appears to be lethal (Cassola et al., 2004). Disruption of TPK2 or a 

second catalytic subunit, TPK1, causes defects in hyphal morphogenesis, 

although under different conditions for each of the two genes (Bockmuhl et al., 

2001). 
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The MAPK and cAMP signalling pathways also appear to be linked to each 

other in many species. Examples include S. cerevisiae, where Ras2 activates 

both types of pathway (Mösch et al., 1996; Lorenz and Heitman, 1997; Mösch 

and Fink, 1997; Mösch et al., 1999) the two pathways converging to regulate 

the FLO11 gene (Pan and Heitman, 1999; Rupp et al., 1999), and cAMP inhibits 

the expression of MAPK-regulated reporter genes (Lorenz and Heitman, 1997). 

It has recently been found that activation of MKC1 of C. albicans is controlled by 

both protein kinase C (PKC1) (which is placed upstream in the same pathway) 

and HOG1, providing a link between two different MAPK signalling pathways 

(Navarro-Garcia et al., 2005). Furthermore, both pathways are activated under 

conditions of oxidative stress (Navarro-Garcia et al., 2005). In addition, Ras 

activates both MAPK and cAMP signalling for regulation of filamentation and 

virulence in this species (Leberer et al., 2001). In M. oryzae, the Gβ subunit, 

MGB1, is suggested to be linked to cAMP signalling and may lie upstream of 

the Pmk1 MAPK in regulating appressorium formation (Nishimura et al., 2003).   

 

Upstream regulation of signalling pathways is complex, sometimes involving 

different subunits of heterotrimeric G proteins to activate different pathways in 

the same organism. For example, in C. neoformans, the heterotrimeric G 

protein β subunit GPB1 activates MAPK signalling in mating and haploid 

differentiation (Alspaugh et al., 1997, D‟Souza et al., 2001; Wang et al., 2001; 

Alspaugh et al., 2002), while the Gα GPA1 activates cAMP-dependent 

regulation of virulence (Alspaugh et al., 1997). Heterotrimeric G-protein α 

subunits have been studied in many plant pathogenic fungi, examples including 

M. oryzae MagB, F. oxysporum Fga1 and Stagonospora nodorum Gna1, 

disruption of all of which reduces pathogenicity (Liu and Dean, 1997; Jain et al., 

2002; Solomon et al., 2004). The Mst50 adaptor protein of the PMK1 cascade in 

M. oryzae may be regulated by multiple upstream proteins including Ras1, 

Ras2, Cdc42 and Mgb1 (Park et al., 2006). 

 

In some fungi, a two-component signalling system has been identified, which 

involves an autophosphorylating membrane-bound sensor histidine kinase and 

a response regulator for phosphotransfer. For example, in the S. cerevisiae 

Hog1 MAPK pathway, a complex four-step phosphotransfer system is situated 

upstream of the MAPK cascade, comprising the sensor hybrid-histidine kinase 
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Sln1 (containing both a conserved His and Asp residue) (Ota and Varshavsky, 

1993; Posas et al., 1996), intermediate His kinase Ypd1, and response 

regulators Ssk1 (for osmoadaptation) and Skn7 (for oxidant adaptation and cell 

wall biosynthesis) ((Li et al., 1998, 2002). A Sln1 homologue has been partially 

characterised in C. albicans (Nagahashi et al., 1998; Yamada-Okabe et al., 

1999). Other C. albicans histidine kinases include Nik1 (Alex et al., 1998; 

Selitrennikoff et al., 2001), and Chk1 (Calera et al., 1998; Calera and 

Calderone, 1999b), which appear to be cytoplasmic. A His kinase, Fos1, has 

also been identified in Aspergillus fumigatus (Pott et al., 2000). A response 

regulator homologue and histidine kinase have recently been characterised in 

F. graminearum, (Goswami et al., 2006; Ochiai et al., 2007). 

 

In addition to the two highly conserved signalling pathways above, signalling 

involving lipid molecules has also recently been shown to be important in animal 

pathogenic fungi development. For example, in C. neoformans, diacylglycerol 

derived from sphingolipids induces expression of App1 (Mare et al., 2005), a 

virulence factor inhibiting phagocytosis by macrophages, and also activates 

protein kinase C, whereby cell wall stability is increased (Heung et al., 2004, 

2005). The oxylipin quorum-sensing molecule farnesol regulates genes involved 

in yeast-hyphal transition and biofilm formation in C. albicans, although the 

exact mechanism used is unknown (Hornby et al., 2001; Oh et al., 2001; Cao et 

al., 2005; Mosel et al., 2005; Navarathana et al., 2005). However, the very 

same molecule has been found to induce cell death in A. nidulans (Semighini et 

al., 2006). Secreted eicosanoids may also have a role in signalling in such fungi 

(Noverr et al., 2001).  

 

 

1.4.11 Signalling in F. graminearum 

 

Three Gα (GPA1-3) and one Gβ (GPB1) subunit have been identified and 

characterised in F. graminearum (Yu et al., 2008). In addition, F. graminearum 

appears to possess a Gγ subunit and adenylate cyclase in addition to catalytic 

and regulatory subunits of cAMP-dependent protein kinase (protein kinase A, 

PKA) (Yu et al., 2008). Loss of GPA2 and GPB1 leads to a large reduction in 

virulence of F. graminearum. Deletion of any of the three GPA genes, 
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meanwhile, slightly reduces growth on minimal and complete media, but 

deletion of GPB1 by comparison, reduces hyphal growth on these media types 

by 25% compared to wild type. GPA1, but not the three other G protein subunits 

investigated, is required for perithecia production, while gpa2 deletion strains 

appeared to exhibit increased cell wall chitin content. GPA1 and GPB1 also 

appear to negatively regulate toxin production.  

 

F. graminearum appears to possess two Ras GTPase genes (RAS1 and RAS2) 

(Bluhm et al., 2007). Deletion of RAS2 led to a reduced growth rate on solid 

media, failure to produce perithecia, delayed spore germination and reduced 

virulence on wheat and maize. No difference in conidiation or DON production 

was noted between ras2 and wild-type strains, however. A RAS1 deletion strain 

was not obtained suggesting this gene may be essential for viability. Expression 

of RAS1 and RAS2 is increased by the disruption of Fst7 or Fst11, (STE7 and 

STE11) while RAS2 expression is increased to a greater extent than that of 

RAS1 in a tbl1 (transducin β-subunit-like gene) or CpkA (catalytic subunit of 

cAMP-dependent protein kinase) mutant background. Intracellular cAMP levels 

were not affected by the loss of RAS2. This may suggest little or no role of this 

gene in cAMP signalling, however RAS2 appears to be negatively regulated by 

CpkA (Bluhm et al., 2007) and so if cAMP acts upstream of RAS2 in cAMP 

signalling, then no effect on cAMP levels or of cAMP application would be 

expected for ras2 strains. RAS2 deletion did, however, reduce phosphorylation 

of Gpmk1 and secretion of Fgl1. The data suggest a link of RAS2 and MAPK 

signalling pathways in F. graminearum that may participate in the regulation of 

secreted enzymes important to virulence. 

 

The MAPKKK STE11, MAPKK STE7 and MAPK Gpmk1 have been proposed to 

act as a MAP kinase cascade in F. graminearum based on their homology to 

the Fus3/Kss1 cascade of other fungal species and their similar sensitivity to 

the Medicago sativa seed defensins MsDef1 and MsDef4 (Ramamoorthy et al., 

2007). STE11, STE7 and Gpmk1 mutants show reduced virulence on tomato 

fruit, while the MAPK MGV1 is required for pathogenicity (Urban et al., 2003; 

Ramamoorthy et al., 2007). On wheat ears, ste11, ste7, gpmk1 and mgv1 are 

severely reduced in virulence (Hou et al., 2002; Jenczmionka et al., 2003; 

Urban et al., 2003; Ramamoorthy et al., 2007). MGV1 is required for perithecia 
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production but not for the production or normal germination of conidia, although 

formation of thick-walled cells within conidia was reduced in mgv1 mutants and 

a small fraction of conidia fragmented after several days (Hou et al., 2002). 

While in liquid media, growth of mgv1 is unaffected, on solid media, however, 

growth is reduced compared to wild type. The mgv1 mutant also appears to 

possess weakened cell walls, increased temperature sensitivity and a severe 

reduction in DON production (Hou et al., 2002). The homologous gene in yeast 

(S. cerevisiae), to MGV1 is the Slt2 gene, which controls cell wall integrity (Xu, 

2000). 

 

Two independent studies have characterised the role of Gpmk1 in two different 

strains of F. graminearum. In one study by Jenczmionka et al. (2003) of strain 

8/1, it was noted that Gpmk1 disruption does not affect growth on complete 

media, However, on minimal media, the production of aerial mycelium is 

drastically reduced (Jenczmionka et al., 2003). Growth of gpmk1 in liquid 

media, however, is comparable to wild type, with approximately the same 

biomass production (Jenczmionka et al., 2003). A study of Gpmk1 in strain 16A 

by Urban et al. (2003) found that disruption of this gene leads to a reduced 

growth rate on solid minimal, V8 and oatmeal media in addition to reduced 

aerial hyphae production (Urban et al., 2003); gpmk1 colonies are unable to 

produce perithecia (Jenczmionka et al., 2003; Urban et al., 2003).  Gpmk1 also 

appears to positively regulate the induction of DON production (Urban et al., 

2003) and of extracellular endoglucanolytic, proteolytic, xylanolytic and lipolytic 

activities (Jenczmionka and Schäfer, 2005). Gpmk1 is also required for full 

virulence and DON production on Arabidopsis (Cuzick et al., 2008a). 

 

Another identified pathogenicity/virulence factor is the FSR1 gene, which may 

encode a signalling scaffold protein, and is required for full F. graminearum 

virulence on barley and maize and perithecia production, while also contributing 

to in vitro growth rate on solid complete media (Shim et al., 2006). 

 

The Hog1 pathway regulates the response to osmotic and oxidative stress in 

fungi (Brewster et al., 1993; Xu, 2000). Disruption of the F. graminearum HOG1 

MAP kinase gene prevented growth on 1M NaCl but did not affect growth on 

standard complete media (Ramamoorthy et al., 2007). The hog1 disruption 
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strain also showed reduced virulence on wheat ears, rarely spreading from the 

inoculated spikelets to adjacent spikelets (Ramamoorthy et al., 2007). 

 

Additional components of the HOG1 pathway have also been studied in F. 

graminearum (Ochiai et al., 2007a). The histidine kinase (Os1), MAP kinase 

kinase kinase (Os4), MAP kinase kinase (Os5) and Hog1 MAP kinase (also 

termed Os2) genes were disrupted and the resulting effects on stress sensitivity 

and secondary metabolite production observed. All four Os mutants were more 

resistant to the fungicides iprodione and fludioxonil. Os1 was also less sensitive 

to osmotic stress than the other Os mutants yet still more sensitive to this stress 

than the wild-type strain. Sensitivity of Os1 to H2O2 and tBOOH (t-butyl 

hydroperoxide) was comparable to wild type and less than the other Os 

mutants. Sensitivity to diamide however, was less for Os1 than wild type. Os5 

and Os2 were comparable to wild type, while Os4 has increased sensitivity to 

diamide compared to wild type. Os1 showed reduced aurofusarin production but 

no change in trichothecene production while the other Os mutants showed 

increased aurofusarin production and reduced trichothecene production. The 

opposing effects of Os1 and the other Os mutants on aurofusarin and 

trichothecene production are suggested to result from divergent downstream 

components that are linked to the same Os1 phosphorelay system (Ochiai et 

al., 2007a). NaCl reduces the production of trichothecenes (Ochiai et al., 

2007b). This effect must overcome the positive regulatory effect of Os4, Os5 

and Os2 on trichothecene production (Ochiai et al., 2007b). Again, additional 

downstream components may play a role. 

 

 

1.4.12 The Role of Reactive Oxygen Species Production in Plant and 

Animal Pathogenesis 

 

A role for reactive oxygen species (ROS) in eukaryotic signalling, 

encompassing both pathogenic fungi and their hosts is currently emerging. The 

exact nature of ROS use in pathogen-host interactions is often unclear but both 

organisms appear to be able to use such molecules in some of the roles of 

attack, defence or other signalling. ROS are well-suited for a signalling role, 

being small, diffusible and with rapid production and short lifetimes that allow 



 

   

  47 

localised signalling. ROS have been implicated in cell proliferation, induction or 

inhibition, apoptosis activation and inhibition and necrosis induction at high 

concentrations (Gamaley et al., 1999). 

 

A main source of ROS is the enzyme NADPH oxidase. NADPH oxidases are 

plasma (or phagosome) membrane proteins that generate extracellular (or 

phagosomal) superoxide anions (Meier, 2001). Xanthine oxidoreductase and 

peroxidases are also thought to be important sources of ROS (Bolwell et al., 

1995; Harrison, 2000). Hydrogen peroxide, which possesses no charge and is 

therefore able to freely diffuse though the membrane to inside the cell, is formed 

from the external superoxide anions produced by NADPH oxidase complex. 

Hydrogen peroxide has been shown to regulate a large number of different 

genes (Allen and Tresini, 2000). MAP kinases may also be activated by ROS, 

so linking these two signalling types (Fialkow et al., 1994; Guyton et al., 1996; 

Desikan et al., 1999; Kovtun et al., 2000). Hydrogen peroxide may also be 

linked to signalling phosphatases, phospholipases, ion channels and other 

cellular components (Goldman et al., 1992; Goldman and Zor, 1994; Sullivan et 

al., 1994; Dai et al., 1995; Taglialatela et al., 1997; Wu et al., 1998; Pei et al., 

2000). 

 

NADPH oxidases are found in organisms that differentiate multicellular 

structures during their life cycle but are not present in unicellular organisms. 

NADPH oxidase homologues are widespread in filamentous fungi including F. 

graminearum (Lalucque and Silar, 2003). It is therefore suggested that NADPH 

oxidases play a role in differentiation during the formation of multicellular 

structures. Signalling of a cell‟s metabolic status is required to allow nutrient 

flow from nutrient-scavenging cells to specialised cells. NADPH oxidases may 

play such a role as, by using NADPH as a substrate, they are linked to the cell‟s 

metabolic activity and in addition they produce extracellular products that can 

diffuse between cells. Alternatively, NADPH oxidases could act as oxygen 

sensors that allow the direction of multicellular structure organisation via 

detection of an oxygen gradient (Blackstone, 2000; Lalucque and Silar, 2003). 

 

NADPH oxidases are required for sexual reproduction and ascospore 

germination in Podospora anserina. PaNox1 is required for the differentiation of 
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fruiting bodies and PaNox2 for ascospore germination. PaNox1 is thought to act 

upstream of a MAPK signalling system (Malagnac et al., 2004). NoxA in A. 

nidulans represents a novel NADPH oxidase subfamily present in lower 

eukaryotes. It is induced during sexual development and required for 

differentiation of sexual fruiting bodies (cleistothecia). This signalling appears to 

be connected to MAP kinase signalling. Deletion of the gene does not affect 

hyphal growth or asexual development. The ubiquity of this class of NADPH 

oxidase in lower eukaryotes suggest similar roles may be performed by this 

enzyme in animal pathogenic Aspergillus species (A. fumigatus contains a 

single noxA gene) and perhaps in plant pathogenic fungi also (F. graminearum 

and M. oryzae both contain two noxA homologues) (Lara-Ortiz et al., 2003). In 

M. oryzae, both the Nox1 and Nox2 NADPH oxidase genes are required for 

penetration of the host cuticle and so for pathogenicity, indicating a requirement 

for ROS production in disease establishment (Egan et al., 2007). In the 

endophyte Epichloë festucae, NADPH oxidase is required for the maintenance 

of a symbiotic relationship with the host. Disruption of this gene leads to 

pathogenic behaviour of this species (Scott et al., 2007). 

 

In both cereal and non-cereal species of plants, ROS are important during 

defence – in activation of the highly localised hypersensitive response (HR), in 

cell wall thickening and defence gene expression (Bradley et al., 1992; Levine 

et al., 1994; Jabs et al., 1997; Thordal-Christensen et al., 1997). However, HR 

does not protect, for example, against the necrotrophic phytopathogen Botrytis 

cinerea. This species has been suggested to in fact trigger the hypersensitive 

response to aid its colonisation of the host (Govrin and Levine, 2000).  

 

ROS scavengers may be important to invading pathogens for protection or 

successful attack. B. cinerea Cu-Zn superoxide dismutase (encoded by 

bcSOD1) is required for virulence on bean leaves. The role of this enzyme may 

be dismutation of superoxide produced by the host plant defence system or by 

the fungus itself, or indeed the production of hydrogen peroxide by bcSOD1 

may be important in pathogenesis, perhaps via activation of the hypersensitive 

response (Rolke et al., 2004). In F. graminearum, meanwhile, accumulation of 

DON and 15-ADON has been shown to be modulated by oxidative stress in 
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vitro and was found to be increased following daily additions of hydrogen 

peroxide to the liquid cultures  (Ponts et al., 2006, 2007, 2009). 

 

ROS also have a direct attacking role in many pathogenic fungi, which release 

toxins capable of producing ROS to damage host cells. Several plant 

pathogenic fungi genera produce photoactivated perylenequinone toxins 

(reviewed in Daub et al., 2005), for example cercosporin produced by species of 

the plant pathogenic Cercospora genus, which absorbs light energy and 

generates ROS (Dobrowolski and Foote, 1983; Daub et al., 2000). Another 

class of ROS-producing fungal toxins is the Epipolythiodioxopiperazine (ETP) 

toxins. The best known ETP is gliotoxin, an Aspergillus fumigatus compound 

which may be important in pathogenesis (Sutton et al., 1994; Reeves et al., 

2004).  

 

In comparing the signalling pathways employed by plant and animal pathogenic 

fungi, some can be seen to possess a high level of conservation. MAP kinase 

and cAMP signalling appear widespread with homologues of multiple 

components present in both types of pathogen. Differences in the number of 

components and points of crosstalk in a particular pathway may differ in some 

cases, but as yet, knowledge is often incomplete. However, such highly 

conserved signalling systems often regulate different processes in different 

species. Both plant and animal pathogens appear to use heterotrimeric and 

small G-proteins, and two-component systems as upstream signalling elements. 

Fundamental differences in signalling between the two pathogen types may 

have been demonstrated by the observation of lipid signalling in human 

pathogens. 
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1.4.13 The F. graminearum genome 

 

In 2003, the genome sequence of F. graminearum was made available at the 

Broad Institute of MIT and Harvard, and a report on the genome was published 

in Science (Cuomo et al, 2007). This new resource has greatly enhanced the 

possibilities for investigation of this important pathogen. The genome sequence 

of F. graminearum strain PH-1 (a North American isolate) revealed a number of 

important features. F. graminearum possesses very little repetitive DNA 

sequence, at least a factor of 15 less than that of other related fungi. Few 

recently duplicated genes are found in the genome and transposons are 

minimal and non-functional. The lack of repetitive sequence is thought to be due 

to a combination of the low number of transposons, the self-fertility of F. 

graminearum (repetitive DNA is rarely gained from crosses) and the presence 

of a specific genetic mechanism, already known to be present in several other 

species, called repeat-induced point mutation (RIP), which efficiently eliminates 

repetitive DNA. RIP is thought to act as a defence mechanism for the genome 

in which duplicated sequences are selectively mutated before meiosis in the 

sexual cycle. The F. graminearum genome also contains a larger number of 

genes predicted to encode proteins for transcription factors, hydrolytic enzymes 

and transmembrane transporters than the related Ascomycete species N. 

crassa M. oryzae and A. nidulans.  

 

Unlike other plant pathogenic fungi, F. graminearum contains only four large 

chromosomes. The very low level of repetitive DNA facilitated the alignment of 

the genome and genetic maps of F. graminearum. This had not been possible 

for the previously published fungal plant pathogen genomes because of the 

lower quality of sequence information obtained as well as the abundance of 

repetitive sequences. These features also limited the ability of these other 

fungal genomes to be completely assembled from the overlapping fragments of 

sequence obtained in the sequencing project.  

 

Comparison of the sequence of strain PH-1 to that of a second strain of F. 

graminearum, GZ3639 (another North American isolate) revealed the presence 

of 10,495 single nucleotide polymorphisms (SNPs). These SNPs tended to be 
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clustered together, with many present near the ends of the four chromosomes 

at the telomeres. However, a few regions in the middle of three of the four 

chromosomes also showed high SNP density. This led the authors to suggest 

that the large chromosomes are the result of fusion of previous, smaller 

chromosomes in the progenitor species. This may help to explain the low 

number of chromosomes in F. graminearum. The regions of highest SNP 

density also correlated with high recombination frequency and low GC content, 

further suggesting that these regions represent former telomeres. Genes that 

were found to be specific to F. graminearum also tended to occur more 

frequently in the SNP-dense regions, as did genes specifically expressed during 

the first six days of barley ear colonisation. Such genes included those 

encoding predicted plant cell-wall degrading enzymes and several with similarity 

to known disease-causing factors. The conserved core genes, such as those 

involved in basal transcription and protein translation, tended to occur away 

from these regions. Overall, these genomic features make the landscape of the 

F. graminearum chromosomes very different from that of previously- sequenced 

fungi. A summary of the features of the F. graminearum PH-1 genome 

sequence is shown in Table 1.3. 
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Table 1.3. Summary of the F. graminearum genome (36.1 Mb) (compiled from Cuomo 

et al., 2007). Genes were called by both the Broad Institute of MIT and Harvard and the Munich 

Information Centre for Protein Sequences (MIPS). The Broad call used BlastX with a threshold 

value of E < 10
-5  

to query public protein databases with the genome sequence. A combination 

of FGENESH, FGENESH+ and Genewise was used to predict genes. Predicted genes and the 

genome itself were then compared to known publically available EST sequences. For the MIPS 

annotation, FGENESH with a matrix trained on sequences from diverse fungal species (Ustilago 

maydis, Schizosaccharomyces pombe, and others) was used. Blast analysis determined 704 

genes thought to be unique to F. graminearum. The presence of at least one InterPro domain 

was required to help eliminate falsely predicted proteins. The F. graminearum gene complement 

was also compared with F. asiaticum, F. boothii, F. culmorum and F. pseudograminearum by 

hybridising genomic DNA of these species to a F. graminearum microarray. This approach 

determined 382 genes that appear to be F. graminearum-specific. 7,132 genes were detected 

during barley infection. Detection of 408 of these was specific to infection, 126 of which are 

predicted to be secreted. Comparison of the sequenced PH-1 and GZ3639 (= NRRL 29169 

sequenced by the Torrey Mesa Research Institute/Syngenta) strains was used to determine the 

position of SNPs. 

 

Total predicted genes 11,640 
Predicted F. graminearum-specific genes 704 (Blast)  
  382 (Microarray) 
Genes expressed exclusively in barley infection 408 
 Percent of these genes predicted to encode secreted proteins 31% 
 Number of predicted secreted plant cell wall degrading enzymes 32 
SNPs between strains PH-1 and GZ3639 10, 495 

 

1.4.14 Fungicide Targets  

Investigations into possible fungicide control measures for F. graminearum and 

F. culmorum have provided some promising yet mixed results. The success of 

fungicide application is complicated by its effects being apparently dependent 

upon other fungal species present and the effect of the fungicide upon these 

species (Aldred and Magan, 2004). Another problem arises from reports that 

certain fungicides may actually stimulate mycotoxin production when applied 

under certain conditions (Aldred and Magan, 2004). While several fungicide 

studies have reported a correlation between disease extent and mycotoxin level 

(Homdork et al., 2000; Mennitti et al., 2003; Mesterhazy et al., 2003; 

Haidukowski et al., 2005), one point of concern is that fungicide application 
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reduces visible disease symptoms while having little effect on mycotoxin level, 

leading to apparently healthy but contaminated grain (Aldred and Magan, 2004).  

An example of such a situation was presented by Nicholson et al. (2003). When 

azoxystrobin (which inhibits respiration by binding to the Qo site of cytochrome 

bc1) was applied to fields infected with both Fusarium species and the non-toxin 

producing FEB species Microdochium nivale, disease levels were reduced but 

DON level in grain increased. This was thought to be due to selective inhibition 

of M. nivale by azoxystrobin, reducing competition on the toxigenic Fusarium 

species. In contrast, other fungicides including tebuconazole (a sterol 

biosynthesis inhibitor) were selective against the Fusarium species only and 

effects were generally dose- dependent but none of the applications used could 

reduce DON to a level below 0.75 ppm. Other fungicides that have been found 

to increase DON production include tubiconazole, difenoconazole, 

epoxiconazole and propiconazole (Simpson et al., 2001; Magan et al., 2002; 

Aldred and Magan, 2004). 

Tebuconazole has been suggested to be a useful fungicide against FEB in 

several other studies (Homdork et al., 2000; Cromey et al., 2001; Mennitti et al., 

2003; Mesterhazy et al., 2003), but  applications may be insufficient when 

disease pressure is high (Mesterhazy et al., 2003). The extent of disease and 

DON reduction by tebuconazole appears to vary with conditions, sometimes 

being highly effective – two applications at 189 g ai/ha around the flowering 

stage by Cromey et al. (2001) were reported to reduce FEB incidence by up to 

90%. However, Milus and Parsons (1994) found that tebuconazole application 

at 140 g ai had little effect on disease or DON levels in heavily inoculated 

plants. In addition, Covarelli et al. (2004) found tebuconazole to be poorly 

effective against F. culmorum DON production in vivo.  

Tebuconazole has very poor solubility (Mauler-Machnik and Suty, 1997). Its 

effects are short-lived and a slow-release method is required to allow increased 

solubility and longer periods of availability (Balmas et al., 2006). Balmas et al. 

(2006) synthesised a complexation of tebuconazole with β-cyclodextrin for 

controlling foot and crown rot of Durum wheat in soil inoculated with F. 

culmorum. Applied as a seed dressing, the complexation reduced disease and 
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increased grain yield comparable to a commercial tebuconazole formulation. It 

allowed release of the fungicide without hampering its effectiveness. 

Other fungicides reported to show efficacy against FEB include trifloxystrobin, 

which, in vitro, may act to inhibit initiation of trichothecene biosynthesis 

(Covarelli et al., 2004), the sterol biosynthesis inhibitors prochloraz and 

bromoconazole (Mennitti et al., 2003), the mitosis β-tubulin assembly inhibitors 

carbendazim, (Jones, 2000; Cromey et al., 2001), the osmotic signalling MAP 

kinase inhibitor fludioxonil (Jones, 2000) and a range of fungicide mixes. The 

development of resistance against such fungicides is, however, an ongoing 

concern. A recent study of carbendazim resistance in F. graminearum in China 

noted a correlation between resistance and increased trichothecene production 

(Zhang et al., 2009). 

Currently, no clear fungicidal preventative or cure has so far been found. 

Disease and mycotoxin reduction is often only partial or requiring several 

applications at high dosage, leading to high cost and potential safety concerns. 

Grain may still contain mycotoxins at levels above those set by regulations and 

so be hard to market (Jones, 2000). The effects of fungicide application are also 

very dependent on application rate and timing and prevailing conditions in the 

field (discussed in Jones, 2000), with the complexity of Fusarium biology 

meaning application at the correct time is difficult to achieve (Mauler-Machnik 

and Suty, 1997). Systemic fungicides may prove more successful as they are 

absorbed into tissues and less easily removed by moisture (Jones, 2000). New 

fungicides, combinations and fungicide targets need to be investigated to obtain 

a much better degree of FEB control at a suitable cost and safety level.  

In addition, the application of fungicides to a vertical cereal ear is difficult with 

substances easily running or washing off the ears. Flowering also tends to 

occur over a period of around two weeks and to control this period of maximum 

susceptibility with a single spray is problematic. Finally, with Fusarium exhibiting 

symptomless spread through ears (Brown et al., 2010), by the time symptoms 

are noted, then fungicide application will be too late with a large percentage of 

the ear already infected. 
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In the future, new EU regulations revising Directive 91/414/EEC which controls 

the use of plant protection products will further limit the number of chemistries 

permissible for use on crops. Substances previously used to treat wheat crops 

that could be subject to exclusion include the triazoles, mancozeb and 

prochloraz among others (Clarke et al., 2008). As a result, alternative methods 

of control need to be found and combating wheat diseases may prove much 

more difficult. According to a report by the environmental consultancy ADAS, 

the percent loss of UK wheat crop will greatly increase under such proposals 

(from around 6-16% to 20-30%), with at least a 20% decrease in production, an 

increase in the land required to maintain current UK production of over 500,000 

hectares and a significant economic impact (Clarke et al., 2008). 

 

1.4.15 Other Fusarium Species and Important Related Species  

 
Fusarium verticilloides  

 

Fusarium verticillioides infects maize, causing ear mould and stalk rot, 

especially in warmer areas (White, 1999). F. verticillioides grows optimally at a 

higher temperature than F. graminearum and this affects the geographical 

distribution of the diseases these species cause (discussed in Miller, 2001). 

Fumonisin mycotoxins are produced by F. verticillioides during infection of 

maize and are known to disrupt sphingolipid biosynthesis, posing a serious 

health threat to certain livestock (Duvick, 2001). Fumonisin B1 has also been 

shown to inhibit the plasma membrane H+ ATPase of germinating maize 

embryos (Gutierrez-Najera et al., 2005) and fumonisins have been linked to 

oesophageal cancer (reviewed in Miller, 2001). However, while the FUM1 

polyketide synthase is required for fumonisin production, it is dispensable for 

ear rot infection, indicating that fumonisins are not required for pathogenesis 

(Desjardins et al., 2002). The genome of F. verticilloides has been sequenced 

and compared to that of F. graminearum, The F. verticilloides genome is 

contained within 12 chromosomes (Ma et al., 2010). 
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Fusarium oxysporum 

 

The vascular wilt pathogen F. oxysporum is found in a large number of host-

specific forms, known as formae speciales (discussed in Michielse and Rep, 

2009). Recently, lineage-specific (LS) regions of the F. oxysporum f sp. 

lycopersici (Fol, a tomato pathogen) genome were found to confer host 

selectivity (Ma et al., 2010). Such regions appear to be acquired horizontally, 

vary between different F. oxysporum formae speciales, and are absent in non-

pathogenic strains. The genome of F. oxysporum f sp. lycopersici is far larger 

than those of other Fusarium species, primarily because of an abundance of 

transposon sequences. The genome is composed of a number of core 

chromosomes and lineage-specific chromosomes (Ma et al., 2010). 

 

Fusarium solani 

 

The F. solani (teleomorph Nectria haematococca) species complex contains 

many saprophytic fungi found in a wide range of habitats and pathogens able to 

colonise a very large range of host plants species and also causes opportunistic 

infections in humans (Coleman et al., 2009). F. solani species complex 

members can survive in extremely harsh environments and degrade a wide 

assortment of compounds for nutrition. The most extensively studied member is 

N. haematococca mating population VI, in which supernumerary chromosomes 

have been shown to confer the ability to colonize a series of different habitats 

(Coleman et al., 2009). 

 

Fusarium circinatum 

  

F. circinatum is the fungal pathogen responsible for pitch canker disease of pine 

trees (discussed in Ioos et al., 2009). Symptoms of infection include cankers on 

branches, roots and trunks with resinous exudates („pitch‟). Severe infections 

can lead to crown dieback and death of the tree. The disease is a serious 

problem and reduces growth, timber quality and production in the Southern 

hemisphere. Pitch canker threatens both native forest and plantations and 

established infections may prove difficult to eradicate. Recently a sensitive 

detection method has been developed for F. circinatum in pine seed (Ioos et al., 
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2009). This technique comprises an enrichment stage in complete media to 

increase F. circinatum biomass followed by real-time PCR-based detection. By 

detecting the pathogen in seed it is hoped to prevent long-distance spread of 

the disease via contaminated seeds. 

 

Trichoderma reesei 

 

Trichoderma species are free-living fungi, common in most soil types (reviewed 

Harman et al., 2004). As well as existing as avirulent plant symbionts, often 

colonising just a couple of root epidermal cell layers, they can also parasitise 

other fungi, a basis of their beneficial role to the host plant. Benefits to the host 

plant include protection against pathogens, better growth and development, and 

increased productivity, nutrient uptake and use.  

 

Epichloë festucae 

 

Epichloë are mutualistic temperate grass symbionts (endophytes) (reviewed in 

Schardl, 2001). The grass benefits from this interaction by gaining increased 

resistance to herbivores, parasites and drought and also enhanced growth and 

nutrient acquisition. For obtaining nutrients from the host plant, Epichloë do not 

produce specialised structures such as haustoria or “intracellular” hyphae and 

are instead confined in the apoplast. A secreted β-1,6-glucanase that may be 

involved in nutrient acquisition has also been identified (Moy et al., 2002; Bryant 

et al., 2007). Secreted proteinases may allow the acquisition of other nutrients. 

Reactive oxygen species (ROS) also appear to play a role in maintaining the 

symbiosis between E. festucae and the host plant. Disruption of the NADPH 

oxidase gene noxA led to unregulated hyphal growth and rendered the fungus 

pathogenic and causing death of the host plant (Tanaka et al., 2006). NoxA is 

regulated by NoxR, together with the small GTP-binding protein RacA 

(Takemoto et al., 2006). 

 

Neurospora crassa  

 

Neurospora crassa is a well-studied model fungus. Perhaps most famously 

used in early studies to illustrate the 1:1 relationship between genes and 
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enzymes, this species is now routinely used for the study of regulation of the 

circadian clock (Horowitz, 1991; Heintzen and Liu, 2007). An ongoing process 

to create single gene deletion strains for each gene in the N. crassa genome is 

being co-ordinated by the Neurospora Genome Project 

(www.dartmouth.edu/~neurosporagenome). This is providing an extremely 

useful genetic resource as such strains can, for example, be tested for 

complementation of phenotypes by the reinsertion of genes from heterologous 

species. 
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Chapter 2. Materials and Methods 

 

2.1 Naming Conventions and Abbreviations 

Gene names are given in the format ABC1, the protein encoded by that gene as 

Abc1 and deletion strains of said gene as abc1. Species identifier prefixes are 

not used for gene names, the species in question being identified separately. A 

list of abbreviations used in the thesis is shown in Table 2.1. A list of accession 

numbers is provided in Appendix 1. 

Table 2.1. List of abbreviations used in the thesis. 

FEB Fusarium Ear Blight 

HGCA Home-Grown Cereals Authority 

LSD Least Significant Distance 

SEM Standard Error of the Mean 

ANOVA Analysis of Variance 

REML Restricted Maximum likelihood 

DON Deoxynivalenol 

NIV Nivalenol 

3-ADON 3-Acetyldeoxynivalenol 

15-ADON 15-Acetyldeoxynivalenol 

ZEA Zearalenone 

PCR Polymerase Chain Reaction 

SNA Synthetic nutrient-poor agar 

PDA Potato dextrose agar 

CM Complete medium 

MM Minimal Medium 

gDNA Genomic DNA 

GluCP Glutamate carboxypeptidase 

Pol DNA polymerase epsilon subunit B 

Hyd HAD superfamily hydrolase 

dpi Days post inoculation 

 

2.2 Fungal Strains and Growth Conditions 

The sequenced Fusarium graminearum strain PH-1 (Cuomo et al., 2007) was 

used as the wild-type control strain in this study and for targeted single gene 

deletion experiments. F. graminearum was routinely cultured on 2% agar plates 

of either Synthetic Nutrient-poor Agar (SNA, 0.1% KH2PO4, 0.1% KNO3, 0.1% 
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MgSO4 x 7H2O, 0.05% KCl, 0.02% glucose, 0.02% sucrose and 2% agar Urban 

et al., 2002) as minimal medium or Potato Dextrose Agar (PDA, Oxoid, made 

according to manufacturer’s instructions) as complete medium. Fusarium 

synthetic complete medium (FSCM) was prepared as described (Leslie et al., 

2006). For the removal of old conidia and production of fresh conidia, plates 

were scraped with an overlay of TB3 (0.3% yeast extract, 0.3% Bacto Peptone 

and 20% sucrose) and conidia were harvested after 24 hr in sterile water 

(Brown et al., 2010). Plates were incubated at room temperature under constant 

illumination from one near-UV tube (Phillips TLD 36W/08) and one white light 

tube (Phillips TLD 36W/830HF) (Baldwin et al., 2010). Neurospora crassa 

strains were obtained from the Fungal Genetics Stock Centre (www.fgsc.net) 

and grown on race tubes containing Vogel’s (minimal) medium (Vogel, 1956) 

with 2 g/l of NH4Cl and KNO3 in place of NH4NO3, 15 g/l sucrose and 15 g/l agar 

in the dark at 37°C. 

 

2.3 Fungal stocks 

Fungal stocks were maintained either as water solutions of conidia from freshly 

harvested TB3-treated plates, frozen at -80°C, or as soil stock tubes (Urban et 

al., 2002; Brown et al., 2010). These were made by placing a small amount of 

doubly-sterilised soil particles into 2 ml cryotubes (Nunc), adding an agar piece 

from an SNA plate culture of F. graminearum, covering with 200 µl PDB  and 

incubating at 28 °C in the dark for 14 days prior to freezing at -80 °C. Small 

amounts of soil were removed from these stocks when needed, the tubes being 

kept on ice and out of the freezer for the minimum possible time during this 

process. 

 

2.4 Agarose Gel Electrophoresis 

Gel electrophoresis was performed using 1% agarose in 1x Tris/Borate/EDTA 

(TBE: 90 mM Tris-base, 90 mM boric acid, 2 mM EDTA). 5 µl /100 ml ethidium 

bromide solution was added to gels prior to setting (BioRad, 10 mg/ml). Gels 

were run with TBE containing ethidium bromide as running buffer in gel tanks 
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(BioRad) at 60-90V for 60-90 min depending on gel size and number of well 

combs used. Gels were imaged under UV irradiation using a Gene Genius 

imager with GeneSnap software (Syngene). Lambda BstEII DNA ladder (New 

England Biolabs) was used for size estimation. 

 

2.5 Targeted Deletion Fusion PCR 

For the targeted deletion of the FGSG_09891, FGSG_09893, FGSG_09896 

(ICL1), FGSG_09900, FGSG_09905, FGSG_09906, FGSG_09907 and 

FGSG_09908 (PKAR) genes, a polymerase chain reaction (PCR) fusion-based 

split marker deletion method (Catlett et al., 2003, Figure 2.1) was used. DNA 

regions flanking the target gene were amplified using Hotstar Taq DNA 

Polymerase (Qiagen) with primers incorporating a 24 bp region of the hph 

hygromycin resistance gene (primers described in Table 2.2). Two overlapping 

sections of the hph gene were also amplified (Table 2.3). All PCR products 

were cleaned using a PCR purification kit (Qiagen). Flanks and overlapping hph 

sections were then mixed in a 1:1 ratio and fused in a second PCR using two of 

the original PCR primers (Table 2.4). In some cases, nested primers were used 

to increase fusion product amounts (Table 2.5). The concentration of each DNA 

fusion product was determined using a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies).  
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Figure 2.1. Split-marker targeted single gene deletion (Catlett et al., 2003). A. 

Amplification of regions either side of the target gene (flanks) using primers which incorporate a 

short overlap to an antibiotic resistance gene (in this case for hygromycin, Hph) allows fusion in 

a second PCR reaction. The resistance gene is amplified separately in two overlapping 

sections. B. One resistance gene section is joined to each of the two flanking regions by PCR. 

C. The two DNA fusion products made are then used for transformation of fungal protoplasts, 

resulting in deletion of the target gene and replacement with the antibiotic resistance gene via 

DNA recombination. The antibiotic can then be used to select for successful deletion events.  

 
 

2.6 DNA Primers 

DNA oligonucleotide primers were designed using the Vector NTI software 

(Invitrogen) with melting temperature set at 55 +/- 2 °C and purchased from 

Sigma-Aldrich as dry samples. Upon receipt, primers were diluted in sterile H2O 

to 100 µM for storage and an aliquot further diluted to 10 µM for use in 

polymerase chain reaction (PCR) experiments. Both primer concentrations were 

frozen at -20 °C until required. 
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2.7 Polymerase Chain Reaction (PCR) 

PCR reactions were performed with either Hotstar Taq Polymerase (Qiagen), 

REDTaq PCR ReadyMix (Sigma), REDExtract-N-Amp PCR ReadyMix (Sigma-

Aldrich) or Ex-Taq (Takara) as indicated and according to manufacturer’s 

instructions. PCR reactions were performed in either a G-Storm GS4 

(AlphaMetrix Biotech) or GeneAmp 9700 (Applied Biosystems). Reaction 

mixtures and cycle parameters were used according to the manufacturer’s 

instructions with an annealing temperature of 55°C and extension time of 1 kb 

per minute. 

 

2.8 PCR Product Purification 

PCR product purification was performed using a QIAquick PCR Purification Kit 

according to the manufacturer’s instructions with a final elution volume of 30 µl. 

 

2.9 Gel Extraction 

Gel extraction was performed using a QIAquick Gel Extraction Kit according to 

the manufacturer’s instructions with a final elution volume of 30 µl. 

 

2.10 Molecular Cloning for the Targeted Deletion of the NTH1 Gene 

For the targeted deletion of NTH1, a molecular cloning approach was used. 

Escherichia coli strain DH5α was used for cloning steps and grown in Luria-

Bertani (LB) or 2 x yeast tryptone (2x YT, Formedium) medium at 37˚C +/- 100 

μg/ml ampicillin. Stocks of strains were stored at -80˚C in 2x YT containing 15% 

glycerol.  

All restriction enzyme digestion steps were performed at 37°C overnight unless 

otherwise stated with reaction mixtures and buffers according to manufacturer’s 

instructions. In some cases, sequential digestion was performed with the 

reaction mixture being purified with a Qiagen QIAquick PCR purification kit prior 
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to the second digestion step. Restriction enzymes were obtained from New 

England Biolabs (NEB – HindIII. XbaI), Promega (SacI) and GIBCO (BamHI, 

XhoI) 

Flanking regions of the F. graminearum NTH1 gene were amplified by PCR as 

described above. A scheme depicting the cloning procedure used is shown in 

Figure 2.2. Flank PCR products were ligated into the pCR2.1-TOPOTM vector 

(Invitrogen) using T4 DNA ligase (MBI Fermentas) according to the 

manufacturer’s instructions, stored at 15˚C overnight and transformed into E. 

coli.  

Transformed E. coli were selected on LB agar containing 100 μg/ml ampicillin, 

40 μl 100 mM IPTG and 80 μl 20 mg/ml X-Gal for blue-white selection. Colonies 

of each transformation (5’ or 3’ flank) were grown overnight in LB media 

containing 100 μg/ml ampicillin, DNA was extracted (Qiagen QIAprep Miniprep 

Kit) and subjected to analytical restriction digestion with HindIII. Forward insert 

clones were then digested with SacI + XbaI (for 5’ flank construct (pAB001-2)) 

or BamHI + XhoI (for 3’ flank construct (pAB002-2)) to produce a fragment 

containing the flank region. 

These fragments were then concentrated by ethanol precipitation, resuspended 

in 30 μl H2O, gel purified with a Qiagen QIAquick gel extraction kit and ligated 

into the split marker hygromycin resistance vector pYG (for the 5’ flank) or pHY 

(for the 3’ flank) (Catlett et al., 2003) prior to transformation of E. coli. The pYG 

vector had previously been cut with SacI and XbaI (supplied by Martin Urban) 

and pHY by BamHI and XhoI. Ligation reactions were as such: for the 3’ flank 

(pAB002-2) fragment and pHY – 7 μl H2O, 2 μl vector, 8 μl insert fragment, 2 μl 

10x buffer, 1 μl T4 DNA ligase – stored at room temperature overnight; for the 5’ 

flank (pAB001-2) fragment and pYG – 7 μl H2O, 2 μl vector, 6 μl insert 

fragment, 2 μl 10x buffer, 1 μl T4 DNA ligase.  

Colonies were analysed for ligation of the pAB001-2 fragment into pYG by 

growing overnight in 400 μl dYT containing 100 μg/ml ampicillin (dYT Amp) and 

screened using colony PCR with primers AB1 and AB2 and with pAB001-2 as 

positive control (Sigma REDTaq Readymix, according to manufacturer’s 

instructions). One clone was selected and analysed by restriction digestion 
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using SacI and XbaI (four hour digest with XbaI). This clone was named 

pAB003 (see cloning scheme in Figure 2.2).  

Colonies were analysed for the ligation of the pAB002-2 fragment into pHY by 

growing overnight in 400 μl dYT Amp and screened using colony PCR with 

primers AB3 and AB4 and with pAB002-2 as positive control (Sigma REDTaq 

Readymix, as above). Two clones, were retained and grown overnight in dYT 

Amp and DNA was extracted. This DNA was digested with BamHI and XhoI 

(four hour digest for BamHI). The two clones were named pAB004-1 and 

pAB004-2 (see cloning scheme in Figure 2.2). 

The regions of pAB003 and pAB004-1 containing the flank region fused to the 

hph gene section were sequenced in both directions using the M13uni (-43) 

primer (for both pAB003 and pAB004-1) and A1 primer (for pAB003) or A2 

primer (for pAB004-1). The flank-hph section regions were amplified from 

pAB003 and pAB004-1 by PCR using primers AB1 and YG+ for pAB003 and 

HY and AB4 for pAB004-1. 6x 50 μl reactions were performed, pooled and 

ethanol precipitated and the products quantified using a Nanodrop ND-1000 

spectrophotometer (NanoDrop Technologies). The concentration was adjusted 

to 1.7 μg/μl and used for transformation of F. graminearum.  
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A 

 

Figure 2.2A Cloning scheme for the NTH1 5’ flank. 
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B 

 

Figure 2.2B Cloning scheme for the NTH1 3’ flank. 
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2.11 DNA Phenol:chloroform:isoamylalcohol (Ethanol) Precipitation 

For the concentration of fusion DNA prior to transformation of F. graminearum, 

an phenol:chloproform:isoamylalcohol precipitation method was used. One 

volume of phenol/chloroform/isoamylalcohol (25:24:1) was added to the DNA 

sample and mixed by vortexing briefly. The mixture was spun for 5 min at 13.2 k 

rpm and the top layer retained. 0.1 volume of 3 M NaOAc pH5.2 was added, 

followed by vortexing then either two volumes of absolute ethanol or one 

volume of isopropanol added followed by further vortexing. The mixture was 

incubated at -20 °C for 1 hr then spun for 15 min at 13.2 k rpm. The supernatant 

was poured off and the pellet retained. The pellet was washed by the addition of 

1 vol 70% (v/v) ethanol and mixing by inversion followed by a second spin for 

15 min at 13.2 k rpm. The liquid was then removed by pipetting and the DNA 

dried for 10 min at 37 °C. The DNA was then resuspended in a small volume of 

sterile H2O at a concentration of 1-5 µg/ul. 

 

2.12 Fungal Transformation 

F. graminearum strain PH-1 was transformed as previously described (Hohn 

and Desjardins 1992, Proctor et al., 1997), but with a 1 hr incubation in 40% 

PEG8000 for FGSG_09891, FGSG_09893, FGSG_09896 (ICL1), 

FGSG_09900 and FGSG_09906 deletion and glucose in place of sucrose in the 

regeneration medium for PKAR.  

The transformation protocol is as follows: Two 90 mm SNA plates of F. 

graminearum were grown for seven days, 2 ml TB3 added to each plate, which 

were then surface scraped with a plastic plate spreader and the excess liquid 

containing the old conidia pipetted away. Each plate was then incubated for 1 

day further and the fresh conidia harvested in 2 ml H2O. The fresh conidia were 

spread on two large (20 mm) SNA plates and grow for three days. These plates 

were scraped with TB3 (10-20ml) as above and the excess liquid removed. 

After one further day incubation, the conidia were harvested in 10-20 ml H20 by 

scraping the plates. The conidia were filtered through Miracloth (Calbiochem) 
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and germinated overnight in 300 ml PDB, stirred at 300 rpm in a baffled 1l flask 

at 15 °C. The resulting germlings were filtered through Miracloth and 

resuspended in 40 ml 1M sorbitol containing 1 g Driselase (Sigma) and 400 mg 

Sigma Lysing Enzymes (Sigma). The mixture was incubated at 30 °C, shaking 

at 80 rpm for 1 hr then after confirming protoplast formation and quality 

microscopically, was centrifuged for 10 min at 3200 rpm, the pellet resuspended 

in 25 ml STC (20% sucrose, 50 mM Tris/HCl, pH 8.0, 50 mM CaCl2) and spun 

again for 10 min at 3200 rpm. The pellet was then carefully resuspended in a 

few ml STC, spun for 5 min at 5 k rpm, resuspended in 1 ml STC and spun 

again for 5 min at 5 k rpm. Finally, the protoplast pellet was resuspended in 400 

µl STC. 

For the transformation mixture, 10-20 µg transformation DNA construct (1:1 

mixture of the two flank constructs if used) was added to 90 µl STC and mixed. 

100 µl protoplast suspension was added, mixed and the mixture incubated at 

room temperature for 20 min. 1 ml of 40% PEG 8000 in STC was then added, 

mixed and incubated for a further 20 min. Finally, 5 ml of TB3 was added and 

the mixture placed on a tilting rack overnight. 

1.4 g low melting point agar (Gibco) was dissolved in 100 ml 2x regeneration 

medium (0.4% yeast extract, 0.4% casein enzyme hydrolysate (N-Z-Amine A) 

(Sigma-Aldrich) and 100 ml 1.6M sucrose added. The mixture was cooled to 40 

°C and hygromycin B added to a final concentration of 75 µg/ml. 37ml of the 

hygromycin media was added to 3 ml of the transformation mix, inverted to mix 

and poured into two 90 mm petri dishes. The plates were left to set then 

incubated at 28 °C for five days and colonies picked onto SNA containing 75 

µg/ml hygromycin.  

 

2.13 Selection of Transformants 

Transformants were selected with 75 μg/ml hygromycin. Single hygromycin-

resistant transformants were pre-screened by PCR analysis of crude DNA 

extracts using the REDExtract-N-Amp kit (Sigma-Aldrich) with 25 μl extraction 

solution and 25 μl neutralisation solution only,  The presence of the Hph and 
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target genes was tested using primers given in Table 2.6. Transformants 

lacking the target gene but showing presence of Hph were retained for 

Southern blot analysis. 

 

2.14 Genomic DNA Extraction from Fungi for Southern Analysis 

200 ml of PDB was added to a 500 ml conical flask and then inoculated with a 

section of a SNA plate culture of F. graminearum and incubated in the dark at 

28 °C shaking at 100 rpm for 3 days. The culture was filtered through Miracloth, 

frozen, freeze-dried, ground in a pestle and mortar and used for DNA extraction. 

DNA extraction was performed using the Nucleospin Plant XL Kit (Macherey-

Nagel) with 7.5 ml buffer C1 and 100 µl RNase A or using the following protocol 

(adapted from one published by Xu and Leslie, 1996): 20 ml CTAB lysis buffer 

(20 g/l CTAB, 12.12 g/l TRISMA base, 2.92 g/l EDTA, 41 g/l NaCl) was added 

to 3 ml freeze-dried mycelium and vortexed quickly. 100 µl β-mercaptoethanol 

and 200 µl RNase (10 µg/µl) were added and the mixture incubated in a water 

bath at 65 °C for 30 min, inverting every 10 min then cooled on ice. 1 volume of 

CIA (chloroform:isoamylalcohol 24:1) was added and the mixture mixed gently 

on a tilting rack for 15 min then centrifuged for 5 min at 4.8 k rpm at 4 °C. The 

upper phase was removed and two volumes of absolute ethanol or one volume 

of isopropanol added and the mixture incubated at -20 °C for 1 hr prior to 

centrifugation for 15 min at 10 k rpm at 15 °C. The liquid was poured off and the 

pellet resuspended in the remaining liquid with heating at 60 °C. Two 

phenol:chloroform:isoamylalcohol extractions were then performed (as 

described) and one further with CIA in place of 

phenol:chloroform:isoamylalcohol. To precipitate the DNA, two volumes of 

ethanol were added to the DNA phase and incubated for 5 min followed by 

centrifugation for 5 min at 13.2 k rpm, the pellet washed in 70% (v/v) ethanol 

and resuspended in 400 µl TE pH8.0 (10 mM Tris.Cl, 1 mM EDTA). 
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2.15 Genomic DNA digestion 

The reaction mixture for the digestion of genomic DNA (gDNA) for Southern 

analysis was as follows: 5-10 μg gDNA, 33 μl H2O, 5 μl buffer, 5 μl 10x BSA, 2 

μl restriction enzyme (Fermentas high concentration – 50 U/µl). The reaction 

mixture was incubated at 37°C overnight. 

 

2.16 Southern Hybridisation Characterisation of Transformants 

Transformants from the PCR-based pre-screen were grown from a single 

colony by inoculating a SNA plate with a very dilute solution of conidia in water 

and genomic DNA prepared from the samples. Southern hybridisation was 

performed using a standard alkaline protocol (Sambrook et al., 1989) with α-

dCTP-labelled probes (Rediprime IITM random prime DNA Labelling System 

(Amersham)). The two original flanking regions of the target gene amplified 

using primers listed in Table 2.2 were used to produce the labelled probes. 

Bands were imaged with a Typhoon phosphorimager. Table 2.7 lists the 

restriction enzymes and hybridisation probes used in each experiment, together 

with the expected sizes of hybridising bands in the wild-type and gene deletion 

strains. 

 

2.17 Fungal Growth Tests 

Agar plugs 9mm in diameter were taken from the growing edge of fungal 

colonies growing on SNA using a cork borer and a single plug was placed in the 

centre of 90mm diameter growth test plates. The diameter of the new colony 

was recorded at 24 hour intervals. For initial growth tests of gene deletion 

strains on SNA and PDA, three independent transformants (two for pkar, 

FGSG_09891 and FGSG_09896, one for PKAR-e)) were analysed for each 

gene deletion. Percentage changes in growth rate are given as the average of 

the independent transformants compared to wild-type unless specified 

otherwise. For spore growth tests, 15 µl of a 10e6 spore ml-1 solution was 

placed in the centre of the plate and allowed to dry.  Plates were grown in 
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triplicate. For growth on different carbon sources, SNA low carbon (0.1% 

KH2PO4, 0.1% KNO3, 0.1% MgSO4 x 7H2O, 0.05% KCl and 2% agar) was 

supplemented with either: 1% sucrose, glucose, trehalose or (v/v) ethanol, 0.4% 

olive oil or 6mM sodium acetate. For analysis of stress tolerance, H2O2, 

menadione and NaCl were added to SNA to the concentration indicated. For the 

reduced water activity plates (Aw 0.98) containing glycerol, sterile glycerol was 

diluted to a final concentration of 7.31% (v/v) in sterile water containing 30 g/l 

sucrose, 1 g/l KH2PO4, 0.5 g/l MgSO4, 0.5 g/l KCl, 0.01 g/l FeSO4, 2 g/l NaNO3, 

2 ml/l trace element solution supplemented with uracil, leucine and lysine, and 

2% agar (method provided by of N. Magan, Cranfield University). In the case of 

SNA low C or SNA low N, trace nutrients in the agar are thought to allow limited 

fungal growth when these elements are absent from the SNA mixture used to 

make the medium. Three plates were used per strain per media type.  

 

2.18 Virulence Assays   

Wheat ears of the susceptible hexaploid spring wheat cultivar Bobwhite were 

inoculated and scored as previously described (Urban et al., 2003) using either 

SNA agar plugs or a solution of conidia in water. In the case of conidial 

suspension inoculations, 5 μl of a 2x105 spore ml-1 suspension was placed in 

each inoculated floret. Plants were placed in a humid environment for 2 days 

post-inoculation with an initial 24 hour period of darkness. In preliminary 

infection tests, three independent transformants (two for pkar) were analysed 

for each targeted gene deletion on two wheat ears each. If a gene deletion 

strain (nth1, pkar and fcv1) exhibited reduced ear symptom spread in each of 

the transformants analysed, one representative transformant was selected for 

further comparison to the wild-type using a larger number of ears (typically 

between 10 and 20) and statistical analysis by ANOVA or REML.  
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2.19 Microscopy 

Images of agar cultures of Fusarium were obtained using a Zeiss light 

microscope, while images of Arabidopsis were obtained using a Leica 

stereoscope. For images of single hyphae, the surface of an agar plate culture 

of Fusarium was agitated in a small volume (approx 200 µl) H2O using a pipette 

tip and pipetted onto a glass slide for observation using a Zeiss Axiophot light 

microscope. 

 

2.20 Sequence alignments 

Protein sequence alignments were created using the ClustalX2 software (Larkin 

et al., 2007) and coloured using GeneDoc software (Nicholas and Nicholas, 

1997). 

 

2.21 Statistical Analysis of Data 

Means were compared using a Least Significant Difference (LSD) at the 5% 

level. Some datasets were transformed using square root or log to base 10 

transformations to improve residuals plots prior to analysis. Analysis was 

performed using the statistical software package GenStat version 13 (VSN 

International). Graphs are shown with either the least significant difference 

(LSD) at the 5% level or error bars of +/- one standard error of the mean (SEM). 

In the case of graphs illustrating growth on a second medium type as a fraction 

of that on minimal medium alone, errors bars are given as +/- one standard 

error calculated for the ratio of the two values. 

Growth tests: 

Regression over time was used to obtain the growth rate on each plate (in mm 

day-1). Rates of growth of different strains and media types were compared 

using a general Analysis of Variance (ANOVA) on the rates with a Completely 

Randomised Design. The treatment structure was Strain*Media and design 

structure Replicate number. In the case of growth tests comprising a series of 
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different concentrations of a particular chemical addition to the base medium, 

an additional ANOVA using a treatment structure of Strain*Concentration of 

chemical was used. In the case of growth tests with unequal replicate numbers 

for different strains or media types, Restricted Maximum Likelihood (REML- a 

type of maximum likelihood estimation where the likelihood function is 

calculated from the probability distribution of contrasts calculated from the data) 

analysis was used using the same design and block structure as above. 

Wheat ear pathogenicity assays: 

The percentage infection (the number of diseased spikelets below the 

inoculation point divided by the total spikelets below inoculation point) data over 

a series of time points at four day intervals was analysed using a split-plot in 

time ANOVA with design structure Experiment/Ear/Time and treatment structure 

Strain*Time. REML analysis was used to check for autocorrelation in the data 

with a random model of Experiment/Ear/Time and fixed model of Strain*Time. 

Comparison of deviance using Identity and Autoregressive Component of first 

order for Time revealed any autocorrelation. If detected, the dataset was 

analysed using the REML means output. 

Other tests: General ANOVA using analogous design and treatment structures 

to above was used to compare DON mycotoxin production, sporulation data 

and other datasets unless otherwise stated. 
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Table 2.2. Primers used for the amplification of regions flanking the target genes. Sequences overlapping the hph hygromycin resistance gene are shown in 

grey. *5' is regarded as left and 3' as right of the gene indicated. **Location of the flank section relative to the target gene in bp (start of ORF for L flank and end of 

ORF for R flank). 

Gene Flank* Flank length (bp) Location** Primer Primer sequence (5'-3') 

FGSG_09891 5' 800 -1 AB24 CTGTCTGGGCACTAGCAAGTGAA 

    
AB25 TCCTGTGTGAAATTGTTATCCGCTTTTGGCGGTGGAGGAGAAAG 

 
3' 383 +7 AB26 GTCGTGACTGGGAAAACCCTGGCGGGGAGTATTATGTGGATTACGCG 

    
AB27 GCTTACCGGCAGATTGAACG 

FGSG_09893 5' 799 -1 AB7 GGTCGCGTGAGAGTAATGAGATC 

    
AB8 TCCTGTGTGAAATTGTTATCCGCTTTCTTTGCTTGGTGGACACG 

 
3' 676 +34 AB9 GTCGTGACTGGGAAAACCCTGGCGATGAAGAATGCGAACTGGGACT 

    
AB10 ATGGAAAGGCTAGGGTCCGA 

FGSG_09895 
(NTH1) 5' 800 -93 AB1 CGTGTAAGTTGACGGCAACG 

    
AB2 CGATATGTGACGCTGTCCAA 

 
3' 1000 +1 AB3 GGTAATGTTATTGCAGACTTGG 

    
AB4 CAACTTACCCCAAACTGTGC 

FGSG_09896 
(ICL1) 5' 750 -43 AB28 GGATTTGGCTTGTGCTCGGT 

    
AB29 TCCTGTGTGAAATTGTTATCCGCTTCGAGGAATTGGACTGCGTG 

 
3' 637 +1 AB30 GTCGTGACTGGGAAAACCCTGGCGAGTGTTGCTGGGCGACTGAT 

    
AB31 AAGAGAGTGAGCGTGACGGC 

FGSG_09897 
(SNF1) 5' 1000 +31 U21 GCAGATTGGAACCGTTCAGAT 

    
U22 CGAGGATAAGGATATGGTGAG 
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3' 1212 -204 U23 GGCCATCACGCCAAGGAACCAT 

    
U24 TTGTCCAAGAGCCCGAGATGG 

FGSG_09900 5' 267 -3 AB23 AAGCAACCACAGGAATAAGGGTG 

    
AB12 TCCTGTGTGAAATTGTTATCCGCTAGAGAATGGCTGCTCGATGG 

 
3' 708 +1 AB13 GTCGTGACTGGGAAAACCCTGGCGGGTTGCTTTGCCGGATAGTACT 

    
AB14 GATCTTGCGACTAGCCACGG 

FGSG_09905 5' 768 -19 AB15 GATTGAGTCAGGGAGCGGTATC 

    
AB16 TCCTGTGTGAAATTGTTATCCGCTAAGTTGCAGTACAACCATGTGCTC 

 
3' 637 +1 AB17 GTCGTGACTGGGAAAACCCTGGCGCATGGTGGAACATCTACGATGTATG 

    
AB18 TTTGCGAGTGCGGTAATTGAG 

FGSG_09906 5' 600 -1 AB36 GAAAGCTCCAGTCTGTTGGGG 

    
AB37 TCCTGTGTGAAATTGTTATCCGCTTTTGCAGGATGGAGAGGGTG 

 
3' 788 +8 AB38 GTCGTGACTGGGAAAACCCTGGCGACTGTATCTTTACTGAGGGATCGGC 

    
AB39 TGCTTCTGGTAAACCGGTCA 

FGSG_09907 
(FCV1) 5' 987 -13 U120  CGACGGATCAAACAATTTAGGG 

    
U121 TCCTGTGTGAAATTGTTATCCGCTTTCTGGGATTGGGACACGTG 

 
3' 428 +1 U122 GTCGTGACTGGGAAAACCCTGGCGAGCCAGGAGAAATAACGCACC 

    
U123 CAGGTTGTCTCGTGGCTTGG 

FGSG_09908 
(PKAR) 5' 1461 -7 AB19 CTCCATCGCCATGCAGAAAA 

    
AB20 TCCTGTGTGAAATTGTTATCCGCTGGACAGAACTTCAAGGAATGATCG 

 
3' 873 +5 AB21 GTCGTGACTGGGAAAACCCTGGCGCAAGGTAAGATGCAATTGGCG 

    
AB22 TTGAGCCCTTGATCCGAGGA 
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Table 2.3 Primers for the amplification of two overlapping sections of the Hph hygromycin resistance gene. 

Hph gene section Flank length (bp) Target gene flank attached to Primer Reference 

HY 1275 5' M13R Catlett et al., 2003 

   
NLC37 Catlett et al., 2003 

YG 883 3' M13F Catlett et al., 2003 

      NLC38 Catlett et al., 2003 
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Table 2.4. Templates and primers for fusion of target gene flanks to hph gene sections. 

Gene Templates Primers 

FGSG_09891 5' flank + HY AB24 + NLC37 

 
3' flank + YG AB27 + NLC38 

FGSG_09893 5' flank + HY AB7 + NLC37 

 
3' flank + YG AB10 + NLC38 

FGSG_09896 (ICL1) 5' flank + HY AB28 + NLC37 

 
3' flank + YG AB31 + NLC38 

FGSG_09900 5' flank + HY AB23 + NLC37 

 
3' flank + YG AB14 + NLC38 

FGSG_09905 5' flank + HY AB15 + NLC37 

 
3' flank + YG AB18 + NLC38 

FGSG_09906 5' flank + HY AB36 + NLC37 

 
3' flank + YG AB39 + NLC38 

FGSG_09907 (FCV1) 5' flank + HY U120 + NLC37 

 
3' flank + YG U123 + NLC38 

FGSG_09908 (PKAR) 5' flank + HY AB19 + NLC37 

  3' flank + YG AB22 + NLC38 
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Table 2.5. Nested primers used on flank-HY sections to increase product amounts. The generic reverse primer was used with the forward primer for 

FGSG_09891.3, FGSG_09896.3 (ICL1), FGSG_09900.3 and FGSG_09906.3. 

Gene Flank Primer 
Forward / 
Reverse Primer sequence (5'-3') 

FGSG_09891 5' AB46 Forward CAAGTGAAGGAAGAAGGGGAGA 

FGSG_09896 (ICL1) 5' AB48 Forward GAAGGCCGAGCTAGGGAGTAGA 

FGSG_09900 5' AB58 Forward AGGAATAAGGGTGCTCGTGGA 

FGSG_09906 5' AB59 Forward GAGCTTCGTCAGCGTCCTTAGTAT 

Generic reverse primer 5' AB47 Reverse TGCTGCTCCATACAAGCCAA 

FGSG_09908 (PKAR) 5' AB49 Forward GAAAACCCGCTTCCAATCAA 

    AB50 Reverse TCCAGAAGAGGATGTTGGCG 
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Table 2.6. Primers to screen for the presence/absence of the target gene or Hph gene in transformants. 

Gene Primer Primer sequence (5'-3') Product length (bp) 

FGSG_09891 AB68 TCATCTCCACCGAGGACGCT 1019 

 
AB69 TCTCAAGCTTCTCCTTTCCTCG 

FGSG_09893 AB40 CTCCCCAGCTTGACGGTTTC 1476 

 
AB41 AAGTTTGAGGCTCCTCAGCAAC 

FGSG_09895 (NTH1) AB5 CGCCCACGTATCTACATCCC 800 

 
AB6 TTGGCACAGACTCCTTCGAG 

 FGSG_09896 (ICL1) AB70 GACAAACCCTTCTATTAACCCCG 1411 

 
AB71 AAATCGGGCAGCTTGGACTC 

 FGSG_09900 AB51 GCCACACGATGTCAAAGATCAG 1490 

 
AB52 ATACAGCCGTGTCTCTGCCC 

 FGSG_09905 AB42 AGAGTCCAGAGGCTGGGTCAA 423 

 
AB43 CTCCCAAGGCAAGTGCAACA 

 FGSG_09906 AB53 ACATCTTCCCTGCCCGTCTG 795 

 
AB54 CGGAAGAGTCGGTCTTGGTG 

 FGSG_09907 (FCV1) U130 CCGTCGCTCCTGCTTATCAC 650 

 
U131  ACTTCGGTTTCCAGCACTCG 

 FGSG_09908 (PKAR) AB44 TAGCCGGTGTGAAGTGGATCC 1243 

 
AB45 GGCCCTTTCTCCAGTCCCTT 

 Hph Hyg3 TCTCGGAGGGCGAAGAATCTC 834 

  Hyg4 TTCTGCGGGCGATTTGTGTAC 
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Table 2.7. Probes and restriction enzymes used for Southern hybridisation of wild-type and gene deletion strains. 

        Hybridising bands expected (bp) 

Gene Flank probe 
Probe length 

(bp) 
Restriction 

enzyme Wild-type Deletion 

FGSG_09891 5' 800 EcoRI 5338 3351 

 
3' 383 EcoRV 2389 2998 

FGSG_09893 5' 799 SalI 2127 3677 

 
3' 676 SalI 4314 3358 

FGSG_09895 (NTH1) 5' 800 EcoRV 2.1 kb 0.75kb 

 
3' 1000 HindIII 0.9 kb and 3.8 kb 2.7 kb and 3.8 kb 

FGSG_09896 (ICL1) 5' 750 KpnI 6646 3138 

 
3' 637 PstI 2653 3415 

FGSG_09900 5' 267 PstI 5813 2547 

 
3' 708 EcoRV 1096 and 516 6263 and 516 

FGSG_09905 5' 768 EcoRI 4143 1301 

 
3' 637 BamHI 3592 2373 

FGSG_09906 5' 600 EcoRI 4143 2424 

 
3' 788 HindIII 2632 and 1869 707 and 1869 

FGSG_09907 (FCV1) 5' 987 SacI 4223 3.9kb 

 
3' 428 HindIII 1869 747 

FGSG_09908 (PKAR) 5' 1461 HindIII 1869 3317 

  3' 873 SalI 3173 2462 
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Chapter 3. Location and Bioinformatic Analysis of the Chromosome I 

Micro-Region 

 

3.1 Introduction 

Numerous genes, proteins and metabolites have been shown, over the past 25 

years, to play a role in the disease-causing ability of plant pathogens.  In the 

earliest studies, either a biochemical or forward genetic approach to discovery 

was taken.  However, there is now an increased availability of sequence 

information for plant pathogens and related saprobes, either as expressed 

sequence tags (ESTs) or as partial / fully sequenced genomes. As a result, in 

the vast majority of cases, a reverse genetics targeted gene deletion approach 

is now used in many species to reveal a requirement for the target gene in 

infection, symptom development and / or host range (Sexton and Howlett, 

2006).  

A pathogenicity factor is considered one whose requirement for the disease-

forming ability of a pathogen is absolute. In contrast, a virulence factor 

contributes quantitatively rather than qualitatively to the disease development of 

the pathogen. Many  common themes to pathogenicity and virulence  have now 

been identified for plant- and animal-infecting pathogens, including particular 

protein families which co-ordinate intracellular processes, such as signal 

perception, signal  transduction, transcription in the host  and / or the production 

of host selective or host non-selective toxins (Examples may be found in Xu and 

Hamer, 1996; Kulkarni et al., 2005; Egan and Talbot, 2008; Brefort et al., 2009; 

Wilson and Talbot, 2009; Garcia-Pedrajas et al., 2010). Increasingly, the 

selection of a gene for targeted deletion is made because that gene belongs to 

the same family as a previously determined pathogenicity or virulence factor in 

another species. The pathogen under investigation may have either a similar or 

dissimilar infection biology to that first species. Where functional redundancy is 

suspected, often the test pathogen chosen only has a single copy of the gene 

(Motteram et al., 2009).   Alternatively, searches for the presence / absence of 

specific protein domains (using Pfam or InterPro) or conserved motifs, such as 

the RXLR motif that is found in the secreted ‘effector’ molecules of oomycetes 

(Haldar et al., 2006), or the cysteine-rich Ecp proteins of Cladosporium fulvum 
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(DeWit and Joosten, 1999) are being used to identify related sequences that 

may play a role in virulence. These approaches, used either singly or in 

combination, may help to increase the rate of identification of pathogenicity or 

virulence factors of select protein families but do not help in the direct discovery 

of novel sequence unrelated factors that may also play a role in disease.  

The bioinformatic comparison of fully sequenced genomes is now becoming 

possible due to the rapidly growing number of sequenced species 

(Comprehensive Phytopathogen Genomics Resource (CPGR, 

http://cpgr.plantbiology.msu.edu/); Genome OnLine Database (GOLD, 

www.genomesonline.org) and is providing a wealth of new data and 

investigation techniques.  Comparisons of the genomes of different plant 

pathogenic species (Soanes et al., 2007) have already revealed that large 

percentages of the predicted genes contained in pathogen genomes are unique 

to that particular species (Cuomo et al., 2007; Wapinski et al., 2007). In 

addition, many genes possess no functional annotation and may show only 

weak similarity to genes in other species.  Retrospectively, a number of the 

previously identified avirulence genes have been identified as either species- or 

formae speciales-specific (Khang et al., 2008; Ma et al., 2010). Similarly, many 

biosynthetic clusters which result in the synthesis of specific host selective or 

host non-selective toxins have now been identified to be unique to just one or a 

few related plant pathogenic species (Brown et al., 2002).  

To identify new classes of virulence / pathogenicity determinants, other 

techniques in addition to forward genetics and mutant screening, which still has 

a success rate of only ~1% (Jeon et al., 2007), should be considered. As the 

deluge of genomic sequence data continues to increase, this provides the 

opportunity for the development of novel bioinformatic/statistical-based methods 

to study pathogenicity. One way this can be achieved is to investigate the 

arrangement of pathogenicity and virulence genes across and within the 

chromosomes of individual pathogenic species and taxonomically related 

pathogenic species. Various gene types and gene families have been shown to 

be unevenly distributed in the genome. For example the in planta expressed 

genes of Fusarium graminearum are predominantly located in the sub-telomeric 

regions of the genome (Cuomo et al., 2007). Very recently, some of the 

smallest chromosomes of the tomato-infecting vascular wilt pathogen Fusarium 
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oxysporum f sp lycospersici were shown to be transmittable between individual 

isolates, are rich in transposon sequences, and contain the genes required to 

alter the host species range of the recipient isolate (Ma et al., 2010).  

Several examples of clustering of genes important to virulence or pathogenicity 

are already known. In bacteria, genes required for pathogenicity are often 

grouped together in regions known as pathogenicity islands. These genomic 

regions, usually ranging in size from 10-200 kb, are characterised by a number 

of shared features, including a GC content and codon usage that differs from 

the rest of the genome, the presence of direct repeat sequences flanking the 

island and often contain genes or sequences enabling genetic mobility. Also 

these regions are frequently found to be absent from the genomes of closely 

related strains, exhibit instability and may be located close to tRNA loci (Hacker 

et al., 1997; Hentschel and Hacker, 2001). Pathogenicity islands may contain 

genes encoding proteins for the production of adherence factors, metabolite 

acquisition, host cell entry and secretion systems and toxin production (Galán 

and Collmer, 1999; Hentschel and Hacker, 2001). For example, in the plant 

pathogenic bacterium Pseudomonas syringae, the HRP gene cluster encodes 

proteins that are used to form a type-III secretion system (T3SS) that is used for 

the secretion of effectors into the host (Brown, I. et al., 2001; Jin and He; 2001; 

Li et al., 2002). 

Other types of gene clustering required for pathogenicity have been found in a 

number of fungal species. In several species, the clustered genes encode 

proteins required for biosynthesis or degradation of a particular metabolite. 

Examples include the TRI gene cluster of F. graminearum whose products are 

required for biosynthesis of B-type trichothecene mycotoxins, polyketide 

synthase clusters and non-ribosomal peptide synthetases (Brown, D.W. et al., 

2001, 2004; Varga et al., 2005; Gaffoor and Trail, 2006). These biosynthetic 

clusters often contain transcriptional regulators which co-ordinate the 

expression of both the neighbouring genes as well as others elsewhere in the 

genome (Proctor et al., 1995; Hohn et al., 1999). The recent analysis of the F. 

solani (telomorph Nectria haematococca) genome (Coleman et al., 2009) has 

confirmed the pea pathogenicity (PEP) genes are clustered together and are 

present on a 1.6 Mb supernumerary chromosome (Han et al., 2001). The PEP 

genes include PDA1, which encodes a cytochrome P450 monooxygenase 
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enzyme known as pisatin demethylase, which serves to detoxify pisatin, an anti-

microbial compound released from the pea host upon infection. In the 

basidiomycete fungus Ustilago maydis, the causal agent of corn smut, a large 

number of secreted protein genes (roughly one-fifth of the total secretome) are 

grouped together into twelve clusters containing from 3 to 26 genes (Kamper et 

al., 2006; Dean, 2007; Howlett et al., 2007). To date, five of these clusters have 

been shown to play a role in virulence of this pathogen. Unlike other fungal 

cluster types identified, no transcriptional regulators are found in the U. maydis 

secreted protein clusters and only a few of these clusters contain any genes 

which code for proteins which are not secreted. While most secondary 

metabolite clusters in the human pathogen Aspergillus fumigatus are found in 

heterochromatin near telomeric regions (Nierman et al., 2005; Howlett et al., 

2007), the U. maydis secreted protein clusters are distributed randomly in the 

genome (Howlett et al., 2007).   

A genome-wide analysis approach was applied to F. graminearum to search for 

novel clusters of genes contributing to disease development. So far the only 

gene cluster types identified in Fusaria are those that encode proteins 

constituting biosynthesis systems for various secondary metabolites, such as 

deoxynivalenol, nivalenol and T-2 toxin (Hohn et al., 1999, Brown et al., 2001, 

2004) and other clusters encoding proteins for the biosynthesis of polyketides 

and non-ribosomal peptide synthases (Varga et al., 2005; Gaffoor and Trail, 

2006). As described earlier, the ascomycete species F. graminearum is one of 

the main causal agents of the globally destructive Fusarium Ear Blight (FEB) 

disease (Snijders, 1994; Bai and Shaner., 2004), which lowers grain yield, 

reduces grain quality due to the loss of starch granules and cell walls, and 

contaminates grain with a range of mycotoxins (Gang et al., 1998; Snijders, 

2004).  The sequenced genome of F. graminearum strain PH-1 with 10x 

coverage was made publicly available in 2003 at the Broad Institute and then 

successfully aligned to the four chromosomes (Cuomo et al., 2007).  Since then 

the sequenced genomes of two other plant pathogenic Fusarium species have 

become available, namely the tomato vascular wilt F. oxysporum f sp. 

lycopersici and the cereal infecting F. verticilloides (Ma et al., 2010). By aligning 

the sequence to the chromosome complement of each species and then inter-

comparing the genome organisation of the three species, both species-specific 
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as well as conserved core regions of the fusaria genomes were identified (Ma et 

al., 2010).    

In this study, several bioinformatics resources were used in combination with 

statistics to locate putative disease development contributors in the genome of 

F. graminearum. As the starting point for this investigation, it was hypothesised 

that ‘hotspots’ for genes required for disease symptom spread are maintained in 

clusters in the genomes of closely related pathogenic species. By using a set of 

curated sequences, previously demonstrated to contribute to infection and 

disease formation in one or more plant or animal infecting species (Winnenburg 

et al., 2006), several putative hotspots were identified.  

The identification and bioinformatic analysis of one such hotspot is described in 

this chapter. Subsequent chapters describe the investigation of the function of 

several genes in this hotspot region including several that showed either no 

homology to any annotated genes or no homology to previously identified 

virulence determinants.  

 

3.2 Methods 

Fusarium graminearum homologues of Pathogen-Host Interactions Database 

(PHI-base, www.phi-base.org, Version 2.1) entries were located in the 

published PH-1 strain genome sequence (www.broadinstitute.org, 

www.helmholtz-muenchen.de/mips, version FG3) using a Basic Local 

Alignment Search Tool (BLAST) (Altschul et al., 1990) with a expectation value 

cut-off of 1x10-100. The location of hits was displayed on the F. graminearum 

chromosomes using the OmniMapFree software (J. Antoniw et al., unpublished,   

www.omnimapfree.org). Putative gene function was assigned by BLAST search 

for homologues in the non-redundant protein sequences (nr) database held at 

the NCBI (www.ncbi.nih.gov, October 2007) with a cut-off score of 1e-40. 

Interspecies comparisons were made using a FASTA comparison tool at 

Rothamsted (http://babnfs/fasta, Lipman and Pearson, 1985) against selected 

published genome sequences (www.broadinstitute.org, 

www.jgi.doe.gov/genome-projects). Similarity scores were calculated as 

identities x overlap / query length. Relative genome location of reciprocal best 
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hits to the cluster genes in three sequenced Fusarium species, namely F. 

verticillioides (strain 7600, version FV2), F. oxysporum f. sp lycopersici  (strain 

4287  version  FOXY3)  and F. solani (Nectria haematococca) (strain MPV1 77-

13-4, version 2.0) was determined from the respective genome browser. 

Additional species used for comparative genomics in this manner were 

Trichoderma reesei (strain QM6a, version 2), Neurospora crassa (strain 

OR74A, version 4), Magnaporthe oryzae (strain 70-15, version 5), Ustilago 

maydis (strain 521, version 1) and Mycosphaerella graminicola (strain IPO323, 

version 3). 

Repetitive elements in DNA were identified using a DotPlot software 

programme (J. Antoniw). The nucleotide sequence of the region under study 

was plotted against itself and matching sequences highlighted to show 

repetitive sequence using a window of 20 nucleotides with a stringency of 15 

matches. The percentage GC content was determined using the DNA motifs 

software programme (J. Antoniw). The online TMHMM server 

www.cbs.dtu.dk/services/TMHMM/ was used to analyse the presence of 

predicted transmembrane protein segments. The online SignalP server 

www.cbs.dtu.dk/services/SignalP/ was used to search for predicted signal 

peptide sequences. The WoLF PSORT program (http://wolfpsort.org) was used 

to predict sub-cellular localisation of proteins. Global sequence alignments were 

performed using the ClustalW and EMBOSS tools at the European 

Bioinformatics Institute (www.ebi.ac.uk) with default parameters. 

The distribution of virulence/pathogenicity factor homologues on chromosome I 

was analysed statistically by Sue Welham (Rothamsted Research) using a Chi-

Square test. The Chi-Square test examined whether the proportion of the total 

number of genes identified as virulence/pathogenicity gene homologues is 

higher within the micro-region than outside it (i.e. the remainder of chromosome 

I of the F. graminearum genome). The null hypothesis is that such homologues 

exhibit a random distribution across the chromosome. The Chi-Square statistic 

assesses whether the observed frequency of virulence/pathogenicity 

homologues within the micro-region is greater than that expected if such genes 

show a random distribution. The test statistic shows an asymptotic (large-

sample) distribution. However, this distribution does not hold when the expected 

frequencies are <5, as in the case of the micro-region. The permutation testing 
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method of Roff and Bentzen (1989) was therefore applied to obtain a valid p-

value for the test statistic. The micro-region was defined as FGSG_09891 to 

FGSG_09908.  
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3.3 Results 

3.3.1 Identification of a Close Grouping of Virulence/Pathogenicity Gene 

Homologues in the Fusarium graminearum Genome 

The location in the F. graminearum genome of homologues of verified 

pathogenicity / virulence genes in Fusarium and other species published prior 

to 2007 is shown in Figure 3.1A. A total of 211 hits were identified over the four 

chromosomes.  A visual inspection of this gene distribution indicated the 

presence of a close grouping of five such gene homologues in a 37.6 kb, 15 

gene region on chromosome 1 (shown by black arrow).  A Chi-Square 

statistical analysis (see Methods) revealed that the presence of this number of 

homologues in the region deviated from the number expected for a random 

distribution of such homologues. The frequency of virulence/pathogenicity gene 

homologues within the micro-region (5 homologues in a 19 gene region, or an 

average of 0.26 homologues per gene) was significantly greater than that 

expected from a random distribution (0.4 homologues in a 19 gene region, or 

an average of 0.02 homologues per gene) (p<0.001, Table 3.1). By comparing 

these results with the genetic map available for a cross between the sequenced 

strain PH-1 and a second strain from the same genetic lineage (Gale et al., 

2005) the identified micro-region was found to reside within a region of low 

recombination frequency (Figure 3.1B).  

 

Table 3.1. Count (and percentage) of virulence/pathogenicity gene homologues and 

other genes on chromosome 1, categorized by presence in the micro-region. The micro-region 

on chromosome 1 (FGSG_09891-FGSG_09908) appears to contain a higher density of 

virulence/pathogenicity gene homologues than would be expected from a random distribution of 

such genes. This was confirmed by a chi-square test on the following table. The chi-square test 

statistic is 54.99 on 1 df (p<0.001). Analysis by Sue Welham (Rothamsted Research). 

 

  Outside micro-region Inside micro-region 

Vir/path homologues 87 (94.6) 5 (5.4) 

Other genes 4314 (99.7) 14 (0.3) 
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Figure 3.1. (See over). Identification of a virulence gene homologue-enriched micro-

region on chromosome I of Fusarium graminearum. A. The distribution of homologues of PHI-

base entries in the F. graminearum genome is not random. Each horizontal grey bar represents 

one of the four F. graminearum chromosomes drawn to scale. The lengths of the chromosomes 

in Mbps are I - 11.685, II – 8.916, III – 7.766 and IV – 8.076.  Each thin vertical line indicates the 

location of a gene homologous to a verified virulence gene contained in the PHI-base database.  

The thickness of vertical lines is representative of gene length. A significant (p<0.001) grouping 

of such homologues occurs on chromosome I (indicated by black arrow). B. The virulence gene 

homologue micro-region is located in an area of low recombination frequency. The frequency of 

recombination is shown for a cross between the sequenced strain PH-1 and a second USA 

strain, MN00-676. Darker sections indicate increased recombination frequency. The absolute 

recombination frequency ranges from zero to >8 cM between consecutive genetic markers 

(Cuomo et al., 2007). The location of the virulence gene homologue micro-region is indicated by 

a black arrow. C. The gene content of the virulence gene homologue-enriched micro-region on 

chromosome I of F. graminearum. The genes homologous to known virulence genes are 

shaded dark grey. Five such genes are here contained in a 37.6 kb, 15-gene region.  Genes 

with similarity to other annotated genes are shaded light grey. Gene IDs are shown in the 

format: FGSG_xxxxx.3. Genes are labelled with either names from publication or genome locus 

annotation (shown in black) or similarity to other annotated genes is indicated (shown in grey). 

Abbreviations: GluCP = glutamate carboxypeptidase, Pol = DNA polymerase epsilon subunit B, 

Hyd = HAD superfamily hydrolase. 
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The chromosome 1 pathogenicity/virulence gene homologue micro-region 

stretches from FGSG_09895 to FGSG_09908 (Figure 3.1C) and contains a 

total of 15 genes. The five genes homologous to the previously published 

pathogenicity/virulence genes are FGSG_09895, FGSG_09896, FGSG_09897, 

FGSG_09903 and FGSG_09908. A small number of genes in the micro-region 

are annotated in the F. graminearum genome databases with a putative 

function for the proteins they encode. These are FGSG_09895 (neutral 

trehalase), FGSG_09896 (isocitrate lyase, published as GzICL1 (Lee et al., 

2009a)), FGSG_09897 (carbon catabolite derepressing protein kinase, also 

known as GzSNF1 (Lee et al., 2009b), FGSG_09902 (protein similar to HAD 

superfamily hydrolase), FGSG_09903 (protein kinase BYR1, also published as 

STE7 (Ramamoorthy et al., 2007)), FGSG_09904 (transcription elongation 

factor SPT6) and FGSG_09908 (cAMP-dependent protein kinase regulatory 

subunit). To assess the possible function of the remainder of the genes in the 

micro-region, a BLASTp search was used identify homologous genes in other 

species (see Methods). This revealed the similarity of Fgsg_09899 to DNA 

polymerase epsilon subunit B, some limited similarity of Fgsg_09906 to Stf2-like 

proteins (an ATP synthase regulatory factor) and of Fgsg_09907 to Bcas2 

family/domain proteins. Fgsg_09900 was predicted to contain seven 

transmembrane spanning segments. Analysis of predicted sub-cellular 

localisation further suggested a plasma membrane location for Fgsg_09900. 

This analysis also predicted a peroxisome/glyoxysome location for Icl1. 

Isocitrate lyase functions in the glyoxylate cycle and this location is consistent 

with this function for Icl1. The remaining four genes in the micro-region did not 

show significant similarity to any previously annotated genes or any obvious 

motifs.  

For the follow up bioinformatics analyses, the micro-region under study was 

expanded slightly to include FGSG_09891 to FGSG_09894, situated 

immediately to the left of FGSG_09895, due to their proximity to the group of 

three virulence gene homologues (FGSG_09895-FGSG_09897). FGSG_09891 

is annotated as encoding an arsenical pump-driving ATPase (ASNA1), 

FGSG_09892 as encoding a protein similar to retinoblastoma-binding protein 

and FGSG_09893 as specifying a protein similar to glutamate 

carboxypeptidase. Fgsg_09893 may possess a signal peptide sequence but the 



93 
 

match was of limited quality.  A BLASTp search (see Methods) revealed 

similarity of Fgsg_09891 to the Get3/Arr4 protein of S. cerevisiae and of 

Fgsg_09892 to the protein Mpe1, which has been reported in S. cerevisiae as 

an essential component of the cleavage and polyadenylation factor in mRNA 

processing (Vo et al., 2001).  None of these additional protein sequences have 

functions previously linked to pathogenicity. These data are summarised in 

Table 3.2. 

 



94 
 

Table 3.2. Gene content of the F. graminearum chromosome I micro-region. Gene locus IDs are shown together with annotation from the F. graminearum genome 

browsers (see Methods), Similarity of the proteins encoded by these genes to other proteins determined by Blastp and any identified protein domains are also 

indicated (see Methods).

Gene Genome annotation Blastp Domains (Pfam) 

FGSG_09891 ASNA1 Similar to Get3/Arr4 Arsenite-activated ATPase (arsA) (PF02374) 

FGSG_09892 Retinoblastoma-binding protein-like Similar to Mpe1 DWNN (PF08783) 

FGSG_09893 
Similar to glutamate 
carboxypeptidase 

 
Peptidase family M20/M25/M40 (PF01546) 

   
Peptidase dimerisation domain (PF07687) 

FGSG_09894 
  

Yippee putative zinc-binding protein (PF03226) 

FGSG_09895 NTH1 
 

Trehalase (PF01204) 

   
Neutral trehalase Ca2+ binding domain (PF07492) 

FGSG_09896 ICL1 
 

Isocitrate lyase family (PF00463) 

FGSG_09897 SNF1 
 

Protein tyrosine kinase (PF07714) 

   
Protein kinase domain (PF00069) 

   
Ubiquitin associated domain (UBA) (PF08587) 

FGSG_09898 
   

FGSG_09899 
 

Similar to DNA polymerase 
epsilon subunit B DNA polymerase alpha/epsilon subunit B (PF04042) 

FGSG_09900 
   FGSG_15564 
   FGSG_09901 
   FGSG_09902 Similar to HAD superfamily hydrolase 

 
Haloacid dehalogenase-like hydrolase (PF00702) 

FGSG_09903 BYR1/STE7 
 

Protein kinase domain (PF00069) 

FGSG_09904 SPT6 
 

SH2 domain (PF00017) 

   
S1 RNA binding domain (PF00575) 

FGSG_09905 
   FGSG_09906 
 

Similar to Stf2-like proteins 
 

FGSG_09907 
 

Similar to Bcas2 
family/domain proteins 

Breast carcinoma amplified sequence 2 (BCAS2) 
(PF05700) 

FGSG_09908 PKAR   Cyclic nucleotide binding domain (PF00027) 



95 
 

3.3.2 Comparison of Microsynteny with Other Fungal Genomes   

A comparison of microsynteny of the micro-region across four sequenced 

Fusarium species  and the closely related non-pathogenic species Trichoderma 

reesei (Goodwin, 2004; Martinez et al., 2008; Coleman et al., 2009; Ma et al., 

2010) revealed an exceptionally high degree of conservation of the micro-region 

across the five species (Figure 3.2). The order and orientation of the genes in 

the micro-region appear to be well conserved between the five species. In F. 

oxysporum, one, and in F. solani, five additional genes are present in the centre 

of the micro-region. The F. graminearum homologues of these additional genes 

are not located close to the micro-region in this species. A homologue of 

FGSG_15564 is present in F. solani but at a different genomic locus, while one 

gene, FGSG_09905, appeared to be specific to F. graminearum. However, a 

tBlastn analysis indicated that sequences of limited homology to FGSG_09905 

are present in F. verticillioides and F. oxysporum at the corresponding locus, 

suggesting the possibility that a non-functional homologue of FGSG_09905 may 

be present in these two species or that an incorrect gene call has been made in 

one or more of the species. Similarly, tBlastn revealed sequences with limited 

similarity to FGSG_15564 at the corresponding locus in F. verticillioides and F. 

oxysporum. In F. oxysporum this sequence was present within the locus of the 

additional gene present in the micro-region. Overall, the micro-region site is 

highly conserved in the four Fusaria and also in the related fungus T. reesei. A 

wider analysis was also performed and included the rice blast fungus 

Magnaporthe oryzae, the wheat leaf pathogen Mycosphaerella graminicola, the 

model fungus Neurospora crassa and the maize pathogen Ustilago maydis 

(Figure 3.3). These species contain more fragmented versions of the micro-

region, broken down into blocks of mostly 2 or 3 genes or single genes located 

at multiple different genomic loci. Therefore the intactness of the micro-region 

appears only to be retained between the Fusaria and very closely related taxa.   
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Figure 3.2. (See over). The micro-region exhibits a high degree of conservation across 

four sequenced Fusarium species and the related saprophyte Trichoderma reesei. Darker 

shading is used to indicate genes with greater similarity to their F. graminearum counterpart. 

Protein sequences were compared using the FASTA algorithm (Lipman and Pearson, 1985) 

and scores calculated as: Identities x Overlap / Length. F. graminearum homologues of known 

virulence genes are shaded grey. Gaps indicate genuine spaces in the genome where no gene 

is called. *FGSG_15564 is called only at the MIPS F. graminearum database (mips.helmholtz-

muenchen.de/genre/proj/fusarium) and not at the Broad database (www.broad.mit.edu). The F. 

solani homologue of FGSG_09901 was located using a tBlastn search as a homologue of this 

gene but has so far not been called on the F. solani genome browser (genome.jgi-

psf.org/Necha2/Necha2.home.html), yet this search yielded a high-scoring hit. F. graminearum 

genes are labelled with gene IDs in the format FGSG_098xx or FGSG_099xx where 

appropriate. 
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Figure 3.3. (See over). Conservation of the micro-region breaks down in more distantly 

related species. The cluster of F. graminearum was examined in the model filamentous fungus 

Neurospora crassa, together with three plant pathogenic species:  the rice blast fungus 

Magnaporthe oryzae, Mycosphaerella graminicola the cause of Septoria tritici blotch disease on 

wheat leaves, and the Basidiomycete Ustilago maydis, the causal agent of corn smut. Protein 

sequences were compared using the FASTA algorithm (Lipman and Pearson, 1985) and scores 

calculated as: Identities x Overlap / Length. 
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3.3.3 Other Features of the Identified Micro-Region  

Bacterial pathogenicity islands are characterised by repetitive sequences that 

flank the island (Hentschel and Hacker, 2001). The genome of F. graminearum 

contains a low content of repetitive sequence, most probably due to the 

presence of the mechanism of Repeat-Induced Polymorphism (RIP), which acts 

to remove repetitive nucleotide sequence (Cuomo et al., 2007). In common with 

the rest of the F. graminearum genome, the micro-region region possesses little 

repetitive sequence and unlike bacterial pathogenicity islands, no evidence was 

found for repetitive sequence-rich flanks adjacent to the micro-region (Figure 

3.4).  A 70 kb region immediately to the left of the micro-region and 60 kb 

immediately to the right of the micro-region were analysed for the presence of 

repetitive sequence. While small occasional (20-50 nt) repeats were noted, 

possibly representing promoter or protein elements, no extensive repetitive 

sequence was found. The densely dotted region in the plot for the region ‘left’ of 

the micro-region is found within the FGSG_09887 gene and probably represent 

repeated protein elements.  Pathogenicity islands in bacteria are also 

characterised by a GC content distinct from the rest of the genome (Hentschel 

and Hacker, 2001). GC content was also analysed for the micro-region and 

flanking regions. The average percent GC of the micro-region region was 

49.31% (Figure 3.4), similar to the whole genome average of 48.33% (Broad 

Institute), and very similar to that of the two flanks. The micro-region also 

appears to be present in a region of low recombination frequency (Figure 

3.1B). 

The pattern of expression of the micro-region genes was analysed using 

published Affymetrix datasets (Güldener et al., 2006). A heatmap depicting the 

expression of micro-region genes during infection of barley ears over a 144 h 

period (Figure 3.5A) indicates that the genes of the cluster are not subject to 

co-ordinate regulation during infection of this host species. By contrast, a 

number of genes of the TRI trichothecene biosynthesis cluster (Figure 3.5B), 

appear to exhibit co-ordinated expression and are highly induced after 48 h post 

infection.  
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Figure 3.4. The chromosome I micro-region is not flanked by highly repetitive 

sequences. Dotplots are shown for the following regions: (A) The 70.8 kb region immediately to 

the left of the micro-region. (B) The micro-region itself (from FGSG_09891 to FGSG_09908, 

47.4 kb). (C) The  58.2 kb region immediately to the right of the micro-region. A 200 nt 

undefined (NNNN) region was removed from the sequence for panel (A). 
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3.4 Discussion 

A bioinformatics approach was used to identify a virulence gene-enriched 

region on chromosome I of the globally important plant pathogen F. 

graminearum. By plotting the homologues of known virulence/pathogenicity 

genes onto the chromosomes of F. graminearum using the PHI-base database, 

a micro-region exhibiting a grouping of virulence gene homologues significantly 

greater than expected from a random distribution was identified on chromosome 

I (Figure 3.1). The PHI-base database, since its launch in 2005, has also been 

used in a number of other publications to assist in the annotation of 

pathogenicity gene homologues. For example, Jeon et al. (2007) searched the 

contents of PHI-base to determine the homology of pathogenicity genes 

identified in a large forward genetics insertional mutagenesis experiment 

involving Magnaporthe oryzae to those in other species. In addition, DiGuistini 

et al. (2007) used PHI-base to annotate pathogenicity gene homologues in an 

EST collection from a pathogenic fungus. However, the method presented here, 

by combining the PHI-base database and OmniMap software, allows the 

prediction of possible virulence/pathogenicity gene location based on position 

relative to other such genes. 

This new F. graminearum micro-region appears to be different to previously 

characterised fungal gene clusters. The F. graminearum micro-region, which is 

conserved across the four sequenced Fusarium species, does not contain a 

group of genes whose products are predicted to be secreted (only one 

possesses a very weak similarity to a signal peptide sequence), nor does it 

encode a series of enzymes for the biosynthesis of a particular metabolite. The 

genes of the micro-region are not subject to coordinate regulation and the 

micro-region appears not to possess a distinct GC content or repetitive 

sequence flanks. This micro-region could therefore represent the first example 

of a potentially novel type of virulence-associated gene cluster. 

 Previously characterised gene clusters in Fusarium species include the TRI 

trichothecene mycotoxin biosynthesis cluster for the production of secondary 

metabolites such as deoxynivalenol, nivalenol and T-2 toxin (Hohn et al., 1999, 

Brown, D.W. et al., 2001, 2004) and other clusters for the biosynthesis of other 

secreted metabolites, such as zearalenone, which require specific polyketides 



104 
 

synthases and / or non-ribosomal peptide synthases (Varga et al., 2005; 

Gaffoor and Trail, 2006). In addition, a recently located cluster of F. 

graminearum genes (gene IDs FGSG_08077 to FGSG_08084) appears to 

encode a biosynthesis cluster for the mycotoxin butenolide (Harris et al., 2007). 

In F. solani, four genes contributing to pathogenicity on pea plants are located 

in a 25 kb cluster termed the PEP (pea pathogenicity) gene cluster (Han et al., 

2001). The PEP cluster possesses a GC content distinct from that of the rest of 

the F. solani genome, similar to bacterial pathogenicity islands, and also 

exhibits coordinated gene regulation (Han et al., 2001; Liu et al., 2003), 

indicating similarity of the F. solani PEP cluster to pathogenicity islands of 

bacteria and some of the fungal biosynthetic gene clusters. In both F. solani and 

F. oxysporum f sp lycopersici the genes providing factors to confer virulence 

towards different host plants are located on small supernumerary chromosomes   

(Han et al., 2001; Ma et al., 2010).  The F. graminearum micro-region is distinct 

from these other two examples, being present on a core essential chromosome 

and this species appearing to lack supernumerary chromosomes. Bacterial 

pathogenicity islands are also usually flanked by highly repetitive DNA 

sequences, which, together with their atypical GC content, is considered 

evidence of their evolutionary movement by horizontal gene transfer. In 

addition, the genomic islands of the fungal pathogen A. fumigatus show an 

enrichment of repetitive elements (Fedorova et al., 2008). No indication of 

highly repetitive DNA sequences flanking the chromosome I cluster in F. 

graminearum was found. 

The F. graminearum genome comprises only four chromosomes, however 

these chromosomes are thought to be the result of the ancient fusion of smaller 

chromosomes of a progenitor species, as indicated by the chromosomal 

distribution of single nucleotide polymorphisms (SNPs) between two sequenced 

strains (Cuomo et al., 2007). Regions of high SNP density in both the sub-

telomeric regions and specific inner regions of each chromosome were 

correlated with a high level of recombination and the presence of genes 

specifically expressed in planta that would be expected to play a role in plant-

fungal interactions (Cuomo et al., 2007). In contrast, the new F. graminearum 

micro-region is present in a region of low SNP and low recombination frequency 

(Figure 3.1B, Beacham et al., 2009; Cuomo et al., 2007). The low 
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recombination frequency of the region could perhaps contribute to the 

maintenance of the micro-region by providing a ‘quiet’ region of low genomic 

activity to allow the collection and maintenance of important virulence-related 

genes. The low recombination frequency regions of the F. graminearum 

genome also appear to contain several gene clusters that, unlike the micro-

region characterised here, contain genes that share transcriptional 

directionality, similar to bacterial operons, including one very nearby the 

characterised group at FGSG_09910 to FGSG_09914 (J. Antoniw and K. 

Hammond-Kosack, unpubl.) Such gene clustering may represent either 

biosynthetic, virulence or another class of function.  

The F. graminearum micro-region is highly conserved in several Fusarium 

species including F. solani and also in the closely related saprophyte T. reesei. 

This conservation in a non-pathogenic species could represent insufficient 

evolutionary distance between the Fusaria and T. reesei for breakdown of the 

micro-region to be noticeable. Alternatively, differential regulation of the micro-

region between the pathogenic and non-pathogenic species may explain the 

presence of a highly sequence related micro-region in two fungal taxa with 

differing lifestyles (see General Discussion). The investigation of more distantly-

related species indicates that these contained more fragmented copies of the 

micro-region (Figure 3.3). This finding suggests that this particular micro-region 

could possibly be specifically important in contributing to the virulence of 

Fusarium species. This however, leads to the questions of whether similar 

micro-regions containing a different complement of genes are key to the 

disease-causing ability of other pathogenic species. 

With the micro-region identified, the next step was to characterise the function 

of the genes in the disease-causing ability of F. graminearum. Firstly, the role of 

the virulence/pathogenicity gene homologues in the micro-region in F. 

graminearum virulence was investigated to determine if this site contained 

genes verified to support FEB symptom development and this is described in 

the next chapter. 
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Chapter 4. Initial Characterisation of the Virulence/Pathogenicity Gene 

Homologues in the Micro-Region 

 

4.1 Introduction  

In locating the micro-region of pathogenicity/virulence gene homologues on 

chromosome 1 of F. graminearum, the first aim was to confirm the role of these 

homologues (NTH1, ICL1, SNF1, STE7 and PKAR) in the disease-causing 

ability of this species. If a role of the micro-region in disease development was 

highlighted, this would then suggest the possibility that this site is important for 

harbouring other genes contributing to disease symptom spread. Progression 

could then be made to the targeted deletion of additional genes in the micro-

region in the hope of revealing the presence of novel factors involved in this 

process. 

Two of the virulence gene homologues residing within the micro-region, namely 

SNF1 and STE7 have been characterised elsewhere and have been shown to 

contribute to F. graminearum virulence (Lee et al., 2009b; Ramamoorthy et al., 

2007). An independent deletion of the SNF1 gene in the sequenced strain PH-1 

has been performed by Martin Urban. The results are illustrated in Figure 4.1 

for completeness. This indicated that the snf1 strain exhibited reduced virulence 

on wheat ears (Figure 4.1A), reduced growth in vitro on select carbon sources 

but not on complete medium (Figure 4.1B and data not shown) and retained 

the ability to produce the sexual fruiting bodies, perithecia (Figure 4.1C). The 

targeted deletion of the remaining three homologues, NTH1, ICL1 and PKAR 

was undertaken in this project and is reported in this chapter together with initial 

characterisation of the deletion strains obtained. 
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NTH1 is predicted to encode a neutral trehalase, an enzyme responsible for the 

breakdown of trehalose. This non-reducing disaccharide (α-d-glucopyranosyl-α-

d-glucopyranoside) is a widespread sugar compound found in bacteria, plants, 

protozoa, insects and fungi. Trehalose has been implicated in the response of 

cells to a variety of stresses and, in addition, a role as a storage carbohydrate 

has been proposed (reviewed in Jorge et al., 1997). In the yeast 

Saccharomyces cerevisiae, involvement of trehalose in thermotolerance (De 

Virgilio et al., 1993, 1994; Hottiger et al., 1987; Lewis et al., 1995; Wera et al., 

1999), osmotic stress survival (Hounsa et al., 1998), barotolerance (Iwahashi et 

al., 1997), and protection from dehydration and dessication (Gadd et al., 1987; 

Hottiger et al., 1987) has been shown. Trehalose has also been shown to be 

involved in the heat protection of proteins (Hottiger et al., 1994; Crowe et al., 

2006). Stress tolerance roles for trehalose have also been suggested for 

Aspergillus nidulans (Fillinger et al., 2001), Cryptococcus neoformans (Petzold 

et al., 2006), Botrytis cinerea (Doehlemann et al., 2006), and arbuscular 

mycorrhizal fungi (Ocon et al., 2007). A role for neutral trehalases in the 

virulence of fungal pathogens has been demonstrated for Magnaporthe oryzae 

(Foster et al., 2003) but neutral trehalase is dispensable for virulence in 

Candida albicans (Eck et al., 1997). 

The ICL1 gene of F. graminearum appears to encode an isocitrate lyase 

enzyme. Isocitrate lyase is a key enzyme of the glyoxylate cycle, which is used 

for the production of carbohydrates from fatty acids and other two-carbon 

compounds. Isocitrate lyase expression is regulated by carbon source. For 

example, in C .neoformans, ICL1 expression is highly induced by ethanol and 

acetate but this induction is able to be suppressed by glucose (Rude et al., 

2002). In L .maculans, ICL1 is induced under starvation conditions and by 

acetate but, interestingly, is not repressed by glucose (Idnurm and Howlett, 

2002).  Similarly, in A. nidulans, the addition of glucose to acetate-containing 

medium does not reduce ICL1 expression (Bowyer et al., 1994). Isocitrate lyase 

has been shown to be required for full virulence of the pathogenic fungi M. 

oryzae, Colletotrichum lagenarium, Leptosphaeria maculans and C. albicans 

(Lorenz and Fink, 2001; Idnurm and Howlett 2002; Wang et al., 2003; Asakura 

et al., 2006).  
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The PKAR gene is thought to encode the regulatory subunit of the cAMP-

dependent protein kinase (protein kinase A, PKA). The PKA signalling cascade 

has been found to regulate a wide variety of processes in fungi, including 

virulence, sporulation, fertility and growth (for examples, see Gold et al., 1997; 

Takano et al., 2001; Staudohar et al., 2002; Cassola et al., 2004; Mehrabi and 

Kema, 2006; Zhao, W. et al., 2006; Cervantes-Chavez and Ruiz-Herrera, 2007; 

Grosse et al., 2008; Schumacher et al., 2008; Ocampo et al., 2009). PKA is 

comprised of a holoenzyme of two catalytic (PKAC) and two regulatory subunits 

(PKAR) (Corbin et al., 1973; Corbin and Keely, 1977; Potter and Taylor, 1979). 

Cooperative binding of two cAMP molecules to two sites on each regulatory 

subunit leads to a conformational change and the resulting release of the two 

catalytic subunits, which are then able to phosphorylate downstream targets 

(Kopperud et al., 2002). 

Filamentous fungi are generally thought to possess one gene encoding the 

regulatory subunit of PKA and two genes that encode different catalytic 

subunits. One catalytic subunit is usually found to be more important than the 

other for processes such as growth and sporulation (Ni et al., 2005). In F. 

graminearum, the PKA regulatory subunit is encoded by the gene FGSG_09908 

(PKAR) while the genes FGSG_07251 and FGSG_08729 appear to encode the 

two different catalytic subunits (Yu et al., 2008). Recently, Mucor circinelloides 

has been found to be the first fungal species that possesses more than one 

PKAR gene. A pkaR1 deletion strain showed affected growth, spore production 

and germination. Three other PKAR genes (PKAR2-4) were also found and 

shown to be expressed (Ocampo et al., 2009). The regulatory subunit of PKA 

has been shown to be required for full virulence of a number of fungal species 

(Gold et al., 1997; Takano et al., 2001; Mehrabi and Kema 2006; Zhao et al., 

2006; Schumacher et al., 2008), while in others, it appears to be essential for 

life (Cassola et al., 2004; Cervantes-Chavez and Ruiz-Herrera, 2007). 

This chapter describes the targeted deletion and initial characterisation of 

NTH1, ICL1 and PKAR in F. graminearum. For NTH1 a molecular cloning 

approach was used to produce nucleic acid constructs for transformation of F. 

graminearum protoplasts, while for ICL1 and PKAR, a fusion PCR method 

(Catlett et al., 2003) was used to provide such constructs. This study 
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demonstrated that PKAR, and to a much lesser extent, NTH1, but not ICL1, is 

required for a normal rate of FEB symptom spread by F. graminearum. 

 

 

4.2 Methods 

 

4.2.1 Targeted Deletion of NTH1  

For the targeted deletion of NTH1, the entire coding region of NTH1 

(FGSG_09895) and a small (93 bp) upstream region were replaced with the 

resistance-conferring Hph hygromycin phosphotranferase gene using the split-

marker technique (Catlett et al., 2003). The cloning steps used to generate the 

NTH1 deletion constructs are described in Chapter 2. 

nth1 transformants that amplified the Hph, but not NTH1 gene, were retained, 

grown from a single spore, and genomic DNA (gDNA) prepared (details in 

Chapter 2). gDNA was digested with HindIII or EcoRV (Eco32I) high 

concentration (50 U/μl) restriction enzymes (Fermentas) (reaction mixture as in 

Chapter 2). Digested DNA was then used for Southern gel blots using the 

original NTH1 gene flank regions (amplified with primers AB1-4) as labelled 

probes (5’ flank for EcoRV digest and 3’ flank for HindIII digest). Details of 

Southern blotting and hybridisation are found in chapter 2. 

 

4.2.2 Targeted Deletion of ICL1 and PKAR 

For the targeted deletion of the ICL1 and PKAR genes, a fusion PCR approach 

was used (Catlett et al., 2003). Using this technique, the 5’ and 3’ flanking 

regions of the target gene are amplified using primers that incorporate a 24 bp 

overlap with the corresponding hph section, which are produced in a separate 

amplification. Mixing the appropriate flank and hph sections (5’ flank with hph 

section HY, and 3’ flank with hph section YG) together allows hybridisation via 

the overlapping segment and the two sections become fused in a second PCR 

amplification reaction. Details of the PCR fusion protocol, primers used and 

PCR product sizes can be found in chapter 2. For PKAR and ICL1, nested 
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primers were used for the fusion of the 5’ flank to the HY hph section to 

increase amplification efficiency (See Chapter 2). 

Transformation of F. graminearum was performed as described in chapter 2, 

except for the transformation for targeted deletion of PKAR, which was 

performed by M. Urban using glucose in place of sucrose in the regeneration 

medium for protoplast embedding. Transformants were grown on SNA 

containing 75 μg/ml hygromycin B for four days then on PDA prior to screening 

by PCR. Screening of transformants by PCR, gDNA preparation, digestion and 

Southern gel blots were performed as described in chapter 2. Digestion of 

gDNA was performed using HindIII and SalI for pkar (for 5’ and 3’ flank probes 

respectively) and KpnI and PstI for icl1 (for 5’ and 3’ flank probes respectively). 
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4.3 Results 

To investigate the role of the micro-region in F. graminearum virulence, targeted 

gene deletion was used to produce mutants of the sequenced strain PH-1 

lacking individual genes from within the micro-region. Initially only the 

homologues of virulence genes verified in other plant pathogenic species not 

previously described elsewhere (SNF1 in Lee et al., 2009b; Beacham et al., 

2010 (in preparation), STE7 in Ramamoorthy et al., 2007) were selected, 

namely FGSG_09895 (designated NTH1), FGSG_09896 (designated ICL1) and 

FGSG_09908 (designated PKAR) to determine their role in the disease causing 

ability of F. graminearum. 

 

4.3.1 Targeted Deletion of NTH1  

For the targeted deletion of the NTH1 gene, a molecular cloning approach was 

used. The 5’ and 3’ flanks of the gene were amplified (Figure 4.2) and then 

ligated separately into the Invitrogen pCR2.1 vector. Analytical restriction 

enzyme mediated digestion with HindIII confirmed integration of the flank PCR 

products into the pCR2.1 vector, with constructs showing the desired orientation 

of insertion selected for further procedures (Figure 4.3). Clones 5-4 (containing 

the 5’ flank in a forward orientation) and 3-4 (containing the 3’ flank in a forward 

orientation) were selected and the plasmids they contained named pAB001-2 

and pAB002-2 respectively. pAB001-2 and pAB002-2 were then digested to 

release fragments containing the flank sequences (Figure 4.4) that were then 

ligated into the vectors pYG and pHY (Figure 4.5). The pAB001-2 (5’ flank) 

fragment was ligated into pYG and the pAB002-2 (3’ flank) fragment ligated into 

pHY. 

Colony PCR was used to screen for ligation of the 5’ flank fragment into pYG 

(Figure 4.6). All 10 colonies tested appear to amplify the 5’ flank. 5’-1 was 

selected for analytical restriction digestion. This digestion showed the 

successful excision of the inserted pAB001-2 fragment (Figure 4.7). 5’-1 was 

renamed pAB003 (see cloning scheme in Chapter 2). Colony PCR was also 

used to screen for successful ligation of the 3’ flank fragment into pHY (Figure 

4.8). Two colonies, 3’-5 and 3’-10, appeared to amplify the 3’ flank efficiently 

and were retained for analytical restriction enzyme digestion (to excise the 
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ligated pAB002-2 fragment). Digestion successfully excised the inserted 

fragment from 3’-5 and 3’-10 (Figure 4.9). 3’-5 and 3’-10 were renamed 

pAB004-1 and pAB004-2 (see cloning scheme in Chapter 2). 

Successful ligation of the fragments containing the NTH1 flanks into pHY and 

pYG was used to fuse the flank and Hph gene sections together. Sequencing 

results confirmed correct production of these final vector constructs. The flank-

Hph section regions were amplified from pAB003 and pAB004-1 (see Chapter 2 

and Figure 4.10) and used for transformation of F. graminearum. 

Hygromycin-resistant transformants were screened for the presence of the 

intact Hph gene and absence of the NTH1 gene by PCR (Figure 4.11, primers 

detailed in Chapter 2). This revealed five transformants (A4, A8-11) that 

amplified for the presence of the Hph gene and did not amplify the NTH1 gene, 

suggesting a successful gene replacement event. These transformants were 

selected for Southern blot confirmation of targeted deletion of NTH1. The 

original NTH1 5’ and 3’ flank sequences used in the deletion construct cloning 

were used as labelled probes. An EcoRV digest was probed with the 5’ flank 

and a HindIII digest with the 3’ flank. Genomic DNA of transformants A4, A8, 

A10 and A11 exhibited the expected 0.75 kb and 2.7 kb hybridising bands in 

EcoRV and HindIII digests respectively, versus the 2.1 kb and 0.9 kb bands 

found in the wild-type progenitor strain (Figure 4.12), indicating successful 

single insertion of the two deletion constructs and targeted deletion of the NTH1 

gene. 
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Figure 4.2. Amplification of the NTH1 flanking regions. The 800 bp 5’ flank (5’) was 

amplified using primers AB1 and AB2, the 1000 bp 3’ flank (3’) was amplified using the primers 

AB3 and AB4.  

 

Figure 4.3. Confirmation of NTH1 flank sequence insertion into the pCR 2.1 vector 

using HindIII digestion. Six colonies were analysed for each flank. As the PCR products could 
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be ligated to the pCR 2.1 vector in either a forward or reverse orientation, distinction was 

required between these two possibilities. HindIII digestion of pCR 2.1 containing the 5’ flank in a 

forward orientation would yield a fragment near 500 bp in size, while a reverse orientation of the 

5’ flank would yield an approximately 300 bp fragment. For the 3’ flank, a forward orientation in 

pCR 2.1 would show a roughly 200 bp HindIII fragment, with reverse orientation showing 

around 800 bp . Screening six colonies for each flank provided clones containing the required 

fragment size and therefore orientation for both flanks . Clones with forward (F) or reverse (R) 

insertions of the flank sequence are indicated.  

 
 

Figure 4.4. Excision of fragments containing the 5’ and 3’ flanks from pAB001-2 and 

pAB002-2 respectively by restriction digestion using SacI and XbaI (for pAB001-2) or BamHI 

and XhoI (for pAB002-2), for ligation into the pYG and pHY vectors. The digests were 

concentrated by ethanol precipitation and the excised fragments gel extracted. 
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Figure 4.5. Digestion of pYG with SacI and XbaI and of pHY with BamHI and XhoI in 

preparation for ligation to the flank-containing fragments cut from pAB001-2 and pAB002-2 

respectively. Cut = double cut, pHY-B = BamHI cut only.  

 

Figure 4.6. Colony PCR screening for ligation of the pAB001-2 (5’ flank) fragment into 

pYG. pAB001-2 is used as template for the positive control (+ve).  
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Figure 4.7. Analytical restriction digestion of clone 5’-1. P = plasmid prep, SX = SacI, 

XbaI sequential digest.  

 

Figure 4.8. Colony PCR screening for ligation of the pAB002-2 (3’ flank) fragment into 

pHY. pAB002-2 is used as template for the positive control (+ve).  
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Figure 4.9. Analytical restriction digest of clones 3’-5 and 3’-10. P = plasmid prep, XB = 

BamHI, XhoI sequential digest.  

 

Figure 4.10. Amplification of PCR products from pAB003 and pAB004-1 for 

transformation into F. graminearum. 5’ = pAB003 product, 3’ = pAB004-1 product, 5’p, 3’p = 

after ethanol precipitation, -ve = no template. 
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Figure 4.12. Targeted deletion of the NTH1 gene in F. graminearum. Targeted deletion 

was confirmed by Southern hybridisation. The gene locus for the wild type and the deletion 

strain is shown. EcoRV and HindIII were independently used to digest genomic DNA (gDNA) of 

both the wild type and the deletion strain. Each restriction enzyme digest set of wild type and 

deletion strain gDNA was hybridised with a different DNA probe (5’ flank or 3’ flank). Colours 

(black/grey) indicate the pairing of restriction enzyme and probe and expected hybridising 

fragment size. Five independent transformants were analysed for NTH1 and compared to the 

wild type strain. In each case the blots exhibited hybridising bands that indicated a single 

insertion of each of the two overlapping split marker DNA constructs and deletion of the target 

gene. P = Wild type, K = knockout strain. Transformant number is shown above the radiograph.  
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4.3.2 Targeted Deletion of ICL1 and PKAR 

PKAR and ICL1 deletion constructs were produced by fusion PCR (see Chapter 

2 for method and Figures 4.13 and 4.14). pkar and icl1 transformants were 

screened for the presence of the target gene and hph gene (Figures 4.15 and 

4.16, primer details in Chapter 2). This indicated 3 pkar transformants and 11 

icl1 transformants which did not amplify the target gene but did amplify the Hph 

gene, suggesting replacement of the target gene by Hph. Four icl1 

transformants, five pkar transformants plus one additional transformant 

(transformant 2) that appeared to possess both PKAR and Hph which may 

represent ectopic insertion of the deletion constructs were selected for Southern 

gel blots. The original 5’ and 3’ flank sections were again amplified by PCR and 

used for the construction of labelled probes for DNA gel blots. 

 Genomic DNA of three icl1 transformants (3, 4 and 7) exhibited the expected 

3.1 kb and 3.4 kb hybridising bands in KpnI and PstI digests respectively, 

versus the 6.7 kb and 2.7 kb bands found in the wild-type progenitor strain 

(Figure 4.17A) indicating successful single copy targeted deletion of ICL1. 

Genomic DNA of two pkar transformants (4 and 5) exhibited the expected 3.3 

kb and 2.5 kb hybridising bands in HindIII and SalI digests respectively, versus 

the 1.9 kb and 3.2 kb bands found in the wild-type progenitor strain (Figure 

4.17B), indicating single copy targeted deletion of PKAR. In addition, 

transformant 2 was confirmed to contain the pkar deletion constructs inserted 

into the genome in ectopic locations but with a wild type PKAR locus. This 

transformant was designated PKAR-e. Due to the poor ability of the pkar 

deletion strain to produce conidia (see later) and hence low possibility of genetic 

complementation, the PKAR-e strain was used as an extra control in addition to 

the PH-1 wild type in analyses of pkar. 
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Figure 4.13. Fusion PCR manufacture of deletion constructs for targeted deletion of the 

PKAR gene. A. Amplification of the HY and YG sections of the Hph gene from pHYG1.4. B. 

Amplification of the 5’ and 3’ flanks of the PKAR gene. C. A test of the fusion of the 5’ flank and 

HY and fusion of the 3’ flank and YG by PCR. D. Nested PCR for 5’ flank fusion to HY using the 

construct from (C) as template. E. Precipitation of DNA for transformation. Lanes labelled with 

‘C’ are primer controls lacking template DNA. 
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Figure 4.14. Fusion PCR manufacture of deletion constructs for targeted deletion of the 

ICL1 gene. A. Amplification of the HY and YG sections of the hph gene from pHYG1.4.B. 

Amplification of the 5’ and 3’ flanks of the ICL1 gene. C. A test of the fusion of the 5’ flank and 

HY and fusion of the 3’ flank and YG by PCR. D. Nested PCR for 5’ flank fusion to HY using the 

construct from (C) as template. E. Precipitation of DNA for transformation. Lanes labelled with 

‘C’ are primers controls lacking template DNA.  
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Figure 4.15. PCR screening of pkar transformants for the presence of the PKAR and 

Hph genes. Transformants are numbered 1-11. P = PH-1 wild type. λ = λBst ladder. –ve = water 

control (no template), T+ = PKAR positive control (PH-1 gDNA), H+ = Hph positive control 

(pHYG1.4). Transformants with red numbers proceeded to Southern blot characterisation as 

they appear to show successful targeted deletion of PKAR (with the exception of transformant 

2, which appears to show insertion of the deletion constructs at an ectopic site in the genome).  
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Figure 4.17. (See over). Targeted deletion of the (A) ICL1 and (B) PKAR genes in F. 

graminearum. Targeted deletion was confirmed by Southern hybridisation. The gene locus for 

the wild type and deletion strain is shown in each case. Two different restriction enzymes were 

independently used to digest genomic DNA (gDNA) of both the wild type and deletion strain. 

Each restriction enzyme digest set of wild type and deletion strain gDNA was hybridised with a 

different DNA probe ( 5’ flank or 3’ flank). Colours (black/grey) indicate the pairing of restriction 

enzyme and probe and expected hybridising fragment size. Four and six independent 

transformants were analysed for ICL1 and PKAR respectively and compared to the wild type 

strain. In each case the blots exhibited hybridising bands that indicated a single insertion of 

each of the two overlapping split marker DNA constructs and deletion of the target gene. P = 

Wild type, K = knockout strain, E = ectopic insertion of the two constructs. Transformant number 

is shown above the radiograph. 
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Initial Characterisation of the nth1, icl1 and pkar Deletion Strains 

 

4.3.3 Virulence on Wheat Plants  

On wheat ears, the wild-type strain PH-1 causes browning and bleaching 

symptoms from 4 days post inoculation (dpi) which subsequently spread up and 

down the entire ear by 16 dpi (Figure 4.18). To assess the effect of gene 

deletion on pathogenicity, the rate of disease symptom spread between wild-

type and the single-gene deletion strains was compared (Figure 4.18 and 

4.19). Three independent transformants were initially tested on wheat ears in 

preliminary experiments for nth1 and icl1 strains, and two independent 

transformants for pkar (Figure 4.19). This preliminary analysis suggested a 

drastic reduction in the rate of ear colonisation for the pkar strain compared to 

wild-type. For nth1, only a modest reduction in the rate of symptom spread was 

noted. For icl1, little difference to the wild-type rate of disease symptom spread 

was noted, although transformant icl1-7 did show a very slight reduction in 

symptom spread. However, as only one of three transformants showed this very 

small reduction it was considered to be due to slight variation between the 

transformants and not due to an inherent role of ICL1 in virulence. 

Representative transformants of nth1 (nth1-8) and pkar (pkar-5) (Figure 4.18) 

were selected after consideration of this preliminary test and in vitro growth 

analysis (see later) for further in planta study with a larger sample of wheat ears 

(referred to simply as nth1 and pkar). The pkar strain showed the most 

drastically reduced symptom spread of the targeted deletion strains. While 

symptoms began to appear by 4 dpi, these were restricted to the inoculated 

spikelets and adjacent rachis and did not spread further down the ear even after 

a prolonged period of time. After 16 dpi, the wild-type has infected the entire 

ear, while the pkar strain still shows visible symptoms only at the inoculated 

spikelets, leading to an reduction in symptom spread by over 80%. The PKAR-e 

strain, by comparison, showed symptoms nearly identical to wild-type. For nth1, 

symptoms were present at 4 dpi and spread down the ear, causing browning of 

the rachis, but at a slower rate than the wild-type strain, such that by 12 dpi the 

percent infection of the ear below the inoculation point was significantly lower 

for nth1 than wild-type (reduced by 17% (Figures 4.19-4.21). 
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Figure 4.18. Disease symptoms of the nth1, icl1, pkar and PKAR-e strains on ears of 

the susceptible wheat cultivar Bobwhite. In the wild-type infection (PH-1 wt), bleaching of the 

ear begins at the inoculated spikelets and spreads up and down the ear resulting in a colour 

change from green to beige. Representative ears infected with each strain are shown. The point 

of inoculation is marked with white arrows. Photos taken at 16 days post infection (12 days post 

infection for nth1 and adjacent PH-1 wt.  
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A 

 

B 

 

C 

 

Figure 4.19. Preliminary experiments. Progression of wheat ears cv. Bobwhite 

inoculated with (A) nth1, (B) icl1 or (C) pkar transformants. Error bars are shown as the 

standard error of the mean for two ears per strain (three for PH-1 wt in the icl1 experiment).  
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A 

 

B 

 

Figure 4.20. Large scale in planta analysis of virulence reduction of the (A) nth1 and 

(B) pkar strains.  
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Figure 4.21. Further analysis of virulence. Percentage of ear downwards from the 

inoculation point exhibiting symptoms at 12 dpi for PH-1 wt, nth1 and pkar. wt and nth1 

represent one experiment and wt-2 and pkar, a second experiment. Average of 10 PH-1 wt ears 

and 9 nth1 ears for experiment 1, and 7 PH-1 ears and 7 pkar ears for experiment 2. * indicates 

significant difference from wild-type (p<0.05). 

The wild-type pathogenicity for the icl1 mutant is comparable to the findings of a 

study of this gene in F. graminearum strain Z03643 (Lee et al., 2009a). An 

earlier study had reported that the disruption of the mitogen-activated protein 

kinase kinase (MAPKK) STE7 drastically reduces virulence on wheat ears for 

the ste7 deletion strain compared to the wild type PH-1. Similarly, targeted 

deletion of SNF1 drastically reduces virulence of F. graminearum (Lee et al., 

2009b; Figure 4.1A) The previously published snf1 deletion strain made in F. 

graminearum GZ3639 showed limited symptom development on spikelets of 

spray-inoculated wheat ears (Lee et al., 2009b). Collectively, these single-gene 

deletion experiments, results confirm a contribution to F. graminearum disease 

symptom spread for four of the five PHI-base pathogenicity gene homologues in 

the micro-region namely, nth1, snf1, ste7 and pkar.  
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4.3.4 In vitro Growth 

To determine the effect of NTH1, ICL1 or PKAR gene deletions on the in vitro 

growth rate of F. graminearum, each strain was grown on both complete (PDA, 

‘CM’) and minimal (SNA, ‘MM’) medium (Figures 4.22 and 4.23).  The same 

set of transformants were analysed as for the preliminary wheat inoculation 

experiments. Percent reduction in growth is stated as the mean of the 

transformants analysed. For icl1, two of the three transformants (icl1-4 and icl1-

7) did not grow at a rate significantly different from the wild-type on minimal 

medium (Figure 4.22B), while icl1-3 and icl1-7 did not grow at a significantly 

different rate from the wild-type on complete medium (Figure 4.22D). In each 

case, the other transformant (icl1-3 on MM and icl1-4 on CM) grew at a rate 

slightly slower (8% and 9% reduction in growth rate respectively) than wild-type 

which was only just significant according to the statistical analysis at p<0.05. 

This difference is slight and appears to reflect a small amount of variation 

between the icl1 transformants. Indeed, if the icl1 data is analysed 

independently of the other virulence-unaffected mutants then the icl1-4 

transformant result on complete medium is no longer significant.  

When cultured on complete medium the growth rates were comparable to wild-

type for PKAR-e, slightly reduced for nth1 (15% reduction) and highly reduced 

for pkar (67%), which also produced much less aerial mycelium than the wild-

type (Figures 4.22 and 4.23). When cultured on minimal medium the growth 

rates were comparable to wild-type for PKAR-e, slightly reduced for nth1 (12% 

reduction) and highly reduced for pkar (73% reduction). The reduction in growth 

rate for nth1 on minimal medium was not statistically significantly different from 

the wild type strain (p<0.05).  

The production of aerial mycelium on complete medium was also drastically 

reduced by the deletion of pkar (Figure 4.23). Interestingly, the morphology of 

pkar hyphae appeared different from the wild type and PKAR-e strains as well. 

Hyphae of the pkar strain exhibited much shorter distances between septa than 

the wild type and PKAR-e strains, leading to a ‘string of cubes’ appearance in 

pkar hyphae (Figure 4.24).  
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A 

 

B 

 

Figure 4.22. In vitro growth rate of the (A) nth1, pkar and E-pkar strains and (B) icl1 

strains on minimal medium. The wild type (wt) strain PH-1 is included for comparison.  LSD = 

least significant difference. Columns marked with * are significantly different from the wild type 

strain at the 0.05% level. 
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C 

 

D 

 

Figure 4.22. (cont). In vitro growth rate of the (C) nth1, pkar and E-pkar strains and (D) 

icl1 strains on complete medium. The wild type (wt) strain PH-1 is included for comparison.  

LSD = least significant difference. Columns marked with * are significantly different from the wild 

type strain at the 0.05% level.   
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Figure 4.23. Growth of the nth1, icl1, pkar and PKAR-e strains on complete medium 

after six days. The PH-1 wild type is shown for comparison.  

 

 

Figure 4.24. Hyphal morphology of the PH-1, pkar and PKAR-e strains.  Hyphae of the 

pkar strain appear to be divided into smaller more cuboidal sections than the other strains, 

which show longer, more rectangular hyphal sections. Bar = 50 µm. 
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ICL1 is predicted to encode the enzyme isocitrate lyase, which catalyses the 

first committed step of the glyoxylate cycle which is used for the production of 

carbohydrates from fatty acids and other two-carbon precursors. It is 

hypothesised that a fungal strain lacking such an enzyme would be 

compromised in its ability to grow on such substances. For this reason we 

compared the ability of the icl1 deletion strain and the wild-type strain to grow 

on sodium acetate, ethanol or olive oil as the sole carbon source. 1% glucose 

or sucrose as the sole carbon source and standard SNA medium, containing a 

1:1 mixture of these two sugars at low concentration (1 mM), were used for 

comparison. As shown in Table 4.1, on standard SNA medium and glucose the 

two strains did not show a significant difference in growth rate. However, the 

icl1 strain showed a significantly reduced growth rate compared to wild type on 

sodium acetate, ethanol and olive oil, reduced by 69%, 62% and 53%, 

respectively. This suggests that ICL1 is important for the successful utilisation 

of these compounds by F. graminearum. Interestingly, on sucrose however, the 

icl1 strain grew significantly faster than the wild type strain (increased by 25%). 

 

The nth1 gene is predicted to encode a neutral trehalase enzyme. Such 

enzymes are responsible for the breakdown of trehalose into glucose. We 

therefore compared the ability of the nth1 and wild type strains to grow with 

glucose or trehalose as the sole carbon source (Table 4.1). On standard 

minimal medium containing a 1:1 ratio of 0.02% glucose and 0.02% sucrose, 

the nth1 strain did not grow at rate significantly different from the wild type 

strain. However, with 1% glucose or trehalose as the sole carbon source, the 

growth rate of the nth1 strain was significantly slower compared to the wild type 

strain on the same medium (reduced by 19% and 14% respectively). 

Compared to the growth rate of the nth1 strain on minimal medium, growth of 

nth1 was reduced by 17% and 12% with 1% glucose or trehalose as the sole 

carbon source respectively). The wild type strain grew at a similar rate on all 

three media types.  
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Table 4.1. Growth rate of nth1 and icl1 strains on additional media types (mm / day). * = 

growth rate significantly reduced compared to wild type (wt) (p < 0.05), † = growth rate 

significantly increased compared to wt (p < 0.05). MM contains glucose and sucrose as the 

carbon source, which are absent prior to the addition of any further carbon supplements. 

Medium wt nth1 

MM 14.71 14.08 

MM + glucose 14.51 11.74* 

MM + trehalose 14.32 12.38* 

     wt icl1 

MM 14.51 13.63 

MM + glucose 12.41 14.87 

MM + sucrose 13.07 16.35† 
MM + sodium 
acetate 14.81 4.55* 

MM + ethanol 11.39 4.29* 

MM + olive oil 12.91 6.07* 
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4.4 Discussion 

The initial analysis of the NTH1, ICL1 and PKAR genes has indicated that two 

of these genes, NTH1 and PKAR, are required for a full rate of F. graminearum 

ear blight symptom spread on wheat, although to differing extents.  

Infection of flowering wheat ears was slightly slowed in the nth1 strain versus 

the wild type strain. The role of trehalose metabolism has been investigated in 

several important pathogenic fungal species. In the rice blast pathogen 

Magnaporthe oryzae, both the trehalose-6-phosphate synthase TPS1 and 

NTH1 are required for different stages of plant infection (Foster et al., 2003). 

TPS1 disruption caused a reduction in appressorial turgor pressure and poor 

production of penetration hyphae, while NTH1 deletion led to poor post-invasive 

growth. In the glume blotch pathogen Stagonospora nodorum, the TPS1 gene is 

required for full virulence (Lowe et al., 2009). In addition, in the plant pathogen 

Botrytis cinerea, neither the T6PS gene, TPS1, nor the neutral trehalase gene, 

TRE1, are required for pathogenicity (Doehlemann et al., 2006). It is interesting 

to note that in the publication of the B. cinerea TRE1, the authors could locate 

genes of only low homology to the B. cinerea TRE1 gene in F. graminearum 

(20-21% similarity). In this study, alignment of B. cinerea Tre1 and F. 

graminearum Nth1 indicated 66.8% protein sequence identity. This discrepancy 

could perhaps be due to the software used in the analysis or the use of earlier 

versions of the annotated genomes used to obtain the sequences. The neutral 

trehalase gene NTH1 is also dispensable for pathogenicity in another plant 

pathogenic species, Leptosphaeria maculans (Idnurm et al., 2003). In the 

human pathogen Cryptococcus neoformans, the TPS1 gene is required for 

pathogenicity in mice, rabbits and the nematode Caernorhabditis elegans, 

however, a null mutant of the neutral trehalase gene NTH1 retains full 

pathogenicity in C. elegans (Petzold et al., 2006). In the related pathogen C. 

gattii, the TPS1 and TPS2 genes but not the NTH1 gene contribute to virulence 

(Ngamskulrungroj et al., 2009); while in another human pathogen, Candida 

albicans, the TPS2 gene is required for full virulence but the neutral trehalase 

gene NTC1 is not (Eck et al., 1997; Maidan et al., 2008). In the insect fungal 

pathogen Metarhizium anisopliae, the acid trehalase gene ATM1 has been 

linked to pathogenicity (Zhao, H. et al., 2006; Xia et al., 2002). 
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Interestingly, M. oryzae possesses a novel type of ‘mixed’ trehalase, TRE1, with 

characteristics of both neutral and acidic trehalases (Foster et al., 2003). TRE1 

encodes the trehalase activity important during spore germination and hyphal 

growth and is required for growth on trehalose as the sole carbon source). In 

contrast, M. oryzae NTH1, while expressed during germination, is not required 

for growth on trehalose as the sole carbon source.  This study has shown that a 

deletion strain of F. graminearum Nth1, which shows 75% protein sequence 

identity to the M. oryzae Nth1, is also able to grow with trehalose as the sole 

carbon source, although the rate of growth was slightly reduced compared to 

the PH-1 wild type strain. While M. oryzae nth1 growth on minimal medium plus 

10 g/l glucose or trehalose is comparable to the wild type (Foster et al., 2003), 

F. graminearum nth1 growth on the same concentration of glucose or trehalose 

as the sole carbon source is slightly but significantly slower than the wild type 

strain. On standard minimal medium containing 0.02% glucose and 0.02% 

sucrose, the difference in growth rate between F. graminearum nth1 is not 

significant, however a difference is noted for the richer complete medium. The 

greater concentration of carbon source in the complete medium and 1% 

glucose test may help to exacerbate the defects of the nth1 strain and reveal a 

difference in carbon source utilisation ability that is not apparent with the lower 

concentrations of sugars found in the standard minimal medium. By contrast, on 

complete medium the M. oryzae nth1 strain grew normally. In addition, M. 

oryzae tps1 is unable to grow with glucose or trehalose as the sole carbon 

source, while C. neoformans tps1 shows a slight reduction in growth rate on 

complete medium containing 2% glucose (Petzold et al., 2006). In B. cinerea, 

tps1 and tre1 do not show defects in vegetative growth (Doehlemann et al., 

2006). This suggests that, similar to M. oryzae, NTH1 in F. graminearum plays 

only a minor role in trehalose utilisation.  

An alignment of the trehalase sequences from F. graminearum, F. verticillioides 

and F. oxysporum plus select trehalase sequences from other fungal species is 

shown in Figure 4.25. This indicates the presence of three trehalase types – 

neutral, acid and mixed that group together in the alignment. The neutral 

trehalases of F. graminearum (Fgsg_09895), F. verticillioides (Fveg_02610) and 

F. oxysporum (Foxg_05530) align well with those of M. oryzae Nth1, B. cinerea 

Tre1 and A. nidulans TreB. An acid trehalase is present in the genomes of F 
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verticillioides (Fveg_13500) and F. oxysporum (Foxg_14683) but not F. 

graminearum. F. graminearum appears to possess a second trehalase 

(Fgsg_05622), which may be important for trehalose mobilisation during 

germination and for utilisation of trehalose. This trehalase appears distinct from 

the acid trehalase of F. verticillioides and F. oxysporum and is also only 

somewhat similar to F. graminearum Nth1 (Fgsg_09895) (19.4% protein 

sequence identity) so may encode a mixed type trehalase akin to Tre1 of M. 

oryzae. In fact, the Fgsg_05622 protein aligns with M. oryzae Tre1 with an 

identity of 59.1%, indicating it may well encode a mixed type trehalase. Similar 

proteins are found in F. verticillioides (Fveg_06865) and F. oxysporum 

(Foxg_09264). Interestingly, in B. cinerea, Tre1, which shares 66.8% protein 

sequence identity and A. nidulans TreB, which shares 63.8% identity with F. 

graminearum Nth1, are required for trehalose mobilisation during spore 

germination (d’Enfert et al., 1999; Doehlemann et al., 2006). Trehalases with 

mixed features of the neutral and acid enzymes have also been identified in C. 

albicans (Sanchez-Fresneda et al., 2009) and thermophilic fungi (Lucio-Eterovic 

et al., 2005).  
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Figure 4.25. (See over). Multiple sequence alignment of trehalase proteins from a 

series of fungal species. Possible ‘mixed’ type trehalases Foxg_09264, Fveg_06865, 

Fveg_05622 and Mo Tre1 (light grey), neutral trehalases Fveg_02610, Foxg_05530, 

Fgsg_09895, Mo Nth1, Bc Tre1 and An TreB (blue), and acid trehalases Fveg_13500 and 

Foxg_14683 (dark grey) are shown. Shading indicates well-conserved residues (red – 

conserved in all sequences, orange – conserved in at least 80% of the sequences and yellow - 

conserved in at least 60% of the sequences). Foxg_14683 is truncated at 669 residues (full 

length 1010 residues). Foxg = F. oxysporum, Fveg = F. verticillioides, Fgsg = F. graminearum, 

Mo = M. oryzae, Bc = B. cinerea, An = A. nidulans. 
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Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *        20         *        40         *        60

---MPSPR---------HIAAALAASAT--TVSALYVN---------GTVVAPCDSPIYC

---MPSPR---------HIAAALAASAT--TVSALYVN---------GTVVAPCDSPIYC

---MPSPR---------HIAAALVATAT--TASALYVN---------GTVVAPCDSPIYC

---MSPLW---------KTAAAIAVAASGSLVNAVYIN---------GSIITPCDSLIYC

---MAAPS-------GHQARG--SDDLGVFDDAKSYYT-EERHMN-RAGPRTRTYSQNSL

---MAAPS-------GHQPRG--SDDLGVFDDAKSYYT-EERHMN-RAGPRTRTYSQNSL

---MAAPS-------NHRSRG--SDDLGVFDDAKSYYT-AERHQN-RAGPRTRTYSQNSL

--MSEAPQ-------ARRVGS--VDDHSVYDDAKTYYTSEERHNNSRSGPRQRTYSQNSL

---MTSPL-------RKHRTSSVSSEIDPFAAAHVYYS-NDTNQKSFRQARTRTYSSNQG

MDDSALPSNTSNGINGRTAHRRSSSGGDPFQHPDIYYGNPESVERIKNRRRAFSSSLKSF

---MLSSYLNYAIWSLLSSVTLATSTHDHDRIENCYQR--------HSSSNHSTKPSKNI

---------------MATPHPTKSTTSVPERTEEDNQR--------LFQLYKS-------

                                   y                   s    

      

      

 :  37

 :  37

 :  37

 :  39

 :  46

 :  46

 :  46

 :  49

 :  49

 :  60

 :  49

 :  30

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *        80         *       100         *       120

HGEILEQVELAQPFS-DSKTFVDMPAIRPLSEIQDAFDKLDKPLRNNSALTEFLN-----

HGEILEQVELAQPFS-DSKTFVDMPAIRPLSEIQDAFDKLDKPLRNNSALTEFLS-----

HGDILEQVELARPFS-DSKTFVDMPAIRPLSDIQEAFDKLEKPLRNNSALADFLD-----

RGELLKEVELAHPFA-DSKTFVDMPTIKPVDEVIEAFNKLQKPLSNNTELQDFLR-----

MHR-FERVNLREPFRRGSHDENSQQNRRFLIQVDSTLESLSLQEDTDGDMQITIEDNGPK

MHR-FERVNLREPFRRGSHDENSQQNRRFLIQVDSTLESLSLQEDTDGDMQITIEDNGPK

MSR-FERVNLREPFRRGSHDENSQQNRRFLIQVDSTLESLSLQEDPNGNMQITIEDNGPK

LGQ-MERLGLKEPFRRGSHDE-SNHNRRFLIQVDPTLESLKSQEDTDGNMQITIEDNGPK

IFS-TPISGLEKPKRRGSHDDIGDHGRKFLIQVDSTLEALRKQEDTDDNHQITIEDVGPK

NRQDFHEMLGDRNTRRGSMDPTSGNPRKFLIDVDATLHSLLEREDSDRNMQITIEDVGPK

YETSFPGVTWDNDNWLLSTTNLDQGHYQSRGSVANGYLGIN-VAAVGPFFEIDLD-----

--------------WILTERDGKARHYQSRGSVANGYLGIN-VAAVGPFFEIDAD-----

                 3              6      6                    

      

      

 :  91

 :  91

 :  91

 :  93

 : 105

 : 105

 : 105

 : 107

 : 108

 : 120

 : 103

 :  70

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       140         *       160         *       180

------------DYFADAGNELEEVPEDELETDPKFLDK--------INNTAIKEFTQKV

------------EYFDDAGGELEEVPEDELETDPKFLDK--------INNTAIKEFTQKV

------------ENFDDAGNELEEVSRDDLDTDPKFLDN--------INDTVIREFTEKV

------------ENFAQAGGELEEVPNSELETDPVFLDK--------LDDTVIREFVEKV

VISLRTAASAGHNRFDVRGTYMLSNLLQELTLAKEYGRKQIVLDEARLNENPVDRLSRMI

VISLRTAASAGHNRFDVRGTYMLSNLLQELTLAKEYGRKQIVLDEARLNENPVDRLSRMI

VISLRTAASAGHNRFDVRGTYMLSNLLQELTLAKEYGRKQIVLDEGRLNENPVDRLSRMI

VLTLRTAGSNGHNRFDIRGTYMLSNLLQELTLAQEYGRKQVILDEARLNENPVNRLSRLI

SLPLGTATSNGFRRYDIRGTYMLSNLLQELTLAKENGREQIILDESRLNENPVNRLSRLI

---VRTAASHGYNRFDVRGTYMLSNLLQELTIAKDYGRKQIVLDEERLSENPVSRLSRLI

------------EKGGVINGWPLFSRRQTFATIAGFYDAQPNTNGTNFPWLLQYGYESVI

------------EEGGVINGWPLFSRRQTFATIAGFYDAQPKTNGTNFPWLLQYGYESVI

                  g          l                             6

      

      

 : 131

 : 131

 : 131

 : 133

 : 165

 : 165

 : 165

 : 167

 : 168

 : 177

 : 151

 : 118

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       200         *       220         *       240

ID--IWPDLTRRYD--------QDSKNCSDCPNSFIPVNR--------------------

ID--IWPDLTRRYD--------QDSKNCSDCPNSFIPVNR--------------------

ID--IWPDLTRRYD--------QDAKNCSDCPNSFIPVNR--------------------

ID--IWPSLTRRYK--------GPS-NCEACADSFIPVNR--------------------

RDH-FWENLTRRIDASTVDIAARDPKDWTDDPRPRIYIPYRCPRQYEFYKRVSEERPEMR

RDH-FWENLTRRIDASTVDIAARDPKDWTADPRPRIYIPYRCPRQYEFYKRVAEERPEMR

RDH-FWENLTRRIDASTVDIAARDPKDWTADPRPRIYIPYRCPRQYEFYKRVAEERPEMR

RDH-FWDALTRRIDASSIEVAAKDPKDWTDDPRPRIYVPKGAPEQLEYYKKLAADKPDIR

QGS-FWDGLTRRIDGSVIEIAGRDPKDWTDDPRPRIYIPRGAPEQHAYYTKVATDRPEVR

KNS-FWNSLTRRIDGRNIEVAGRDPKDWTDDPRPRIYVPPGAPEQLEYYRRIAEEKPELR

SGIPHWSGLILDLGDDVYLDATVDNRTVHNFTSTYDFKAGVLEWSYTWKPKG--------

SGVPHWSGLILDLGDDVYLDATVDNRTVHNFTSTYDFKAGILEWSYTWKPKDR-------

     W  Ltrr           d           i                        

      

      

 : 161

 : 161

 : 161

 : 162

 : 224

 : 224

 : 224

 : 226

 : 227

 : 236

 : 203

 : 171
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Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       260         *       280         *       300

----------------------------------------------SFVVAGGRFREPYY

----------------------------------------------SFVVAGGRFREPYY

----------------------------------------------SFVVAGGRFREPYY

----------------------------------------------TFVVAGGRFREPYY

LDVQMLPEKITPDLVRDMNDAPGLLAVDVQEVPEPEHPSGWTLKGMPFVVPGGRFNELYG

LDVQMLPEKITPDLVRDMNDAPGLLAVDVQEVPEPEHPSGWTLKGMPFVVPGGRFNELYG

LDVQMLPEEITTDLVRDMNDAPGLLAVDVQEVSEPEHPSGWTLKGMPFVVPGGRFNELYG

LDVVELPETITPEYVVGINKAPGLLAVDMEETVDP-KTGERVMSGRPFVVPGGRFNELYG

LDVCWLPEKITPEVVRDMNSKPGLLAVAMEEVIDP-STGEKTLKGLPFVVPGGRFNELYG

LDVQELAAEITPEYVRDLNEKPGLLALAMEEKYDE-KTGKTDFAGVPFVVPGGRFNELYG

--------------------------------------------KGSYEIKYRLFAHKLH

--------------------------------------------KGSYQIKYRLFAHKLH

                                               5v6 ggrF e y 

      

      

 : 175

 : 175

 : 175

 : 176

 : 284

 : 284

 : 284

 : 285

 : 286

 : 295

 : 219

 : 187

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       320         *       340         *       360

WDSYWIIEGLLRTGGSFVNIAKNTIENFLDFIEEYGFVPNGARIYYLNRSQPPLLSQMIK

WDSYWIIEGLLRTGGSFINIAKNTIENFLDFIEEYGFVPNGARIYYLNRSQPPLLSQMIK

WDSYWIILGLLRTGGSFIEIAKNTIENFLDFIEEYGFVPNGARIYYLNRSQPPLLSQMIK

WDSYWILEGLLRTGGAFTNISKNTVENFLDLVETIGFVPNGARIYYKNRSQPPLLSQMVR

WDSYMASLGLLIN--DRVDLAKSMVINFCFCIEHYGKILNATRSYYLCRSQPPFLTDMAL

WDSYMASLGLLIN--DRVDLAKSMVINFCFCIEHYGKILNATRSYYLCRSQPPFLTDMAL

WDSYMASLGLLIN--DRVDLAKSMVINFCFCIEHYGKILNATRSYYLCRSQPPFLTDMAL

WDSYMESLGLLVN--DKVYLAKSMVLNFCFCIKHYGKILNATRSYYLCRSQPPFLTDMAL

WDSYMESLGLIVN--DKVHLAKSMVQNFCFCIEHYGKILNATRSYYLCRSQPPFLTDMAL

WDSYMESLGLLAS--NRVDLAKAMVINFCFCIKHYGKILNANRSYYLTRSQPPFLTDMAL

VNQAIVDLTVVPSVDSEATIVN-VIDGYSAVRSDFVKSGEDDDGAVFSAVRPVGIPNVTA

VNQAIVDLTIVPSTDSEATVVN-VIDGYSAVRSDFVKSGQDEDGGIFSAVRPVGIANVTA

w1sy    g66        6 k  6 n5       g   n  r yy  rsqPp 6  6  

      

      

 : 235

 : 235

 : 235

 : 236

 : 342

 : 342

 : 342

 : 343

 : 344

 : 353

 : 278

 : 246

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       380         *       400         *       420

-AYIEHTNDTDILERALPLLVQEHEFFMTNRSVPVYINN-ETYYLNTYNVSNTRPRPESY

-AYIEHTNDTDILERALPLLVQEHEFFMTNRSVPVYINN-ETYYLNTYNVSNTRPRPESY

-AYVE------------------------------------------YNVSNTRPRPESY

-IYVEHTNDTSILGRAVPLLIKEHEFFINNRSIDVEASNGKTYRLQRYAVTNTQPRPESY

RVYEKIKHEPDAKEFLRRSILAAIKEYHSVWMSEPRLDP-------STGLSRYRPEGRGV

RVYEKIKHEPDAKEFLRRSILAAIKEYHSVWMSEPRLDP-------STGLSRYRPEGRGV

RVYEKIKHEPDAKEFLRRSILAAIKEYHSVWVSEPRLDP-------TTGLSRYRPEGRGV

RVYDKIRHEPDATEFLRTAILAAIKEYHSVWVAEPRLDP-------VTGLSRYRPEGTGV

RVFDKIKHEPGSLDFLKTAILAAIKEYHSVWTAEPRYDP-------VTGLSRYRPEGLGV

RVYDRIQNEPGAMDFLRHAILAAIKEYYSVWMAEPRLDP-------VSGLSRYRSPGIGV

YIYAQVNG-SKSLDLSKRQLVHGKPYVHTNESSIAQAIP----------VKFSTGVPVRI

YIYAQVNG-SKSLDLSRRKLVHGKPYVHTNESSIAQAIP----------VKFSAGVPVHI

  5                                              6          

      

      

 : 293

 : 293

 : 252

 : 295

 : 395

 : 395

 : 395

 : 396

 : 397

 : 406

 : 327

 : 295

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       440         *       460         *       480

REDYVTANNESYYSP-SGEVYSGGEELNFKTKEALYGNLASGAESGLDYSVKWVARPDDA

REDYVTANNESYYSP-SGEVYSGGEELNFKTKEALYGNLASGAESGLDYSVKWVARPDDA

REDYITAENTSYYSPESGKVYKGGEELSFKQKEALYGNLASGAESGLDYTVKWIARPEDA

REDYITASNRSYYSP-SGIIYPESHQLNESEKAVLYSHLASGAESGWDYTSRWLSTPSDA

PPETEATHFVHILDP-----YIKKHKMTFEQFVRAY-NHGEVEEPELDEYFMHDRAVRES

PPETEATHFVHILDP-----YIKKHKMTFEQFVRAY-NHGEVEEPELDEYFMHDRAVRES

PPETEATHFVHILDP-----YIKKHNTTFEDFVRKY-NHGEIEEPELDEYFMHDRAVRES

PPETEADHFLHILEP-----YYKKHNMTFKEFVEAY-NFGRIREPELDKYFLHDRAVRES

PPETEASHFEHLLAP-----YAEKYNMTFKEFVDAY-NNGRVVEKELDDYFLHDRAVRES

PPETEASHFLHLLTP-----YAEKHGMEFKEFVQAY-NYGKVKEPELDEYFMHDRAVRES

TKYVGAASSDAFDDP-----GKIAKEASRRAMEEGYEKSLLSHVREWESVMPSDSVDSYA

TKYVGAASSDAFEDP-----EKTAKEASNRALEEGYEKSLLSHLKEWESVMPSDSVDSYA

              P     y              Y       e   d            

      

      

 : 352

 : 352

 : 312

 : 354

 : 449

 : 449

 : 449

 : 450

 : 451

 : 460

 : 382

 : 350
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Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       500         *       520         *       540

--IRDNYFPLRYLNTRNIIPVDLNSILYGNEIAIAEFYEQTGNSSASRQWREVAANRSFA

--IRDNYFPLRYLNTRNIIPVDLNSILYGNEMAIAEFYEQTGNSSASRQWREVAANRSFA

--IRDNYFPLRYLNTRNIIPVDLNSILYGNEIAIADFYEQTGNNSASEQWREVAANRSYA

--VRDNYFPLRSLNTNNIVPVDLNSILYANEVAIAEFLNRTGNSTGASDWMDLAKQRSEA

--GHDTSYRLEGVCAN-LATIDLNSLLFKYETDIARTIRSVFN--DRLTMPEEFCAGTPY

--GHDTSYRLEGVCAN-LATIDLNSLLFKYETDIARTIRSVFN--DRLTMPEEFCAGTPY

--GHDTSYRLEGVCAN-LATIDLNSLLFKYETDIARTIRSVFN--DKLTMHEEFCAGTPY

--GHDTSYRLEGVCAD-LATVDLNTLLFKYETDIARTIRNVFG--DKLVIPAEYCVGS-L

--GHDTSYRLERVCAD-LATIDLNSLLYKYEKDIAYTIRTFFQ--DKLEVPAEFCVGD-M

--GHDTSYRLERVCGN-LATVDLNSLLYKYEVDIARVIRVYFK--DKLEIPVEFRTPA-T

SPENNTLPEDEYIIDSSIIAVTNTYYLLQNTVGKNAQKKVSGAPVNVDSISVGGLTSDSY

FPENDTLPDDEYIIDSAIIAVTNTYYLLQNTVGKSAQKAVSGAPVNIDSISVGGLTSDSY

    1    l  6    6  6dln  L   e  ia                         

      

      

 : 410

 : 410

 : 370

 : 412

 : 504

 : 504

 : 504

 : 504

 : 505

 : 514

 : 442

 : 410

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       560         *       580         *       600

MHAFMWNETHWSYFDYNLTSKAQSIFYPTDNSTAEIDKEN-------APKGKQVFFSPTQ

MHAFMWNETHWSYFDYNLTSKAQSIFYPTDNSTAEIDKEN-------APKGKQVFFSPTQ

MHGFLWNETLWSYFDYNLTSKAQQIYFPVDENTTVVDTED-------APKGQQVFFSPTQ

MYALMWNETLWSYFDYNMTSKTQNRFIPVDEDAVSIETNN-------APAGQQVFFHVAQ

QPGEVLSSAAWDRRAKRRKLTVDKLMWDEKE-GMFFDYDT-------AKRERCTYESCTT

QPGEVLSSAAWDRRAKRRKLTVDKLMWDEKE-GMFFDYDT-------PKRERCTYESCTT

QPGEVLSSAAWDRRAKRRKLTVDKLMWDEKE-GMFFDYDT-------AKRERCTYESCTT

QPGQVETSAIWDRRSKRRKLAIDKYLWNEEA-GMYFDYDT-------AKRQQCNYESCTT

TPGQLQTSSMWDRRARGRKLAIDKYLWNKEK-GMYFDYNT-------LKKEQCTYESATT

KDIQSESSSVWDRRARRRKMRMDTYLWDEEK-GMYFDYDT-------VKQERTNYESATT

AGLIFWDADLFMQPGLTTSHPEAAQRITNYRVAKYDQAKKNIATSYAGSQNKTKFSDSAA

AGLIFWDADLFMQPGLTTSHPEAAQRITNYRVAKYDQAKKNIATSFAGSQNKTKFSESAA

          5                                           5     

      

      

 : 463

 : 463

 : 423

 : 465

 : 556

 : 556

 : 556

 : 556

 : 557

 : 566

 : 502

 : 470

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       620         *       640         *       660

FYPFWLGAAPDYLKNNPYAVLNAYKRVSYYLDTRQGGIPASN----VESGQQWDQPNVWP

FYPFWLGAAPDYLKNNPYAVLNAYKRVSYYLDTRQGGIPASN----VESGQQWDQPNVWP

FYPFWLGAAPDYLKNNPFAVYTAYKRVEYYLDNRDGGIPASN----VETGQQWDQPNVWP

YYPFWTGAAPRSLKNNPLAVLRAYERIDAYLDIKRGAIPATN----LKTGQQWDEPNVWP

LWALWAGIATPKQA--AEMVRKALPKFEAYGGLVSGTEESRGAVGLERPNRQWDYPYGWP

LWALWAGIATPQAKR-AENVPQSSPQVRSVR----------------RPS---------I

LWALWAGIATPKQA--AEMVRKALPKFEAYGGLVSGTEESRGAVGLDRPNRQWDYPYGWP

FWALWAGVASPKQA--AIMVTRALPKFEAYGGLLSGTEESRGQIGLDRPNRQWDYPYGWA

FWAMWAGVASPQQA--ASLVTNALPKFEAAGGLLSGTEESRGAVGLDRPNRQWDYPYGWA

LWAMWAGLVTPRQA--SAMITKALPRFEEFGGIVSGTEESRGAVGLNRPTRQWDYPYGWA

VYPWTSGRFGNCTATGPCWDYEYHLNGDIGISLVNQWVTSGDTDFFKETLLPIYDSVANL

VYPWTSGRFGNCTATGPCWDYEYHLNGDIGISLVNQWVTSGDTDFFKETLLPIYDSVANL

 5  w G                                                     

      

      

 : 519

 : 519

 : 479

 : 521

 : 614

 : 590

 : 614

 : 614

 : 615

 : 624

 : 562

 : 530

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       680         *       700         *       720

PLMHILMSGLEKVPATFGIMDPSFIEVRRLALRLAQRYLDSTFCTWRATGGTTSDLPRIQ

PLMHILMSGLEKVPATFGIMDPSFIEVRRLALRLAQRYLDSTFCTWRATGGTTSDLPRIQ

PLMHILMAGLERVPPTFGIRDPSFVEVRRLALRLGQRYLDSTFCTWYATGGSTSETPKLQ

PLMHILMEGLTRVPATFGEDDVAWTEIQDLALRLGQRYLDSTFCTWYATGGSTSETPQLQ

PQQMLAWTGLIRY------------SFTEEAERIAYKWLFMVTKAFVDFHGVVVEKYDVT

RNGGIAWSGRPRN------------GITDNGT---------------------IPTAGLH

PQQMLAWTGLIRY------------SFTEEAERIAYKWLFMVTKAFVDFHGVVVEKYDVT

PQQMLAWTGLYRY------------SFTEEAERLAYKWLFMITKAFSDFNGVVVEKYDVT

PQQMLAWTGLLRY------------NYQEDAERLAYKWLFMITTAFVDFNGVVVEKYDVT

PQQMLAWTGFARY------------GYQEEAERLAYKWLYMITKAFVDFNGVVVEKYDVT

FADLLKPNGSSWT----------ITNMTDPDEYANHIDAGGFTMALASETLIQANKIRRQ

FADLLKPNGSSWT----------ITNMTDPDEYANHIDAGGFTMALASETLIQANQIRRQ

    6   G                                                   

      

      

 : 579

 : 579

 : 539

 : 581

 : 662

 : 617

 : 662

 : 662

 : 663

 : 672

 : 612

 : 580

      



146 
 

 

 

  

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       740         *       760         *       780

SAAEGADGIMFEKYADNATNVAGGGGEYEVVEGFGWTNGVLIWAVDEFGNRLKQPQCN-F

SAAEGADGIMFEKYADNATNVAGGGGEYEVVEGFGWTNGVLIWAVDEFGNRLKQPECN-F

STSDEEEGIMFEKYADNATNVAGGGGEYEVVEGFGWTNGVLIWAVDEFKNRLTRPKCDNL

GLNAEDKGIMFEKYGDNSTNVAGSGGEYEVVEGFGWTNGVLMWVADTFNNKLTRPDCGNI

RPVDPHR--VDAEYGNQGLGFRG-----VNKEGFAWVNASYIYGLQIINAHMRR------

SKCWPGR--V--------------------------------------------------

RPADPHR--VDAEYGNQGLGFRG-----VNKEGFAWVNASYIYGLQIINAHMRR------

RPVDPHR--VDAEYGNQGLGFKG-----VAKEGFGWVNASYIYGLQIINAHMRR------

RVVDPHK--VDAEYGNQGSDFKG-----VAKEGCGWVNASYVYGLQIINAHMRR------

RPIDPHR--VDAEYGNQGVDFKG-----APREGFGWVNASYVYGLEMLNAHQRR------

FGMTENKTQDEIASDVLFIRENGITLEFTTMNGSAIVKQADVVLMSFPLGYNDN------

FGMTENKTQDEIASDVLFIRENGITLEFTTMNGSAIVKQADVVLMSFPLGYNDN------

                      g         g                           

      

      

 : 638

 : 638

 : 599

 : 641

 : 709

 : 625

 : 709

 : 709

 : 710

 : 719

 : 666

 : 634

      

             

             

Foxg_09264 : 

Fveg_06865 : 

Fgsg_05622 : 

Mo_Tre1    : 

Fveg_02610 : 

Foxg_05530 : 

Fgsg_09895 : 

Mo_Nth1    : 

Bc_Tre1    : 

An_TreB    : 

Fveg_13500 : 

Foxg_14683 : 

             

                                                            

         *       800         *       820         *       840

TGDSSN-------ERRDTNSAVMLHARDAARVKKFGNRKRAAEKAAHKRSSRLFHF----

TGDSSN-------ERRDTDSAVMLHARDAARVKKFGNRKRAAEKAAHKRSSRLFRF----

ESAHSN-------DKRDP-SAVMLNARDAKRVKKFGRRKRAAEKAAKKRSSRVFYF----

TAANVHSDGSQARKRGEMWSALEMHPYDAAWTKEFGARKVRRDKAEARALGNVMGGV---

---------------------------ALGALTPYQTLIRAIEKNEEKTLAGLLAA----

------------------------------------------------------------

---------------------------ALGALTPYDTLMKAIEQNEEKTLAGLLSS----

---------------------------ALGTLTPYDTFIKALEDNRNRALSEMV------

---------------------------TLGTLTPWDQYNKAMNL----------------

---------------------------ALGAVTPWETYSKAVSAQGSDTVLENRSE----

-------------------------YTDQNGLDDLDYYANKQSPDGPAMT----------

-------------------------YTDQNGLDDLDYYANKQSPDGPAMTWAIYSIVADE

                                                            

      

      

 : 687

 : 687

 : 647

 : 698

 : 738

 :   -

 : 738

 : 736

 : 727

 : 748

 : 691

 : 669
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Isocitrate lyase has been shown to be required for full virulence of a number of 

plant pathogenic fungi including the rice blast fungus M. oryzae (Wang et al., 

2003). This species produces a melanised infection structure known as an 

appressorium. The appressorium develops an extremely high turgor (Howard et 

al., 1991) which is used to drive penetration of the host leaf surface and initiate 

infection. Targeted deletion of the ICL1 gene encoding isocitrate lyase affected 

infection-related development of this species at the prepenetration stage. Spore 

germination was reduced together with delayed appressorium formation and 

maturation, resulting in reduced disease symptoms on rice leaves. In 

Colletotrichum lagenarium, the causal agent of cucumber anthracnose, 

appressoria of icl1 disruption mutants retained melanin biosynthesis but 

penetration hyphae did not develop, leading to a reduction in virulence (Asakura 

et al., 2006). Inoculation of wounded host plants indicated, however, that post-

invasive growth was unaffected in the icl1 mutant. Appressorium formation and 

host penetration in both M. oryzae and C. lagenarium involves lipid degradation 

(Thines et al., 2000; Yamauchi et al., 2004), however, lipolysis is unaffected in 

the C. lagenarium icl1 mutant. In Leptosphaeria maculans, the causal agent of 

blackleg disease of canola, a plasmid insertion event resulting in the deletion of 

ICL1 and adjacent sequence produced a strain with reduced virulence and in 

planta hyphal growth on Brassica napus and B. juncea cotyledons. Introduction 

of the wild type ICL1 gene into the icl1 strain partially recovered virulence on B. 

napus (Idnurm and Howlett, 2002). In both C. lagenarium and L. maculans, 

virulence of the icl1 strain could be at least partially restored by the addition of 

glucose or sucrose, implying a role for gluconeogenesis via the glyoxylate cycle 

in host invasion. Malate synthase, another key glyoxylate cycle enzyme, is 

required for pathogenicity of the wheat leaf pathogen Stagonospora nodorum 

(Solomon et al., 2004b). In F. graminearum, appressorium formation is not used 

for entry into the wheat ear. Also in the point assay used, the spores were 

placed directly inside the wheat floret.  Therefore, it would appear that unlike L. 

maculans and S. nodorum, where the glyoxylate cycle contributes to leaf 

colonisation, this pathway is not required by F. graminearum to successfully 

colonise the wheat ear.   The observation that in vitro the icl1 F. graminearum 

mutants could grow more rapidly than the wild-type strain in the presence of 

sucrose as the sole carbon source may have influenced the disease 

progression of the icl1 deletion strain. In the wheat ear the soluble sugar 
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arriving in the phloem is sucrose, so this strain would be able to utilise this 

carbon source more effectively than the wild-type strain. This might have 

contributed to the unaffected virulence phenotype of the icl1 strain. 

In fungal pathogens of humans and animals, however, isocitrate lyase appears 

to be frequently dispensable for complete virulence. While ICL1 deletion in C. 

albicans prolongs the survival of mice (Lorenz and Fink, 2001), in A. fumigatus, 

which causes invasive aspergillosis in immunocompromised individuals, ICL1 is 

not required for virulence in a murine model and icl1 deletion strains exhibit 

invasive growth (Schobel et al., 2007). In addition, ICL1 is not required for 

virulence in an isolate of S. cerevisiae that is pathogenic to mammals (Goldstein 

and McCusker 2001). While expression of the ICL1 gene in the human and 

animal pathogen C. neoformans was found to be upregulated during infection, 

null mutants of this gene did not show reduced virulence (Rude et al., 2002).  

The ICL1 gene has also been deleted in another strain of F. graminearum, 

namely Z03643 (Lee et al., 2009a). The Z03643 icl1 mutant grew similar to the 

wild type strain on complete medium, as seen for the PH-1 icl1 mutant, which 

showed similar growth rates to the wild type strain on both complete and 

minimal medium. However, the Z03643 icl1 mutant produced much whiter aerial 

mycelium on complete medium than the wild type, a phenotype not present for 

the PH-1 icl1 mutant, which produces peach-coloured aerial mycelium similar in 

appearance to the wild type PH-1 strain (data not shown). Growth of the 

Z03643 icl1 mutant was reduced with acetate as the sole carbon source, 

consistent with findings of the PH-1 strain icl1 mutant, but completely abolished 

on other C2 compounds and fatty acids tested. That the PH-1 icl1 deletion strain 

retained the ability to grow at around 50% of the wild type rate on olive oil may 

be due to the presence of extra compounds in this substance not found in the 

purified fatty acids used in the Z03643 study.  A reduced growth rate for icl1 

mutants on fatty acids or two-carbon compounds is consistent with results 

obtained for C. lagenarium, M.oryzae, C. neoformans, and L. maculans (Idnurm 

and Howlett, 2002; Rude et al., 2002;  Wang et al., 2003; Asakura et al., 2006).  

For both F. graminearum strains, the isocitrate lyase mutant showed disease 

symptoms on susceptible wheat comparable to the wild type. However, it should 

be noted that in the Z03643 study, a spray inoculation method was used to 
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assess disease symptom severity unlike the point inoculated method employed 

with PH-1 and PH-1 icl1. The wild type Z03643 strain does not produce 

symptoms that spread through the adjacent spikelets when a conidial 

suspension is point inoculated onto the ear.  This prevents any reduced 

virulence phenotype of mutants that may show a slower rate of spread through 

the ear from being noted.  These results are comparable to those previously 

described for animal pathogenic fungi yet unusual for plant pathogenic fungi, as 

described above.  

The effect of ICL1 deletion on F. graminearum virulence may be complicated by 

the presence of a second isocitrate lyase gene, as found when the 

methylisocitrate lyase gene, MCL1, was deleted in a Z03643 icl1 mcl1 double 

mutant in F. graminearum. MCL1 functions in the methyl isocitrate lyase cycle 

that metabolises propionyl-CoA to pyruvate. The Z03643 mcl1 mutant showed 

slightly reduced disease severity compared to the wild type Z03643 strain on 

barley but not wheat, however the Z03643 icl1 mcl1 double deletion strain 

showed greatly reduced virulence on both wheat and barley ears, with only the 

formation of a few small necrotic spots. In addition, the double mutant could no 

longer grow on acetate. As may be expected, the Z03643 mcl1 mutant was able 

to grow on acetate and fatty acids but not on propionate. Species such as M. 

oryzae and C. lagenarium appear to possess only one ICL1 gene (Asakura et 

al., 2006), which may be the reason a reduced virulence phenotype is observed 

upon disruption of the isocitrate lyase gene.  

The deletion of the pkar gene revealed that PKAR, the regulatory subunit of the 

F. graminearum protein kinase A is required for a full rate of FEB symptom 

spread on wheat ears. The rate of symptom spread was drastically reduced in 

the pkar strain and symptoms remained confined to the inoculated spikelets and 

adjacent rachis. The effect of deletion of the PKA regulatory subunit on the 

virulence of fungal pathogens appears to be highly variable. Disruption of 

PKR1, the regulatory subunit of PKA in C. neoformans var. grubii resulted in 

hypervirulence (D’Souza et al., 2001), while deletion of the PKAR gene of A. 

fumigatus (Zhao et al., 2006) or the PKAR gene of B. cinerea reduces virulence, 

however, no PKA activity is detected in the pkaR strain (Schumacher et al., 

2008). In C. albicans, meanwhile, homozygous deletion of the PKAR-encoding 

gene is lethal (Cassola et al., 2004). 
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Partial losses of virulence resulting from PKAR deletion are found for species 

such as C. lagenarium, where, while the rpk1 deletion mutant is non-pathogenic 

on cucumber, it can form lesions when inoculated onto wounds (Takano et al., 

2001) suggesting that the defect in virulence in this case is at the pre-

penetration or penetration stage of development. In Mycosphaerella 

graminicola, BCY1 disruption produces a mutant that is able to germinate, 

penetrate the host leaf and colonise the mesophyll, but is unable to produce 

pycnidia (Mehrabi and Kema, 2006).  In each case, different stages of the 

infection process appear to be most affected by loss of the PKAR gene. In F. 

graminearum, the pkar mutant is able to cause bleaching of the inoculated 

spikelets but then does not spread to other spikelets and by 20 days post-

inoculation shows only some limited browning on the rachis close to the 

inoculated spikelets. In this species too, the fungus may be able to complete the 

initial infection stages in the inoculated spikelets but later infection-related 

processes that would allow colonisation of the whole ear may be unable to be 

completed in the absence of the PKAR gene. In U. maydis, mutation of UBC1 

(PKAR), a gene which is required for filamentous growth, produces strains 

which can colonise plants and cause localised symptoms similar to wild type but 

cannot form galls (Gold et al., 1997), although a dikaryon that is homozygous 

for UBC1 deletion would be expected to be non-pathogenic dues its lack of 

filamentous growth. 

The catalytic subunit of PKA (here termed PKAC) has also been investigated in 

a number of fungal species. Disruption of a single PKAC gene in fungi is often 

sufficient to produce a series of phenotypic changes including a reduction in 

virulence of animal-, plant- and insect-pathogenic species. Disruption of PKA1, 

considered the major PKA catalytic subunit gene in C. neoformans var. grubii, 

resulted in a complete loss of virulence (D’Souza et al., 2001). In A. fumigatus, 

PKAC1 deletion reduces expression of the PKSP virulence factor and pkaC1 

mutants are rendered almost avirulent (Liebmann et al., 2004) while in Candida 

albicans, TPK2 (PKAC) deletion results in reduced virulence (Sonneborn et al., 

2000). 

In U. maydis disruption of the ADR1 (PKAC) gene causes a loss of 

pathogenicity. However, deletion of the second PKAC-encoding gene, UKA1, 

has little effect on virulence (Dürrenberger et al., 1998). An F. verticillioides fpk1 
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(PKAC) disruptant also shows reduced virulence (Pei-Bao et al., 2010). In M. 

oryzae CPKA deletion causes delayed appressoria formation and reduced 

virulence (Mitchell and Dean, 1995, Xu et al., 1997). The cpkA mutants form 

smaller appressoria that are defective in penetrating plant cells, but inoculation 

of wounds still allows lesion formation indicating that post- penetration disease 

development may be unaffected (Xu et al., 1997). The insect pathogen M. 

anisopliae PKAC disruption mutant, pka1, also shows greatly reduced virulence 

due to a delay in appressoria formation and in addition has a reduction in 

appressorial turgor pressure (Fang et al., 2009). Verticillium dahlia PKAC1 

disruptants were still able to infect tomato and eggplant but disease severity 

was reduced. Ethylene is thought to be important in symptom induction in this 

species and the pkac1 disruption strains were shown to produce reduced 

amounts of ethylene (Tzima et al., 2010). In Trypanosoma cruzi, meanwhile, 

use of a PKAC inhibitor is lethal (Bao et al., 2008). 

Deletion of the PKAR gene would be expected to result in constitutive, 

unregulated PKA activity, while PKAC deletion resulted in reduced or abolished 

PKA activity (dependent on the deletion of one or both PKAC genes), so the 

PKAR and PKAC mutants may be expected to have opposing phenotypes. 

While this result is found for example with C. neoformans var. grubii virulence 

(D’Souza et al., 2001), this does not seem to be the case in some species. In M. 

graminicola, both BCY1 (PKAR) and TPK2 (PKAC) disruptants are defective in 

the later stages of disease progression (Mehrabi and Kema, 2006). In A. 

fumigatus, deletion of PKAR reduces virulence (Zhao et al., 2006) and deletion 

of PKAC1 almost completely abolishes virulence (Liebmann et al., 2004). In B. 

cinerea, both pka1 and pkaR strains show reduced virulence, although this may 

be due to the lack of PKA activity detectable in the pkaR strain (Schumacher et 

al., 2008). B. cinerea pka2 mutants show no obvious phenotypes (Schumacher 

et al., 2008).  

The in vitro growth rates of the F. graminearum pkar mutant were severely 

reduced on both minimal and complete medium. Growth defects have been 

noted for a number of PKAR mutants in fungi. For example, the A. fumigatus 

and A. niger pkaR and C. lagenarium rpk1 mutants show reduced growth 

(Takano et al., 2001; Staudohar et al., 2002; Zhao et al., 2006). In U. maydis, 

UBC1 (PKAR), is required for filamentous growth (Gold et al., 1997). The B. 
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cinerea pkaR and M. circinelloides pkaR1 mutants, however, show reduced 

growth on solid medium but not in liquid culture (Schumacher et al., 2008; 

Ocampo et al., 2009). This is in contrast to the F. graminearum pkar mutant 

which also shows reduced growth in liquid complete medium (data not shown). 

In addition, overexpression of PKAC1 in A. fumigatus also causes reduced 

growth (Grosse et al., 2008). In A. nidulans, however, overexpression of PKAB 

enhances growth and rescues the growth defects of PKAA deletion (Ni et al., 

2005). In C. albicans, bcy1 (PKAR) homozygotes could not be obtained, 

suggesting this gene is probably essential for viability (Cassola et al., 2004). 

Growth reduction has also been noted in PKAC mutants, for example M. 

anisopliae pka1, A. fumigatus pkaC1, A. nidulans pkaA, M. graminicola tpk2 

and N. crassa pkac-1 (Fillinger et al., 2002; Liebmann et al., 2004; Banno et al., 

2005; Mehrabi and Kema, 2006; Fang et al., 2009). The B. cinerea pka1 mutant 

shows reduced growth on solid medium but not in liquid culture (Schumacher et 

al., 2008). In Fusarium verticillioides, FPK1 disruption causes reduced growth 

with reduced production of aerial mycelium on complete medium. (Pei-Bao et 

al., 2010). In A. niger meanwhile, a loss of PKA activity leads to reduced growth 

(Staudohar et al., 2002).  

Other effects on growth include disruption of the U. maydis PKAC-encoding 

ADR1 gene, which causes constitutively filamentous growth (Dürrenberger et 

al., 1998) and the C. albicans tpk1 mutant, which has defective hyphal 

morphogenesis on solid medium but only a slight effect on hyphal formation in 

liquid medium. Deletion of TPK2 causes only a partial defect in growth on solid 

medium but defective growth in liquid medium. The yeast form of tpk2 but not 

tpk1 was unable invade agar. Homozygous tpk1 and tpk2 mutants appeared 

unaffected except for a strain lacking TPK2 but with a single regulatable TPK1 

which was expressed at low levels. This strain was severely reduced in growth 

(Bockmuhl et al., 2001). In V. dahlia, PKAC1 disruption does not appear to 

affect growth (Tzima et al., 2010), while in Y. lipolytica the tpk1 mutant has 

normal growth but always grows filamentously (Cervantes-Chavez and Ruiz-

Herrera, 2009). 

Deletion of pkar in F. graminearum also led to altered hyphal morphology with 

very short, almost cuboidal segments in the pkar hyphae. Hyphal segments in 
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the wild type strain appeared much longer and more rectangular in shape, with 

those of the PKAR-e strain also appearing slightly longer than those of the pkar 

mutant. Altered hyphal morphology was also noted in a temperature-sensitive 

mutant of the PKAR-encoding gene, known as mcb, in N. crassa (Bruno et al., 

2006). At 25 °C, below the restrictive temperature, where defined hyphae can 

be formed (at the restrictive temperature growth polarity is lost), conidia of the 

mcb mutant growing on sucrose minimal agar germinate and produce hyphae 

with swollen tips. These gave rise to a series of bulbous compartments that are 

separated by septa somewhat resembling those found in the F. graminearum 

pkar mutant.  These compartments could then generate further hyphal tips that 

develop into typical hyphae. A shift to the restrictive temperature caused a loss 

of growth polarity and all regions grew, causing an increase in hyphal length 

and diameter until the hyphae burst. This was thought to be due to cell wall 

growth rather than swelling due to weakened cell walls and turgor pressure as 

thick walls were observed after bursting, walls of the mcb mutant at the 

restrictive temperature were more resistant to hydrolytic enzymes and the fact 

that wild type growth was not restored by the addition of 1M sorbitol, nor was 

lysis prevented. 

In addition, morphological abnormalities were noted for the pkaR deletant of A. 

fumigatus which possesses early hyphae that are wider, thicker and darker than 

the wild type strain (Zhao et al., 2006). The A. niger pkaR mutant shows a loss 

of growth polarity in submerged culture with the formation of swollen hyphal tips 

(Staudohar et al., 2002), while fresh hyphae of the F. verticillioides fpk1 mutant 

are stubby and lack branches (Pei-Bao et al., 2010). Overexpression of PKAC-

encoding genes in C. albicans leads to the production of short, curved, bulged 

filaments (Bockmuhl et al., 2001). In M. graminicola, colony budding 

morphology is also dependent on PKA signalling (Mehrabi and Kema, 2006), as 

is the yeast-hyphal transition in C. albicans (Sonneborn et al., 2000) and in U. 

maydis, disruption of UBC1 causes a multiple budding phenotype (Gold et al., 

1994).  

The cellular compartments seen in the F. graminearum pkar mutant could result 

from increased septa formation, or alternatively from an increased rate of 

nuclear division. This phenotype does not appear to involve the bursting of 

fungal cells suggesting that they maintain a functional cell wall. In yeast, PKA is 
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known to be involved in control of the cell cycle (Sonneborn et al., 2000). The 

pkaR deletant of A. fumigatus shows an increased expression of cell cycle 

regulatory genes and in the number of nuclei present in hyphae (Fuller et al., 

2009). In M. anisopliae PKA is responsible for up-regulating approximately one-

third of the genes induced by insect cuticle, including some of those responsible 

for cell cycle control and the cytoskeleton (Fang et al., 2009). In A. nidulans 

however, addition of a PKA activator appeared to slow the duplication cycle and 

allow polarisation (Vanzela and Said, 2002).  

 

Summary 

The targeted deletion of the mitogen-activated protein kinase kinase (MAPKK) 

STE7 has been published elsewhere (Ramamoorthy et al., 2007). These 

studies reported drastically reduced pathogenicity on wheat ears for the ste7 

deletion strain compared to wild type. In addition, deletion of SNF1 leads to 

drastically reduced virulence of F. graminearum on wheat ears (Beacham et al., 

2010; Lee et al., 2009b). Together with the data presented here, these results 

confirm a role in symptom spread rate for four of the five PHI-base 

pathogenicity gene homologues in the micro-region (nth1, snf1, ste7 and pkar).  

The reduction of in vitro growth rate of the nth1 and pkar strains was seen for 

each transformant tested and appears to explain their defects in in planta 

symptom spread rates to differing extents. The wheat ear is considered to be a 

nutrient-rich environment for the fungus, and so the slightly reduced growth rate 

of nth1 on complete medium (reduced by 15%) would appear to explain its 

reduced rate of FEB symptom spread (reduced by 17%). The symptom 

coverage of the wheat ear by pkar is over 80% less than for the wild-type at 

later time points, while the difference in growth rate between the two strains on 

complete medium is 67%. This suggests that the inherent growth rate defect 

accounts for a large portion of the reduction in disease development rate by the 

pkar strain. It is possible that an additional factor is inhibiting disease formation 

by pkar in planta in addition to its growth rate defect but further investigation 

may be required to determine the cause and nature of any such defect. The 

snf1 and ste7 strains appear to only be marginally affected in growth on 

complete medium. 
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With the micro-region having been demonstrated to contribute to F. 

graminearum growth and spread on wheat ears, the next objective was to 

determine the role of additional micro-region genes in disease symptom 

spread.  By this approach, the possibility that this micro-region was a hotspot 

for genes contributing to the successful establishment and / or spread of 

Fusarium ear blight could be explored. 
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Chapter 5. Initial Characterisation of Additional Genes in the Micro-Region 

 

5.1 Introduction 

Loss of two of the three homologues of verified virulence genes present in the 

micro-region was shown in Chapter 4 to slow the spread of F. graminearum 

through wheat ears, in addition to the two previously characterised genes. This 

suggested an important role for this micro-region of chromosome I in 

contributing to the disease-causing ability of this species. The micro-region may 

therefore harbour additional genes whose deletion results in a slower rate of 

FEB symptom spread on wheat and would not previously have been identified 

due to a lack of homology to known virulence genes in other species.  

Therefore, six further genes in the cluster were selected for targeted deletion 

that are either not homologous to any known virulence genes or showed no 

homology to any annotated genes. Single gene deletion strains of 

FGSG_09891, FGSG_09893, FGSG_09900, FGSG_09905, FGSG_09906 and 

FGSG_09907 (later designated FCV1) were generated. 

FGSG_09893 shows similarity to peptidases, while FGSG_09900 appears to 

encode a membrane-integral protein of unknown function (see Chapter 3). 

FGSG_09905 and FGSG_09906 do not show similarity to any annotated 

protein sequences. FGSG_09905 may represent a F. graminearum-specific 

sequence (see Chapter 3). 

Fgsg_09891 shares 48.5% protein sequence identity with S. cerevisiae Get3, a 

highly conserved ATPase protein with homology to the ArsA subunit of bacterial 

arsenical transporters (Boskovic et al., 1996, Shen et al., 2003). Get3 (also 

known as Arr4) has been suggested to be involved in a number of different 

processes including stress resistance (Shen et al., 2003), metal ion 

homeostasis (Metz et al., 2006) and secretory protein trafficking (Schuldiner et 

al., 2005; Auld et al., 2006; Schuldiner et al., 2008).  

Fgsg_09907 (Fcv1) shows similarity to Spf27/Bcas2 (Breast Carcinoma 

Amplified Sequence 2) proteins, some of which have been shown to function in 

splicing of pre mRNAs (Ohi et al., 2002). Fgsg_09907 also shows similarity to 

the Arabidopsis thaliana Mos4 protein (this study; Palma et al., 2007), which 
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may act to regulate plant disease resistance (R) gene expression in defence 

against pathogens mediated by the late acting signal-transducing protein Npr1 

(Zhang et al., 2003; Palma et al., 2007). 

 

 

5.2 Methods 

 

The PCR fusion, transformation of F. graminearum, screening of transformants, 

Southern blots, wheat ear pathogenicity assays and in vitro growth tests are 

described in chapter 2.  

 

5.2.1 Complementation of fgsg_09907.3 (fcv1)  

The wild type FGSG_09907 (FCV1) coding region plus upstream and 

downstream sequence was amplified from PH-1 genomic DNA and the Neo 

neomycin phosphotransferase geneticin resistance gene was amplified from 

pSK666 (S. Kang, Pen State University, primers listed in Table 5.1). PCR 

products were cleaned using a PCR purification Kit (Qiagen). The Neo gene 

was fused to the wild type FGSG_09907 gene in a second PCR reaction. 6 x 50 

µl reactions were performed, pooled, precipitated and resuspended in a small 

volume of water. DNA concentration was determined using a Nano Drop ND-

1000 spectrophotometer (NanoDrop Technologies). Transformation of fcv1 

protoplasts was performed as described in Chapter 2 but with a longer growth 

time for fcv1 plates to allow sufficient spore production and 75 µg/ml geneticin 

and 75 µg/ml hygromycin as selection. DNA extraction was performed on 

mycelia samples using a XNAT REDExtract-N-Amp Tissue PCR Kit (Sigma).  

Transformants were screened by PCR using primers listed in Table 5.2.  
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Table 5.1. Primers for amplification of the wild type FGSG_09907 (FCV1) gene and 

Neo geneticin resistance gene. The two resulting products were mixed and fused using primers 

AB80 and AB77. 

Gene Primers Primer sequence (5'-3') 

FGSG_09907 
(FCV1) AB80 TCATTTACAGCTACGAAACGAGATG 

 

AB81 ACATGGTGGAGTGAGGGGTACCTATTGAACGCAGTT
GGGGCA 

Neo AB76 GGTACCCCTCACTCCACCATGT 

  AB77 CGCCAGCAGTAGACACTTGG 

 

Table 5.2. Primers for PCR analysis of FGSG_09907 (FCV1) complementation 

transformants. 

Gene 
Product 

length (bp) Primer Primer sequence (5'-3') 

FGSG_09907 
(FCV1) 650 U130 CCGTCGCTCCTGCTTATCAC 

  
U131  ACTTCGGTTTCCAGCACTCG 

Neo 1430 AB76 GGTACCCCTCACTCCACCATGT 

  
AB77 CGCCAGCAGTAGACACTTGG 

Hph 834 Hyg3 TCTCGGAGGGCGAAGAATCTC 

 
 

Hyg4 TTCTGCGGGCGATTTGTGTAC 

FGSG_09900  1490 AB51 GCCACACGATGTCAAAGATCAG 

    AB52 ATACAGCCGTGTCTCTGCCC 

 

5.2.2 Nucleotide Sequencing 

The region from -597 bp to +143 bp relative to the start of the PKAR ORF was 

amplified from fgsg_09907-1, fgsg_09907-3 and fgsg_09907-4 using primers 

AB82 and AB83 (see Table 5.3). This region is located between the PKAR 

gene and hph gene inserted into the fgsg_09907 (fcv1) knockout strains and 

overlaps the fgsg_09907 3‟ flank sequence by 514 bp. The PCR products were 

cleaned using a Qiagen PCR purification Kit and dried. PCR products were 

sequenced by Eurofins MWG Operon (Germany) in the forward and reverse 

direction using primers AB82 and AB83. 

Table 5.3. Primers for sequencing the PKAR region in fgsg_09907 (fcv1) strains. 

Primers Primer sequence (5'-3') 

AB82 CGGTACCCAATTCGCCCTAT 

AB83 GCTGCGTCACCAGTCAAGGT 
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5.2.3 Neurospora crassa Analysis 

Neurospora crassa wild-type strains of mating type A and a and ncu01167 

knockout mutants of mating type A and a (FGSC17004 and FGSC17003, 

respectively) were obtained from the Fungal Genetics Stock Centre (FGSC, 

University of Missouri, USA). Strains were grown on agar slopes of Vogel‟s 

medium (see Chapter 2) at 37°C prior to inoculation of 90 mm Vogel‟s medium 

agar plates and growth overnight at 37°C. Spores were harvested in sterile 

water and a 10 µl aliquot of a 2.5x105 spores per ml solution was used to 

inoculate race tubes of Vogel‟s medium made using 25 ml pipettes containing 

15 ml agar laid horizontally and capped at the pointed end, with the pipette filter 

remaining in place at the other end. The tubes were incubated at 37°C and 

growth recorded twice daily. 

 

5.2.4 Conidial Germination Viability 

Conidia were diluted to a concentration of 1x104 per ml in either synthetic 

nutrient-poor medium (SNA), SNA minus carbon (SNA-C), SNA minus nitrogen 

(SNA-N) or Fusarium synthetic complete medium (FSCM, Leslie et al., 2006) 

containing 1% low melting point agar (Gibco) cooled to 40°C. One millilitre of 

the resulting mixture was spread on a glass slide and placed in a high humidity 

environment in the dark. After 15 hours, 50 spores on each slide were counted 

to determine that percentage that had germinated. Three slides per strain per 

medium type were analysed. 

5.2.5 Bioinformatic Analysis of FCV1. 

Predict NLS Online was used to search for nuclear localisation sequences in 

FCV1 (cubic.bioc.columbia.edu/cgi/var/nair/resonline.pl) and NetNES1.1 Server 

(www.cbs.dtu.dk/services/NetNES, la Cour et al., 2004) to search for nuclear 

export sequences. Other bioinformatics methods are described in Chapter 3. 
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5.3 Results 

 

5.3.1 Targeted Deletion of Additional Genes in the Micro-Region 

PCR fusion was used for the production of constructs for the targeted deletion 

of FGSG_09891, FGSG_09893, FGSG_09900, FGSG_09905, FGSG_09906 

and FGSG_09907 (FCV1). Details of primers used and product sizes are to be 

found in Chapter 2. Figures 5.1 and 5.2 show the amplification of regions 

flanking the target genes. The HY and YG overlapping sections of the hph gene 

were also amplified from pHYG1.4 (Figures 5.1 and 5.2). The initial 5‟ flank 

region chosen for FGSG_09900 (Figure 5.1) proved to be too long to fuse to 

the HY section of the hph hygromycin resistance gene and so primers for the 

amplification of a new shorter 5‟ flank region were designed and used to amplify 

the required fragment for this gene (Figure 5.2). Fusion of flank regions to hph 

sections was tested in a second PCR (Figures 5.3 and 5.4). For the 5‟ flank-HY 

fusion constructs of FGSG_09891, FGSG_09900 and FGSG_09906, nested 

primers were used to increase amplification efficiency (Figures 5.5 and 5.6). 

Fusion PCR was repeated to increase DNA yield, the products precipitated 

(Figure 5.7) and used for transformation of F. graminearum. Construct 

production, targeted deletion and PCR screening of FGSG_09907 (FCV1) was 

performed by M. Urban (Rothamsted Research) and is shown in Figure 5.8. 
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Figure 5.1.  PCR amplification of (A) the hph HY and YG sections and (B) the flank regions for 

FGSG_09893, FGSG_09900 and FGSG_09905 for the targeted deletion of these genes. Lanes labelled 

with „C‟ are primer controls lacking template DNA. The FGSG_09900 5‟ flank here was replaced by a new 

flank shown in figure 5.2. 

 

 

Figure 5.2.  PCR amplification of (A) the hph HY and YG sections and (B) the flank regions for 

FGSG_09891 and FGSG_09906 plus the new 5‟ flank region for FGSG_09900. Lanes labelled with „C‟ are 

primer controls lacking template DNA.  
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Figure 5.3. A test of the fusion of the 5‟ flank and HY section and fusion of the 3‟ flank and YG 

section by PCR for FGSG_09893, FGSG_09900 (3‟ and YG only), and FGSG_09905.  

 

Figure 5.4. A test of the fusion of the 5‟ flank and HY section and fusion of the 3‟ flank and YG 

section by PCR for FGSG_09900 (5‟ and HY only), FGSG_09891 and FGSG_09906.  
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Figure 5.5. A. Test of FGSG_09891 5‟ flank fusion to HY. B. Nested PCR for 

FGSG_09891 5‟ flank fusion to HY using the construct from (A) as template.  

 

Figure 5.6. A. Test of FGSG_09900 and FGSG_09906 5‟ flank fusion to HY. B. Nested 

PCR for FGSG_09900 and FGSG_09906 5‟ flank fusion to HY using the constructs from (A) as 

template.  



164 
 

 

Figure 5.7. Fusion DNA used for transformation of F. graminearum protoplasts 

Transformants were screened by PCR for the presence of the target gene and 

hph gene. Six out of ten transformants screened for fgsg_09891 amplified the 

hph gene only (Figure 5.9). Six out of seven fgsg_09893 transformants (data 

not shown) and 13 out of 18 fgsg_09900 transformants amplified hph only 

(Figure 5.10). Nine transformants were screened for fgsg_09905 with three 

amplifying the hph gene only (Figure 5.11), while for fgsg_09906, 16 out of 20 

transformants appeared successful (Figure 5.12). For fgsg_09907 3 out of 4 

transformants appeared successful (Figure 5.8). 
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Figure 5.8. A. Flank-HY/YG fusion construct production for targeted deletion of 

FGSG_09907. B. PCR screen of fgsg_09907 (fcv1) transformants. Transformants numbered in 

red were selected for characterisation by Southern hybridisation (data kindly provided by M. 

Urban). 

 

Figure 5.9. PCR screen of fgsg_09891 transformants. Ten transformants (1-10) are 

depicted. Primers are used to amplify the hph  or FGSG_09891 genes, 91+ = positive control. 

H2O = water control (no template). P= PH-1 wild type. Transformants numbered in red were 

selected for characterisation by Southern hybridisation.  
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Figure 5.10. PCR screen of fgsg_09900 transformants. 18 transformants (1-18) are 

depicted. Primers are used to amplify the hph  or FGSG_09900 genes, 00+ = positive control. 

H2O = water control (no template). P= PH-1 wild type.  

 

Figure 5.11. PCR screen of fgsg_09905 transformants. Three transformants (4, 10, 13) 

are depicted. Primers are used to amplify the hph (H) or FGSG_09905 (05) genes. + = positive 

control. H2O = water control (no template).  Transformants numbered in red plus an additional 

putative ectopic insertion transformant were selected for characterisation by Southern 

hybridisation.  
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Figure 5.12. PCR screen of fgsg_09906 transformants. 20 transformants (1-20) are 

depicted. Primers are used to amplify the hph  (H) or FGSG_09906 genes, 06+, H+ = positive 

control. H2O = water control (no template). P= PH-1 wild type.  

 

Southern hybridisation was again used to confirm targeted deletion of genes 

and single-copy insertion of the deletion constructs. In total, five, five, five, four, 

five, and three transformants were selected for characterisation by this 

technique for fgsg_09891, fgsg_09893, fgsg_09900, fgsg_09905, fgsg_09906 

and fgsg_09907 (fcv1), respectively. Genomic DNA was digested by restriction 

enzymes (listed in Chapter 2) and used for Southern gel blot analysis (Figure 

5.13). 

For fgsg_09891, all five transformants showed the expected 3.0 and 3.4 kb 

bands in the EcoRV and EcoRI digests, respectively, compared to 2.4 and 5.4 

kb bands for PH-1 in the EcoRV and EcoRI digests, respectively (Figure 

5.13A). For fgsg_09893, all five transformants showed the expected 3.7 and 3.4 

kb bands in SalI digests compared to 2.1 and 4.3 kb bands for PH-1 (Figure 

5.13B). For fgsg_09900, four transformants (7-10) showed the expected 2.5 

and 6.3 kb bands in the PstI and EcoRV digests, respectively, compared to 5.8 

and 1.1 kb bands for PH-1 in the PstI and EcoRV digests, respectively (Figure 

5.13C). The fifth transformant (6) appeared to show ectopic insertion of the 

deletion constructs. For fgsg_09905, three transformants (4, 10, 13) showed the 

expected 1.3 and 2.4 kb bands in the EcoRI and BamHI digests, respectively, 
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compared to 4.1 and 3.6 kb bands for PH-1 in the EcoRI and BamHI digests, 

respectively (Figure 5.13D). Transformant 2 appears to be identical to the wild 

type strain at the FGSG_09905 locus. For fgsg_09906, four transformants (2, 3, 

11, 12) showed the expected 2.4 and 0.8 kb bands in the EcoRI and HindIII 

digests, respectively, compared to 4.1 and 2.6 kb bands for PH-1 in the EcoRI 

and HindIII digests, respectively (Figure 5.13E). Transformant 18 appears to 

show ectopic insertion of the deletion constructs. For fgsg_09907 (fcv1), three 

transformants showed the expected 3.9 kb and 0.7 kb bands in SacI and HindIII 

digest respectively, compared to 4.2 kb and 1.9 kb in the wild-type (Figure 

5.13F). 

 

Figure 5.13. (See over). Targeted deletion of the (A) FGSG_09891.3, (B) 

FGSG_09893.3, (C) FGSG_09900.3, (D) FGSG_09905.3, (E) FGSG_09906.3 and (F) 

FGSG_09907.3 (FCV1) genes in F. graminearum. Targeted deletion was confirmed by 

Southern hybridisation. The gene locus for the wild type and deletion strain is shown in each 

case. Two different restriction enzymes were independently used to digest genomic DNA 

(gDNA) of both the wild type and deletion strain. Each restriction enzyme digest set of wild type 

and deletion strain gDNA was hybridised with a different DNA probe ( 5‟ flank or 3‟ flank). 

Colours (black/red) indicate the pairing of restriction enzyme and probe and expected 

hybridising fragment size. Five, five, five, four, five and three independent transformants were 

analysed for each of FGSG_09891.3, FGSG_09893.3, FGSG_09900.3, FGSG_09905.3, 

FGSG_09906.3 and FGSG_09907.3 (FCV1) respectively and compared to the wild type strain. 

In each case the blots exhibited hybridising bands that indicated a single insertion of each of the 

two overlapping split marker DNA constructs and deletion of the target gene. P = Wild type,  E = 

ectopic insertion, K = knockout strain. Transformant numbers are shown above the radiograph.  
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As PKAR is located adjacent to FGSG_09907 (FCV1) at the 3‟ end of the 

FGSG_09907 (FCV1) locus, this raised the possibility that insertion of the hph 

gene and 3‟ FGSG_09907 (FCV1) flank at this site may have affected the 

functioning of the PKAR gene by causing sequence alterations at the point of 

insertion of the 3‟ flank. To eliminate this possibility, a 740 bp region between 

the hph and PKAR genes, encompassing part of the fgsg_09907 (fcv1) 3‟ flank 

and PKAR ORF in transformants 1, 3 and 4 was sequenced. By comparison to 

the published genome sequence (Cuomo et al., 2007, www.broad.mit.edu, 

www.mips.helmholtz-muenchen.de/genre/proj/fusarium). This analysis indicated 

no changes in the sequence between the FGSG_09907 (FCV1) 3‟ flank and 

PKAR due to the targeted deletion of FGSG_09907 (FCV1) in transformants 3 

and 4. In transformant 1, a single nucleotide change was noted. This could 

represent a sequencing error, however to remove any ambiguity, transformant 3 

was selected for further analyses of the FGSG_09907 (FCV1) deletion. 

The fgsg_09907 transformant 3 (later known as fcv1-3) strain was 

complemented by reinsertion of the FGSG_09907 (FCV1) gene. The wild-type 

FCV1 gene plus 1 kb upstream and 0.4 kb downstream sequence was amplified 

from genomic DNA of the wild-type PH-1 strain using primers that incorporate a 

25 bp overlap with the Neo neomycin phosphotransferase geneticin resistance 

gene (Figure 5.14A). The Neo gene was also amplified separately. These two 

sections were fused in a second PCR (Figure 5.14B to E) and the construct 

used to transform fcv1-3. PCR screening of transformants that showed 

resistance to both geneticin and hygromycin and had been grown from a single 

spore was used to select strains with successful reinsertion of the FGSG_09907 

(FCV1) gene. Transformants were assayed for the presence of FGSG_09907 

(FCV1), the geneticin and hygromycin resistance markers (Gen and Hph 

respectively), and a positive control gene (FGSG_09900) (Figure 5.15). Of the 

six transformants analysed, four (fcv1 + FCV1-1 to 4) successfully amplified all 

four genes indicating reinsertion of the FGSG_09907 (FCV1) gene together with 

the geneticin marker into the fgsg_09907 (fcv1) strain. Transformant 2 was 

selected for further analysis.  
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Figure 5.14. Production of DNA constructs for the genetic complementation of fgsg_09907 (fcv1). A. Amplification of the wild-type 

FGSG_09907 (FCV1) gene (07) and geneticin resistance gene (G) is shown with primer controls (07C and GC respectively). B. The FGSG_09907 

(FCV1) and geneticin resistance genes are fused in a second PCR. The band of size 2.5 kb is required. C. Ethanol precipitation of the fusion products is 

followed by gel extraction (D.) to yield the final fusion complementation construct (E.). The ladder in each case is λBst .  
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Figure 5.15. Confirmation of fgsg_09907 (fcv1) complementation. fgsg_09907 (fcv1), 

six independent putative complementation transformants and the PH-1 wild type strain were 

assayed by PCR for their ability to amplify FGSG_09900 (+ve control), FGSG_09907 (FCV1), 

the geneticin resistance marker (Neo) and hygromycin resistance marker (Hph). f = fcv1, P = 

PH-1 wt, 1-6 = six independent putative complementation transformants. H2O = primer controls 

(no template) for FGSG_09900, FGSG_09907 (FCV1), Neo and Hph, G = Neo positive control, 

H = Hph positive control. Transformant 2 was selected for further analyses.  
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Initial Characterisation of the Gene Deletion Strains 

 

5.3.2 Virulence on Wheat Plants 

Initially three independent transformants per gene deletion were analysed in 

preliminary wheat inoculation experiments (Figure 5.16). The virulence of the 

fgsg_09893, fgsg_09900, fgsg_09905 and fgsg_09906 transformants on wheat 

ears following point inoculation did not appear different from the wild-type. For 

fgsg_09891, transformants 5 and 6 did not appear to show a significant 

difference in virulence compared to the wild-type, while transformant 7 

appeared to show slightly reduced virulence (Figure 5.16). This transformant 

also displayed an in vitro growth behaviour distinct from transformants 4 and 5 

in vitro (see later) and so was not considered representative of the fgsg_09891 

targeted deletion strain and not used in further experimentation. Representative 

wheat ears are shown in Figure 5.17. 
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A 

 

B 

 

C 

 

Figure 5.16. Preliminary experiments. Progression of wheat ears cv. Bobwhite 

inoculated with (A) fgsg_09891, (B) fgsg_09893 or (C) fgsg_09900, transformants. Error bars 

are shown as the standard error of the mean for two ears per strain (three for PH-1 wt, one for 

fgsg_09891-3).  
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D 

 

E 

 

F 

 

Figure 5.16. (cont). Preliminary experiments. Progression of wheat ears cv. Bobwhite 

inoculated with (D) fgsg_09905, (E) fgsg_09906 or (F) fgsg_09907 (fcv1) transformants. Error 

bars are shown as the standard error of the mean for two ears per strain (three for PH-1 wt, one 

for fcv1-3).  
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Figure 5.17. Wheat ears inoculated with single gene deletion strains of additional genes 

in the F. graminearum cluster. White arrows indicate the point of inoculation. Images taken at 16 

dpi.  

 

All three transformants of the fgsg_09907 (fcv1) strain exhibited a reduced rate 

of symptom spread compared to the wild-type strain (Figure 5.16F, a typical ear 

is also shown in Figure 5.17). Transformant fgsg_09907-3 was selected for a 

larger scale experiment on an increased number of wheat ears (Figure 5.18A). 

Macroscopically, the spread of disease symptoms from the point of inoculation 

was much slower than with the wild type strain such that by 12 dpi the extent of 

disease symptoms for fgsg_09907-3 was only 57% of that of the wild-type. The 

fgsg_09907 (fcv1) transformants also failed to routinely „choke‟ the ears leading 

to drying of the ear above the point of inoculation, as is usually noted for 

inoculation with the wild-type strain (data not shown). To explore this phenotype 

further, the initial site of droplet inoculation was closely examined at 5 dpi 

(Figure 5.18B). This revealed browning of all the florets within the inoculated 

spikelet and the immature grain was brown as well as the rachis internode 

directly below the inoculated spikelet in the fgsg_09907-3-inoculated ears. Thus 

the initial infection and colonisation of the wheat spikelet by the fgsg_09907 

(fcv1) strain appeared to be similar to that of the wild-type parental strain. 

However, subsequently the rate of spread through the rachis internode, rachis 
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nodes, and the adjoining spikelets was reduced significantly by day 8 (Figure 

5.18A, p<0.05). At the end of the infection time course, dissection of the entire 

ear revealed that, unlike in the wild-type colonised ear, from the fgsg_09907-3 

colonised ear, although a lot of small brown aborted grain were present in the 

middle of the ear, plump green grain could be recovered from the base of the 

ear and small immature white grain were present above the point of inoculation. 

From each of the PH-1 infected ears only a few very shrivelled brown grain or 

no grain at all were recovered (Figure 5.19).  These additional analyses further 

suggest that the loss of the gene FGSG_09907 (FCV1) leads to a reduced rate 

of symptom development. Therefore, the gene FGSG_09907 has been 

designated FCV1 for Fusarium graminearum Contributor to Virulence 1. Strain 

fgsg_09907-3 is hereafter referred to as fcv1. Targeted deletion of six additional 

genes in the cluster has therefore revealed a further one gene, FCV1, which 

appears to be required for a wild-type rate of FEB symptom spread on wheat 

ears. 
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A 

 

B

 

 

Figure 5.18. The fgsg_09907-3 (fcv1) strain shows slower spread of disease symptoms 

in wheat ears. A. A large scale test using the representative transformant fgsg_09907-3 

(hereafter called fcv1). Black squares – wild-type, white triangles – fgsg_09907-3. Average of 

13 wild-type and 10 fgsg_09907-3 inoculated ears. Error bars are given as +/- one standard 

error of the mean. B. The early infection process of fgsg_09907-3 is similar to wild type but with 

a slower spread of visible symptoms. (Left) Images of wild type infected wheat ear at 5 dpi 

showing browning of the inoculated spikelets and rachis and shrivelled grain contained within 

the inoculated spikelets. (Right) Images of fgsg_09907-3 infected wheat ear at 5 dpi showing 

browning of inoculated spikelets but reduced rachis browning compared to wild type. Grain from 

inoculated spikelets are shrivelled but some are larger than those from ears infected with wild 

type F. graminearum. In this panel, some spikelets have been removed to shown the disease 

symptoms on the rachis.  
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Figure 5.19. The (A) mock (B) wild type (C) fgsg_09907-3 (fcv1) and (D) fcv1+FCV1 

infected wheat ears at 19 dpi. The three Fusarium strains destroy the developing grain in 

infected spikelets to different extents. Inoculated spikelets (black arrows) have become fully 

bleached for all three strains. The images show the central portion of the ear only. Grain 

collected from (E) mock (F) wild type (G) fgsg_09907-3 (fcv1) and (H) fcv1+FCV1 infected 

wheat ears at 19 dpi. The mock ear (E) contains healthy plump green grains and several small 

white grains not yet developed. The wild type, fgsg_09907-3 (fcv1) and fcv1+FCV1 infected 

ears (F-H) contain small shrivelled brown grain. The fgsg_09907-3 (fcv1) infected ear (G) 

contains a few plump green grains from uninfected spikelets (red arrow). Grain from the top of 

the ear, above the inoculation point are small but still green in fgsg_09907-3 (fcv1) infected ears 

(G) but are brown or shrivelled in wild type infected ears (F) (white arrows).  

 

 To confirm that the phenotypes observed in the fcv1 strain were due to deletion 

of the FCV1 gene, the fcv1 strain was genetically complemented by reinserting 

a copy of the wild type FCV1 gene. Reinsertion ectopically of the FCV1 gene 

into the fcv1 strain restored a wild-type rate of symptom spread on wheat ears 

(Figure 5.20).  These data further indicate that the in planta phenotypes noted 

in the fcv1 strain were due to the deletion of FCV1. Four independent 

complemented strains exhibited successful reinsertion of the FCV1 gene and 

recovery of the fcv1 reduced symptom spread rate phenotype on wheat ears 

(Figure 5.20). Complementation transformant 2 was selected for further 

analysis in a larger scale test (Figure 5.21) which confirmed the restoration of 

symptom spread rate by complementation of the fcv1 strain. 
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Figure 5.20. fcv1+FCV1 complementation transformants (1-4) show comparable 

symptom spread to the wild-type strain. Images taken at 10 dpi.  

 

 

Figure 5.21. Disease progression of wild type, fcv1 and fcv1+FCV1 strains on wheat 

ears.  The disease progress of the wild-type and fcv1+FCV1 strains was not significantly 

different. Three ears were used per strain. 
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5.3.3 In vitro Growth 

Three transformants per gene deletion were assessed for their rate of in vitro 

growth on minimal and complete medium compared to wild-type (Figure 5.22). 

For fgsg_09893, fgsg_09900 and fgsg_09906, all three transformants did not 

exhibit a growth rate significantly different from the wild type on either minimal 

or complete medium. For fgsg_09891, only transformant 7 grew at a 

significantly reduced rate on complete medium. Given the different behaviour of 

this isolate to other fgsg_09891 isolates in planta as well as in vitro, it was 

decided to discontinue use of fgsg_09891-7 as it did not appear representative 

of targeted deletion of the FGSG_09891 gene. All three fgsg_09891 

transformants grew at a significantly reduced rate on minimal medium, 

fgsg_09891-7 again exhibited the lowest rate of growth. The average growth 

rate reduction for fgsg_09891-4 and fgsg_09891-5 was 16% compared to wild-

type. For fgsg_09905, transformants 4 and 13 did not grow at a significantly 

different rate to wild-type on either complete or minimal medium, however, 

transformant 10 was significantly slower on both media types. This transformant 

was not considered representative of the fgsg_09905 deletion and was not used 

further. 

When grown in vitro, the three independently generated transformants of the 

fcv1strain (fcv1-1,3 and 4, formerly fgsg_09907-1, 3 and 4) showed an altered 

colony morphology with reduced hyphal density and a significantly reduced 

growth rate compared to the wild type strain on both minimal and complete 

medium (Figure 5.22C and D). When cultured on complete medium an average 

23% reduction in growth rate relative to wild-type was observed for the fcv1 

transformants. On minimal medium, the growth of the fcv1 transformants was 

far more restricted (average 66% reduction compared to wild-type). In a second 

experiment incorporating the fcv1+FCV1 complemented strain, the fcv1 strain 

showed a 29% reduction in growth rate on complete medium and a 62% 

reduction on minimal medium compared to the wild-type. The complemented 

strain grew at the same rate and with a similar appearance to the wild-type 

strain on both minimal and complete medium (Figure 5.23). 
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A 

 

B 

 

Figure 5.22. In vitro growth rate of the fgsg_09891, fgsg_09893, fgsg_09900, 

fgsg_09905 and fgsg_09906  strains on minimal medium (A) and complete medium (B). The 

wild type (wt) strain PH-1 is included for comparison. Columns marked with * are significantly 

different from the wild type strain at the 5% level.  
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C 

 

D 

 

Figure 5.22. (Cont).  In vitro growth rate of the fcv1 strains on minimal medium (C) and 

complete medium (D). The wild type (wt) strain PH-1 is included for comparison. Columns 

marked with * are significantly different from the wild type strain at the 5% level.  In (D) the 

square root of the growth rate is shown to indicate the data transformation used to permit 

analysis by ANOVA.  
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Figure 5.23. Growth rate of wild type, fcv1 and fcv1+FCV1 on minimal medium (black 

bars) and complete medium (white bars). * indicates significant difference from wild type at 

P<0.05. All error bars are presented as +/- one standard error of the mean (SE).   

 

When growing on minimal medium the fcv1 strain showed an unusual 

phenotype, whereby hyphal advance through the solid medium rather than on 

the surface was favoured, accompanied by production of many clusters of 

conidia within the agar. This gave the growing colonies a novel „feathery‟ 

appearance (Figure 5.24). By contrast, the wild type strain, fcv1+FCV1 strain 

and all the other single-gene deletion mutants showed a much denser growth 

on the agar surface of the minimal medium and only limited growth and 

production of conidial clusters within the agar. As a consequence the number of 

fcv1 conidia on the plate surface was visibly less than for the wild type strain.  

On complete medium, the production of aerial mycelium was greatly reduced in 

the fcv1 strain, leading to a darker colony appearance than wild type (Figure 

5.24 A and B).   
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Figure 5.24. In vitro growth of wild-type (top) and fcv1 (bottom) on complete medium 

(A-B) and minimal medium (C-D). A close-up of the minimal medium plates is shown in E and F 

to illustrate the differing colony morphologies. E. Wild-type, F. fcv1+FCV1 and G. and H. fcv1 

colony appearance on the surface of a minimal media agar plate. Note the higher hyphal 

density of wild type and fcv1+FCV1 strains compared to fcv1. The fcv1 images show two 

different focal planes of the same colony region. (3) illustrates sparse surface growth and (4) 

shows conidial abundance within the agar .  Bar = 40 µm. Images E and F by M. Urban. 
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To check that the reduced hyphal density of the fcv1 in the initiating agar plug 

was not the direct cause of the in vitro reduced growth, germinating conidia 

instead of plugs of mycelium were used as the starting inocula. This resulted in 

a more pronounced change in growth rate compared to the wild-type: complete 

medium (45% reduction), minimal medium (94% reduction), minimal medium 

with low carbon (84% reduction) and minimal medium with low nitrogen (84% 

reduction) (Figure 5.25). These results again indicated a more severe growth 

defect of fcv1 on minimal compared to complete medium. The germination 

efficiency of fcv1 and wild-type conidia was also tested on four different 

medium. This indicated an slight but significant overall reduction in germination 

rate of fcv1 compared to the wild-type strain on minimal medium types (minimal 

medium, minimal medium with low carbon and minimal medium with low 

nitrogen, 5.6% average reduction) but no significant difference in germination 

efficiency between the two strains on complete medium (Table 5.4). 

Collectively, these experiments reveal that there was an intrinsic lower growth 

rate of the fcv1 hyphae which was particularly pronounced when the colony was 

growing under nutrient limiting conditions.  

 

Figure 5.25. fcv1 has an inherently reduced growth rate compared to wild type. Growth 

rate of spore-inoculated plate cultures of wt (black bars) and fcv1 (white bars) on minimal 

medium (MM), minimal medium with low carbon (MM-C) or low nitrogen (MM-N) or complete 

medium (CM). *= significant difference from wild type at p<0.05.  
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Table 5.4. Spore germination efficiency of fcv1 and wild-type. * = significantly different 

to wild-type (p<0.05). 

Medium wt fcv1 

MM 99.33 92* 

MM-C 99.33 94.67* 

MM-N 99.33 94.67* 

Overall (MM)+(MM-C)+(MM-N) 99.33 93.78* 

CM 96 97.3 

 

The result of targeted deletion of the fcv1 homologue in the model filamentous 

fungus Neurospora crassa was also investigated. FASTA analysis indicated the 

best hit for fcv1 in N. crassa to be NCU01167, with a score of 49.7. The growth 

rate of the wild-type and ncu01167 deletion strains for both N. crassa mating 

type A and a on minimal medium was compared. In the case of both mating 

types, the ncu01167 strain grew significantly slower than the wild-type (43% 

and 40% reduction in growth rate for mating type A and a, respectively, Figure 

5.26). This indicates that the fcv1 gene and its homologues are required for the 

full growth potential of both these species of fungi yet are not essential for life. 

 

Figure 5.26. In vitro growth rate of the wild-type and fcv1 homologue deletion strains of 

the model filamentous fungus Neurospora crassa. In each case the mating type (A or a) is 

indicated.  
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In the nutrient-rich environment of the developing wheat ears, the disease 

development of fcv1 following point inoculation by agar plugs was only 50% of 

that shown by the wild-type by day 8, 58% by day 12 and 48% by day 16 in the 

experiment shown in Figure 5.18A and 58% of that of the wild-type by day 8, 

57% by day 12 and 62% by day 16 in the experiment shown in Figure 5.21. By 

the 16 dpi time point the wild-type isolate had produced disease symptoms 

throughout the ear (Figure 5.21). The in vitro growth rate of fcv1 on agar plug 

inoculated complete medium plates was 77% of that of the wild-type in the 

experiment shown in Figure Figure 5.22D and 70% in the experiment shown in 

Figure 5.23. This growth defect appears to contribute to the observed reduction 

in disease development.  

Interestingly, microscopic observations revealed that during the early phase of 

fcv1 induced disease development up to day 4, both the macroscopic external 

and internal symptom development were similar to the wild-type strain in the 

initially inoculated spikelet. It is presumed that at the time of inoculations the 

spikelets are potentially the most nutrient rich tissue in the ear because of the 

phloem connections are continuously unloading sucrose to the sink tissue, the 

five developing grain.  Also up to 15 anthers containing mature pollen are also 

present within each spikelet and may act as a further nutrient source.   

 

5.3.4 Bioinformatic Analysis of the FCV1 Gene 

Bioinformatic analysis of the FCV1 sequence revealed a number of features. 

The subcellular location of Fcv1 was predicted to be intracellular, with limited 

homology to a number of nuclear, cytoplasmic and mitochondrial proteins being 

reported (Table 5.5). A search for signal peptide sequence in Fcv1 did not 

locate a predicted signal peptide, consistent with an intracellular protein location 

for Fcv1 (Figure 5.27A). Fcv1 also appears to lack transmembrane elements, 

further suggesting a location inside the cell (Figure 5.27B). 

 

In planta, the expression of FCV1 remained low over a 144 h time course of F. 

graminearum strain PH-1 infecting the ears of the fully susceptible barley 

cultivar Morex and exhibited little fluctuation (Figure 3.5, Güldener et al., 2006). 

This pattern of expression is in contrast to other genes in the cluster such as 
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FGSG_09891, FGSG_09893, NTH1, FGSG_09906 and PKAR which show a 

large increase in transcript abundance over the time course, and is more akin to 

that of genes such as FGSG_09892. 

 

A multiple sequence alignment comparing Fcv1 and its closest homologues in 

the fungal species analysed in Chapter 3 indicates a region of higher 

conservation towards the C-terminal end of the protein (Figure 5.28). The 

greatest sequence conservation is found between the Fusarium species, and, 

like the cluster synteny analysis in Chapter 3, a gradual breakdown of 

conservation is noted when less closely related species are compared to F. 

graminearum. 

 

A BLAST search for homologues of Fcv1 revealed the presence of a Bcas2 

domain that encompasses most of the Fcv1 sequence. Breast Carcinoma 

Amplified Sequence 2 (Bcas2) was identified as a protein upregulated in breast 

cancer (Nagasaki et al., 1999, Worsham et al., 2006) but has since been 

characterised as a pre mRNA splicing factor and is also known as Spf27 or 

Cwf7 (Neubauer et al., 1998, Ajuh et al., 2000; Maass et al., 2002; Ohi et al., 

2002). Fcv1 exhibits a degree of sequence identity to Bcas2/Spf27 proteins. A 

protein sequence comparison Fcv1 and a number of Bcas2/Spf27 proteins is 

shown in Table 5.6. Further analysis revealed that Fcv1 is not predicted to 

contain either a nuclear localisation sequence or nuclear export sequence. 
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Table 5.5. Fcv1 WoLFPSORT prediction. Number of hits: Nuclear: 13.0, Cytoplasmic: 8.5, Cytoplasmic/Mitochondrial: 7.5, Mitochondrial: 5.5 

ID Site Identity (%) Comments 

MAZ3_SCHCO Nuclear 8 [Uniprot] SWISS-PROT45:Nuclear. 

CCHL_NEUCR Mitochondrial 16 [Uniprot] SWISS-PROT45:Mitochondrial inner membrane.  

LEU3_PHACH Cytoplasmic 12 [Uniprot] SWISS-PROT45:Cytoplasmic. 

CPC1_NEUCR Nuclear 14 [Uniprot] SWISS-PROT45:Nuclear. 

ARIS_PENRO Cytoplasmic 14 [Uniprot] SWISS-PROT45:Cytoplasmic. 

DYNA_NEUCR Cytoplasmic 6 [Uniprot] SWISS-PROT45:Cytoplasmic. 

MAZ4_SCHCO Nuclear 8 [Uniprot] SWISS-PROT45:Nuclear. 

PTH_YEAST Mitochondrial 12 [Uniprot] SWISS-PROT45:Mitochondrial. GO:0005739; C:mitochondrion 

LEU3_PICST Cytoplasmic 12 [Uniprot] SWISS-PROT45:Cytoplasmic. 

RPB3_SCHPO Nuclear 14 [Uniprot] SWISS-PROT45:Nuclear. 

BIMB_EMENI Nuclear 4 [Uniprot] SWISS-PROT45:Nuclear. 

B7_USTMA Nuclear 12 [Uniprot] SWISS-PROT45:Nuclear. 

LEU3_CANAL Cytoplasmic 15 [Uniprot] SWISS-PROT45:Cytoplasmic. 

COX6_NEUCR Mitochondrial 17 [Uniprot] SWISS-PROT45:Mitochondrial inner membrane.  

DODA_AMAMU Cytoplasmic 15 [Uniprot] SWISS-PROT45:Cytoplasmic. 

MB11_COPCI Nuclear 9 [Uniprot] SWISS-PROT45:Nuclear. 

LEU3_CANMA Cytoplasmic 14 [Uniprot] SWISS-PROT45:Cytoplasmic. 

ZUO1_YEAST Nuclear 14 [Uniprot] SWISS-PROT45:Nuclear. GO:0005840; C:ribosome 

MK16_YEAST Nuclear 15 [Uniprot] SWISS-PROT45:Nuclear. GO:0005730; C:nucleolus 

CPC1_CRYPA Nuclear 15 [Uniprot] SWISS-PROT45:Nuclear. 

SPT4_YEAST Nuclear 13 [Uniprot] SWISS-PROT45:Nuclear. GO:0008023; C:transcription elongation factor complex 

SSN6_YEAST Nuclear 7 [Uniprot] SWISS-PROT45:Nuclear. GO:0005634; C:nucleus 

ATPD_AGABI Mitochondrial 15 [Uniprot] SWISS-PROT45:Mitochondrial. 

LEU3_ASHGO Cytoplasmic 14 [Uniprot] SWISS-PROT45:Cytoplasmic. 

LEU1_YEAST Cyto/Mito 11 [Uniprot] SWISS-PROT45:Mitochondrial and cytoplasmic. GO:0005739; C:mitochondrion 

SW10_SCHPO Nuclear 13 [Uniprot] SWISS-PROT45:Nuclear. 

http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#MAZ3_SCHCO
http://www.uniprot.org/entry/P37937
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#CCHL_NEUCR
http://www.uniprot.org/entry/P14187
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#LEU3_PHACH
http://www.uniprot.org/entry/O59930
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#CPC1_NEUCR
http://www.uniprot.org/entry/P11115
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#ARIS_PENRO
http://www.uniprot.org/entry/Q03471
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#DYNA_NEUCR
http://www.uniprot.org/entry/Q01397
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#MAZ4_SCHCO
http://www.uniprot.org/entry/P37938
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#PTH_YEAST
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#LEU3_PICST
http://www.uniprot.org/entry/O94114
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#RPB3_SCHPO
http://www.uniprot.org/entry/P37382
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#BIMB_EMENI
http://www.uniprot.org/entry/P33144
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#B7_USTMA
http://www.uniprot.org/entry/P22021
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#LEU3_CANAL
http://www.uniprot.org/entry/P87186
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#COX6_NEUCR
http://www.uniprot.org/entry/Q01359
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#DODA_AMAMU
http://www.uniprot.org/entry/P87064
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#MB11_COPCI
http://www.uniprot.org/entry/P40333
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#LEU3_CANMA
http://www.uniprot.org/entry/P07139
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#ZUO1_YEAST
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#MK16_YEAST
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#CPC1_CRYPA
http://www.uniprot.org/entry/P87090
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#SPT4_YEAST
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#SSN6_YEAST
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#ATPD_AGABI
http://www.uniprot.org/entry/Q92196
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#LEU3_ASHGO
http://www.uniprot.org/entry/O60027
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#LEU1_YEAST
http://wolfpsort.org/results/fTN420dd10473105c05262549feb4f7196a.alignment1.html#SW10_SCHPO
http://www.uniprot.org/entry/Q06182
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A 

 

B  

 

TMHMM prediction: 

Sequence Length: 195 

# Sequence Number of predicted TMHs:  0 

# Sequence Exp number of AAs in TMHs: 0.00556 

 

 

Figure 5.27. Bioinformatic analysis of the Fcv1 protein sequence. Prediction results for 

signal peptide (top) and transmembrane elements (bottom) indicate the absence of both of 

these features in Fcv1. The signal peptide C score is a “cleavage site” score which should only 

be high at a predicted signal peptide cleavage site, the S score is  a “signal score” provided for 

each amino acid with high scores indicating that residue is likely to form part of the signal 

peptide. The Y score is a derivative of the C and S scores to provide better cleavage site 

prediction. The TMHMM plot calculates the probability for each residue that it resides in a helix, 

inside or outside the cell. The prediction, which considers the most probable overall structure 

suggests a lack of transmembrane helices for Fcv1 . 
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Table 5.6. Protein sequence identity of Fcv1 toBcas2/Spf27 proteins and Arabidopsis 

Mos4. 

Protein Species Identity (%) Similarity(%) 

Bcas2 Aspergillus fumigatus 43.5 57.9 

Bcas2 Talaromyces stipitatus 43.4 57.0 

Bcas2 Penecillium marneffei 42.7 57.8 

Cwf7 Schizosaccharomyces pombe 26.5 38.9 

Spf27 Lepeophtheira salmonis 26.1 40.9 

Bcas2 Xenopus laevis 24.2 43.6 

Bcas2 Homo sapiens 23.6 43.2 

Spf27 Homo sapiens 23.6 43.2 

Mos4 Arabidopsis thaliana 23.4 34.0 
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Figure 5.28. (See over). Multiple sequence alignment of Fcv1 (Fgsg_09907.3) and its 

closest homologues in the fungal species analysed in Chapter 3. The highest level of sequence 

conservation is with the other Fusarium species, F. verticillioides, F. oxysporum and F. solani. 

Species identifiers are as follows: Foxg (F. oxysporum), Fveg (F. verticillioides), Fgsg (F. 

graminearum), Nh (F. solani), Tr (T. reesei), Mgg (M. oryzae), Ncu (N. crassa), Mg (M. 

graminicola), Um (U. maydis). Shading indicates well-conserved residues (red – conserved in all 

sequences, orange – conserved in at least 80% of the sequences and yellow - conserved in at 

least 60% of the sequences). The full titles of the hits in F. solani, T. reesei and M. graminicola 

are: jgi|Necha2|80338|fgenesh1_pg.sca_5_chr5_3_0000137, jgi|Trire2|57923|e_gw1.4.1012.1 

and jgi|Mycgr3|83408|fgenesh1_pm.C_chr_1000118 respectively. 
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 : 200

 :   -

 : 200

 : 206

 : 227

 :   -

 :   -

 : 227

 : 279
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5.4 Discussion 

Targeted deletion of the homologues of verified virulence genes that are 

present in the micro-region confirmed a role for four of these five genes in the 

determining the rate of FEB symptom spread by F. graminearum on wheat ears. 

Having confirmed the importance of this region of chromosome 1 in disease 

progression by F. graminearum, additional genes in the region were selected for 

targeted deletion in the search for novel virulence determinants. Six further 

genes were successfully deleted – FGSG_09891, FGSG_09893, FGSG_09900, 

FGSG_09905, FGSG_09906 and FGSG_09907 (FCV1).  

The fgsg_09891, fgsg_09893, fgsg_09900, _fgsg_09905 and fgsg_09906 

targeted deletion mutants did not show disease symptom progression 

significantly different to the wild type strain. However, deletion of FGSG_09907 

caused a significant reduction in the rate of disease symptom spread and this 

gene has been named Fusarium graminearum Contributor to Virulence 1 

(FCV1). Disease progression of F. graminearum on wheat ears was restored by 

reinsertion of a copy of the wild-type gene into the fcv1 strain. 

FCV1 deletion also alters the filamentous growth and morphology of F. 

graminearum. The growth rate of the fcv1 strain was reduced compared to the 

wild-type and complemented strains on both complete and minimal medium. 

The reduction in growth rate of fcv1 on complete medium appears to explain a 

large portion of its defect in FEB symptom spread rate. Like pkar, an additional 

in planta-specific effect may also be present that leads to the larger in planta vs 

in vitro defect in these strains. However, further investigation may be required to 

confirm any additional effects during host invasion. 

The growth morphology of the fcv1 strain on minimal medium exhibited an 

unusual degree of preference for growth within the solid medium as oppose to 

surface growth, leading to an altered colony appearance. On minimal medium 

the F. graminearum MAP kinase deletion strain gpmk1 (map1) has been 

reported to exhibit growth under the surface of the solid medium with few long 

hyphae (Jenczmionka et al., 2003). Hyphae of strain 8/1 harbouring a deletion 

of the GPMK1 gene are short, highly branched and produce conidia. The 

gpmk1 disruption mutants are reduced in conidiation on SNA medium, however 

as almost all conidia are contained within the medium and unable to be 
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harvested from the medium surface, this result appears to be misleading 

(Jenczmionka et al., 2003). By covering the SNA plates with cellophane foil to 

include the conidia produced under the surface, gpmk1 still exhibited a 

reduction level of conidiation compared to the wild type strain (Jenczmionka et 

al., 2003). However, Urban et al. found no reduction in spore production by 

gpmk1 mutants (Urban et al., 2003). 

Jenczmionka et al. noted just three to four conidia were produced per 

conidiophore in gpmk1 mutants and were found under the surface throughout 

the whole plate, unlike the typical large bundles of conidia normally observed 

(Jenczmionka et al., 2003). The Urban et al. study of GPMK1 also found that 

gpmk1 mutants produce conidia that are evenly spread across the colony rather 

than contained in discrete sporodochia, although in this case many conidia were 

present on the surface of the solid medium (Urban et al., 2003). The viability of 

conidia was unaffected by the disruption of GPMK1 (Jenczmionka et al., 2003; 

Urban et al., 2003). The similarities between the growth patterns of the gpmk1 

and fcv1 mutants suggests that the proteins they encode may function in an 

overlapping set of processes in F. graminearum involved in growth morphology. 

The bioinformatics analysis revealed a predicted intracellular location for Fcv1 

and a low level of expression in planta. Fcv1 also was found to contain a Bcas2 

domain and showed a degree of similarity to Spf27/Bcas2 proteins. Bcas2 was 

originally identified as a protein upregulated in breast cancer and breast cancer 

cell lines (Nagasaki et al., 1999, Worsham et al., 2006) but ubiquitously 

expressed in many organs (Nagasaki et al., 1999). Upregulation of Bcas2 in 

cancer cells appears to be specific for breast cancer (Maass et al., 2002) and 

Bcas2 appears to be localised to the nucleus (Maass et al., 2002, Qi et al., 

2005). Bcas2 has also been suggested to interact with estrogen receptor α and 

modulate its transcriptional regulation activity (Qi et al., 2005). The human 

Bcas2 sequence was found to be identical to that of a putative spliceosome-

associated protein identified by mass spectrometry, known as Spf27 (Maass et 

al., 2002; Neubauer et al., 1998, Ajuh et al., 2000). Fcv1 also shows similarity to 

the fission yeast (Schizosaccharomyces pombe) Spf27 homologue Cwf7 (Ohi et 

al., 2002, NP_595665) and other Spf27 proteins.  
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Cwf7 was identified in S. pombe as a protein that co-immunoprecipitated with 

the protein Cdc5 as part of a 40S snRNP-containing complex (McDonald et al., 

1999). Cdc5, together with its S. cerevisiae and human homologues Cef1 and 

hCdc5L respectively, are required for pre-mRNA splicing (Burns et al., 1999; 

McDonald et al., 1999; Tsai et al., 1999; Ajuh et al., 2000, 2001) and are 

present in spliceosome-associated complexes that may function in spliceosome 

assembly (Neubauer et al., 1998; McDonald et al., 1999; Tsai et al., 1999, Ajuh 

et al., 2000; Ohi et al., 2002; Chan et al., 2003). In S. cerevisiae, the complex 

containing Cef1 is known as the PRP NTC (Nineteen Complex) due to the 

presence of the Prp19 protein (Tsai et al., 1999). In humans, the NTC is also 

known as the NMP200 Complex or PSO4 complex (Ohi and Gould 2002). 

Interaction of Cwf7 with Cdc5 was confirmed by a further study using mass 

spectrometry and co-immunoprecipitation to analyse the content and 

interactions of the Cdc5-associated complex components (Ohi et al., 2002). The 

CWF7 gene was found to be essential for viability and by analysing cells lacking 

the Cwf7 protein, it was shown that levels of pre-mRNAs of TFIID and HIS3 

increased, while levels of the corresponding mature mRNAs decreased (Ohi et 

al., 2002). This indicated that Cwf7 is required for pre-mRNA splicing in S. 

pombe. The human homologue of Cwf7, Spf27, co-purifies with hCdc5L (Ajuh et 

al., 2000), but no homologue of Cwf7 is found in the Saccharomyces cerevisiae 

Cef1-associated complex (Ohi et al., 2002). However, Cwf7 interacts with Cwf8, 

the S. pombe homologue of the S. cerevisiae pre-mRNA splicing factor Prp19 

(Ohi and Gould, 2002). Prp19 interacts with both Cef1 and Snt309 in S. 

cerevisiae using the same conserved sequence element as the Cwf7-Cwf8 

interaction (Chen et al., 1998; Tsai et al., 1999; Ohi and Gould, 2002). Cwf7 

overexpression is able to rescue growth of snt309 cells, suggesting that Cwf7 is 

a functional homologue of Snt309 (Ohi and Gould, 2002). 

 

Human Prp19 may also act as an E3 ubiquitin ligase (Hatakeyama et al., 2001) 

and complexes containing Prp19 and Spf27, and also Cdc5 have been 

suggested to be involved in the response to DNA damage (Lu and Legerski, 

2007; Zhang, N. et al., 2009). Prp19 overexpression in human cells reduces 

DNA damage-induced apoptosis (Lu and Legerski, 2007).  
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Bcas2 has been reported to interact with the p53 tumour suppressor protein and 

reduce its transcriptional activity. Bcas2 deprivation induced apoptosis in cells 

containing p53 by retaining p53 in the nucleus and increasing p53 

transcriptional activity (Kuo et al., 2009). Cdc5 is also required for G2/M 

progression in S. pombe (Nurse et al., 1976; Ohi et al., 1994; McDonald, et al., 

1999). Interestingly, in human cells lacking p53, or containing a mutant p53, 

depletion of Bcas2 caused cell cycle arrest at the G2/M checkpoint (Kuo et al., 

2009). 

 

Fcv1 also shows 23.4% protein sequence identity to the Arabidopsis thaliana 

Mos4 protein (At3g18165, NP_566599.1) (this study; Palma et al., 2007). The 

MOS4 (modifier of snc1, 4) gene was identified in a screen for suppressors of 

the snc1 (suppressor of NPR1-1, constitutive 1) gain-of function mutation which 

leads to constitutive defence activation and enhanced resistance (Zhang et al., 

2003; Palma et al., 2007). The mos4-1 mutation abolishes the snc1 defence 

and resistance phenotypes. The mos4-1 mutant Arabidopsis plants show 

delayed flowering time and a reduced number of seeds per silique compared to 

the wild type Col-0 (Palma et al., 2007). GFP fusion showed that Mos4 is 

nuclear localised.  

Arabidopsis plants harbouring the snc1 mutation show constitutive expression 

of the PR-1 and PR-2 pathogenesis-related genes. Double mutant mos4-1 snc1 

plants however, lose constitutive PR-2 expression and also show a partial 

reduction in PR-1 expression. . In addition, mos4-1 also recovers the small curly 

leaves seen in snc1 to a wild type appearance (Palma et al., 2007). PR-1 

expression is regulated by salicylic acid (SA) via the Npr1 protein which controls 

basal resistance (Dong, 2004). That mos4-1 npr1 plants are more susceptible 

than either mos4-1 or npr1-1 plants suggests that two separate basal defence 

pathways could be affected in mos4-1 npr1 plants. This implies a role for MOS4 

in regulating NPR1-independent basal resistance (Palma et al., 2007). 

However, mos4-1 snc1 double mutation also partially reduces the high PR-1 

expression of snc1 plants so MOS4 may also play a role in NPR1-dependent 

responses. The mos4-1 mutation also restores approximately wild type levels of 

salicylic acid (SA) to snc1 plants, which show elevated SA. However, mos4-1 

plants still show an increase in SA in response to avirulent pathogens. The 
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reduced SA levels of mos4-1 snc1 plants may be due to regulation of SA 

synthesis by the SA-independent pathway (Palma et al., 2007).  

In common with its S. pombe and human homologues, Mos4 interacts with 

AtCdc5, which shows significant homology to human Cdc5L. AtCdc5 also 

interacts with Prl1, a nuclear-localised homologue of the Plrg1 protein that 

interacts with hCdc5L in the NTC (Ajuh et al., 2001). AtCDC5 mutation partially 

suppresses the morphological, enhanced resistance and enhanced PR-1 and 

PR-2 expression of the snc1 mutation. 

Each of the mos4, Atcdc5 and prl1 single gene mutants is more susceptible to a 

subclinical concentration of the bacterial pathogen Pseudomonas syringae pv 

maculicola (P.s.m.) that does not cause symptoms in the wild type Col-0 and 

also to Pseudomonas syringae pv tomato DC3000 (P.s.t.) and the oomycete 

Hyaloperonospora parasitica Noco2, indicating that all three genes are involved 

in basal resistance in A. thaliana (Palma et al., 2007). Each mutant also shows 

reduced expression of PR-1 compared to wild type when inoculated with a 

clinical dose of P.s.m., but all could accumulate SA in response to infection. 

Inoculation with P.s.t. DC3000 hrpA− which is unable to secrete effectors did 

not lead to significant growth in either the wild-type or mutant plants, suggesting 

that MOS4, AtCDC5 and PRL1 do not play a role in non-host resistance (Palma 

et al., 2007). 

 

Due to their similar phenotypes and demonstrable interaction, Mos4, AtCdc5 

and Prl1 were proposed to act together in a multiprotein complex similar to the 

NTC to regulate immunity in Arabidopsis, termed the Mos4-associated complex 

(MAC) (Palma et al., 2007). The authors suggest that the individual components 

of the MAC are not essential for splicing as a total loss of splicing would most 

likely be lethal and the mos4, Atcdc5 and prl1 plants are only mildly affected by 

mutation of these genes, although they acknowledge that the complex as a 

whole could prove essential for splicing as mos4-1Atcdc5-1 and mos4-1 prl1-1 

double-homozygous mutants appeared to be lethal. It has been suggested that 

the MAC could function in alternative splicing but assays of several Arabidopsis 

genes known to undergo alternative splicing showed no difference in splicing 

pattern in the mos4, Atcdc5 or prl1 mutants compared to wild type (Palma et al., 

2007). As AtCdc5 exhibits in vitro sequence-specific DNA-binding activity 



202 
 

(Hirayama and Shinozaki 1996), it has been suggested that the MAC acts as a 

transcriptional regulator (Palma et al., 2007). Alternatively, the MAC could 

contribute to regulation mediated by microRNA (miRNA) and small interfering 

RNA (siRNA) (Palma et al., 2007). 

 

More recently, the entire MAC was identified by immune-affinity purification and 

24 MAC proteins including Mos4, AtCdc5 and Pel1 were identified (Monaghan 

et al., 2009). Of these, 19 MAC proteins show homology to NTC proteins 

including two functionally redundant proteins named Mac3A and Mac3B that 

show homology to Prp19. Many MAC proteins are predicted to play a role in 

splicing from their homology to known splicing proteins including snRNPs. Like 

the previously-characterised MAC components, Mac3A and Mac3B are required 

for basal and R protein-mediated resistance in Arabidopsis and suppress the 

various snc1 phenotypes. However, unlike Mos4, AtCdc5 and Prl1, race-

specific resistance conferred by the R protein Rpm1 was not affected by MAC3 

mutation. Similarly, resistance mediated by another race-specific resistance R 

protein Rpp2 was also unaffected by MAC3 mutation.  But both Rps4 and Rps5 

mediated race –specific resistance was found to be reduced when assessed in 

the mac3a mac3b double mutant background. In plants, R proteins are involved 

in the direct or indirect detection of pathogens (often via their secreted „effector‟ 

molecules) and activation of defence responses (reviewed, for example, in 

Hammond-Kosack and Jones, 1997; Bent and Mackey, 2007). Both Mac3A and 

Mac3B are localised to the nucleus and Mac3A was shown to interact with 

AtCdc5 in planta. 

 

Mutation of MOS4 or PRL1 in a mac3a mac3b background is lethal, further 

suggesting that the entire MAC is required for an essential process such as 

splicing. However, Mac3B was recently shown to have in vitro E3 ubiquitin 

ligase activity (Wiborg et al., 2008). E3 ubiquitin ligases are known to play roles 

in plant defence (reviewed, for example in Craig et al., 2009) and so the MAC 

may contribute to immunity via ubiquitin targeted protein degradation 

(Monaghan et al., 2009). 
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It is currently unknown if Fcv1 contributes to growth, morphology, and FEB 

symptom spread of F. graminearum by participating in the correct splicing of 

pre-mRNAs of genes required for specific cellular processes. Further 

investigation will be required to determine the connection between FCV1 and 

these processes in fungi.  So far the bioinformatics analysis indicates that the 

Fcv1 protein is most likely cytoplasmically localised in F. graminearum. 

Therefore, interacting proteins would be required to target the protein to the 

nucleus if this is the site of its functioning.  

Deletion of FGSG_09893, FGSG_09900, FGSG_09905 and FGSG_09906 

appeared to have little effect on the in vitro growth of F. graminearum. 

FGSG_09891 encodes a protein with sequence similarity to S. cerevisiae Get3. 

Get3 is a highly conserved ATPase protein with homology to the ArsA subunit 

of bacterial arsenical transporters (Boskovic et al., 1996, Shen et al., 2003), but 

appears not to possess an arsenic binding site (Metz et al., 2006). A number of 

roles have been suggested for Get3 (also known as Arr4) including stress 

resistance to As3+, As5+, Co2+, Cr3+, Cu2+ or VO4
3- salts and temperature (Shen 

et al., 2003), metal ion homeostasis via copper-dependent interaction with and 

possible antagonisation of the CLC chloride transport protein Gef1 in yeast 

(Metz et al., 2006), and in secretory pathway protein sorting in a complex with 

the proteins Get1 and Get2 (Schuldiner et al., 2005; Auld et al., 2006). GET3 

mutation rescues some of the phenotypes of the npl4 mutant, which is afflicted 

in a gene encoding a component of the Cdc48-Npl4-Ufd1 complex that 

regulates several membrane-associated processes, such as ER-associated 

degradation (ERAD) via the proteasome (Bays et al., 2001; Auld et al., 2006). 

GET3 is co-regulated with both the Cdc48-Npl1-Ufd1 complex and the 

proteasome. Get3 is localised to the ER and nuclear membranes and cytosol, 

and localisation at the ER membrane requires the Get1 and Get2 proteins. 

Interestingly, deletion of GET1 or GET2 alters Get3 distribution to a small 

number of punctuate sites, as found during stress conditions or a switch from 

rich to minimal medium (Shen et al., 2003, Schuldiner et al., 2005), although 

this change of localisation has also been shown to be dependent on the 

presence of Get1 (Schuldiner et al., 2005).  Growth of the fgsg_09891 strain 

was significantly slower than the wild-type on minimal but not complete medium, 

suggesting that loss of FGSG_09891 may restrict growth of F. graminearum in 
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nutrient-limiting conditions but in higher nutrient environments such as growth 

on complete medium or in planta, the fgsg_09891 strain is able to grow in a 

manner comparable to wild-type, by comparison, get3 exhibited a growth defect 

in iron-limiting conditions (Metz et al., 2006). 
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Chapter 6. Further Characterisation of the Single Gene Deletion Strains 

 

6.1 Introduction 

The functional investigations of the Chromosome I gene micro-region described 

in Chapters 3 and 4 revealed the presence of four homologues of verified 

virulence genes that are required for the full rate of FEB symptom spread 

caused by F. graminearum on wheat, and an additional gene, named here as 

FCV1, which is also required for a normal rate of symptom development. This 

chapter describes further characterisation of the nth1, pkar and fcv1 single gene 

deletion strains of F. graminearum.  

 

6.2 Methods 

6.2.1 In vitro Growth Tests and Wheat Virulence Assays 

These are described in Chapter 2. In the case of the H2O2 oxidative stress 

combined analysis, four datasets were analysed together. The number of 

replicates used is shown in Table 6.1. The combined dataset was analysed by 

REML (see Chapter 2). 

Table 6.1. Number of replicates used in the combined hydrogen peroxide stress 

analysis. 

 
mM hydrogen peroxide 

  0 2 5 

PH-1 wt 12 9 9 

fcv1 12 9 9 

fcv1+FCV1 3 3 3 

 

6.2.2 In vitro Conidia Production 

A 2 ml aliquot of mung bean liquid medium (M. Urban) was placed in each well 

of a 6 well plate (Nunc). Each well was inoculated with either 400 conidia (in the 

case of PH-1 wt, nth1 and fcv1) or a 9 mm plug of an SNA agar dish culture (in 

the case of PH-1, pkar and PKAR-e). The plate was incubated at 28°C, shaking 
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at 170 rpm in the dark for 7 days. Spore concentration was determined using a 

haemocytometer. Four wells were used per fungal strain. 

 

6.2.3 Perithecia Induction and Ascospore Discharge 

Perithecia production was assayed using carrot agar (Proctor et al., 1997). After 

five days of growth, the total aerial mycelium was removed and the plate spread 

with 0.7 ml of 2.5% Tween 60. Perithecia development was recorded for up to 2 

weeks. Ascospores were collected by placing 4 ml sterile water in the lid of the 

upturned plates and incubating for a further 24 hours.  The sterile water was 

then pipetted onto microscope slides and observed for ascospores. Three 

plates were used per strain. 

 

6.2.4 DON Mycotoxin Production 

To analyse the in planta production of DON, wheat ears (cv. Bobwhite) were 

inoculated as described above for PH-1 wt, nth1 and fcv1) by placing the 

conidial suspension into two florets of ten adjacent spikelets of each ear.  

Alternatively, small plugs of an SNA agar plate culture of PH-1, pkar or PKAR-e 

were added into 10 paired florets per ear using a Pasteur pipette tip. After 10 

days the ears were collected, frozen at -80°C and then freeze-dried. The 

infected portion of each ear was ground with liquid nitrogen, diluted 1:5 with 

sterile water and blended for 20 s. The resulting mixture was centrifuged at 

4800 rpm for 5 minutes and the supernatant diluted in an appropriate amount of 

50 mM Tris pH8.0 for DON quantification using the EZ-Quant DON ELISA kit 

(Diagnostix). Three ears were analysed separately per fungal strain.  

 

6.2.5 Arabidopsis thaliana Virulence Assays 

For inoculation of Arabidopsis thaliana, plants of the ecotype Landsberg erecta 

(Ler) were inoculated according to Urban et al., (2002) using a conidial 

suspension spray. Disease progression was scored using a modification of the 

protocol described in Cuzick et al.2008. Plants were sprayed with either 0.5 ml 
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of 1 × 105 Fusarium conidia ml-1 or water (control). Twenty plants were used per 

fungal strain over two separate experiments and the data pooled. Inoculated 

plants were placed in trays and then inside a perspex inoculation box containing 

1 cm of water. These boxes were sealed and placed in the dark for 16 h before 

uncovering. Plant growth and inoculation experiments were performed inside 

controlled growth facilities (Weiss Gallenkamp) at Rothamsted Research. Plants 

were scored for disease progression at 9 days post inoculation (dpi) using a 

numerical scoring scale system for flowers (F) and siliques (S). Scores were 

assigned as described in Table 6.2. The number of counts per score for each 

fungal strain used were determined and the data analysed using a Generalised 

Linear Model. The model fitted (see chapter 2) was (Experiment/Block/Rep) + 

Strain*Scale. Apical dominance and height data were analysed by General 

ANOVA. 

Table 6.2. Disease scoring system used for Arabidopsis (adapted from Cuzick et al., 

2008). 

Organ Score Description of disease phenotypes 

   

Flowers (F) 0 Normal 

 1 Aerial mycelium visible on flower 

 3 Drying of flowers 

 5 Stem constriction within flower head 

   

Siliques (S) 0 Normal 

 1 Aerial mycelium on silique surface 

 3 Drying of silique surface 

 5 Drying of pedicel surface or pedicel 
constriction 

  7 Main stem constriction (including loss of 
siliques caused by stem colonization) 

 

 

6.2.6 Neurospora crassa Analysis 

This is described in Chapter 5. Hydrogen peroxide was added to the medium 

prior to pouring to the concentration indicated. 
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6.3 Results 

 

6.3.1 Further Analysis of the nth1, fcv1 and pkar Strains 

The three micro-region genes identified in this study that contribute to F. 

graminearum symptom spread rate on wheat, nth1, fcv1 and pkar, were 

analysed further to determine whether these genes and their gene products had 

additional roles in F. graminearum in asexual and sexual spore production, 

DON mycotoxin production in planta and when grown in the presence of various 

stresses. 

 

6.3.2 Conidia Production 

The production of asexual spores, namely macroconidia, was assayed for the 

reduced virulence mutants (Figure 6.1A and B). The nth1 and PKAR-e strains 

produced similar numbers of conidia to the wild-type strain. The fcv1 and pkar 

strains meanwhile, showed a significant reduction in the number of conidia 

produced compared to the wild type strain. Conidia production in fcv1 was 

reduced by about 77% compared to wild type, while pkar showed a 98% 

reduction in conidia production. However, in a second experiment, the conidia 

production defect of fcv1 was unable to be rescued in the complemented strain. 

Given that, in this particular experiment some of the replicates of each strain 

failed to show induction of conidiation, even for the wild-type (Figure 6.1C), it is 

considered that a problem with the experimental set-up was responsible. This 

outcome prevents observation of possible complementation of the fcv1 

conidiation defect. 
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A 

 

B 

 

C 
Rep Strain Spores (x10^4 ml-1) 

1 PH-1 wt 3 

2 PH-1 wt 27.5 

3 PH-1 wt 36.5 

4 PH-1 wt 48 

1 fcv1 4.5 

2 fcv1 2.5 

3 fcv1 8 

4 fcv1 16.5 

1 fcv1 + FCV1 13.5 

2 fcv1 + FCV1 9.5 

3 fcv1 + FCV1 0.5 

4 fcv1 + FCV1 0.5 

 

Figure 6.1. Production of conidia by the (A) nth1 and fcv1 and (B) pkar and PKAR-e 

strains compared to wild-type. (C) A second experiment fails in conidia induction for some 

replicates of each strain preventing complementation from being observed.  
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The appearance of fcv1, fcv1 + FCV1 and wild-type conidia was compared 

(Figure 6.2). The conidia of all three strains appeared similar with no obvious 

differences in shape or the number of cells contained within the conidia. 

Occasionally, some cells, usually the end cells of the conidium, appeared to 

lack contents. This was noted for all three strains. 

 

Figure 6.2. Conidia of wt (A), fcv1+FCV1, (B) and fcv1 (C-D). All three strains produce 

conidia of normal appearance (black arrows) and those that appear to lack contents in some 

cells (white arrows). The end cells of the conidia most often appeared to lack contents. Bar = 20 

µm.  

 

 

  



211 
 

6.3.3 Sexual Reproduction  

F. graminearum produces ascospores within perithecia. To determine the effect 

of gene deletion on sexual spore production, each single-gene deletion strain 

generated was assayed for perithecia and ascospore production (Figure 6.3). 

All strains were competent to produce perithecia and discharge ascospores into 

the air. It was not possible to determine the effect of the PKAR deletion on 

ascospore discharge due to a loss of perithecial production in subsequent 

experiments thought to derive from mutation in the pkar strain. The fgsg_09891 

(get3/arr4) strain, however, tended to produce more aerial mycelium than the 

other strains.  
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Figure 6.3. Production of perithecia by single-gene deletion mutants of F. graminearum micro-region genes. All the targeted gene deletion strains are 

competent to produce perithecia. Black spherical structures in the images are the perithecial fruiting bodies that contained ascospores. Bar = 0.2mm, except pkar 

image shown at lower magnification, where bar = 5 mm.  
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6.3.4 Production of the DON Mycotoxin 

 

The ability of the fcv1, nth1, pkar and PKAR-e strains to produce the DON 

mycotoxin during infection of wheat ears was assayed. (Figure 6.4). For PH-1, 

nth1, and fcv1 inoculations were performed by using a solution of conidia. Due 

to the poor conidia production of the pkar strain, for the inter-comparison of PH-

1, pkar and PKAR-e a plug-inoculated method was used. The pkar strain 

produced much lower levels of detectable DON in infected tissue compared to 

the PKAR-e and wild type strains. The PKAR-e strain appeared to show an 

over-production of DON in this experiment, suggesting ectopic insertion of the 

PKAR gene deletion constructs resulted in altered regulation of DON 

biosynthesis, possibly via the disruption of other regulatory factors. The fcv1 

and nth1 strains, meanwhile, produced DON levels comparable to that of the 

wild type (Figure 6.4). 

 

 

 

Figure 6.4. Production of the deoxynivalenol (DON) mycotoxin in planta by the reduced 

virulence strains. Two separate methods using conidia (wt1, fcv1, nth1) or agar plugs (wt2, 

pkar, PKAR-e) were used (see text). 
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6.3.5 Arabidopsis Floral Tissue Infection 

 

Fusarium graminearum can infect the floral tissue of the model plant species 

Arabidopsis thaliana (Urban et al., 2002). The virulence of the nth1 and fcv1 

strains towards Arabidopsis was therefore explored. At 9 days post-infection 

(dpi), the nth1 strain showed a slight but not significant reduction in disease 

severity on Arabidopsis flowers and siliques compared to the wild type strain 

while for the fcv1 strain there was a significant reduction in symptom severity on 

both flowers and siliques (Figures 6.5 and 6.6). For the wild-type and nth1 

infected plants, the floral tissue became brown and shrivelled. The stems 

supporting the individual flowers were also shrivelled and had turned a dark 

brown colour and the entire flower cluster was enveloped in mycelium. Siliques 

also exhibited some browning and loss of structure. In contrast, fcv1-infected 

plants showed browning and shrivelled tissue that was predominantly restricted 

to the flowers. The upper stems supporting the flowers remained green and full 

size, comparable to water-inoculated control plants, while the discolouration of 

siliques was very limited.  
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Figure 6.5. FCV1 but not NTH1 is required for full symptom development of F. 

graminearum on Arabidopsis floral tissue. Images taken at 10 days post inoculation. wt = wild 

type. Bar = 5 mm. 
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A 

 

B 

 

Figure 6.6. Infection of Arabidopsis (A) Flowers and (B) Siliques by nth1 and fcv1. The 

mean count for each disease score is shown for each strain.  
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6.3.6 Wounded Wheat Ear Virulence Assay for fcv1 

 

If the reduction in the rate of FEB symptom spread in the fcv1 strain is at least 

partly due to impaired penetration of the host, inoculation of wounded wheat 

ears should allow some recovery of symptom spread rate. When wounded 

wheat ears were inoculated with a conidial suspension of the fcv1 or wild-type 

strain, (Figure 6.7) the spread of the fcv1 mutant and wild-type from the cut 

rachis and spikelet surface was comparable to that for the intact ears, with fcv1 

showing a reduced rate of disease spread compared to the wild-type. This 

suggested the impairment in fcv1 lies at the post-penetrative stage. 

 

 

 

Figure 6.7. Infection of wounded wheat ears by wild-type strain (A, C) and the fcv1 

strain (B, D). In each ear the disease symptoms spread downwards in a manner comparable to 

those seem when intact ears were inoculated. At the wound surface/inoculation site (C-D), the 

host tissue is bleached similar to the rest of the diseased portion of the ear. Images taken at 12 

dpi. 
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6.3.7 Stress Tolerance  

In the drying tissue of the infected wheat ear, the invading fungus will likely be 

subjected to increasing osmotic stress and, prior to this, may suffer an oxidative 

attack as part of the host defence systems. To investigate the tolerance of the 

nth1 and fcv1 strains to cellular stresses, the strains were subjected to growth 

tests with different media providing oxidative or osmotic stress conditions. 

Hydrogen peroxide (H2O2) or menadione (a glutathione antagonist) was used to 

provide two different types of oxidative stress when added to minimal medium 

(SNA). Sodium chloride (NaCl) or glycerol was added to minimal medium to 

provide osmotic stress conditions. Due to the already very poor in vitro growth 

rate of the pkar strain it was not included in this analysis as further growth 

defects would likely prove hard to quantify. 

The preliminary experiment (Figure 6.8) confirmed that the growth rate of the 

fcv1 strain on minimal medium was significantly less than the wild-type and nth1 

strains.  The addition of 1 M NaCl or 7.31% glycerol (Aw 0.98) lead to a 

significant reduction in the growth rate of the wild type strain (44% and 23% 

reduction, respectively) and nth1 (48% and 26% reduction, respectively) 

(p<0.05). However, for fcv1, neither 1 M NaCl nor glycerol (Aw 0.98) caused a 

significant reduction in growth rate. Instead, the addition of 1 M NaCl or glycerol 

caused a slight increase in growth rate of fcv1 (28% and 37%, respectively), 

which was just statistically significant for glycerol (p<0.05). The addition of 2 mM 

H2O2 led to a significant decrease in the growth rate of all three strains, but this 

change was most dramatic for the fcv1 strain (75% reduction in growth rate 

compared to 11% for the wild-type and 16% for nth1). 50 µM menadione 

addition led to a similar percent reduction in growth rate for all three strains 

(18% for wild-type, 20% for nth1 and 24% for fcv1), yet this change was 

significant for the wild-type and nth1 strains but not of fcv1 (p<0.05). The 

preliminary experiment suggested a similar stress response of nth1 to the wild-

type for all stresses tested, reduced sensitivity to osmotic stress for the fcv1 

strain compared to wild-type and nth1 yet increased sensitivity of fcv1 to H2O2. 

The response to menadione appeared similar for all three strains but may 

suggest reduced sensitivity to this chemical for fcv1. 
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Figure 6.8. Preliminary stress tolerance analysis of the wild-type, fcv1 and nth1 strains. 

 

The following series of experiments used a series of different concentrations of 

H2O2, menadione and NaCl were performed to investigate the effect of 

oxidative and osmotic stresses of differing magnitudes on the F. graminearum 

strains. Some results varied slightly between the experiments (described 

below). By combining experiment datasets in the case hydrogen peroxide 

sensitivity, an overall analysis was made of sensitivity to this particular stress 

over a specific range of chemical concentrations. For clarity a summary table 

from all the following analyses is described in full at the end of the section. 

 

6.3.7.1 Osmotic Stress Provided by NaCl 

In the NaCl osmotic stress experiment 1 (Figure 6.9A), the addition of 0.5M 

NaCl had little effect on growth rate of the wild type strain, fcv1 or nth1. 

However, the addition of 1.5 M NaCl caused a more dramatic reduction in the 

growth rate of the three strains, although this reduction is less severe for fcv1 

compared to the other two strains (by 76% for the wild type, 73% for nth1 and 

52% for fcv1). This can be more clearly observed in the plot depicting the 

growth rate on 0.5 M and 1.5 M NaCl as a percentage of the growth rate on 

minimal medium alone (Figure 6.9B). The growth of fcv1 on 1.5 M NaCl as a 
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fraction of the growth on minimal medium alone was higher than for the wild 

type strain or nth1. As in the preliminary experiment, this suggested that the 

osmotic stress sensitivity of nth1 to NaCl is not significantly different from the 

wild-type strain, while fcv1 may show reduced sensitivity to osmotic stress.  

 

A 

 

B 

 

Figure 6.9. A. Means plot and B. Fraction of growth on minimal medium alone for 

osmotic stress experiment 1. 
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A second NaCl osmotic stress experiment was performed with the inclusion of 

the fcv1 + FCV1 strain in place of the nth1 strain and with 0.75 M NaCl in place 

of 0.5 M (Figure 6.10A and B). The percent reduction in growth rate of all three 

strains on 0.75 M NaCl was similar. However, addition of 1.5 M NaCl caused a 

reduction in growth rate of 77% and 75% for the wild-type and fcv1+FCV1 

strains respectively but only 58% for fcv1. This experiment confirmed that the 

fcv1 strain is less sensitive to osmotic stress provided by 1.5 M NaCl than the 

wild-type strain and that this phenotype is eliminated by the reinsertion of the 

wild-type FCV1 gene in the fcv1+FCV1 strain. 

A 

 

B 

 

Figure 6.10. A. Means plot and B. Fraction of growth on minimal medium alone for 

osmotic stress experiment 2. 

0

2

4

6

8

10

12

14

16

18

0 0.75 1.5

G
ro

w
th

 r
at

e
 (

m
m

 /
 d

ay
)

M NaCl

WT

fcv1

fcv1 + FCV1

0

20

40

60

80

100

120

140

160

0.75 1.5

P
e

rc
e

n
t 

gr
o

w
th

 r
at

e
 o

n
 M

M
 a

lo
n

e

M NaCl

WT

fcv1

fcv1 + FCV1



222 
 

6.3.7.2 Oxidative Stress Provided by H2O2 

In the first H2O2 oxidative stress experiment (Figure 6.11A and B), the addition 

of 2 mM H2O2 caused a significant reduction in the growth rate of fcv1 (60%) but 

not of the wild-type strain, while 5 mM H2O2 is sufficient to prevent growth of 

fcv1 but not wild-type. This suggested an increased sensitivity of fcv1 to H2O2 

compared to wild-type. 

A 

 

B 

       

       Figure 6.11. A. Means plot and B. Fraction of growth on minimal medium alone for H2O2 

oxidative stress experiment 1. 
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However, the statistical analysis of a second experiment (Figure 6.12), which 

uses the same concentrations of H2O2 as experiment 1 but included the 

complemented strain) revealed a different outcome.  There was no significant 

interaction of H2O2 addition and fungal strain, suggesting no significant 

differences between the response of the different strains to H2O2 in this 

particular experiment. 

 

 

Figure 6.12. H2O2 oxidative stress experiment 2. 
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Combining datasets for H2O2 stress experiments using the same concentrations 

of reagents as above plus an experiment for nth1, was used to obtain an overall 

result for the effect of these reagents on the growth rate of the F. graminearum 

strains.  

 

A 

B  

 

Figure 6.13. A. Means plot and B. Fraction of growth on minimal medium alone for the 

combined H2O2 oxidative stress analysis. 
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The combined H2O2 analysis (Figure 6.13A and B) indicated that the response 

of the different strains to H2O2 was significantly different (p<0.001). The addition 

of 5 mM H2O2 was sufficient to stop growth of fcv1 but not of the wild-type, fcv1 

+ FCV1 or nth1 strains, suggesting increased H2O2 sensitivity for fcv1 

compared to the other strains. For these other three strains, sensitivity to 5 mM 

H2O2 appears highest for fcv1 + FCV1 (82% reduction in growth rate), followed 

by the wild-type (58% reduction) and nth1 (41% reduction) but as a fraction of 

their growth rates on minimal medium alone, little difference is present between 

these strains (Figure 6.13B). At 2 mM H2O2, compared to minimal medium 

alone, the reduction in growth rate of fcv1 (44%) is significant and much larger 

than that for the other strains (10%, 8% and 9% for wild-type, nth1 and fcv1 + 

FCV1, respectively), which is not statistically significant, however, as can be 

seen in Figure 6.13B this reduction for fcv1 is rather variable. Therefore it 

appears that the fcv1 strain may show increased sensitivity to H2O2 compared 

to the other strains over this range of concentrations. Reinsertion of the wild 

type FCV1 gene however, restored this phenotype to approximately wild-type 

behaviour. The sensitivity of nth1 to H2O2 meanwhile, appears to be comparable 

to the wild-type. 
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6.3.7.3 Oxidative Stress Provided by Menadione 

In the first menadione oxidative stress experiment (Figure 6.14A and B), the 

sensitivity of the wild-type and fcv1 strains to a range of menadione 

concentrations was compared. The response of both strains to menadione 

appeared to be similar. 

A 

 

B 

 

Figure 6.14. A. Means plot and B. Fraction of growth on minimal medium alone for 

menadione oxidative stress experiment 1. 
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In the second menadione experiment (Figure 6.15A and B), a different range of 

menadione concentrations were used and the fcv1+FCV1 strain included. Here, 

the wild-type and fcv1 + FCV1 strains appeared to respond to menadione 

similarly. The fcv1 strain exhibited a slightly larger percent decrease in growth 

rate upon the addition of menadione than the other strains (65% for fcv1 

compared to 53% for wild-type and fcv1 + FCV1 at 500 µM menadione for 

example), but from the examination of growth on menadione as a fraction of 

growth on MM alone (Figure 6.15B) this does not appear to be a significant 

difference.  

A 

 

B 

 

Figure 6.15. A. Means plot and B. Fraction of growth on minimal medium alone for 

menadione oxidative stress experiment 2. 
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Overall, these stress sensitivity tests of the fcv1, fcv1 + FCV1, nth1 and wild-

type F. graminearum strains have revealed the following: The fcv1 strain 

appears to show reduced sensitivity to osmotic stress provided by both NaCl 

and glycerol compared to the other strains but increased sensitivity to oxidative 

stress provided by H2O2. The increase in sensitivity compared to the other 

strains to the glutathione antagonist menadione, was however only very slight 

for fcv1 and not noted in all experiments  The fcv1+FCV1 complemented strain, 

meanwhile, showed similar responses to the wild-type for stress provided by 

NaCl, H2O2 and menadione. Finally, the nth1 strain, did not appear to show 

drastically altered sensitivity to glycerol, NaCl, H2O2 or menadione compared to 

the wild-type. The results are summarised in Table 6.3. 

 

Table 6.3. Summary of stress responses of the fungal strains. 

  
Sensitivity compared to wild-type   

Experiment Strain Osmotic stress Oxidative stress 

  
Glycerol NaCl H2O2 Menadione 

Preliminary fcv1 Reduced Reduced Increased Comparable/reduced 

 
nth1 Comparable Comparable Comparable Comparable 

NaCl 1 fcv1 
 

Reduced 
  

 
nth1 

 
Comparable 

  NaCL 2 fcv1 
 

Reduced 
  

 
fcv1+FCV1 Comparable 

  H2O2 1 fcv1 
  

Increased 
 H2O2 2 fcv1 

  
Comparable 

 

 
fcv1+FCV1 

 
Comparable 

 H2O2 
combined fcv1 

  
Increased 

 

 
fcv1+FCV1 

 
Comparable 

 

 
nth1 

  
Comparable 

 Menadione 1 fcv1 
   

Comparable/reduced 

Menadione 2 fcv1 
   

Comparable 

  fcv1+FCV1     Comparable 
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6.3.7.4 Stress Sensitivity of the Neurospora crassa fcv1 Homologue Strain 

The oxidative stress sensitivity of the N. crassa FCV1 homologue deletion 

mutant to H2O2 was also assayed so that oxidative stress sensitivity could be 

compared between the fcv1 gene deletion strains in the two fungal species. In 

N. crassa, like in F. graminearum, deletion of the fcv1 homologue also 

appeared to increase sensitivity to H2O2. Addition of 2 mM H2O2 did not cause a 

significant change in the growth rate of the wild-type or fcv1 strain of either 

mating type. However, on 5 mM H2O2, the growth rate of the N. crassa fcv1 

strains but not the wild-type strains was significantly reduced (by 27% and 42% 

for the fcv1 A and fcv1 a strains, respectively, Figure 6.16). 

 

Figure 6.16. H2O2 oxidative stress tolerance of the N. crassa wild-type and fcv1 

homologue strains. 

Given the apparent increased sensitivity of F. graminearum fcv1 to oxidative 

stress, the disease progression of this strain compared to the wild-type on 

wounded wheat ears was somewhat unexpected. Upon wounding, plants 

produce an oxidative burst response at the wound site (Agrios, 1997). This 

response may serve to exaggerate the virulence defect of fcv1 by combining its 

inherent virulence defect with a further increased reduction of growth rate 

compared to the wild-type due to its increased oxidative stress sensitivity. 

However, when inoculated onto wounded wheat ears, the spread of symptoms 

resulting from fcv1 and wild-type strains was not noticeably different from intact 

ears.  
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6.4 Discussion 

In this chapter the detailed biology of the fcv1, nth1 and pkar mutants was 

explored in further in planta and in vitro experiments to determine the wider 

implications of deletion of these genes in F. graminearum. These experiments 

indicated a requirement for fcv1 in disease progression in Arabidopsis floral 

tissue, of fcv1 and pkar in the production of asexual spores and pkar in DON 

mycotoxin production. They also revealed the opposing roles of fcv1 in osmotic 

and oxidative stress tolerance and conservation of the oxidative stress 

tolerance function in N. crassa. 

 

6.4.1 PKAR  

The F. graminearum pkar mutant was able to produce perithecia. This is in 

contrast to reports from several other fungal species in which the presence or 

proper regulation of PKA signalling has been shown to be required for sexual 

development. The B. cinerea pkaR mutant shows reduced production of 

sclerotia compared to the wild type strain (Schumacher et al., 2008). The C. 

neoformans var. grubii pka1 (PKAC) mutant is sterile (D’Souza et al., 2001), 

while the Yarrowia lipolytica tpk1 (the sole PKAC-encoding gene of this species) 

disruption mutant cannot mate (Cervantes-Chavez et al., 2009). In contrast, the 

Verticillium dahlia pkac1 disruption mutant has greater microsclerotia production 

than the wild type strain (Tzima et al., 2010). 

Production of macroconidia, the asexual spore type of F. graminearum 

abundantly produced in vitro was significantly reduced in the pkar mutant 

compared to the wild type strain. A role for PKAR proteins in the production of 

conidia has been noted in a number of species. The rpk1 mutant of C. 

lagenarium and pkaR1 deletion mutant of M. circinelloides both show reduced 

conidiation (Takano et al., 2001; Ocampo et al., 2009), while in Aspergillus 

niger, disruption of PKAR causes a loss of sporulation (Staudohar et al., 2002). 

The M. graminicola bcy1 mutant is unable to produce pycnidia (Mehrabi and 

Kema, 2006). S. cerevisiae diploid BCY1 disruption (PKAR) homozygotes were 

also unable to sporulate (Temple et al., 2005). In A. fumigatus, deletion of 

PKAR or overexpression of PKAC1 (both of which would be expected to result 
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in increased PKA activity) results in reduced sporulation (Zhao, W. et al., 2006; 

Grosse et al., 2008). The B. cinerea pkaR mutant though, shows only slightly 

reduced conidiation (Schumacher et al., 2008). These results suggest that 

uncontrolled PKAC activity frequently leads to an inhibition of sexual and /or 

asexual sporulation in fungi. This would appear to be supported by results from 

A. nidulans where PKAA (the primary PKAC) negatively controls conidiation 

(Fillinger et al., 2002). In addition, while deletion of PKAB (the secondary 

PKAC) causes no apparent changes in spore production in this species (Ni et 

al., 2005), overexpression of PKAA or PKAB reduces sporulation (Shimizu and 

Keller, 2001; Ni et al., 2005). Mutation of N. crassa PKAC-1 (the major PKAC) 

leads to premature conidiation on solid medium and inappropriate conidiation in 

liquid medium (Banno et al., 2005).  

However, reduced PKA activity resulting from disruption/deletion of the catalytic 

subunit of PKA (PKAC) has also been shown to cause reduced conidiation for 

B. cinerea (pka1 but not pka2), Fusarium verticillioides (fpk1), Verticillium dahlia 

(pkac1) and A. fumigatus (pkaC1) (Liebmann et al., 2004; Schumacher et al., 

2008; Pei-Bao et al., 2010; Tzima et al., 2010). In addition, the M. graminicola 

tpk2 mutant is unable to produce pycnidia. The effect of PKAC activity levels on 

sporulation therefore appears to depend on the species under study and in the 

case of some species, such as A. fumigatus, where both deletion and 

overexpression of PKAC lead to reduced conidiation, tight control of PKAC 

activity within a specific range appears important in maintaining wild-type levels 

of conidia production. 

The pkar strain also appeared to show reduced production of the DON 

mycotoxin in planta. Analysis of the diseased portion of the ear showed a 

significantly reduced level of DON for the pkar strain compared to the wild type 

and PKAR-e strain. Whilst the possibility cannot be eliminated that reduced 

fungal biomass of the pkar strain in each floret due to a slower growth rate is 

responsible for the differences in DON level recorded, the fcv1 strain, which 

also shows a slower growth rate compared to the wild type strain produces 

DON levels comparable to the wild type strain in planta. Despite this, per 

spikelet exhibiting disease symptoms, there was less DON in the pkar strain 

infected ear compared to the wild type. Interestingly, the G protein subunits 

GPA1 and GPB1 appear to negatively regulate toxin production in F. 
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graminearum (Yu et al., 2008), and may act upstream of PKAC in F. 

graminearum, which also appears to positively regulate toxin production as this 

is reduced in the pkar strain. 

Other examples of toxin production regulation by PKA signalling have been 

described in fungi. In A. nidulans, PKAA (PKAC) negatively controls production 

of the xanthone mycotoxin sterigmatocystin (ST).  Overexpression of PKAA 

negatively regulates AFLR, the transcription factor controlling production of ST 

(Shimizu and Keller, 2001). In M. anisopliae, however, PKAC is not required for 

expression of toxin-producing genes (Fang et al., 2009). In C. neoformans var. 

grubii, pka1 mutants do not produce the virulence factors melanin or capsule, 

while pkr1 mutants overproduce capsule (D’Souza et al., 2001) and in A. 

fumigatus, PKAC1 deletion reduces expression of the polyketide synthase 

pathogenicity determinant PKSP (Liebmann et al., 2004). 

 

6.4.2 FCV1 

The results of further experiments described in this chapter indicate that FCV1 

is required for the full rate of symptom development by F. graminearum on 

Arabidopsis in addition to wheat ears. The defect of the fcv1 strain is therefore 

not limited to disease progression on wheat floral tissue, implying a role for 

FCV1 in contributing to symptom spread in the infection of both 

monocotyledonous and dicotyledonous host species.  

FCV1 also appears to be involved in the regulation of conidiogenesis, with the 

production of fewer condia in the fcv1 strain than the wild type, but has minimal 

effect on conidial germination efficiency, and is not required for the production 

of perithecia or the discharge of viable ascospores. The fcv1 strain did not 

exhibit a reduction in the production of the DON mycotoxin in wheat ears 

compared to the wild-type strain. However, as this strain also shows a slower 

growth rate compared to the wild type strain it is possible that the fungal 

biomass per infected spikelet is lower for fcv1 than the wild-type. If shown, this 

would in turn indicate that the fcv1 strain shows an elevated DON per unit 

biomass production compared to the wild-type. Clarification of this matter will 

require further experimentation. 
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Interestingly, the fcv1 strain appeared to be more tolerant of osmotic stress than 

the wild type or complemented strains. The fcv1 strain was less sensitive to a 

reduction in water activity by glycerol or NaCl addition than the wild-type strain. 

The reason for this increase in osmotic stress tolerance is unknown but could 

result from altered cell wall structure or transmembrane transport in the fcv1 

strain compared to the wild-type. The increased tolerance to osmotic stress 

would be expected to aid fcv1 proliferation in the drying tissues of the infected 

wheat ear, but these appear to be masked by the other defects of this strain. 

Interestingly, F. graminearum gpmk1 colonies, which show a similar growth 

morphology to fcv1, do not exhibit sensitivity to high osmolarity (Jenczmionka et 

al., 2003). 

The loss of FCV1 led to an increase in sensitivity to oxidative stress provided by 

H2O2 but not by menadione. Inoculation of wounded ears with fcv1 did not lead 

to a further reduction in virulence compared to intact ears suggesting either that 

the oxidative burst in planta as a response to wounding did not significantly 

affect fcv1 disease progression or its effect was masked by an easier pathogen 

entry to the wounded host. It is known that under high humidity conditions the 

oxidative burst and the wound response is often somewhat attenuated. Post-

inoculation the wheat ears are placed under high humidity conditions for 4 days.  

Plants also produce oxidative bursts in response to pathogen attack (Agrios, 

1997). If the wheat plant is producing an oxidative burst response as a 

consequence of infection by the pathogen then any additional burst due to 

wounding may only be slight. It is also possible that the Fusarium hyphae 

themselves are producing chemicals such as H2O2 to help attack the host, and 

may use a system of self-protection in planta that is not operational in vitro. 

Finally, the oxidative burst may actually aid symptom spread of this pathogen by 

causing programmed death of host cells.  

The osmotic signalling pathway of F. graminearum is involved in the response 

to both osmotic and oxidative stress. Disruption of genes of the HOG1 pathway 

led to increased osmotic stress sensitivity (Ramamoorthy et al., 2007, Ochiai et 

al., 2007). The os2 (hog1), os4 (MAPKKK) and os5 (MAPKK) strains showed 

some increase in hydrogen peroxide and t-butyl hydroperoxide (t-BOOH) 

sensitivity compared to the wild-type strain. However, os1 (histidine kinase) 

showed reduced and os4 increased diamide sensitivity compared to the wild-
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type (Ochiai et al., 2007).  The analogous signalling pathways of S. cerevisiae 

and A. nidulans are activated in response to both osmotic and oxidative stress 

(reviewed in Duran et al., 2010).  It is possible that targeted deletion of FCV1 

alters stress sensitivity in F. graminearum via the osmotic signalling cascade 

but a link remains to be determined. The nonribosomal peptide synthetase 

NPS6, which is involved in siderophore-mediated iron metabolism, also 

regulates oxidative stress sensitivity in F. graminearum. The nps6 mutant 

shows increased sensitivity to both H2O2 and the superoxide radical-generating 

agent KO2 and is required for full virulence (Oide et al., 2006). 

In N. crassa, OS-2 (Hog1) has been implicated in the regulation of catalases, 

genes encoding enzymes for glycerol synthesis and gluconeogenesis and the 

clock-controlled gene ccg-1 (Noguchi et al., 2007; Watanabe et al., 2007; 

Yamashita et al., 2007). OS-2 or OS-5 mutation increases sensitivity to NaCl 

and sorbitol but reduces sensitivity to iprodione, in addition to OS-2 mutation 

leading to increased sensitivity to 0.1 mM t-BOOH (Banno et al., 2007). The os-

1, os-2, os-4 and os-5 mutants are hypersensitive to osmotic stress yet show 

increased resistance to iprodione and fludioxonil (Grindle and Temple, 1982; 

Fujimura et al., 2000a and b; Zhang et al., 2002). The os-4 and os-5 mutants 

appear to represent changes to the SSK22 and PBS2 genes respectively 

(Fujimura et al., 2003). In Cochliobolus heterostrophus, hog1 mutants show 

increased pigmentation, smaller appressoria and reduced virulence (Igbaria et 

al., 2008). In mutants of the Cryphonectria parasitica CPMK1 (the homologue of 

HOG1), pigmentation is reduced, sensitivity to osmotic stress is increased, and 

conidiation and virulence are reduced (Park et al., 2004). Magnaporthe oryzae 

HOG1 homologue osm1 mutants show increased osmotic stress sensitivity and 

morphological defects but not alteration in virulence (Dixon et al., 1999). The 

hypersensitivity to osmotic stress noted in these mutants suggests possible 

opposing roles of FCV1 and the Os cascade in osmosensitivity. 

Knockout mutants of the SSKA and SRRA osmotic signalling response 

regulators of A. nidulans (homologous to the yeast SSK1 and SKN7 

respectively) show increased sensitivity to osmotic stress, hydrogen peroxide 

and t-BOOH (hydroxyl radical producers) but interestingly not to menadione or 

diamide (produce the superoxide and free-thiol radicals respectively) (Hagiwara 

et al., 2007; Vargas-Perez et al., 2007), although sskA has also been reported 
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to be insensitive to hydrogen peroxide (Vargas-Perez et al., 2007). The F. 

graminearum fcv1 strain, similarly appeared to have an increase in sensitivity to 

H2O2 but not to menadione, and contrastingly had reduced osmotic sensitivity. 

This suggests differing responses to the different radical species in these 

strains. 

The osmosensing system has also been linked to morphology, sporulation and 

germination in other fungal species. For example, mutation of MA21, the A. 

fumigatus homologue of the yeast SHO osmosensing sensor kinase reduces 

growth and leads to altered hyphal morphology with shorter hyperbranching 

filaments and reduced conidiation (Ma et al., 2008). Deletion of the MAPKK 

STEC in A. nidulans, meanwhile, results in slower growth increased branching 

and altered conidiophore morphology (Wei et al., 2003). The stress-activated 

kinase SPC1 of S. pombe also alters cell size at division (Millar et al., 1995; 

Shiozaki and Russell, 1995).  

 

The F. graminearum os2, os4 and os5 mutants also exhibit reduced 

trichothecene production (Ochiai et al., 2007). By contrast, the production of 

DON by the fcv1 strain in planta was comparable to wild-type. 

 

6.4.3 NTH1 

In contrast to FCV1, NTH1 only shows a reduction in symptom spread rate on 

wheat ears and not in disease progression on Arabidopsis floral tissue. This 

could reflect a differing requirement for trehalose metabolism in F. graminearum 

during infection of monocotyledonous and dicotyledonous hosts. However, the 

symptom spread defect of nth1 on wheat ears is subtle and may not be easily 

observed on Arabidopsis floral tissue due to the different host morphologies and 

disease development stages on each species. 

In F. graminearum, loss of NTH1 did not appear to increase sensitivity to 

osmotic or oxidative stress. In yeast, NTH1 is induced in response to heat, 

osmotic and oxidative stress, while deletion of NTH1 leads to reduced 

thermotolerance (Nwaka et al., 1995a, 1995b; Zähringer et al., 1997, 2000). In 

B. cinerea, disruption of the trehalase-6-phosphate synthase TPS1 reduces 

heat tolerance while neutral trehalase (TRE1) disruption slightly increases heat 
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tolerance, although neither gene appears to be important in sensitivity to 

oxidative or osmotic stress (Doehlemann et al., 2006). In C. albicans and 

Stagonospora nodorum, the tps1 strain shows reduced tolerance to oxidative 

stress (Alvarez-Peral et al., 2002; Lowe et al., 2009). In Cryptococcus 

neoformans, the trehalose-6-phosphate synthase TPS1 and trehalose-6-

phosphate phosphatase TPS2 are required for high temperature growth on 

YEPD medium containing glucose, although this phenotype can be alleviated by 

the presence of galactose or sorbitol (Petzold et al., 2006). In C. gattii serotype 

B, a similar phenotype is noted for tps1 and tps2 strains although only the 

growth of the tps2 strain is recovered by galactose or sorbitol (Ngamskulrungroj 

et al., 2009). In C. neoformans, tps1 but not tps2 or nth1 showed an increased 

sensitivity to oxidative and osmotic stress (Petzold et al., 2006). In addition, the 

disruption of NTH1 in Leptosphaeria maculans does not affect growth under 

stress conditions, although nth1 expression increases in L. maculans in 

response to stress from hydrogen peroxide or hygromycin (Idnurm et al., 2003; 

Petzold et al., 2006). Similarly, NTH1 expression in M. oryzae increases in 

response to osmotic stress (Foster et al., 2003). Trehalose synthesis as 

opposed to degradation therefore appears to be of primary importance in 

growth under stress conditions, with the possible exception of thermotolerance. 

That NTH1 does not appear to be required for growth under most stress 

conditions, yet exhibits elevated expression under such conditions, suggest 

perhaps that NTH1 may play a more important role in recovery from stress, as 

noted in yeast (De Virgilio et al., 1994) and that its expression under stress 

conditions is made in preparation for subsequent stress recovery. With the nth1 

strain of F. graminearum showing no altered sensitivity to oxidative or osmotic 

stress, a role in stress recovery rather than tolerance may be present in this 

species as well. The second trehalase described in Chapter 4 may play a more 

significant role during stress conditions. 

The F. graminearum nth1 deletion strain also did not exhibit a reduction in 

conidia or perithecia production. In M. oryzae, tps1 exhibited poor sporulation 

(Foster et al., 2003), while in S. nodorum, heat stress leads to reduced 

germination of the tps1 strain (Lowe et al., 2009). It therefore appears that the 

degradation of trehalose by Nth1 is not required for the production of 

conidiospores by F. graminearum. There remains the possibility that the ability 
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to synthesise trehalose will impact on sporulation as noted in M. oryzae and S. 

nodorum. 

F. graminearum nth1 is also unaffected in the ability to produce the 

trichothecene mycotoxin deoxynivalenol (DON). The production of other 

virulence-associated small molecules has also been investigated in trehalose 

catabolism/metabolism mutants of Cryptococcus species. Formation of the 

polysaccharide capsule and production of the pigment melanin is unaffected in 

tps1, tps2 and nth1 strains of C. neoformans (Petzold et al., 2006), yet in C. 

gattii, tps1 and tps2 show defective melanin production and capsule formation 

(Ngamskulrungroj et al., 2009). Successful trehalose degradation does not 

therefore appear to influence DON production by F. graminearum in planta 

under the conditions tested. 

 

6.4.4 Analysing the Sexual Reproduction Potential of All the Single-Gene 

Deletion Strains Generated 

The five additional gene deletion strains analysed for perithecia production, 

namely fgsg_09891, fgsg_09893, fgsg_09900, fgsg_09905 and fgsg_09906 

were all competent to produce perithecia containing ascospores. Interestingly, 

in an earlier study using transposon-tagging of F. graminearum strain Fg820, 

insertion of the mimp1 transposable element 127 bp 5’ of the FGSG_09905 

ORF halted perithecia production at an early stage, leading to the production of 

only initial structures that did not develop into mature perithecia (Dufresne et al., 

2008) This is in contrast to the results found with deletion of the FGSG_09905 

gene in strain PH-1 in this study. This difference could be due to the different 

strains of F. graminearum used in the two studies or because the effect on 

perithecia production resulting from transposon insertion was not due to 

prevention of FGSG_09905 expression. Alternatively, transposon insertion 

could have lead to altered expression of FGSG_09905 or other genes 

Deletion of GET3 (the homologue of FGSG_09891) in yeast led to up-regulation 

of sporulation and stress-associated genes but not to sporulation defects, 

although get1 and get2 strains showed defective sexual spore production which 

could be suppressed by GET3 deletion (Auld et al., 2006). Get3 may therefore 
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function in a negative manner in protein sorting for degradation and in 

regulation of stress and sporulation-associated genes. F. graminearum 

fgsg_09891 is able to produce perithecia carrying ascopores, suggesting the F. 

graminearum gene, unlike Get3, may not play a role in sporulation.  

While the PH-1 icl1 mutant described here retains the ability to produce 

perithecia and ascospores, the previously published Z03643 ICL1 mutant (Lee 

et al., 2009a) was able to form very few perithecia. This difference in the role of 

ICL1 in sexual reproduction of F. graminearum is likely to be due to differences 

between the strains used in the two studies rather than to experimental 

differences. Interestingly, the Z03643 study observed a rapid reduction in the 

expression of ICL1 under perithecia-inducing conditions. That the ICL1 gene 

appears to be inactivated during perithecia formation is intriguing given its 

apparent role in sexual reproduction in strain Z03643. As discussed in the 

publication, Z03643 ICL1 expression is apparent in the vegetative growth phase 

on carrot agar prior to perithecia formation induction and its activity may be 

important in the production of precursor molecules important in perithecia 

formation. Such molecules however, would appear to be either not required or 

produced by a different route in PH-1. 

It is interesting to note that quite dramatic differences in phenotype can be 

found when the same gene is disrupted in two varieties of the same fungal 

species. In C. neoformans var. grubii (serotype A), PKR1 disruption leads to 

overproduction of capsule and hypervirulence (D’Souza et al., 2001), whereas 

in serotype D, PKR1 does not appear to be important for virulence (Hicks et al., 

2004). Disruption of PKA1 causes loss of mating ability, melanin production and 

pathogenicity in serotype A but not serotype D. PKA2, meanwhile, is involved in 

virulence, mating and haploid fruiting in serotype D but not in serotype A 

(D’Souza et al., 2001; Hicks et al., 2004). 

 

Factors affecting F. graminearum stress tolerance appear to be numerous and 

their relationships complex. We have successfully added FCV1 to this group of 

genes, however, determining the precise links between this gene and others in 

stress signalling will require further investigation.  
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Chapter 7. General Discussion 

 

7.1 The Constant Fight Against Plant Pathogens 

The production of global food supplies is now under intense pressure to match 

the rapidly increasing world population.  With advances in healthcare providing 

longer life expectancy and higher survival rates, attention must now also turn to 

providing sufficient nutritious food for the resulting larger body of humanity.  In 

addition, global natural disasters, such as flooding, most recently seen in 

Pakistan and earthquakes, such as that in Haiti can result in severe food 

shortages in many countries and especially in rural regions. Also agricultural 

land is submerged under water or transport infrastructures are damaged 

meaning produce cannot be delivered to market or is destroyed post-harvest.  

Severe heat, such as experiences in Russia in 2010, can lead to massive crop 

failure and then the introduction of an extended period when no grain is 

exported to feed other parts of the world.  

Through breeding schemes, or, more controversially by genetic engineering, 

food crop traits can be selected for or altered to provide increased yield, 

tolerance of environmental factors such as drought, salinity and heat, or 

resistance to pests and disease. Despite the advances provided by such efforts, 

plant pathogens and the diseases they cause remain a heavy constraint on 

obtainable yield. Application of chemicals to crops is commonly used in an 

attempt to control disease; however, the emergence of resistance to such 

substances and tightening legislation on permissible substances provides a 

constant battle to create ever new chemistries to alleviate the disease problem. 

In addition, pathogens can evolve to overcome resistance bred or engineered 

into crops and entirely new diseases can emerge from species previously 

unknown to cause such conditions (Hollomon and Brent, 2009). Studies of the 

F. graminearum clade alone have indicated that a large number of distinct 

species are now able to be identified (O’Donnell et al., 2004; Starkey et al., 

2007). New species have also recently been identified, for example, in Ethiopia 

(O’Donnell et al., 2008) and Russia (Yli-Mattila et al., 2009). In addition there 

are also reports of selection driving the spread of more toxigenic isolates across 
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North America (Ward et al., 2008). The development of new disease control 

measures is therefore paramount. 

 

7.2 A Bioinformatics-Led Approach to Virulence-Associated Gene 

Discovery 

A large proportion of plant diseases are caused by fungi and as such, the 

provision of new fungicides is of great importance in the battle against 

resistance. New targets for such fungicides must be sought, however traditional 

large scale forward genetics-based approaches to screening gene function in 

virulence using restriction enzyme mediated integration (REMI), Agrobacterium 

tumefaciens-mediated transformation (ATMT) or transposon-tagging, which can 

be used to provide large collections of mutants for the investigation of gene 

function, are laborious and time consuming with low rates of success, typically 

0.5%.  

Targeted approaches may also be used, in some cases in a ku70 / ku80 genetic 

background that prevents non-homologous end joining and so improves gene 

targeting (Ninomiya et al., 2004; Villalba et al., 2008). RNA silencing meanwhile, 

allows the analysis of essential genes and the reduction of gene expression by 

differing degrees (Xu, 2000). However, such reverse genetics approaches to 

date have tended to focus on genes encoding proteins of particular classes, 

such as protein kinases. Apart from a few labour-intensive genome-scale 

deletion programmes, for example in N. crassa (Neurospora Genome Project), 

these methods are rarely used to characterise gene classes with no previous 

known role in virulence, or those lacking annotation or homology to other 

characterised genes. This may primarily be due to the large proportion of such 

genes in fungal genomes (Xu, 2000), rendering a reverse-genetics approach 

unfeasible unless some level of pre-filtering is applied to these genes to 

highlight more promising targets and remove those less likely to play a role in 

virulence. 

This project has used a form of ‘positive pre-filtering’ to highlighting small 

genomic regions that may be expected to show an increased probability of 
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containing genes contributing to virulence. By locating homologues of known 

virulence-associated genes in the genome of a sequenced pathogen, the 

distribution of such genes was analysed to locate hotspots where statistically 

significant clustering of such genes occur. It was hypothesised that, if such 

homologues were proven to contribute to virulence of a chosen species, these  

virulence-contributing hotspots may then be likely to contain further virulence-

associated genes that may not have initially represented obvious choices for 

targeted deletion as they lack annotation or belong to classes not previously 

associated with virulence. 

The study described here applies this approach to the filamentous ascomycete 

Fusarium graminearum, a primary causal agent of Fusarium ear blight, a 

devastating disease of cereals. However, such an approach is applicable to any 

sequenced pathogen and is not limited to fungi or to plant hosts. The PHI-base 

database was used as a source of published virulence gene data with which to 

search the F. graminearum genome for homologous gene sequences. By 

displaying the results with the OmnimapFree genome visualisation software, a 

micro-region was identified on chromosome I that appeared to show a close 

grouping of virulence gene homologues. This clustering was confirmed by a 

Chi-square based statistical analysis (Chapter 3) indicating that the frequency of 

virulence genes in this locus was distinct from and significantly higher than the 

rest of the chromosome.  

The micro-region contained five virulence gene homologues within a fifteen 

gene region spanning just 37.6kb. Two genes, the MAP kinase kinase-encoding 

STE7 and serine/threonine kinase-encoding SNF1 had previously been 

reported to contribute to the rate of FEB symptom spread (Ramamoorthy et al., 

2007; Lee et al., 2009b; Beacham et al., 2010 in preparation). Targeted deletion 

of the remaining three homologues, revealed that two, the genes encoding a 

neutral trehalase, NTH1, and protein kinase A regulatory subunit, PKAR, were 

required for a full rate of FEB symptom spread on wheat ears, although to 

greatly differing extents. Loss of the PKAR gene restricted symptoms to the 

inoculated spikelets and adjacent rachis only with no further symptom spread 

over time. Loss of NTH1, however, caused only a slight reduction in rate of 

symptom spread compared to the wild-type progenitor. The fifth homologue, 
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encoding isocitrate lyase, ICL1, was dispensable for wild type disease 

progression. This indicated that the clustered virulence gene homologues did 

indeed contribute to the rate of F. graminearum spread in wheat in all but one 

case. 

Six additional genes at the locus were selected for targeted deletion with the 

aim of locating novel classes of virulence determinants. One gene, 

FGSG_09907, which encodes a protein showing similarity to spliceosome 

components (Bcas2/Spf27/Cwf7) and to a protein involved in Arabidopsis 

defence signalling regulation (Mos4), was also found to contribute to disease 

development. This gene was named Fusarium graminearum Contributor to 

Virulence 1 (FCV1). Targeted deletion of this gene reduced the rate of disease 

symptom development on both wheat ears and Arabidopsis floral tissue. In 

addition, this strain exhibited reduced production and germination efficiency of 

asexual spores and altered stress sensitivity. No gene sequence of this type 

appears to have been previously linked to disease symptom development in 

fungi or indeed any other pathogenic species. The investigation of this region 

therefore yielded a new class of gene required for a full rate of symptom 

development of a pathogenic fungus and indicated the possibility of using such 

a genome landscape-reverse genetics technique to locate such genes in a 

much more efficient manner than through forward genetics screens. 

 

7.3 What is a Pathogenicity/Virulence Factor? 

The search for genes that can potentially be targeted to reduce the virulence of 

a pathogen raises an interesting point of debate: what properties of a gene, or 

rather its protein product, constitute description as a pathogenicity/virulence 

factor? A pathogenicity/virulence factor is most often regarded as one whose 

contribution to the pathogen is solely at the point of invasion of or proliferation 

within a host species and which is not required for saprophytic or in vitro growth 

or reproduction. This stringent definition is academically useful in describing the 

precise role of different genes within the pathogen, however very few genes 

have so far been characterised that match these criteria. Bona fide 

pathogenicity/virulence factors are restricted primarily to toxin biosynthesis 
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enzymes and regulators, and to secreted effectors. Such examples can be 

found in Proctor et al., 1995; Hohn et al., 1997; Kamper et al., 2006; Dean, 

2007 and Howlett et al., 2007.  In vitro conditions can be used that best 

approximate the host nutrient environment, for example growth on media 

derived from host material or containing a mixture of compounds that aims to 

accurately reflect the types and concentrations thought to be present during 

infection. However, such in vitro conditions are unlikely to fully reflect those 

experienced by the pathogen during infection. As such, even for factors 

considered to represent bona fide pathogenicity/virulence factors, an inherent 

growth defect may be masked due to the conditions selected. The host nutrient 

environment may not easily be replicated in vitro, and so any inherent defects 

will likely prove hard to determine, making definition of any gene or protein as a 

pathogenicity/virulence factor subject to some debate. At the time of writing, 

fourty seven F. graminearum genes have been published through peer review 

with a pathogenicity or virulence function. Of these, very few have been 

recorded as giving a wild type phenotype in all other biological tests and so 

could be regarded as bona fide virulence factors. 

 

From a viewpoint of the practical application of this science to disease combat 

in the field, other genes that contribute to the virulence of a pathogen, whether 

via a role participating in growth, reproduction or other processes, are equally 

as important as potential targets for intervention even if not matching the 

description of ‘classical’ pathogenicity/virulence factors. One may then expect 

that a far higher proportion of the gene complement of a pathogen would be 

expected to contribute to virulence in some way, yet this appears not to be the 

case. A large number of genes apparently play no role in virulence, their 

deletion or mutation leaving a species able to infect in a manner comparable to 

the wild-type progenitor strain (www.phi-base.org).  

 

In the case of NTH1, the slight growth defect on complete media that results 

from the targeted deletion of this gene is comparable to the magnitude of the 

disease progression defect on wheat ears. This suggests that the slightly 

reduced rate of disease development of the nth1 strain derives from its growth 

rate defect. Such a gene may therefore not be regarded as a bona fide 
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virulence gene. For the pkar and fcv1 strains, the defect in the rate of FEB 

symptom spread in planta appears to be slightly greater than that on complete 

media in vitro. This has been shown to a much greater extent for the snf1 and 

ste7 strains (M. Urban, pers. comm.; Lee et al., 2009b; Ramamoorthy et al., 

2007). This suggests that a large proportion of the decrease in FEB symptom 

spread rate in pkar and fcv1 is due to an inherent growth rate defect. It is 

possible that an additional, purely in planta, defect is affecting these strains 

within the wheat ear that cannot be attributed to their growth rate defects but 

further investigation may be required to confirm these additional factors. If 

verified, these genes could then be regarded as contributing to in planta-specific 

processes, and in which case could be considered as virulence genes.  

 

An additional useful comparison would be to compare the infection of the wild-

type and single-gene deletion strains at the same ‘biological’ rather than 

‘chronological’ time points. For the wheat ear infection assays, disease extent 

was recorded every four days after inoculation for a twenty day period. By 

considering the differing in vitro growth rates of the strains, recording of disease 

extent could instead be made when each strain is expected to have grown a 

comparable amount. This method of disease analysis may provide further 

information on the relative contributions of inherent and in planta-specific 

defects to the reduced rate of symptom spread seen in the nth1, pkar and fcv1 

strains.  

 

7.4 The Role of FCV1 

Due to its homology to the BCAS2/SPF27 spliceosome components it is 

possible to suggest a role for FCV1 in pre-mRNA splicing in F. graminearum. A 

comparison of transcript size of selected genes in the wild-type and fcv1 strains 

may indicate size differences suggesting a lack of or alternative splicing in the 

fcv1 strain. However, if FCV1 participates in splicing of pre-mRNA from only a 

subset of genes then choosing the appropriate genes to detect a difference in 

the above experiment may prove especially time-consuming. An RNA 

sequencing approach or genome-wide array able to differentially detect spliced 
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and unspliced mRNA of all F. graminearum genes may prove a very useful tool 

in this aspect.  

It is interesting to note the apparent role of MOS4 in the regulation of 

Arabidopsis immunity. It is currently unknown if FCV1 plays a role in self-

defence of F. graminearum. mos4-1 plants show a delayed flowering time and a 

reduced number of seeds per silique compared to the wild type Col-0 (Palma et 

al., 2007). In comparison, the fcv1 strain shows a reduced growth and infection 

rate and a decreased level of conidiation. This suggests that both FCV1 and 

MOS4 are important for growth and development. In a new Rothamsted 

Research based PhD project to start in October 2010, the mos4 mutant will be 

tested for its affect on the outcome of the Fusarium-Arabidopsis floral 

interaction. 

Despite apparently participating in a core cellular process, Cwf7 (an Spf27 

homologue) is not an essential protein in S. pombe, nor is Mos4 in Arabidopsis.  

While the function of Fcv1 of F. graminearum is not known, the protein is clearly 

not essential for survival of this species. The Mos4 and Bcas2/Spf27 proteins 

are contained within large multi-protein complexes (Neubauer et al., 1998; 

McDonald et al., 1999; Tsai et al., 1999, Ajuh et al., 2000; Ohi et al., 2002; 

Chan et al., 2003; Monaghan et al., 2009). Functional redundancy in such 

complexes may be the cause of such a result, as mutation of MOS4 together 

with other complex proteins is lethal (Monaghan et al., 2009). This further 

suggests that the entire complex is required for an essential process such as 

splicing (Monaghan et al., 2009). In human cells lacking p53, or containing a 

mutant p53, depletion of Bcas2 caused cell cycle arrest at the G2/M checkpoint, 

while in wild type cells this depletion causes apoptosis (Kuo et al., 2009). The 

loss of FCV1 in F. graminearum slows the rate of growth and alters colony 

morphology. This could possibly reflect a reduced rate of cell cycle progression 

in the fcv1 strain or an increase in the occurrence of cell death. 

It is also possible, however, that Fcv1 contributes to F. graminearum growth, 

virulence, sporulation and stress sensitivity not via a role in splicing but by some 

other means, for which further characterisation of FCV1 will be required. Tools 

that may assist in helping to elucidate the function of FCV1 in F. graminearum 
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include His-tagged Fcv1 or a yeast-2-hybrid screen to identify interaction 

partners, which could include spliceosome components, growth or conidiation 

regulatory factors, proteins of the stress sensitivity regulatory systems, such as 

those of the Hog1 pathway, or other factors. 

The production of GFP, mCherry or dsRed-tagged Fcv1 could be used to 

investigate subcellular localisation and protein movement, which could be 

performed in real time for in vitro cultures of F. graminearum. In addition, a 

promoter-GFP or promoter-GUS fusion strain to observe patterns of expression 

of the FCV1 gene under different conditions in vitro and in planta could be 

particularly informative. Further analysis of the Fcv1 sequence may reveal post-

translational protein modification sites that could be subject to site-directed 

mutagenesis to determine their role in Fcv1 activity or localisation. Coupling 

mutagenesis with structural studies may help to reveal amino acid residues and 

structural features important for Fcv1 activity or interaction with other proteins. 

 

7.5 Comparison of the fcv1 Strain with its Neurospora crassa Counterpart 

The availability of a large range of N. crassa single-gene deletion strains at the 

Fungal Genetics Stock Center due to the efforts of the N. crassa community 

provided the opportunity to compare the growth and stress sensitivity of the F. 

graminearum fcv1 strain and that of the N. crassa strains harbouring a deletion 

of the closest FCV1 homologue, NCU01167. This useful comparison revealed 

that in these species, deletion of FCV1 or its homologue led to a reduction of in 

vitro growth rate and increased sensitivity to oxidative stress provided by 

hydrogen peroxide. This revealed the importance of FCV1 and NCU01167 in 

growth and stress tolerance in both pathogenic and non-pathogenic filamentous 

fungi. FCV1 could possibly also contribute to additional factors that in the 

pathogenic species led to a slightly increased defect in the rate of spread in 

planta compared to complete medium in vitro. Further investigation of the 

response of N. crassa strains to osmotic stress and menadione would provide 

further clues about the conservation of FCV1 and NCU01167 roles in these 

species. 
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7.6 The Morphological Defects of the pkar Strain 

 

The F. graminearum pkar deletion strain exhibited hyphae containing a series of 

short, almost cuboidal cells. The hyphae of all filamentous fungi species are 

separated into a series of compartments by the presence of septa. Such septa 

each contain a small pore to allow transfer of signals or material between 

compartments. This phenotype observed in the pkar mutant could represent an 

increase in or alteration in the regulation of septation in hyphae. A broadly 

similar phenotype has been recorded in a temperature-sensitive mutant of the 

N. crassa PKAR-encoding gene MCB when grown below the restrictive 

temperature (Bruno et al., 2006, Chapter 4). This indicates a possible role for 

PKAR in the septation process in filamentous fungi 

Septum formation is coordinated with mitosis and requires formation of a 

contractile actin ring (CAR) at the septum site (Balasubramanian et al., 2004), a 

process which is tightly coupled to septal wall material deposition (Momany and 

Hamer, 1997). The CAR may act to guide the recruitment of septum formation 

factors (Si et al., 2010).  

A number of genes have been shown to have a role in septum formation in 

filamentous fungi. The majority of studies of this process have focussed on the 

species Aspergillus nidulans. In A. nidulans, a septation initiation network (SIN), 

together with both septins and a formin have been shown to be required for 

septum formation (discussed in Harris 2001). The SIN is comprised of the small 

GTPase-activated SepH-SepL-SidB protein kinase cascade, together with the 

SepM and MobA cofactors that regulate SepL and SidB, respectively (Kim et 

al., 2006; Krapp and Simanis, 2008; Kim et al., 2009). The SIN is required for 

CAR assembly (Bruno et al., 2001; Kim et al., 2006). Components that act up- 

and downstream of the SIN are, however, yet to be identified (Si et al., 2010). 

The septin AspB and formin SepA require SepH for localisation to the septation 

site (Sharpless and Harris 2002; Westfall and Momany, 2002). SepA but not 

AspB is required for CAR formation (Sharpless and Harris 2002; Westfall and 

Momany, 2002). The AspA and AspC septins are required for normal germ tube 

and branch emergence in A. nidulans and may interact with each other to 
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control new growth in A. nidulans (Lindsey et al., 2010). Deletion of ASPA or 

ASPC also reduced septation and conidiation (Lindsey et al., 2010). 

The SIN first appears at the spindle pole body (SPB) (Simanis, 2003). The 

coiled-coil protein Snad, which is located at the SPB also participates in 

septation and is required for conidiation (Liu and Morris, 2000). Snad, together 

with SepK is required for SidB and MobA localisation to the SPB but not to the 

septation site (Kim et al., 2009). SPB localisation of the SIN appears to be 

required for timely septation in A. nidulans (Kim et al., 2009). Class I and II 

chitin synthases have also been shown to be involved in septum formation in A. 

nidulans. In the chsA:chsC double mutant, septa were unusually thick with a 

large pore and some were located abnormally close to each other (Ichinomiya 

et al., 2005). In U. maydis all eight chitin synthases localise to septa, while the 

class IV chitin synthases chs7 and chs5 are important in maintaining correct 

yeast cell and hyphal shape and make a large contribution to virulence (Weber 

et al., 2006). Dynein may play a role in septum positioning in A. nidulans (Liu et 

al., 2003). Deletion of the A. nidulans putative cell end marker gene TEAC 

caused hyphal growth in a zig-zag pattern (Higashitsuji et al., 2009). The teaC 

strain also showed an increased number of septa and branches compared to 

the wild-type and the presence of some anucleate compartments. This was 

thought to be due to the reduced growth rate of this strain and not specific for 

the teaC strain. However, TEAC overexpression resulted in a repressed 

septation. TeaC was also reported to interact with SepA at hyphal tips and 

septa. The most recently identified septum formation factor in this species is 

Bud3, a homologue of the S. cerevisiae axial bud site marker (Si et al., 2010). 

Bud3 is required for septum and CAR formation but not for polarised growth per 

se and appears to act as a guanine nucleotide exchange factor (GEF) for the 

GTPase Rho4 downstream of the SIN to recruit additional factors required for 

the formation of the septum. Rho4 is required for actin ring formation and 

septation in N. crassa (Rasmussen and Glass 2005).  

In the related species A. fumigatus, the α-glucosidase 1 gene CWH41 is 

required for normal conidia production. The deletion strain of this gene is 

reduced in conidiation and septation and shows altered growth polarity (Zhang 

et al., 2008). In addition, the msdS 1,2-α-mannosidase gene deletion strain also 
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shows reduced conidiation and reduced/random septum formation (Li et al., 

2008).  

Further investigation is required to determine if the deletion of PKAR in F. 

graminearum leads to altered regulation of septation. It is currently unknown if 

septum formation is still coordinated with mitosis in the pkar strain. Alternatively, 

as suggested for the A. nidulans teaC strain, the hyperseptate appearance may 

in fact be due to a reduced hyphal elongation rate that causes septa to be 

positioned closer together in hyphae. That the pkar strain exhibits a drastically 

reduced growth rate compared to the wild-type on both complete and minimal 

medium means this is a strong possibility for this strain. To further characterise 

the pkar strain, microscopic investigation to determine the presence of 

anucleate compartments or altered cell wall composition will help to reveal more 

about the morphological defects of this strain. Comparison of the pkar strain 

with adenylate cyclase and PKA catalytic subunit over-expression and deletion 

strains will also prove very useful. 

7.7 A Novel Type of Fungal Gene Cluster 

As discussed in chapter 3, the micro-region identified on chromosome I of F. 

graminearum, and investigated in this study, appears to represent a novel type 

of fungal gene cluster. The genes of the micro-region do not exhibit co-

ordinated regulation or encode enzymes for the production of a particular 

secondary metabolite, as found, for example, with the TRI trichothecene 

mycotoxin biosynthetic gene cluster (Proctor et al., 1995; Hohn et al., 1999). 

The proteins encoded by the genes of the micro-region are not predicted to be 

secreted, as found for clusters identified in the genome of U. maydis (Kamper et 

al., 2006; Dean, 2007; Howlett et al., 2007) nor are these genes located on 

supernumerary chromosomes like the PEP cluster of F. solani (Han et al., 

2001).  

Unlike bacterial pathogenicity islands and the PEP cluster (Hacker et al., 1997; 

Han et al., 2001; Hentschel and Hacker, 2001; Liu et al., 2003), the micro-

region does not possess a GC content distinct from the rest of the F. 

graminearum genome nor is it rich in repetitive sequence. Recent 

characterisation of genomic islands in the genome of the animal pathogen 
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Aspergillus fumigatus has revealed that these islands, unlike the F. 

graminearum micro-region presented in this study are enriched for transposons, 

pseudogenes and repetitive elements (Fedorova et al., 2008). The genomic 

islands of A. fumigatus are now thought not to have arisen by horizontal 

transfer, but instead by a process of gene duplication, diversification and 

differential gene loss (Fedorova et al., 2008). Clustered in such islands are 

species-specific genes, which are smaller and contain fewer exons than core 

genes. These genes are predominantly found at subtelomeric locations 

(Nierman et al., 2005; Fedorova et al., 2008) as was noted for species-specific 

and in planta-specific genes and SNPs in F. graminearum (Cuomo et al., 2007). 

Interestingly, by contrast and unlike the in planta-specific genes proposed to 

contribute to F. graminearum virulence (Cuomo et al., 2007), the genes of the 

micro-region of this study are located in a site that is neither subtelomeric nor is 

SNP-rich. In fact, many of the verified virulence contributors in F. graminearum 

are found in low recombination frequency regions of the genome and are not 

subtelomeric (Figure 7.1). 
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Figure 7.1 Distribution of verified virulence contributors in F. graminearum (black vertical bars) compared to recombination frequency (coloured blue to red, 

low to high) on the four chromosomes (horizontal beige bars).  
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7.8 The Use of Comparative Genomics  

The increasing availability of genome sequences for plant pathogenic fungi, 

such as M. oryzae and F. graminearum, allows these organisms to be 

investigated in detail and comparisons to be made between different plant 

pathogens. Comparative genomics is allowing greater understanding of the 

host-pathogen interaction through analysis of conserved genes, gene 

arrangement and the distribution of features such as repetitive sequences and 

single nucleotide polymorphisms (SNPs). 

By comparing genomic features such as the predicted gene complement of 

different species, insights can be made into their modes of pathogenicity. For 

example, by comparing pathogenic and non-pathogenic species, genes 

potentially important for virulence can be highlighted. For example, 145 F. 

graminearum genes have homologues in the pathogen M. oryzae but not in the 

non-pathogenic saprophytes N. crassa and A. nidulans (Xu, 2006). However, 

for most F. graminearum genes that have been shown to contribute to 

virulence, it appears that homologues are found in all 3 of the above species, so 

simple comparisons of gene content may not reveal all pathogenicity/virulence 

factors. (Xu, 2006). Regulatory differences of such genes may be important in 

conferring the different lifestyles of these species and so gene expression 

datasets can prove highly useful in such cases. Recent work by Lavoie and 

others has highlighted the flexibility of transcriptional regulatory networks in 

ascomycetes and has shown that changes in transcriptional control in regulons 

controlling a wide range of processes such as carbohydrate and lipid 

metabolism and the production of components of the ribosome is common 

(Lavoie et al., 2009). This may help to explain why the micro-region described in 

this study, which is highly important for virulence in F. graminearum is well-

conserved in the non-pathogenic fungus T. reesei as well as the pathogens F. 

verticillioides, F. oxysporum and F. solani. In another example, it has been 

found that the yeast S. cerevisiae contains all the genes required for 

filamentous growth in Ashbya gossypii, such that gene non-functionalisation or 

differences in gene expression must explain the different growth behaviour of 

the two species (Philippsen et al., 2005, Xu, 2006). 
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Expanded gene families can reveal cell functions that are important to the 

disease-causing ability of a particular pathogen. For example, the genome 

sequence of F. graminearum contains a larger number of genes predicted to 

encode proteins belonging to virulence-related protein families than non-

pathogenic fungi, including predicted hydrolytic enzymes and transmembrane 

transporters (Cuomo et al., 2007). This may appear surprising as this species 

possesses a system known as repeat-induced point mutation (RIP) (Selker et 

al., 1987) which introduces mutation in duplicated sequences during the sexual 

cycle (Watters, et al., 1999; Cuomo et al., 2007). This may suggest that such 

gene families arise by means other than gene duplication. The M. oryzae 

genome contains over 700 predicted secreted proteins, a much greater number 

than for N. crassa or A. nidulans (Dean et al., 2005). RIP may also contribute to 

the very low percentage of repetitive sequence in the F. graminearum genome 

compared to other species (Selker et al., 1987; Cuomo et al., 2007).  

Comparison of the genomes of the four currently sequenced Fusarium species 

has already revealed interesting insights into their differing host ranges and 

modes of pathogenicity (Ma et al., 2010). The genome of F. oxysporum f sp. 

lycopersici (Fol) is significantly larger than that of F. verticillioides (Fv) and F. 

graminearum (Fg) (by about 44% and 65%, respectively) and contains a greater 

number of predicted protein-encoding genes. This additional sequence in Fol, 

referred to as ‘lineage-specific’ (LS) regions, is present predominantly on extra 

chromosomes and is distinct from the ‘core’ conserved genome sequence. 

These LS regions account for nearly all of the extra genomic sequence in Fol 

compared to the other two species. They are highly enriched for repetitive 

sequence (28%), transposable elements and many genes predicted to encode 

secreted effectors, virulence factors, transcription factors, signalling proteins 

and secreted enzymes known to be up-regulated during infection of the tomato 

host but contain few house-keeping genes. Around half of the genes in Fol LS 

regions appear to be specific to this species and are not found in Fg or Fv. Such 

regions appear to have been acquired by horizontal transfer from other 

Fusarium species and possess distinct codon usage compared to other 

genomic regions. The Fol LS regions differ considerably in sequence among Fo 

strains with different host specificities and are absent in non-pathogenic strains. 
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It has been demonstrated that transfer of LS chromosomes can convert a non-

pathogenic Fo strain into a pathogenic one (Ma et al., 2010). Fol LS regions 

therefore appear to be key to host specificity and the acquirement of 

pathogenicity in F. oxysporum. The Fol LS regions but not the ‘core’ genomic 

regions are also absent in F. solani (Fs). However, Fs itself possesses three LS 

chromosomes distinct from the genomes of the other three sequenced 

Fusarium species. Dispensable chromosomes that confer host-specific 

virulence have already been reported in this species (Han et al., 2001). In 

addition, small dispensable (supernumerary) chromosomes in Alternaria 

alternata contain genes that are involved in the biosynthesis of the AM, AF and 

AAL-toxins in apple, strawberry and tomato pathoypes (Akamatsu et al., 1999; 

Johnson et al., 2000, 2001; Hatta et al., 2002; Harimoto et al., 2007; Akagi et 

al., 2009) and which may be able to transfer horizontally (Akagi et al., 2009).  

Dispensable chromosomes appear not to be present in F. graminearum, 

meaning that all genes important for causing disease must be located on the 

four core, and indeed only, chromosomes. The micro-region described here is 

located on chromosome I in F. graminearum but is also found in F. oxysporum f 

sp. lycopersici and is located on chromosome VII, one of the core 

chromosomes of this species. This suggests that if the micro-region functions in 

contributing to F. oxysporum virulence, as may be expected in such a closely 

related species, it does so in a host non-specific manner and such genes would 

maintain a ‘core’ role in virulence-associated processes that are common to all 

host species. 

Further investigation of the four sequenced Fusarium species has allowed the 

identification of conserved motifs in promoter, intron and downstream regions of 

genes (Kumar et al., 2010). By comparison to the genomes of S. cerevisiae and 

Schizosaccharomyces pombe, many motifs were able to be assigned to specific 

cellular processes or transcription factor binding sites. In F. graminearum, a 

genome-wide analysis of transcription in a deletion strain of the trichothecene 

biosynthetic cluster transcription factor TRI6 has revealed that the TRI6 regulon 

encompasses not only the trichothecene biosynthesis TRI cluster but also 

genes that form part of the upstream isoprenoid biosynthesis pathway and a 

large number of additional genes (Seong et al., 2009). For example, within the 
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micro-region the upstream 1 kb of the STE7 gene contains two TRI6 binding 

site sequences (data not shown). 

Comparisons between pathogens with different modes of infection, for example 

biotrophs versus necrotrophs or those that produce specialised infection 

structures versus those that do not, could help to highlight different genes 

required for disease formation in pathogens of different infection types. Fungi of 

different host types such as animal and plant pathogens or dicotyledonous and 

monocotyledonous phytopathogens can also be compared and contrasted. 

Examples include Rispail et al. (2009), who investigated the conservation of the 

MAP kinase and calcium-calcineurin signalling pathways in human and plant-

pathogenic fungi, finding that most but not all S. cerevisiae pathway 

components appear to be widely conserved in a range of fungal pathogen 

species. 

The secreted enzymes of saprophytic and phytopathogenic fungi can also 

provide clues as to their major sources of nutrition, for example growth on 

decaying wood versus cereal leaves or ears. In principle, the effector and 

avirulence (avr) gene complement of different strains of a pathogenic species 

can help reveal insights into host choice and specificity, however, the 

identification of avr genes in the genomes of fungi is difficult because of their 

lack of conserved features. For F. graminearum infecting wheat and barley, no 

differential host genotype responses to different fungal isolates have so far 

been noted by either plant breeders or the researcher community.  Therefore, 

currently, the gene-for-gene hypothesis developed by Flor in the 1940s (Flor, 

1942, 1947), which was subsequently been used for much pathogen avr and 

host R gene discovery, appears not to apply to these Fusarium – cereal species 

interactions.   

Comparison of genomes reveals which regions are highly conserved between 

species, and which are more diverse. This may be related to the recombination 

frequency of these different regions of the genome and can help to elucidate 

evolutionary relationships between species and highlight the occurrence of 

horizontal gene transfer. For example, Richards et al. (2009) compared the 

genomes of plants with a large number of prokaryotic and eukaryotic species 
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and found evidence for horizontal gene transfer events between plants and 

fungi and between plants and oomycetes.  When orthologous pairs of genes in 

M. oryzae, F. graminearum, and N. crassa were analysed, small syntenic 

regions of 3 to 20 genes were identified. F. graminearum, based on the MIPS 

analysis, contains 359, 258 and 86 regions with four or more genes colinear 

between itself and N. crassa, M. oryzae, and A. nidulans, respectively (Xu, 

2006). The degree of microsynteny appeared highest between F. graminearum 

and N. crassa. However, only the quinate/shikimate (Qa) metabolic pathway 

gene cluster exhibits more than seven conserved colinear genes. While some 

chromosomal fragments appear conserved, no clear relationship was identified 

between the chromosomes of the different species (Xu, 2006). 

The F. graminearum micro-region is present in a region of low recombination in 

this species which may be expected to help in maintenance of the region as a 

whole entity. However, in more distantly-related species the region begins to 

break down into small syntenic units of only two to three genes. This may 

indicate a higher level of recombination in these species compared to F. 

graminearum or a sufficiently large evolutionary distance for breakdown to 

occur even with an inherently low level of recombination. In addition, the low 

level of recombination of this region in F. graminearum may help to maintain the 

clustering of this important group of genes, which may prove to be important in 

their functioning in disease-related or other cellular processes.  

Genome comparisons can also be used to help improve gene prediction. A 

comparison of the nucleotide sequence identity of predicted F. oxysporum, F. 

graminearum and F. verticillioides orthologues indicated 91% nucleotide 

sequence identity between F. oxysporum and F. verticillioides, both of which 

show 85% identity with their F. graminearum orthologues. Such conserved 

genes numbered over 9,000 and were enriched for predicted transcription 

factors, lytic enzymes, and transmembrane transporters (Ma et al., 2010). In 

this study, the homologues of F. graminearum genes found in the other 

Fusarium species showed a high degree of sequence conservation to the 

corresponding F. graminearum gene. The comparative genomics analysis also 

helped to indicate possible discrepancies in the gene calls of the different 

species’ genomes, whereby genes called in one species were absent in others 
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despite a high degree of similarity at the nucleotide sequence level. This likely 

indicates either non-functionalisation of the gene in one or more species such 

that it is not called or differences in the selectivity of the algorithms used for 

gene identification in the different genomes. 

However, comparative genomics faces difficulties, such as may be encountered 

when the genomes of sequenced fungal pathogens contain numerous genes 

that do not show either any homologues at all or any annotated homologues in 

other organisms to help predict gene function. Approximately 30% of the 

annotated genes of F. graminearum and M. oryzae have no known homologues 

in other organisms (Xu, 2006). A similar situation is found with N. crassa and A. 

nidulans. The approach used in this study can also be applied to highlight 

genes of this type that may be important in disease progression. 

By combining comparative genomics with transcriptomics to study gene 

expression under different conditions and proteomic approaches to examine, for 

example, the phosphoproteome and indicate the signalling state of the 

organism, these tools can become very powerful and reveal a wealth of data 

about different organism species, the relationships between such species and 

the way in which they complete their different modes of life. Proteomics has 

also been suggested as an important tool for genome annotation, in a manner 

similar to the mapping of ESTs or entire cDNA sequences onto the genomic 

sequence (Wright et al., 2009).  This approach has been used for Aspergillus 

niger, where tandem mass spectrometry was used to sequence several 

hundred peptides separated by electrophoresis. The sequences obtained were 

then compared to the sequences of predicted genes in the A. niger genome 

sequence and in this way a large number of peptides could be mapped to 

different predicted gene loci (Wright et al., 2009). Such an approach could help 

to determine the success of gene calls in related Fusarium species that appear 

to lack some of the genes of the micro-region. Whole-genome microarrays are 

also available for species such as F. graminearum and M. oryzae to study 

differential expression patterns. Such microarrays have proved useful in 

studying transcript accumulation in different nutrient conditions and during plant 

infection (Güldener et al., 2006). These studies revealed the lack of co-ordinate 
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gene expression in the micro-region in planta, which contrasts with that of the 

TRI trichothecene biosynthesis gene cluster. 

There are now an even greater number of fungal genome sequences available 

for use in comparative genomics. Sequences now available, but not yet 

published,  include three species of the saprobe Trichoderma, Fusarium 

circinatum, a pathogen of pine trees, F. pseudograminearum, an important 

cereal pathogen and cause of crown rot, F. culmorum, a causal agent of ear 

blight in Europe and other areas and three species of the grass endophyte 

Epichlöe. These resources will allow an even greater in-depth analysis of the 

conservation and micro-synteny of this and any additional micro-regions 

identified in fungi across a larger number of species than possible at the start of 

this project. This will help to further reveal the evolutionary origins and functions 

of such regions.  

 

7.9 Next-Generation Sequencing 

The advent of next generation sequencing technologies is opening up potential 

new methodologies for the investigation of fungi and potentially can expand 

massively the possibilities of genomic and transcriptomic approaches. Using the 

latest technology, cDNA, genomic or even direct RNA sequencing (Ozsolak et 

al., 2009) can be performed on a larger scale than ever before.  Sequencing the 

genomes of many closely-related fungal species or strains of the same species 

will help elucidate the evolutionary relationships between them and genomic 

differences that confer phenotypic variability.  Also, biological time-course 

experiments can be explored in depth and will most probably reveal greater 

insights than the currently available microarray based datasets.  Likewise, with 

fully sequenced fungal genomes now available, the in planta interaction can be 

explored, and the data de-convoluted to explore the pathogen and host 

responses in tandem. 

Le Crom et al (2009) used a next-generation approach to perform the 

sequencing of different strains of the industrially important fungus Trichoderma 

reesei. This species is commonly used for the large scale production of 
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cellulases and hemicellulases (Bouws et al., 2008; Kumar et al., 2008; Stricker 

et al., 2008). Mutagenesis approaches have been used to increase the enzyme 

yield of this species (Reese, 1976). By sequencing and comparing the original 

T. reesei isolate and modern enzyme production strains, the study was able to 

identify the series of mutations in the strains that provide an increased yield of 

cellulases. The number of mutations present in the cellular hyper-producing 

strains was surprisingly high.  Many of the detected changes were present in 

genes involved in nuclear transport, mRNA stability, transcription and other 

processes and affected the carbon assimilation patterns of the different strains. 

For pathogenic fungi such as F. graminearum, mutations that may confer 

fungicide resistance or increased virulence can also be screened for in this 

manner, allowing rapid detection of genetic changes that can lead to 

increasingly virulent strains.  The approach is being applied in combination with 

the generation of mapping populations between resistant and sensitive strains, 

to pin-point the genomic region and subsequently the exact genetic change 

conferring the altered phenotype (M. Csukai, Syngenta, Jealott’s Hill, UK, 

unpublished).   

 

7.10 Distribution and Origins of the F. graminearum Micro-Region 

In this study, conservation of the micro-region was compared in a number of 

different species. Four Fusarium species: F. graminearum, F. verticillioides, F. 

oxysporum and F. solani have so far been sequenced and published. The 

degree of conservation of the micro-region was extremely high across these 

four closely related pathogenic species, with only F. solani exhibiting a 

difference from F. graminearum by more than one gene. Addition of the closely 

related saprophyte Trichoderma reesei to the comparison indicated a very high 

level of conservation of the micro-region in this species as well. This suggests 

that this grouping of genes alone is not sufficient to render the fungus 

pathogenic and that many additional factors are required for such a lifestyle in 

its Fusarium relatives. Indeed, differential regulation of the cluster genes may 

contribute to explaining the differing modes of survival of T. reesei and the four 

Fusaria. By extending the comparative genomics analysis to other more 



260 

 

distantly related pathogenic and non-pathogenic species (N. crassa, M. oryzae, 

M. graminicola and U. maydis), breakdown of the cluster could be observed, 

which appeared to reflect the taxonomic relationships between the species. It 

therefore appears that this specific grouping of genes may only be important for 

Fusarium and closely related species.  In 2010, the genomes of several 

additional fungal species described above have become available. In the future, 

it will be interesting to inter-compare these species and also to determine how 

far 5’ and 3’ of the micro-region this high degree of interspecies micro-synteny 

extends.    

The origins and complete distribution of the micro-region cannot be fully 

determined from the comparative genomics analysis performed here, yet it has 

been shown that this micro-region is present in all sequenced Fusarium species 

to date and at least in T. reesei as well. The study of two different F. 

graminearum strains collected from different states in the USA in the late 1990s, 

also revealed that both strains contained the entire micro-region and no SNPs 

were present (data not shown). The micro-region may have been present in a 

progenitor of the species investigated here and subsequently become 

fragmented in species such as M. oryzae and U. maydis. Alternatively, the 

micro-region may be fragmented in the progenitor and been formed during the 

evolution of the Fusarium species and T. reesei but not in the other species 

above. Another possibility is acquisition via horizontal transfer. However the 

properties of the micro-region such as GC content and lack of flanking repetitive 

sequences appear to make this a less likely route. A more detailed phylogenetic 

analysis and investigation of micro-region properties such as codon usage and 

dinucleotide frequencies will be required to establish which of these situations is 

the most likely path of evolution for the micro-region. Interestingly, a recent 

study of the GAL galactose utilisation cluster found that the three genes of this 

cluster have become grouped together via different processes in three 

unrelated yeast lineages (Slot and Rokas, 2010). In Saccharomyces and 

Candida, the genes were originally unclustered and have become grouped 

together by relocation, whereas in Schizosaccharomyces, the cluster was 

acquired by horizontal transfer from Candida. In Cryptococcus, the genes 

became grouped together but independently from the other species. 
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Cryptococcus also contains ungrouped paralogues of the GAL genes in addition 

to the cluster. In addition, the six-gene DAL allantoin utilisation cluster, the 

largest metabolic gene cluster of yeast, also appears to have been formed by 

the clustering of originally dispersed genes at a single genomic locus (Wong 

and Wolfe, 2005). This study indicates the possibility of genes that are originally 

dispersed becoming collected together at a single genomic locus by relocation, 

a process that could have contributed to the formation of the cluster in this 

study. Such clustering, in the case of metabolic pathway genes, is thought to 

originate and be maintained because it either confers an advantage via allowing 

more precise coordination of regulation of the genes involved (Hurst et al., 

2004), the clustered state being horizontally transferred more readily (Lawrence 

and Roth, 1996; Walton, 2000) or both (Slot and Rokas, 2010). In the case of 

the micro-region discovered in this study, the driving forces for its origination 

and maintenance are currently unknown but the genes are not subject to co-

ordinated regulation so this appears not to be a factor in formation. Clustering of 

these genes into a region of low recombination in the genome may help to 

‘protect’ these genes which are important to virulence by reducing the chance of 

mutation or deletion via recombination events. In addition, several of the genes 

may be linked to each other via regulatory pathways (see below) and so 

maintenance of the micro-region may serve an important role in gene regulation 

and signalling. It has recently been found that in some Fusarium species, such 

as F. equiseti, the core trichothecene (TRI) gene cluster has become expanded 

by the addition of two further TRI genes that in other Fusarium species are 

present at separate loci and even on separate chromosomes in some cases 

(Proctor et al, 2009), indicating the possibility of cluster formation and 

expansion in the Fusaria. 

 

7.11 Micro-Region ‘Intralinks’ 

Interestingly, connections may exist between the different genes of the micro-

region at the level of regulation, metabolism and molecular interplay in the 

fungal cell (referred to here as micro-region ‘intralinks’). Firstly, yeast neutral 

trehalases can be activated by Pka-mediated cAMP-dependent phosphorylation 
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(Thevelein 1984, 1988; App and Holzer, 1989; Carrillo et al., 1995) and both the 

cAMP-dependent protein kinase (Pka) regulatory subunit gene (PKAR) and the 

neutral trehalase gene NTH1 are found in the micro-region. In yeast, Pka can 

also repress the expression of stress-related genes by phosphorylating the 

transcription factor Msn2, which causes its retention in the cytosol (Gorner et 

al., 1998; Rolland et al., 2002). However, in N. crassa, while trehalose 

mobilisation at the onset of germination appears to be activated by Pka 

signalling, mobilisation under other conditions, such as heat stress or carbon 

starvation appears to be independent of Pka signalling (de Pinho et al., 2001). 

Deletion of the SNF1 gene, which is also located in the cluster, was found to 

reduce trehalose levels in the fungal cell (M. Urban, J. Ward and M. Beale 

unpubl.), suggesting a role for SNF1 in negative regulation of trehalase activity.  

During glucose depletion, Snf1, similarly, phosphorylates Msn2 and prevents its 

nuclear accumulation (Mayordomo et al., 2002; De Wever et al, 2005).  

The deletion of SNF1 reduces cellular trehalose, while deletion of the NTH1 

gene would be expected to result in elevated trehalose levels in the cell. Both 

the snf1 and nth1 strains genes show a reduced rate of FEB symptom spread in 

wheat, albeit to differing extents (this study, M.Urban unpubl., Lee et al., 

2009b). This may indicate that maintaining trehalose levels within a specific 

range may be critical for wild-type infection. In M. oryzae, the T6PS gene TPS1 

is required for appressorium function and cuticle penetration, while NTH1 is 

required for post-invasive growth (Foster et al., 2003). The effect of trehalose 

metabolism on pathogenicity in M.oryzae has been suggested to be mediated 

via a broad regulatory activity of trehalose on metabolism and gene expression 

(Foster et al., 2003; Wilson et al., 2007). In addition, SNF1 regulates the 

expression of the isocitrate lyase gene ICL1 in yeast (Ordiz et al., 1998, 

Umemura et al., 1997).  It is interesting to note that NTH1, ICL1 and SNF1 form 

a contiguous arrangement of genes within the cluster in the Fusarium species 

and T. reesei but not more distantly related species. Potential links are therefore 

present between four of the cluster genes (PKAR, NTH1, SNF1 and ICL1). 

In yeast, both Hog1 and Pka regulate the activity of the Msn2/4 stress response 

transcription factors (Gorner et al., 1998; Moskvina et al., 1998; Causton et al., 

2001; O’Rourke et al., 2002; Gasch et al., 2007). Further investigation will be 
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required to determine if Fcv1, which appears to regulate osmosenstivity in F. 

graminearum, is linked to the Hog1 osmosensing pathway and other stress 

sensing pathways.  

 

These close regulatory relationships could help to explain the close grouping of 

these genes in this hotspot, however, the genes of the micro-region do not 

show co-ordinated regulation so their clustering appears not to serve the 

purpose of their simultaneous expression. The location of the micro-region in an 

F. graminearum genomic region with little or no recombination may assist in the 

maintenance of this arrangement. However, in other Fusarium species, such as 

F. oxysporum f. sp lycopersici, where vast numbers of transposons are present 

and presumably active, the continuing maintenance of this arrangement is 

remarkable. 

  

7.12 Other Micro-Regions in F. graminearum 

As more genes are shown to contribute to virulence in other pathogenic fungi, 

so more homologues and therefore more hotspots can potentially be revealed in 

the genome of the pathogen of choice. For example, Figure 7.2 indicates that 

by plotting the homologues of the latest collection of virulence contributors 

(www.phi-base.org) onto the F. graminearum genome, so new hotspots are 

highlighted.  
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Figure 7.2 Distribution of homologues of verified pathogenicity/virulence contributors in the F. graminearum genome as at 2010. Homologues are higlighted 

as blue vertical bars on the four horizontal beige chromosomes (1 top to 4 bottom). A second hotspot is shown on chromosome 3 (black box).  
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7.13 Further Investigation 

In addition to the possible experiments described elsewhere in this chapter 

there are a number of additional techniques that would likely prove interesting to 

use to investigate further and help to reveal more about the genes of this micro-

region. Examining the role of NTH1 and the second F. graminearum trehalase 

gene in recovery from stress and during spore germination, in addition to a role 

during growth under stress conditions would help to reveal more about the role 

of trehalose degradation during different life stages and under different 

conditions. As standard genetic complementation of the pkar strain by 

transformation of protoplasts derived from germlings grown from fresh conidia 

with the wild-type PKAR gene was not possible for this strain due to a lack of 

asexual sporulation an alternative approach could be used. For example, an 

antisense sequence of the PKAR gene under the control of an inducible 

promoter could help to further confirm the role of tight regulation of Pka activity 

in F. graminearum. Comparing the sequence of the micro-region in a greater 

number of species may also help to reveal more about the evolutionary origins 

and distribution of this genomic feature, for example by including the newly 

sequenced Fusarium strains in the comparative genomics analysis, using a 

wider range of species for comparison or by using next generation sequencing 

to investigate the micro-region in a large number of closely related Fusarium 

strains to help link sequence variation in the micro-region to phenotypic 

differences. Exploring the sequence of this micro-region in various F. 

graminearum strains collected from different crops, in different geographical 

regions and in different decades may also be highly informative. 

 

7.14 In Conclusion 

The need to study plant pathogenic microorganisms is paramount and 

becoming ever more important as food production and disease take a higher 

priority in global affairs. Pathogen evolution and political legislation dictate that 

new targets for intervention must be sought. To ensure greater success to these 

ends novel approaches must be used in addition to the labour-intensive forward 

genetics techniques and gene function biased reverse genetics approaches 
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with methods designed to help rapidly investigate the unannotated and non-

virulence/pathogenicity gene homologue gene complement of pathogens.  

This study has investigated one possible approach to deliver a more rapid 

identification of gene classes previously unknown to contribute to disease 

symptom development. By highlighting genomic regions significantly enriched 

for virulence-associated factors, the technique has been used to rapidly pin-

point novel classes of such genes at these sites. The success of this 

methodology has been demonstrated by the identification of a novel class of 

gene, namely FCV1, which is required for a full rate of disease development on 

wheat and Arabidopsis. 

This approach is applicable to any sequenced pathogen, which with the advent 

of next-generation sequencing techniques, is a daily expanding number of 

organisms. It is hoped that such an approach, which is designed to complement 

existing forward and reverse genetic approaches, the results of which are 

required for the application of this technique, will prove highly useful in novel 

target site identification in the fight against global plant disease. 
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Appendix 1 

List of accession numbers. Accession numbers are shown for the protein 

sequences of genes described in the thesis. Where possible, the accession 

number is the one associated with the reference found in the text. In cases 

where this is not possible, the accession number that is available and reference 

for this accession number is shown. In some cases an accession number is not 

available and is indicated as such. Accession numbers were obtained from 

GenBank (www.ncbi.nlm.nih.gov/genbank).  

Protein Species Accession Reference 

FG09891.1 
(Asna1/Get3) 

Fusarium graminearum XP_390067.1 Cuomo et al., 2007 

FG09892.1 Fusarium graminearum XP_390068.1 Cuomo et al., 2007 

FG09893.1 Fusarium graminearum XP_390069.1 Cuomo et al., 2007 

FG09894.1 Fusarium graminearum XP_390070.1  Cuomo et al., 2007 

FG09895.1 (Nth1) Fusarium graminearum XP_390071.1  Cuomo et al., 2007 

FG09896.1 (Icl1) Fusarium graminearum  XP_390072.1  Cuomo et al., 2007 

FG09897.1 (Snf1) Fusarium graminearum  XP_390073.1  Cuomo et al., 2007 

FG09898.1 Fusarium graminearum XP_390074.1  Cuomo et al., 2007 

FG09899.1 Fusarium graminearum XP_390075.1 Cuomo et al., 2007 

FG09900.1 Fusarium graminearum  XP_390076.1 Cuomo et al., 2007 

FG15564.1 Fusarium graminearum Not Available Cuomo et al., 2007 

FG09901.1 Fusarium graminearum  XP_390077.1 Cuomo et al., 2007 

FG09902.1 Fusarium graminearum XP_390078.1 Cuomo et al., 2007 

FG09903.1 (Ste7) Fusarium graminearum  XP_390079.1 Cuomo et al., 2007 

FG09904.1 Fusarium graminearum XP_390080.1  Cuomo et al., 2007 

FG09905.1 Fusarium graminearum XP_390081.1 Cuomo et al., 2007 

FG09906.1 Fusarium graminearum XP_390082.1 Cuomo et al., 2007 

FG09907.1 (Fcv1) Fusarium graminearum XP_390083.1  Cuomo et al., 2007 

FG09908.1 (Pkar) Fusarium graminearum XP_390084.1 Cuomo et al., 2007 

Pda1 Fusarium solani XP_003044225.1 Han et al., 2001 

Get3 
Saccharomyces 
cerevisiae 

Q12154 Jacq et al., 1997 

Mpe1 
Saccharomyces 
cerevisiae 

P35728.1 Dujon et al., 1994 

FG08077.1 Fusarium graminearum XP_388253.1 Cuomo et al., 2007 

FG08078.1 Fusarium graminearum XP_388254.1 Cuomo et al., 2007 

FG08079.1 Fusarium graminearum XP_388255.1 Cuomo et al., 2007 

FG08080.1 Fusarium graminearum XP_388256.1 Cuomo et al., 2007 

FG08081.1 Fusarium graminearum XP_388257.1 Cuomo et al., 2007 

FG08082.1 Fusarium graminearum XP_388258.1 Cuomo et al., 2007 

FG08083.1 Fusarium graminearum XP_388259.1 Cuomo et al., 2007 

FG08084.1 Fusarium graminearum XP_388260.1 Cuomo et al., 2007 

FG09910.1 Fusarium graminearum XP_390086.1 Cuomo et al., 2007 
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FG09911.1 Fusarium graminearum  XP_390087.1  Cuomo et al., 2007 

FG09912.1 Fusarium graminearum XP_390088.1 Cuomo et al., 2007 

FG09913.1 Fusarium graminearum XP_390089.1 Cuomo et al., 2007 

FG09914.1 Fusarium graminearum XP_390090.1 Cuomo et al., 2007 

Icl1 Cryptococcus neoformans AAL56614.1 Rude et al., 2002 

Icl1 Leptosphaeria maculans AAM89498.1 
Idnurm and Howlett, 
2002 

Icl1 Aspergillus nidulans Not Available Bowyer et al., 1994 

Icl1 Magnaporthe oryzae AAN28719.1 Wang et al., 2003 

Icl1 Colletotrichum lagenarium BAE75842.1 Asakura et al., 2006 

Icl1 Candida albicans AAF34690.1 Eschrich et al., 2002 

FG07251.1 Fusarium graminearum XP_387427.1 Cuomo et al., 2007 

FG08729.1 Fusarium graminearum XP_388905.1 Cuomo et al., 2007 

Pkar1 Mucor circinelloides Not Available Ocampo et al., 2009 

Pkar2 Mucor circinelloides Not Available Ocampo et al., 2009 

Pkar3 Mucor circinelloides Not Available Ocampo et al., 2009 

Pkar4 Mucor circinelloides Not Available Ocampo et al., 2009 

Tps1 Magnaporthe oryzae AAN46744.1 Foster et al., 2003 

Nth1 Magnaporthe oryzae AAN46743.1 Foster et al., 2003 

Tps1 Stagonospora nodorum Not Available Lowe et al., 2009 

Tps1 Botrytis cinerea ABG25558.1 Doehlemann et al., 2006 

Tre1 Botrytis cinerea ABG25559.1 Doehlemann et al., 2006 

Nth1 Leptosphaeria maculans AAM92143.1 Idnurm et al., 2003 

Tps1 Cryptococcus neoformans AAT40476.1 Petzold et al., 2006 

Tps1 Cryptococcus gattii ACB46525.1 
Ngamskulrungroj et al., 
2009 

Tps2 Cryptococcus gattii ACB46526.1 
Ngamskulrungroj et al., 
2009 

Tps2 Candida albicans CAC17748.1 De Virgilio, 1999/2000 

Ntc1 Candida albicans CAA64476.1 Eck et al., 1997 

Atm1 Metarhizium anisopliae Not Available 
Zhao, H. et al., 2006; 
Xia et al., 2002 

Tre1 Magnaporthe oryzae AAN38003.1 Foster et al., 2003 

FVEG_02610 Fusarium verticillioides Not Available 
 FVEG_13500 Fusarium verticillioides Not Available 
 FVEG_06865 Fusarium verticillioides Not Available 
 FOXG_05530 Fusarium oxysporum Not Available 
 FOXG_14683 Fusarium oxysporum Not Available 
 FOXG_09264 Fusarium oxysporum Not Available 
 TreB Aspergillus nidulans AAB99831.1 d'Enfert et al., 1999 

FG05622.1 Fusarium graminearum XP_385798.1 Cuomo et al., 2007 

Icl1 Aspergillus fumigatus Q6T267.2 Nierman et al., 2005 

Icl1 
Saccharomyces 
cerevisiae 

CAA43575.1 Fernandez et al., 1992 

FG00176.1 (Mcl1) Fusarium graminearum XP_380352.1 Cuomo et al., 2007 

Pkr1 
Crptococcus neoformans 
var. grubii 

AAG30146.1 D'Souza et al., 2001 

Pkr1 
Crptococcus neoformans 
var. neoformans 

AAM74046.1 Hicks et al., 2004 
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pkaR Aspergillus fumigatus AAL09588.1 Oliver et al., 2002 

pkaR Botrytis cinerea CAQ30275.1 Schumacher et al., 2008 

Bcy1 Candida albicans Q9HEW1.1 Cassola et al., 2004 

Rpk1 Colletotrichum lagenarium AAK31209.1 Takano et al., 2001 

Bcy1 
Mycosphaerella 
graminicola 

ABD92792.1 
Mehrabi and Kema, 
2006 

Ubc1 Ustilago maydis AAA57470.1 Gold et al., 1994 

Pka1 
Crptococcus neoformans 
var. grubii 

AAG30145.1 D'Souza et al., 2001 

Pka1 
Crptococcus neoformans 
var. neoformans 

AAM74045.1 Hicks et al., 2004 

PkaC1 Aspergillus fumigatus CAC82611.1 Liebmann et al., 2004 

Tpk2 Candida albicans AAG38600.1 Cloutier et al., 2003 

Uka1 Ustilago maydis AAC24243.1 
Durrenberger et al., 
1998 

Adr1 Ustilago maydis Not Available 
Durrenberger et al., 
1998 

Fpk1 Fusarium verticillioides Not Available Pei-Bao et al., 2010 

Cpka Magnaporthe oryzae AAA93199.1 Mitchell and Dean, 1995 

Pka1 Metarhizium anisopliae Not Available Fang et al., 2009 

Pkac1 Verticillium dahliae Not Available Tzima et al., 2010 

Tpk2 
Mycosphaerella 
graminicola 

ABD92791.1 
Mehrabi and Kema, 
2006 

Pka1 Botrytis cinerea CAQ30273.1 Schumacher et al., 2008 

Pka2 Botrytis cinerea CAQ30274.1 Schumacher et al., 2008 

PkaR Aspergillus niger CAC36308.1 Staudohar et al., 2002 

PkaB Aspergillus nidulans Not Available Ni et al., 2005 

PkaA Aspergillus nidulans CBF69742.1 Wortman et al., 2009 

Pkac-1 Neurospora crassa ACA48490.1 Huang et al., 2007 

Tpk1 Candida albicans Not Available Bockmuhl et al., 2001 

Tpk1 Yarrowia lipolytica CAR95794.1 
Cervantes-Chavez et 
al., 2009 

Mcb Neurospora crassa AAB00121.1 Bruno et al., 2006 

Mos4 Arabidopsis thaliana ABS20115.1 Palma et al., 2007 

Spf27/Cwf7 
Schizosaccharomyces 
pombe 

Q9USV3.1 McDonald et al., 1999 

Bcas2/Spf27 Homo sapiens NP_005863.1 Kuo et al., 2009 

Bcas2 Aspergillus fumigatus XP_750395.1 Nierman et al., 2005 

Bcas2 Talaromyces stipitatus XP_002341279.1 Fedorova et al., 2007 

Bcas2 Penicillium marneffei XP_002144265.1 Fedorova et al., 2007 

Spf27 Lepeophtheira salmonis ADD38570.1 Yasuike et al., 2010 

Bcas2 Xenopus laevis NP_001088952.1 Klein et al., 2002 

Cdc5 
Schizosaccharomyces 
pombe 

AAA17515.1 Ohi et al., 1994 

Cef1 
Saccharomyces 
cerevisiae 

Q03654.1 Tsai et al., 1999 

Cdc5 Homo sapiens NP_001244.1 Neubauer et al., 1998 

Prp19 
Saccharomyces 
cerevisiae 

CAA97487.1 Duesterhoeft et al., 1996 

Cwf8 
Schizosaccharomyces 
pombe 

AAF67750.1 McDonald et al., 1999 
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Snt309 
Saccharomyces 
cerevisiae Q06091.1 Chen et al., 1998 

Cdc5 Arabidopsis thaliana P92948.2 Monaghan et al., 2009 

Prl1 Arabidopsis thaliana CAA58031.1 Nemeth et al., 1998 

Prlg1 Homo sapiens AAH20786.1 Strausberg et al., 2002 

Mac3B Arabidopsis thaliana Q94BR4.1 Monaghan et al., 2009 

Mac3A Arabidopsis thaliana ACO38702.1 Monaghan et al., 2009 

Gef1 
Saccharomyces 
cerevisiae 

CAA80663.1 Greene et al., 1993 

Get1 
Saccharomyces 
cerevisiae 

P53192.1 Schuldiner et al., 2005 

Get2 
Saccharomyces 
cerevisiae 

P40056.2 Schuldiner et al., 2005 

Ncu01167 Neurospora crassa XP_961533.1 Galagan et al., 2003 

OS-2 (Hog1) Neurospora crassa AAK83125.1 Zhang et al., 2002 

OS-1 Neurospora crassa AAB01979.1 Schumacher et al., 1997 

OS-4 Neurospora crassa BAC56234.1 Fujimura et al., 2003 

OS-5 Neurospora crassa BAC56235.1 Fujimura et al., 2003 

Hog1 
Cochliobolus 
heterostrophus 

BAD99295.1  Yoshimi et al., 2005 

Cpmk1 Cryphonectria parasitica AAO27796.1 Park et al., 2004 

Osm1 Magnaporthe oryzae AAF09475.1 Dixon et al., 1999 

SskA Aspergillus nidulans CBF79927.1 Wortman et al., 2009 

SrrA Aspergillus nidulans AAN75016.3 
Vargas-Perez et al., 
2007 

MA21 Aspergillus fumigatus Not Available 
 

Sho 
Saccharomyces 
cerevisiae 

Not Available 
 

SteC Aspergillus nidulans CAD44493.2 Wei et al., 2003 

Spc1 
Schizosaccharomyces 
pombe 

AAA91020.1 
Shiozaki and Russell, 
1995 

Nth1 
Saccharomyces 
cerevisiae 

CAA46718.1 Kopp et al., 1994 

Glk1 Arabidopsis thaliana AAK20120.1 Fitter et al., 2001 

Pdc1 Zea mays ABG78829.1 Liu, WZ et al., 2006 

Ste20 
Saccharomyces 
cerevisiae 

Q03497.1 Mosch et al., 1996 

Ste11 
Saccharomyces 
cerevisiae 

Q03497.1 Mosch et al., 1996 

Ste7 
Saccharomyces 
cerevisiae 

P06784.1 Roberts et al., 1997 

Fus3/Kss1 
Saccharomyces 
cerevisiae 

CAA84835.1 Feldmann et al., 1994 

Ras2 
Saccharomyces 
cerevisiae 

CAA95974.1 Saiz et al., 1996 

Cdc42 
Saccharomyces 
cerevisiae 

AAB67416.1 Johnston et al., 1997 

Bck1 
Saccharomyces 
cerevisiae 

CAA89389.1 Miosga et al., 1995 

Mkk1 
Saccharomyces 
cerevisiae 

CAA99451.1 Boyer et al., 1996 

Mkk2 
Saccharomyces 
cerevisiae 

AAB68220.1 Bussey et al., 1997 

Slt2 
Saccharomyces 
cerevisiae 

CAA41954.1 Torres et al., 1991 
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Ssk2 
Saccharomyces 
cerevisiae 

AAC41665.1 Maeda et al., 1995 

Ssk22 
Saccharomyces 
cerevisiae 

P25390.2 Oliver et al., 1992 

Pbs2 
Saccharomyces 
cerevisiae 

CAA89423.1 Cziepluch et al., 1996 

Hog1 
Saccharomyces 
cerevisiae 

P32485.2 Johnston et al., 1997 

Cst20 Candida albicans Q92212.2 Kohler and Fink, 1996 

Hst7 Candida albicans XP_717333.1 Jones et al., 2004 

Cek1 Candida albicans CAX42463.1 Jackson et al., 2009 

Mst11 Magnaporthe oryzae Not Available 
 Mst7 Magnaporthe oryzae Not Available 
 Pmk1 Magnaporthe oryzae AAC49521.2 Xu and Hamer, 1996 

Ras1 Magnaporthe oryzae Not Available 
 Ras2 Magnaporthe oryzae EDJ99125.1 Dean et al., 2005 

Cdc42 Magnaporthe oryzae AAF73431.1 Zhang et al., 2009 

Mst50 Magnaporthe oryzae Not Available 
 

Mkc1 Candida albicans CAA54129.1 
Navarro-Garcia et al., 
1995 

Mps1 Magnaporthe oryzae AAC63682.1 Xu et al., 1998 

Hog1 Candida albicans Q92207.2 
Alonso-Monge et al., 
1999 

Osm1 Magnaporthe oryzae AAF09475.1 Dixon et al., 1999 

Mck1 Magnaporthe oryzae Not Available 
 Ypd1 Candida albicans AAG01679.1 Calera et al., 2000 

Ssk1 Candida albicans AAD55813.1 
Calera and Calderone, 
1999 

Ssk2 Candida albicans XP_717181.1 Jones et al., 2004 

Pbs2 Candida albicans XP_716629.1 Jones et al., 2004 

MagA Magnaporthe oryzae AAB65425.1 Liu and Dean, 1997 

MagB Magnaporthe oryzae AAB65426.1 Liu and Dean, 1997 

MagC Magnaporthe oryzae AAB65427.1 Liu and Dean, 1997 

Mgb1 Magnaporthe oryzae BAC01165.1 Nishimura et al., 2003 

Mgb2 Magnaporthe oryzae Not Available 
 Ric8 Magnaporthe oryzae XP_001405357.1 Dean et al., 2005 

Mac1 Magnaporthe oryzae AAB66482.1 Choi and Dean, 1997 

Cdc35 Candida albicans AAG18428.1 Rocha et al., 2000 

Ras1 Candida albicans AAD52662.1 Feng et al., 1999 

Ras2 Candida albicans XP_722969.1 Jones et al., 2004 

Flo11 
Saccharomyces 
cerevisiae 

P08640.2 Churcher et al., 1997 

Pkc1 Candida albicans XP_722968.1 Jones et al., 2004 

Gpb1 Cryptococcus neoformans AAD03596.1 Wang et al., 2000 

Gpa1 Cryptococcus neoformans AAD46575.1 Allen et al., 1999 

Fga1 Fusarium oxysporum BAB69488.1 Jain et al., 2002 

Gna1 Stagonospora nodorum Not Available 
 

Sln1 
Saccharomyces 
cerevisiae 

P39928.1 Posas et al., 1996 

Ypd1 
Saccharomyces 
cerevisiae 

Q07688.1 Li et al., 1998 
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Ssk1 
Saccharomyces 
cerevisiae 

Q07084.1 Li et al., 1998 

Skn7 
Saccharomyces 
cerevisiae 

AAB69734.1 Johnston et al., 1994 

Nik1 Candida albicans AAC72284.1 Srikantha et al., 1998 

Chk1 Candida albicans XP_721017.1 Jones et al., 2004 

Fos1 Aspergillus fumigatus Not Available 
 App1 Cryptococcus neoformans AAX77221.2 Mare et al., 2005 

Nox1 Podospora anserina Not Available 
 NoxA Aspergillus nidulans AAN75017.1 Lara-Ortiz et al., 2003 

Nox1 Magnaporthe oryzae ABS01490.1 Egan et al., 2007 

Nox2 Magnaporthe oryzae ABS01491.1 Egan et al., 2007 

Sod1 Botrytis cinerea CAD88591.1 Rolke et al., 2004 

Fum1 Fusarium verticillioides AAD43562.2 Desjardins et al., 2002 

NoxA Epichloe festucae BAE72680.1 Tanaka et al., 2006 

NoxR Epichloe festucae BAF36501.1 Tanaka et al., 2006 

RacA Epichloe festucae BAF36499.1 Tanaka et al., 2006 

SepH Aspergillus nidulans Q5B4Z3.2 Wortman et al., 2009 

SepL Aspergillus nidulans Not Available 
 SidB Aspergillus nidulans Not Available 
 SepM Aspergillus nidulans Not Available 
 MobA Aspergillus nidulans Not Available 
 

AspB Aspergillus nidulans AAB41233.1 
Momany and Hamer, 
1997 

SepA Aspergillus nidulans CBF70912.1 Wortman et al., 2009 

AspA Aspergillus nidulans AAK21867.1 Momany et al., 2001 

AspC Aspergillus nidulans AAK21000.2 Momany et al., 2001 

Snad Aspergillus nidulans AAC23686.1 Liu and Morris, 2000 

SepK Aspergillus nidulans Not Available 
 ChsA Aspergillus nidulans BAA04806.1 Yanai et al., 1994 

ChsC Aspergillus nidulans BAA75501.1 Motoyama et al., 1994 

Chs5 Ustilago maydis O13394.2 Weber et al., 2006 

Chs7 Ustilago maydis Q4P333.1 Weber et al., 2006 

TeaC Aspergillus nidulans CBF88145.1 Wortman et al., 2009 

Bud3 Aspergillus nidulans Not Available 
 Rho4 Neurospora crassa Not Available 
 Cwh41 Aspergillus fumigatus Not Available 
 MsdS Aspergillus fumigatus AAS77884.1 Li et al., 2008 

Msn2 
Saccharomyces 
cerevisiae 

P33748.1 
Martinez-Pastor et al., 
1996 

Msn4 
Saccharomyces 
cerevisiae 

P33749.1 
Martinez-Pastor et al., 
1996 

Tps1 
Saccharomyces 
cerevisiae 

CAA85083.1 Feldman et al., 1994 

Tps2 
Saccharomyces 
cerevisiae 

CAA98893.1 Foury et al., 1996 

FG06871.1 Fusarium graminearum XP_387047.1 Cuomo et al., 2007 

Snf1 
Saccharomyces 
cerevisiae 

P32578.2 
Hedbacker and Carlson, 
2008 
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Icl1 
Saccharomyces 
cerevisiae 

P28240.1 Ordiz et al., 1998 

Hog1 
Saccharomyces 
cerevisiae 

P32485.2 O'Rourke et al., 2002 

MsnA Aspergillus nidulans Not Available 
 SskA Aspergillus nidulans CBF79927.1 Wortman et al., 2009 

TpsA Aspergillus nidulans AAC18060.1 d'Enfert et al., 1998 

OrlA Aspergillus nidulans CBF82703.1 Wortman et al., 2009 

Rrr1 Fusarium graminearum Not Available 
 Abc2 Fusarium graminearum Not Available 
 Lyp1 Fusarium graminearum Not Available 
 Tri8 Fusarium graminearum AAK33086.1 Brown et al., 2001 

Tri3 Fusarium graminearum AAK33082.2 Brown et al., 2001 

Tri4 Fusarium graminearum AAK33083.1 Brown et al., 2001 

Tri9 Fusarium graminearum AAK33087.1 Brown et al., 2001 

Tri11 Fusarium graminearum AAK33080.1 Brown et al., 2001 

Tri12 Fusarium graminearum AAK33081.1 Brown et al., 2001 

Tri13 Fusarium graminearum AAL29524.1 Brown et al., 2001 

Tri7 Fusarium sporotrichioides AAK33076.1 Brown et al., 2001 

Tri Fusarium sporotrichioides AAK77224.1 Meek et al., 2003 

Tri16 Fusarium sporotrichioides AAO31979.1 Peplow et al., 2003b 

Tri101 Fusarium sporotrichioides AAD19745.1 McCormick et al., 1999 

Tri7 Fusarium graminearum AAK53575.1 Lee et al., 2001 

Tri1 Fusarium graminearum AAQ02672.1 McCormick et al., 2004 

Tri16 Fusarium graminearum Not Available 
 Tri101 Fusarium graminearum BAA29037.1 Kimura et al., 1998 

Tri15 Fusarium graminearum AAQ55290.1 Alexander et al., 2004 

Zea1 Fusarium graminearum Not Available 
 Zea2 Fusarium graminearum Not Available 
 Ecp6 Cladosporium fulvum ACF19427.1 Bolton et al., 2008 

Tri4 Fusarium sporotrichioides AAK33073.1 Brown et al., 2001 

Rht1 Triticum aestivum Q9ST59.1 Peng et al., 1999 
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