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ABSTRACT 

Cunniffe, N. J., Stutt, R. O. J. H., van den Bosch, F., and Gilligan, C. A. 
2012. Time-dependent infectivity and flexible latent and infectious 
periods in compartmental models of plant disease. Phytopathology 
102:365-380. 

Compartmental models have become the dominant theoretical para-
digm in mechanistic modeling of plant disease and offer well-known 
advantages in terms of analytic tractability, ease of simulation, and ex-
tensibility. However, underlying assumptions of constant rates of infec-
tion and of exponentially distributed latent and infectious periods are 
difficult to justify. Although alternative approaches, including van der 
Plank’s seminal discrete time model and models based on the integro-
differential formulation of Kermack and McKendrick’s model, have been 
suggested for plant disease and relax these unrealistic assumptions, they 
are challenging to implement and to analyze. Here, we propose an exten-
sion to the susceptible, exposed, infected, and removed (SEIR) compart-
mental model, splitting the latent and infection compartments and thereby 
allowing time-varying infection rates and more realistic distributions of 
latent and infectious periods to be represented. Although the model is, in 
fact, more general, we specifically target plant disease by demonstrating 
how it can represent both the van der Plank model and the most com-
monly used variant of the Kermack and McKendrick (K & M) model (in 

which the infectivity response is delay Gamma distributed). We show 
how our reformulation retains the numeric and analytic tractability of 
SEIR models, and how it can be used to replicate earlier analyses of the 
van der Plank and K & M models. Our reformulation has the advantage 
of using elementary mathematical techniques, making implementation 
easier for the nonspecialist. We show a practical implication of these 
results for disease control. By taking advantage of the easy extensibility 
characteristic of compartmental models, we also investigate the effects of 
including additional biological realism. As an example, we show how the 
more realistic infection responses we consider interact with host 
demography and lead to divergent invasion thresholds when compared 
with the “standard” SEIR model. An ever-increasing number of analyses 
purportedly extract more biologically realistic invasion thresholds by 
adding additional biological detail to the SEIR model framework; we 
contend that our results demonstrate that extending a model that has such 
a simplistic representation of the infection dynamics may not, in fact, lead 
to more accurate results. Therefore, we suggest that modelers should 
carefully consider the underlying assumptions of the simplest compart-
mental models in their future work. 

Additional keywords: infection kernel. 

 
The earliest mechanistic model of plant disease is due to van 

der Plank (71), and uses a delay differential equation to represent 
I(t), the density of host tissue first infected at or before time t, 

( )( )( ) ( ) ( ) 1 ( ) .dI t R I t p I t p i I t
dt

= − − − − −  (1) 

The latent period (p) and the infectious period (i) are constant, 
and the parameter R is the corrected basic rate of infection. The 
key threshold is the “progeny-parent ratio”, iR: a value >1 indi-
cates that the density of infected tissue will increase. Unfor-
tunately delay differential equations are difficult to analyze (40, 
47) and, despite widespread adoption of discrete-time approxima-
tions to van der Plank’s model in early simulations of plant 
disease (63,74,78) and a number of often subtle mathematical 
analyses that followed (28–30,32,37,73), the model is now rarely 
used in theoretical studies. However, because the model was so 
influential, it is still of significant historical interest and, indeed, a 
recent textbook suggested (of van der Plank and equation 1) “he 
developed this model in 1963, a year that could be seen as the 
starting of quantitative plant disease epidemiology” (41). 

Contemporary work has focused on compartmental SEIR-type 
(susceptible, exposed, infected, and removed) models (15,16,40, 

61), adapting a structure originally proposed for models of 
human/animal disease (1,2,31,32). The population of hosts is 
divided according to disease status: susceptible (S), exposed (E), 
infected (I), and removed (R). Changes in the number of hosts in 
each compartment follow coupled nonlinear differential equa-
tions, which for the basic SEIR model are 

,

,

,

.

dS SI
dt
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dt
dI E I
dt
dR I
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= −β

= β − γ

= γ −μ

= μ

 
(2) 

In equation 2, β is the per capita rate of infection of susceptible 
hosts, γ is the rate at which exposed (i.e., latently infected) hosts 
become infectious, and µ is the rate at which infected hosts 
become removed (i.e., become epidemiologically inert by losing 
infectivity or dying). The corresponding mean latent and infec-
tious periods are 1/γ and 1/µ, respectively, and implicit in the 
formulation is that these periods are distributed exponentially 
(i.e., that the rate of leaving a class is independent of the time 
already spent within it). Although the exponential distributions 
are selected to ensure that, on average, each host is latently in-
fected or infectious for the correct period, the formulation means 

Corresponding author: N. J. Cunniffe; E-mail address: njc1001@cam.ac.uk 

http://dx.doi.org/10.1094 / PHYTO-12-10-0338 
© 2012 The American Phytopathological Society 



366 PHYTOPATHOLOGY 

that the latent or infectious period of a particular host may be 
infinitesimally short which, for plant disease, is unrealistic. The 
definition of host is flexible and although, by default, a host 
corresponds to an individual plant, it could potentially represent a 
plant organ such as an individual leaf or root (6,10), or even large 
assemblages of plants such as a field or farm (55), depending on 
the particular scale of interest (15,16). It is also possible for hosts 
in the model to correspond to individual susceptible sites that 
could be infected by the pathogen, allowing the results of the 
model to be directly translated to severity of disease. In the con-
text of plant disease, the S, E, and I compartments are sometimes 
redubbed healthy (H), latent (L), and infectious (I), respectively 
(41), although here we exclusively use the S-E-I-R notation and 
nomenclature that is more typical of the wider literature. 

The key threshold is the “basic reproductive number” (some-
times “ratio”), R0, which is the average number of new infections 
caused when a single infected host is introduced into a con-
tinuously completely susceptible population (14,35) (compare the 
progeny/parent ratio of van der Plank). For a population of N 
hosts, the basic reproductive number according to equation 2 is  
R0 = βN/µ. Compartmental models are currently the dominant 
mechanistic theoretical paradigm, largely because of the in-
creased flexibility they offer, in particular the ease with which 
additional biology may be included (15,16). For example, al-
though exponential increase in the density of susceptible tissue 
was considered by van der Plank himself, more realistic bounded 
host growth was only analyzed in that framework after a long 
delay and with some difficulty (37). In contrast, updating the dy-
namics of the susceptible population in the SEIR model requires 
only a minor and obvious change to the equation governing the 
rate of change of susceptible hosts (10). Furthermore, it is the 
ease of associating parameters and biological processes that 
distinguishes the mechanistic models we consider in this article 
from purely descriptive growth functions such as exponential, 
monomolecular, logistic, and Gompertz. We note that these growth 
curves are, in fact, more widely used than any of the models we 
discuss but, because growth curves aim only to summarize rather 
than to explain, they are often of relatively little interest to most 
theoreticians. 

Following early work that demonstrated that the thresholds iR > 
1 and R0 > 1 are equivalent (28), the van der Plank and SEIR 
models were unified for botanical epidemics by Segarra et al. 
(59), who illustrated how both formulations are special cases of 
the original Kermack and McKendrick (K & M) epidemic model 
(36). For sporulating plant pathogens, the K & M model requires 
a sporulation curve, θ(τ), which represents the number of viable 
spores produced by an infected host τ units of time since it was 
initially infected. The formulation can model a latent period by 
setting θ(τ) = 0 for small τ, can model a finite infectious period 
by setting θ(τ) = 0 for large τ, and can readily be generalized to 
pathogens that do not sporulate (e.g.. soilborne pathogens) by 
reinterpreting θ(τ) as a time-dependent infectivity, although here 
we will refer to sporulation for concreteness. If the probabilities 
of a spore being deposited on a particular host and of initiating a 
new infection conditional upon deposition are ζ and ψ, respec-
tively, then during any epidemic the number of healthy hosts, S(t), 
evolves according to 

0

( ) ( )( ) ( ) ,
tdS t dS tS t d

dt dtτ=

− τ
= ςψ θ τ τ∫  (3) 

where the integral represents the cumulative production of spores 
by all infected hosts according to time since infection (because at 
time t, –dS(t – τ)/dt is the number of infections produced exactly τ 
units of time ago and, therefore, that have infectivity θ(τ) at time 
t). Extensions to equation 3 explicitly include an ongoing source 
of primary inoculum (59) but these elaborations are ignored here 
for simplicity. 

By setting θ(τ) appropriately in equation 3, both the van der 
Plank and SEIR models can be formulated as special cases of the 
K & M model. However, a number of authors (initially van den 
Bosch et al., 70) suggest that experimental data measuring sporu-
lation as a function of time is better fitted by the delay Gamma-
distributed sporulation curve with parameters k and λ (42,52,53) 

( ) ( )

( )

1

0

( ) .k pk

p

p e
p

k

− −λ τ−

τ ≤⎧
⎪

⎛ ⎞θ τ = λ τ −⎨Ω τ >⎜ ⎟⎪ ⎜ ⎟Γ⎝ ⎠⎩

 (4) 

In equation 4, Ω is the total number of spores produced by a 
single infected host, p is the (fixed) latent period, and λ and k 
control the time-dependence of the sporulation response. The 
analysis in the article of Segarra et al. (59) restricts the shape 
parameter k of the Gamma distribution to be an integer, but this is 
not too constraining in practice (Appendix 1). However, despite 
the more realistic representation of sporulation promoted by the  
K & M model with this infection kernel (the Gamma(k) model), it 
has subsequently been little used, arguably because further analyses 
would be challenging and require mathematical or numerical 
machinery that is unfamiliar to many epidemiologists. 

Equations 3 and 4 indicate that ΩζψN > 1 is required for the 
number of infected hosts to increase initially (in a susceptible 
population of size N). As shown by Segarra et al. (59), this 
invasion threshold is equivalent to iR > 1 and R0 > 1 in the van der 
Plank and SEIR models, respectively. The final level of infected 
tissue after a very long time (which we denote as f, the fraction of 
nonsusceptible hosts at the end of any epidemic, and which we 
note can take values infinitesimally close to 1) is also conserved 
across the models, assuming that there are few infected hosts 
initially. However, the rate of exponential increase of disease in 
the early part of any epidemic (r) differs depending on the model 
in question. 

In this article, we introduce a suite of SEIR-type models with 
multiple exposed (i.e., latently infected) and infected (i.e., infec-
tious) compartments (also referred to as classes). Subdividing the 
exposed and infected classes is increasingly common in models 
for human and animal disease (34,38,39,50,75) and allows more 
flexible distributions of latent and infectious periods by relaxing 
the assumption of exponentially distributed times implicit in 
equation 2. By carefully selecting the number of compartments 
and the values of the parameters, we adapt this technique specifi-
cally to plant disease, and represent the van der Plank and Gamma(k) 
models in the compartmental framework of the SEIR model, al-
though we note that the extension we propose is actually more 
general and additionally is able to represent other responses (Appen-
dix 1). We demonstrate how the multiple compartment reformu-
lation allows us to (i) simplify the analysis of Segarra et al. (59) 
and characterize the similarities and differences between the SEIR, 
van der Plank, and Gamma(k) models (in terms of R0, f, and r) 
using only elementary mathematical techniques; (ii) simulate the 
models using standard and widely available numerical routines 
and packages for solutions of coupled systems of differential equa-
tions; and (iii) extend the models very easily; we illustrate this by 
adding (a) host demography and (b) free-living infectious material. 

Additionally, we show how the differences between the SEIR, 
van der Plank, and Gamma(k) models can be of practical signifi-
cance. In particular, we note that the nature of the underlying 
model used to approximate an epidemic affects the inferred 
relationship between the initial rate of exponential increase of 
disease (r) (which is often used to estimate early epidemic spread) 
and the basic reproductive number (R0) (frequently used as a 
measure of ability to invade). Moreover, because the final fraction 
of infected hosts (f ) is controlled by R0, it follows that fitting an 
inappropriate model formulation to data from the early part of an 
epidemic leads to an incorrect assessment of the final severity 
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(Fig. 1). However, data from the early part of the epidemic are all 
that are available when decisions about control are most pressing. 
Therefore, any assessment of the level of control required or, in-
deed, whether control is even necessary, depends upon the model 
chosen to perform the analysis; we use our theoretical results to 
illustrate how significant this effect can be. 

THEORY AND APPROACHES 

We extend the SEIR model (equation 2) to include m exposed 
and n infected compartments (the SEmInR model). Hosts in the 
ith infected class infect susceptible hosts at per capita rate βi, and 
transition rates within and between exposed and infected com-
partments are scaled by m and n such that the average latent period 
is fixed at 1/γ and the average infectious period is fixed at 1/µ 
(Fig. 2A). The corresponding system of differential equations is 
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Therefore, an individual host enters the E1 compartment im-
mediately after being exposed to the pathogen, and moves through 
the m exposed compartments and then the n infected compart-
ments in strict sequence. While the host remains in one of the 
exposed compartments, it is incapable of causing infection in 
other hosts (i.e., it is latently infected). Subdivision of the exposed 
and infected compartments does not correspond to any biological 
difference between individuals in the different exposed and in-
fected classes. However, and as will be shown below, using 
multiple compartments is, instead, a mathematical device to en-
sure that latent and infectious periods are correctly distributed and 
which (in combination with the distinct rates of infection in the 
different infectious compartments, β1…βn) allows much flexi-
bility in the infection rate of infectious hosts as a function of time 
since infection. 

We show how the van der Plank, SEIR, and Gamma(k) models 
can be represented using equation 5 by choosing appropriate 
relationships between the values of βi, m, and n. The basic repro-
ductive number, R0, is derived by considering a single infected 
host introduced into a population of N susceptibles (13). By 
finding a conserved quantity (i.e., a functional expression linking 
the values of the state variables that remains constant for all time) 
according to equation 5 and equating its values at the beginning 
and end of any epidemic, we determine the eventual impact of the 
pathogen (as f, the fraction of nonsusceptible hosts at the end of 
the epidemic). Finally, the initial rate of density-independent ex-
ponential disease increase, r, is obtained by linearizing equation 5 
about the pathogen-free equilibrium with S = N and Ei = Ii = R = 0. 

We use these results for the general SEmInR system and the 
relationships between βi, m, and n for the compartmental ana-
logues of the van der Plank, SEIR, and Gamma(k) models to 
determine R0, f, and r for each of these three models and, thereby, 
replicate the results of Segarra et al. (59). Only r changes between 
the three models we consider. The relationship between r and R0 
depends not only on which of the van der Plank, SEIR, or 
Gamma(k) models is in question but also on the duration of the 
latent or infectious periods. This is investigated numerically. In 

particular, we choose illustrative latent and infectious periods  
(1/γ = 5, 10, or 20 days, and 1/µ = 5, 10, 20, 50, or 100 days) and 
investigate the response of r to changes in R0 for each model. 
Also, because the van der Plank and Gamma(k) models are 
theoretically obtained in the limit of equation 5 with an infinite 
number of exposed or infected classes, we considered the 
accuracy of numerical simulation using the SEmInR model with 
large, but finite, values of m or n. In these (and all) numerical 
simulations, for the Gamma(k) model, we focus upon the particu-
lar case k = 4 but the qualitative differences we present are 
independent of k > 1. 

We illustrate the extensibility of our framework by considering 
two elaborations to the SEmInR model. In particular, we add (i) 
host demography and (ii) free-living infectious material. Host 
demography is typically included in models targeting pathogens 
of long-lived hosts (62), pathogens capable of undergoing many 
generations within a single season (15), or soilborne pathogens 
for which root production and growth (and so, implicitly, the 
production of new tissue) is important in bringing susceptible host 
tissue within striking distance of immobile infective propagules 
(6,10,60). Models of soilborne pathogens often also include free-
living infectious material (2–5,10,17,20–24), representing a reser-
voir of infective inoculum in the soil that is replenished by in-
fected hosts. This allows the dual pathways of primary and secon-
dary infection characteristic of these pathosystems (1,10,24) to be 
included in the models, and their effects on the epidemiology to 
be separately assessed. 

In adding host demography (Fig. 2B), we assume that all hosts 
are subject to removal at per capita rate g, corresponding to either 
natural death or harvesting, and imposing an average lifetime of 
1/g. By assuming that susceptible hosts are replenished at rate 
q(S), we allow the pathogen and host to coexist (if R0 > 1). The 
model equations become 
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The function q(S) in equation 6 is chosen to impose a carrying 
capacity (i.e., a maximal number of infectible sites, organs, 
plants, farms, or fields, depending on the spatial scale of the 
model) in the absence of the pathogen: simple choices of q(S) 
allow commonly used responses, including monomolecular and 
logistic, to be recovered (10). We also note, however, that the 
particular form of q(S) is unimportant and the analysis we present 
depends only upon susceptible hosts in the absence of the patho-
gen having a carrying capacity which, for ease of comparison, we 
assume is N. We calculate R0 and r for the updated model in 
equation 6, and demonstrate how host demography has differing 
effects in each of the SEIR, van der Plank, and Gamma(k) models. 
We also investigate the level of healthy hosts in the population 
when the pathogen is endemic, and show how this key metric of 
disease impact is affected by the value of R0 and thus, in turn, by 
the choice of model when host demography is included (for 
pathogens with latent and infectious periods and rates of infection 
that are held constant when comparing the different models). 

To demonstrate how our model can be extended specifically to 
target soilborne pathogens (1–6,8,10,16,18,43), we introduce 
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free-living infectious material (i.e., soilborne inoculum). How-
ever, in addition to the multicompartmental representation of ex-
posed or infected hosts, we allow some flexibility in the distri-
bution of the infectious period of free-living infectious tissue by 
using p subcompartments for inoculum (Xj). The mean infectious 
period of inoculum is fixed at 1/c. We assume that infectious hosts 
in class Ij continuously produce inoculum at particular per capita 
rate αj and that inoculum in class Xj causes primary infection at 
rate βXj. The equations become (Fig. 2C) 
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By calculating R0, r, and f for this SEmInXpR model, we demon-
strate how our analysis can easily be extended to include this 
more complex biology. 

Finally, we illustrate a practical implication of our results by 
considering disease control. We consider the percentage change in 
the values of R0 and f corresponding to r = 0.01 day–1 between 
pairs of models for a range of values of 1/γ and 1/µ up to 20 and 
100 days, respectively. This allows us to demonstrate how mis-
specification of the distribution of latent and infectious periods or 
time-varying infectivity can lead to incorrect assessment of the 
final severity of an epidemic from the data available when it is 
emerging and therefore can, in turn, lead to poor decisions on the 
level of control to exert. 

RESULTS 

For convenience, the principal analytic results are summarized 
in Table 1. 

Preliminary: matching parameters between model frame-
works. To compare the models directly, the parameters must be 
normalized. To match the latent periods across the models, the 
average latent period in the SEIR model (equation 2), 1/γ, must 
equal the constant delay before sporulation, p, in the van der 
Plank (equation 1) and Gamma(k) (equations 3 and 4) models. 
The average duration of an infection cycle in the SEIR model  
(1/γ + 1/µ) must equal its equivalent in the van der Plank and the 
Gamma(k) models (p + i and p + k/λ, respectively), and because 
1/γ = p, this requires 1/µ = i = k/λ. Finally, to ensure that the 
average infected host causes the same number of infec- 
tions throughout its infectious period, the rate of infection in the  

 

Fig. 1. Final size of an epidemic can vary widely between the models we consider, even if the initial rate of exponential increase r is held constant. This means 
that, if data from early spread of an epidemic are used to estimate final disease severity (and possibly, in turn, to determine the level of control to exert), the result
depends upon the model formulation that is chosen. This is illustrated for a pathogen with latent period 1/γ = 2 days and infectious period 1/µ = 20 days, and with 
infection rate selected to give an initial growth rate r = 0.01 according to the van der Plank (solid) and Gamma(4) (dashed) models. Disease progress curves 
estimated from the early spread of the disease are initially very similar but diverge and give a very different final severity of disease. Note that, for these
epidemiological parameters and for this rate of increase, the SEIR model gives a very similar response to that in the Gamma(4) model, and it is omitted. 
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SEIR model, β, must be related to the van der Plank corrected 
basic rate of infection via R = βN, and to the sporulation rate in 
the Gamma(k) model via β/µ = Ωζψ. In combination, these 
choices allow the models to be directly compared, and ensure  
the thresholds iR > 1, R0 > 1, and ΩζψN > 1 are equivalent. 
Henceforth, we will work only in terms of the parameters of the 
equivalent SEIR model (i.e., β, γ, and µ); however, note that all 
results can be back-translated by reversing the mapping described 
above. 

Representing the models in the SEmInR framework. If m = 
n = 1, there is only one exposed and one infectious class and, 
therefore, the SEIR model is immediately recovered on making 
this choice and setting β1 = β. 

In the more general SEmInR model, the overall latent period is 
the sum of m exponential variates each of mean 1/mγ. By the 
central limit theorem, for large m, the resulting Gamma-distrib-
uted variate is well approximated by a normal distribution with 
mean 1/γ and variance 1/γ2m. Therefore, in the limit m → ∞, the 
distribution of times of leaving the final exposed class tends to a δ  
function (i.e., a sharp infinite spike), and the corresponding latent 
period becomes fixed at exactly 1/γ (Fig. 3). Similarly, to repre-
sent a fixed infectious period, the number of infective compart-
ments, n, should tend to infinity. Hence, to replicate the van der 
Plank model in the compartmental framework of the SEmInR 
model, we require m,n → ∞, with βi = β for all i (because, in the 
van der Plank model, the infection rate remains constant through-
out the infectious period). 

To replicate the Gamma(k) model, we initially consider how to 
use the SEmInR model to represent a pathogen with this 
sporulation response, but with no latent period. The fixed latent 
period in the Gamma(k) model is subsequently added back in. 
Consider a single infected host that moves from the final exposed 
to the first infectious compartment (i.e., from compartment Em to 
compartment I1) at t = 0, with no further new infections thereafter. 
According to equation 5, subsequent dynamics follow 
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with I1(0) = 1, Ii(0) = 0 for i > 1. Recursively solving these 
equations 
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and, thus, the equivalent sporulation curve in the K & M model 
(equation 5) is (13) 
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This response is proportional to that in the Gamma(k) model if we 
set n = k and βi = 0 for i < n = k, because Γ(k) = (k – 1)! if k is an 
integer. However, the rate of infection in the nth compartment, βn, 
must be scaled by the number of compartments to obtain the same 
overall rate of sporulation; therefore, we set βn = nβ. Because the 
fixed latent period can be added back in by taking an infinite 
number of exposed compartments, we can represent the 
Gamma(k) model in the SEmInR framework by taking m → ∞,  
n = k, and βi = 0 for i < n, βn = nβ. However, we note that the 
response according to equation 10 is actually more general and, in 
principle, can represent a wider variety of forms than the  
Gamma-distributed response (Appendix 1). 

Basic reproductive number, R0. R0 for the general SEmInR 
model follows directly from equation 5 by considering a single  

 

Fig. 2. Model schematics. Solid lines correspond to transitions made by hosts, whereas a dotted line indicates an effect on rate of transition according to the
number or density in other compartments. A, SEmInR model, with m exposed (i.e., latent) and n infected compartments. The average latent period is 1/γ, the 
average infectious period is 1/µ, and the rate of infection while in the ith infected compartment is βi. B, SEmInR model with host demography. Susceptible hosts 
are replenished at rate q(S), chosen to impose a carrying capacity N, and there is loss of hosts from all compartments due to natural death at per capita rate g. C,
SEmInXpR model. Free-living inoculum is produced by hosts in the ith infected compartment at per capita rate αi, there are p inoculum compartments, with 
average inoculum infectious period 1/c, and inoculum in the ith compartment infects each susceptible host at per capita rate of primary infection βXi. 
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infected host introduced to a population of N susceptibles. In 
particular, defining the average rate of infection  
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in
β = β∑ ,

 
(11) 
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β β
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because the average time spent in the ith infected compartment is 
1/(nµ) and, while in that compartment, infections are caused in 
the susceptible population at overall rate βiN. This expression for 
R0 in the most general SEmInR model reduces to the same value 
for each of the three models we consider, because the average rate 
of infection β  is fixed at β by our earlier normalization and thus, 
in all cases, R0 = βN/µ. 

Final size of the epidemic, f. By determining a conserved 
quantity according to equation 5 and comparing its value at the 
beginning and end of any epidemic (Appendix 2), we find in the 
general SEmInR model that, if the number of exposed or infected 
hosts at the beginning of any epidemic is small in comparison 
with the population size, then 

( )01 exp ,f fR≈ − −  (13) 

where f is the fraction of hosts eventually infected. This so-called 
“final size equation” (35) implicitly defines f in terms of R0 > 1, 
and predicts a very large fraction of hosts eventually infected for 
R0 > 5. Because R0 is identical for the models we consider, if the 
parameters are matched appropriately (compare equation 12), so 
is f and, therefore, the eventual impact of any epidemic is inde-
pendent of model structure. 

Initial rate of increase of disease, r. The initial rate of expo-
nential disease increase, r, is obtained by linearizing equation 5 
about the pathogen-free equilibrium with S = N and Ei = Ii = R = 
0 (Appendix 2). This corresponds to the density-independent 
growth at the start of any epidemic. In the general SEmInR 
model, r is given by the largest root of the equation 
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For the SEIR model, this simplifies, and r is given explicitly by 
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For the van der Plank model, r is given implicitly by the largest 
root of the equation 
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For the Gamma(k) model, r is given implicitly by the largest root 
of 
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The response of r to changes in R0 in the different models for a 
range of latent (1/γ) and infectious (1/µ) periods between 5 and  

 

Fig. 3. Probability density and cumulative distribution functions for leaving the exposed classes in the SEmInR model for different values of m (i.e., number of 
exposed classes) conditioned on entering the first exposed class at t = 0. The probability density is renormalized with maximum value 1.0, to allow easy
comparison between the responses. The mean latent period is 5 days (i.e., 1/γ = 5 days). As m increases, the probability density function tends to a δ function, and 
the cumulative density to a step function. 
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20 days and 5 and 100 days, respectively, is shown in Figure 4. 
The ordering of the growth rate in the different models depends 
on the relative lengths of the latent and infectious periods and the 
value of R0. In broad terms, and for large values of R0 (e.g., R0 > 
10), the SEIR model has the largest value of r (because there is a 
non-zero probability of a newly infected host leaving the exposed 
class and thereby becoming capable of causing new infections 
very quickly after becoming infected), and the Gamma(k) model 
has the smallest value of r (because there is a fixed delay before 
infected individuals can cause new infections and, even when 
infection is possible, the initial rate is low). The relative value of r 
in the van der Plank model depends on the relative latent and 
infectious periods. In particular, as the latent period increases and 
the delay in infection impacts on the rate of initial growth, the 
responses of the van der Plank and Gamma(k) models become 
closer. However, as the infectious period increases, this effect is 
reversed, and the responses of the van der Plank and SEIR models 
become closer, because the large rate of infection due to hosts in 
the I compartments directly after the latent period in the van der 
Plank model increases its growth rate relative to the Gamma(k) 
model. We note that, for small values of R0 (and, therefore, for 
small growth rates), the value of r in the van der Plank model can, 
in fact, be larger than that in the SEIR model; this is because the 
large rate of infection in the van der Plank model immediately 
after the latent period counteracts any delay in sporulation relative 
to the SEIR model. 

Numerical simulation of the SEmInR model. Numerical 
solutions of the SEmInR model can be calculated using widely 
available and standard routines for integrating systems of coupled 
ordinary differential equations. However, because the van der 
Plank and Gamma(k) models are obtained in the limit of the 
SEmInR model with an infinite number of exposed or infected 
classes, it is possible that relative ease of simulation comes at the 
cost of reduced accuracy, and we investigate this here. 

We consider a pathogen with a long latent period (1/γ = 25 days) 
and a short infectious period (1/µ = 5 days). These parameters, 
although arbitrary, were chosen to maximize differences between 
the SEIR model and the van der Plank and Gamma(k) models 
(Fig. 4); the high ratio of latent/infection period means that infec-
tion is effectively separated into discrete generations, a response 
that is difficult to represent in the basic SEIR model. We solve the 
van der Plank and Gamma(k) models using custom-written nu-
merical routines, and compare the results of these simulations 
with results of using standard ordinary differential equation solvers 
to integrate SEmInR compartmental approximations as the num-
ber of exposed or infected compartments increases. In particular, 
we take βN = 1 (i.e., R0 = 5) and approximate the van der Plank 
model via a SEmInR model with m = n = 1, 3, 5, 10, 50, and 250, 
and the Gamma(k) model (n = k = 4) via a SEmInR model with  
m = 1, 3, 5, 10, 50, and 250. 

The equivalent sporulation curve, θ(τ) and the proportion of 
nonsusceptible tissue (i.e., the disease progress curve) are  
shown in Figure 5 for the different values of m and n, together 
with the logarithm of the error, E, as the number of classes 
changes. If the “exact” solution according to the custom simu-
lations of the van der Plank or Gamma(k) model has disease 
progress curve fexact(t), and the approximate SEmInR model has 
disease progress curve fapprox(t), then we define this error in the 
SEmInR solution in terms of the difference in area under disease 
progress curves 

max

max 0

1 ( ) ( )
T

approx exact
t

E f t f t dt
T =

= −∫  (18) 

where Tmax is a normalizing upper bound (here, we take Tmax = 
220 days, by which time the disease progress curve has reached 
its upper asymptote in all cases; however, our qualitative results 
are independent of this choice). 

 

Fig. 4. Response of initial rate of exponential disease increase, r, to basic reproductive number, R0, for SEIR (dotted line), van der Plank (dashed line), and 
Gamma(4) (solid line) models. Latent periods (1/γ) = 5, 10, or 20 days (columns) and infectious periods (1/µ) = 5, 10, 20, 50, or 100 days (rows). 
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The larger the number of classes, the better the approximation 
for both the van der Plank and the Gamma(k) models. With m =  
n = 250 (van der Plank) or m = 250 (Gamma(k) with k = 4), 
despite minor differences in the equivalent sporulation curve, 
disease progress curves according to the SEmInR model are almost 
indistinguishable from those from explicit simulation, and very 
closely replicate the repeated rise-and-plateau pattern. This is 
reflected in very small values of E. However, the error continues 
to decrease with increases in the number of compartments, albeit 
at a decreasing rate. 

Extending the models to include host demography. When 
demography is added, the invasion threshold R0 depends on the 
variant of the model in question (Table 1). In equation 6, a 
latently infected host has probability mγ/(mγ + g) of passing from 
compartment Ei–1 to Ei without dying and, thus, with m exposed 
compartments, the probability of an exposed host successfully 
reaching the first infective compartment is  

.
m

m
m g

⎛ ⎞γ
⎜ ⎟γ +⎝ ⎠

 (19) 

Conditioned on reaching any particular infected compartment, the 
probability of reaching the next is given by nµ/(nµ + g) and, thus, 
the probability of surviving to reach the ith infected compartment 
conditioned upon reaching I1 is  
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n g
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Because an infected host remains in the ith infected compartment 
for an average of 1/(nµ + g) units of time and, while in that 
compartment, causes infections at overall rate βiN, the general 
expression for R0 according to equation 6 becomes 
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For the SEIR model 
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For the van der Plank model 

0 1 .
g gNR e e

g

− −
γ μ

⎛ ⎞β
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (23) 

For the Gamma(k) model 
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We note that now the value of R0 depends upon the model in 
question. 

The value of R0 when βN = 1 is shown in Figure 6 for a range 
of 1/γ and 1/µ between 5 and 20 days and 5 and 100 days, 
respectively, with illustrative average lifetimes (1/g = 10, 50, or 
100 days). Unsurprisingly, the effects of host demography on R0 
are more striking when the average lifetime is short. In the SEIR 
and van der Plank models, the value of R0 increases with the 
infectious period. However the Gamma(k) model exhibits a non-
monotone response to 1/µ; in particular, as the infectious period 
increases, the value of R0 first increases, then decreases. This is 
because extending the infectious period increases the number of 
spores released (and, thus, acts to reduce R0) but, as 1/µ increases, 
a larger fraction of potential sporulation occurs at later times, which 
are never reached in practice (because hosts are dying). Finally, 
whereas, in the underlying models, the latent period does not affect 
the value of R0, because all infected hosts survive to produce the 
same number of new infections, this is no longer true if the host 
dies. Death of hosts puts a premium on becoming infectious 
immediately, and this is reflected in larger values of R0 for 
pathogens with shorter latent periods, in all variants of the models. 

 

Fig. 5. Accuracy of SEmInR approximations to the van der Plank and Gamma(4) models as the number of compartments increases. The sporulation curve, θ(τ), 
and the proportion of nonsusceptible tissue (i.e., the disease progress curve) are shown for the van der Plank and Gamma(n) models. These are compared with the
SEmInR approximations to the van der Plank model with m = n = 1, 3, 5, 10, 50, and 250, and to the Gamma(4) model with m = 1, 3, 5, 10, 50, and 250. The 
latent (1/γ = 25 days) and infectious (1/µ = 5 days) periods are selected to give a response that is difficult to represent in the underlying SEIR model. Also shown is
the accuracy of the approximation in terms of E, the normalized difference in area under disease progress curves (equation 17). 
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In general (and, therefore, for each of the models we consider) 
the number of susceptible hosts ( S ) at the endemic equilibrium 
according to equation 6 is given by 

0

,NS
R

=  (25) 

at least if R0 > 1. This shows how differences in the invasion 
thresholds identified in equations 22 to 24 also have a crucial 
effect on the long-term endemic behavior in host populations with 
demography. The initial exponential growth rate follows from an 
analysis similar to that used before (details available on request) 
and is given by r – g, where r is the growth rate in the particular 
variant of the underlying model without demography. This is 
unsurprising; the initial exponential increase of the epidemic is 
retarded by the continuous death of infected hosts, which occurs 
at per capita rate g. 

Extending the models to include free-living infectious 
material. To calculate R0 for the SEmInXpR model (equation 7), 
we again consider a single infectious host introduced to an 
otherwise susceptible population. We consider this rather than the 
introduction of a small quantity of inoculum because, although 
the initial introduction of inoculum would result in a number of 
new infections, it is actually the dynamics of these resulting 
infections that determine whether or not the disease successfully 
invades (10,24). For convenience recall the mean rate of secon-
dary infection,  
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and introduce mean rates of production of inoculum, 
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and of primary infection,  
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As before, the initial infected host causes an average of μβ /N  
secondary infections (equation 12). However, it also produces an 
average of μα /  units of inoculum over its lifetime, each unit of 
which produces an average of cNX /β  

 
new primary infections. 

Because R0 is the total number of new infected hosts corre-
sponding to the initial single introduction, it is the sum of these 
two contributions 
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Extending our earlier analysis, the final size equation is un-
changed (i.e., f ≈ 1 – exp(–fR0)) whereas, again, the initial rate of 
increase of infected tissue differs between model variants and 
here, too, for different numbers of inoculum compartments 
(Appendix 3 provides details of the analysis). 

Estimating f from r in the SEmInR model. As demonstrated 
above, the relation between the initial growth rate, r, and the value 
of R0 (and thus, in turn f, the eventual extent to which the 
pathogen will affect the host population) depends on the model. 
This means that, if we use an experimentally determined r 
together with prior knowledge on the life history of the pathogen 
to estimate the values of R0 and, therefore, f, our results depend 
on the model we use (Fig. 1). We illustrate this by considering the 
estimates of R0 and f corresponding to r = 0.01 day–1 in all three 
models, for a range of values of 1/γ and 1/µ up to 20 and  
100 days, respectively. This is then translated into percent 
changes in R0 and f between pairs of models (Fig. 7). 

The choice of model can greatly affect the estimated R0 and f. 
The results broadly follow the patterns in r identified previously 
(Fig. 4) and depend strongly on the latent and infectious periods. 
Differences of up to 60% in the estimated final severity are 
possible and are promoted by long latent and short infectious 
periods; in this case, the differences between the SEIR and the 
van der Plank/Gamma(k) models are largest (Fig. 5). We note that 
the latent period does not affect the van der Plank versus 
Gamma(k) model comparison because, in both models, there is no 
possibility of sporulation during the fixed latent period. 

 

Fig. 6. Effect of host demography on the basic reproductive number, R0, in the SEIR (column one), van der Plank (column two), and Gamma(4) (column three) 
models. The latent period (1/γ) ranges up to 20 days and the infectious period (1/µ) up to 100 days. Rows correspond to different average host lifetimes (1/g); 10
days, row one; 50 days, row two; 100 days, row three. 
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DISCUSSION 

We have introduced the SEmInR model, an extension of the 
SEIR model with subdivided exposed (i.e., latent) and infectious 
compartments. This extension allows the assumptions of expo-
nentially distributed infectious and latent periods implicit in the 
SEIR model to be relaxed, and more complex time-dependent 
infectivity to be represented. Although splitting the exposed or 
infectious classes has become somewhat commonplace in models 
of human or animal disease (34,38,39,50,75) as a practically use-
ful example of the so-called “linear chain trick” to convert certain 
delay differential equations to systems of ordinary differential 
equations (46), to our knowledge, this is the first use of multiple 
exposed or infected compartments in the mathematical analysis of 
a model of plant disease. We do note that the early simulation 
literature introduced delays using effectively the same multiple 
compartment formalization (via so-called “boxcar trains”) (12,19, 
74) but also note that no mathematical analysis was performed in 
these simulation studies. Additionally, whereas modelers of 
human or animal disease have concentrated solely on changing 
the number of classes to increase flexibility in latent or infectious 
periods, in our model, we allow infection rates to vary by infected 
compartment, allowing us to capture the complex time-depen-
dence in infection rate that has been measured experimentally for 
plant pathogens (52,67,68). 

We demonstrate how the SEmInR model can specifically target 
plant pathogens by recasting the van der Plank and Gamma(k) (i.e.,  
K & M model with Gamma-distributed infectivity) models in the 
compartmental framework. As well as demonstrating the wide 
applicability of our multiple compartment reformulation, repre-
senting the van der Plank and Gamma(k) models in this fashion 
allows the relatively simple analysis typical of compartmental 
models. Compartmental models have “entered the mainstream” of 
plant pathology in the past twenty years or so (61) and the requi-
site mathematical techniques to analyze compartmental models 
are familiar from a number of articles (9,10,16,24–26,31,42,54, 
55,69,77). Therefore, by unifying the van der Plank and Gamma(k) 

models, together with the SEIR model itself, in a single and well-
known theoretical framework, we simplify the more mathe-
matically demanding analysis of Segarra et al. (59). 

For each of the three models in question, we determined the 
initial rate of exponential increase of disease (r), the basic repro-
ductive number (R0), and the final fraction of infected hosts (f). As 
first identified by Segarra et al. (59), only r changes among the 
models we consider. However, we illustrate a possible practical 
significance of this result by demonstrating that it can lead to 
widely divergent assessments of the likely severity of an emerging 
epidemic from data on its initial spread (Fig. 1). Data from the 
early part of the epidemic are all that are available when decisions 
on control are most pressing; therefore, any assessment of the 
level of control required, or whether it is even necessary, could 
depend crucially on the seemingly esoteric phenomena addressed 
by our models (see also Roberts and Heesterbeek [57], who give a 
detailed treatment in the context of human or animal disease, for a 
variety of simple infection kernels). 

Although the above provides an interesting illustration of the 
potential significance of our results, it is, alas, rather unlikely that 
a particular farmer or grower would use our techniques to de-
termine how heavily to control an individual field, farm, or grove. 
Doubtless, the same could be said of almost any mathematically 
motivated method although, for crop plants, there is the additional 
difficulty that any epidemic may not reach the final size predicted 
by our models before being interrupted by harvesting or by 
periods of unsuitable environmental conditions. However, we 
contend that, at larger spatial (i.e., over entire regions or coun-
tries) and temporal (i.e., for perennials) scales, our methodology 
is both practical and relevant, in particular for use by policy 
makers. A timely and pressing example is sudden oak death in the 
United Kingdom, caused by Phytophthora ramorum (7); sig-
nificant efforts are already being made to predict the likely 
progress of this outbreak and, thus, to determine an appropriate 
level of control to exert. These decisions become particularly 
pressing in the light of the ongoing and devastating sudden oak 
death outbreak in California (45,56), and intense scrutiny of the 

 

Fig. 7. Effects of model structure on estimates of eventual severity from initial rates of exponential increase. Percent difference in the basic reproductive number,
R0 (column one), and the final fraction of infected hosts, f (column two), are shown between pairs of models. The initial rate of disease increase is r = 0.01 day–1. 
The latent period (1/γ) ranges up to 20 days and the infectious period (1/µ) up to 100 days. SEIR versus Gamma(4) is shown in row one, SEIR versus van der 
Plank in row two, and van der Plank versus Gamma(4) in row three. 
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potential mismanagement of the Dutch elm disease outbreak in 
the late 1960s and 1970s (64). Our method of informing control 
by predicting eventual epidemic size from data on early spread 
could also be used by policy makers to justifiably select those 
regions upon which to focus efforts when resources for control 
are limited by budgetary constraints (48,49). In this context, a 
fairly obvious large-scale strategy would be to attempt to prefer-
entially control those regions for which a mathematical model 
predicts the most devastating eventual impact, using data on 
initial spread within individual regions to predict localized long-
term behavior. However, initial results from a caricature of a 
different but related problem via a coupled metapopulation model 
and optimal control theory indicate that, when controlling with 
limited resources, in that case the obvious strategy is not always 
optimal (58). We will return to this using the framework we have 
outlined here in our future work. 

In the context of these and other examples, the focus shifts to 
how to correctly and justifiably select a model from data on early 
spread. Despite the SEmInR model being able to represent an 
infectivity response closer to that observed in experiment (52, 
67,68) and therefore, a priori, being expected to both provide the 
better fit to population level epidemic data and lead to more 
reliable predictions of eventual epidemic size, the additional 
flexibility of the most general SEmInR model comes at the cost of 
many more parameters. This indicates that model selection cri-
teria may work against it being selected as the best-fitting model 
and, thus, any prediction based upon it may be difficult to justify 
in practice. We do not address this potential practical difficulty 
here, although we do note that the (perhaps most biologically 
realistic) Gamma(k) variant of the SEmInR model in fact requires 
only one additional parameter when compared with the simple 
SEIR model; therefore, this may not be a serious problem when 
selecting one from that pair of models. 

In matching the parameters between the SEIR and van der 
Plank models, we followed well-established practice by choosing 
the “obvious” normalization in which the average latent and 
infectious periods are equal for the two models (28,33,41,51,59). 
However this immediately implies that the mean age at infection, 
i.e., the quantity 

( )
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ˆ d
∞

τ=

τθ τ τ∫  (30) 

where )(ˆ τθ  is the infection kernel )(τθ  normalized to be a prob-
ability distribution) differs. Mathematically elegant work (46) 
focuses on deriving approximations to the epidemic growth rate r 
as a function of ln(R0) and the moments of the infection kernel, 
and indicates that the mean age at infection is an important driver 
of the response (an effect which is most pronounced for small 
ln(R0)). We will investigate the effects of the standard choice of 
normalization in terms of these approximations in our future 
work. 

Representing the van der Plank and Gamma(k) models in the 
compartmental framework allows numerical solution using stan-
dard software tools (40) and, in particular, the coupled system of 
ordinary differential equations specifying the SEmInR model can 
be directly inputted and solved using widely available routines 
available in all mathematical software packages. The model can 
also be simulated using graphical “systems dynamics” approaches, 
such as Stella, Similie, Berkeley Madonna, and Vensim, although 
handling fixed delays may require some effort in these packages. 
Another option is to use the well-known and relatively simple 
Fortran simulator translator scripting language (72), which is 
based on the Continuous Systems Modeling Package (CSMP); a 
numerical recipe for building boxcar models with multiple com-
partments in CSMP is given by Goudriaan and van Roermund 
(19). Taken together, this relative ease of implementation means 
that our reformulation of the model makes the more realistic 

sporulation responses more accessible to modelers, and avoids 
any need for custom-written, complex numerical routines to 
handle delay differential (van der Plank) or integro-differential  
(K & M) equations, surely reducing the chance of errors in 
implementation. 

A major advantage of compartmental models is the increased 
flexibility they offer and the ease with which additional biology 
can be included (40,61). We have illustrated this by extending our 
underlying SEmInR model to include free-living infectious ma-
terial and host demography. Adding inoculum to the basic 
SEmInR model (moving to the SEmInXpR model) (Fig. 2C) 
increases the value of R0 by adding a new component corre-
sponding to primary infection, and allows the complex balance 
between primary and secondary infection most characteristic of 
soilborne pathogens (1–6,8,10,16,18,43) to be represented. The 
updated R0 does not, in fact, differ between the analogues of the 
SEIR, van der Plank, and Gamma(k) models. However, the initial 
rate of increase of infected tissue again differs between model 
variants and for different numbers of inoculum compartments, 
reiterating that initial disease progress is highly sensitive to 
assumptions concerning infection rates and distributions of latent 
and infectious periods. 

We note that our model of inoculum dynamics itself subdivides 
the X compartment and, thus, promotes increased flexibility in the 
survivorship of free-living infectious material. More realistic sig-
moidal survivorship curves (70) are natural within our framework, 
and will be the subject of future work (particularly over multiple 
seasons, a situation which is both more complex and relatively 
little studied) (20,21,23,43). In the context of multiseason dy-
namics, differences in the initial growth rate r revealed by our 
analysis will become particularly important. Often (e.g., for 
crops), epidemics do not, in fact, run to completion but are instead 
interrupted by harvesting; the initial rate of increase is then an 
important determinant of the level of disease at the end of the 
growing season and therefore, in turn, of the amount of inoculum 
(and, thus, primary infection) at the start of the next (21,24,43). 

Adding host demography (Fig. 2B) has arguably an even more 
pronounced effect. Depending on the variant of the model in 
question, different values of the key threshold R0 are obtained, 
even if all pathogen parameters are matched, because, when 
demography is included, the endemic level at which the pathogen 
persists in the host population depends on R0, failure to match the 
estimation of r with an appropriate model for the epidemic under 
consideration leads to incorrect conclusions about the long-term 
prevalence of disease and of healthy hosts. Although host demog-
raphy is a relatively simple example, a large and ever-increasing 
number of articles extend the SEIR model to encompass more 
biology (1–6,10,11,16,17,20–27,31,42,44,48,49,53,54,65,66,69,76, 
77) and, therefore, purportedly extract more biologically realistic 
thresholds. However, as we have shown here, even small changes 
to the biology introduced into epidemic models can interact with 
more realistic infection responses and lead to divergent con-
clusions. Therefore, the “standard” assumptions exemplified by 
the simplest SEIR model could have significant consequences 
whatever additional biology is included, and we urge modelers to 
consider carefully whether these assumptions are justified in their 
future work. We contend that this is the most important message 
of our article. 

APPENDIX 1: 
Fitting the SEmInR Model to Sporulation Data 

We fitted infection kernels to a representative sporulation data 
set (Puccinia lagenphorae on Senecio vulgaris) (41). We examine 
whether (i) the restriction imposed by the SEmInR model that the 
shape parameter for Gamma infection kernels must take integer 
values markedly constrains the fit and (ii) the extra flexibility 
available in the “full” SEmInR model leads to an improved fit 
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compared with the Gamma infection kernel with integer shape 
parameter. 

Fixing the shape parameter of the Gamma distribution to 
be an integer. For a Gamma-distributed infection kernel to be 
represented in the SEmInR framework, its shape parameter must 
be an integer. We used nonlinear least squares to fit the Gamma 
distribution in the (nonnormalized) form 

( ) 1

( ) .
( )

k tt e
I t

k

− −λΩλ λ
=

Γ
 (31) 

Our estimates of the parameters were Ω = 11.52, λ = 0.30, and  
k = 4.20 (Fig. 8A). The data were normalized such that the 
maximum daily spore production was 1.0; this fixes the value  
of the scale factor Ω and is independent of the values of λ and k;  
t = 0 corresponded to the very first sign of spore produc- 
tion, allowing us to ignore the latent period in fitting. The fit 
according to equation 31 was compared with that according to the 
submodel 

( )3( )
3!

tt e
I t

−λΩλ λ
= , (32) 

that is, equation 31 with fixed shape parameter k = 4 (Ω = 11.67, 
λ = 0.28). Because the models are nested, the fits can be com-
pared using a F test. The extra flexibility corresponding to non-
integer values of the shape parameter k does not lead to any 
significant improvement (F = 0.121, P = 0.73). In fact, visual 
inspection reveals no clearly visible difference between the fits 
(Fig. 8A). For this data set, the restriction of k to integer values 
imposed by our analysis is unimportant. 

Extra flexibility in the SEmInR model. Although, in the main 
text, we concentrated on the Gamma distribution with integer 
shape parameter, this corresponded to setting all but the last of the 
infection rates (βi) in our SEmInR model to zero. By allowing the 
other βi to be non-zero, the infectivity kernel in the SEmInR 
model may be generalized. We examined whether such an exten-
sion was justified for this data set using forward stepwise regres-
sion. In particular, we compared the Gamma-distributed infection 
kernel with fixed k = 4 (i.e., equation 32) with the three variants 
of the following form 

( ) 14

1

( ) ,
( 1)!

i t
i

i

t e
I t
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− −λ

=

Ω λ λ
=

−∑  (33) 

in which Ω4 and one of Ω1, Ω2, or Ω3 were non-zero. This is the 
infection kernel corresponding to taking β4 and one of β1, β2, or 

β3 to be non-zero in the SEmInR model (equation 10). None of 
the fits according to equation 33 were visually distinguishable 
from that according to equation 32 (Fig. 8B), and for the most 
significant of the fits (Ω2 ≠ 0), F = 0.378, and P = 0.54. The extra 
complexity of generalizing the infection kernel is not warranted, 
at least for these data. 

APPENDIX 2: 
Mathematical Details of the Analysis  

of the SEmInR Model 

Final size of the epidemic, f. According to equation 5, if we 
define 

( )
1 1 0

1( ) log ,
m n n

j i j
j j i j

Nt S E I S
n R= = =

φ = + + β −
β∑ ∑∑  (34) 

then dφ/dt = 0, and so ( )tφ  is constant. At the end of the 
epidemic, because Ej = Ij = 0 for all j,  

( ) ( ) ( )( )
0

logNS S
R

φ ∞ = ∞ − ∞  (35) 

where )(∞S  is the final number of susceptible hosts. Assuming 
that the number of exposed or infected hosts at the beginning of 
the epidemic is small in comparison with the population size, S(0) 
≈ N and, thus,  

( ) ( )
0

0 logNN N
R

φ ≈ − . (36) 

Because φ is constant, φ(0) = φ(∞),  

( ) ( )( ) ( )
0 0

log log .N NS S N N
R R

∞ − ∞ ≈ −  (37) 

However, defining f as the fraction of hosts infected during the 
course of any epidemic, S(∞) = (1 – f)N and, thus, 

( )01 exp .f fR≈ − −  (38) 

Initial rate of increase of disease, r. The linearization of 
equation 5 about the pathogen-free equilibrium, S = N, Ei = Ii =  
R = 0 is dx/dt = Jx, where x = (S, E1…Em, I1…In, R)T, and where J 
is the (m + n + 2) by (m + n + 2) Jacobian matrix 

 

Fig. 8. Generalizing the infection kernel in the SEmInR model. A, Fit to real sporulation data and the (almost indistinguishable) consequence of the restriction of
the shape parameter to an integer that is required to represent the Gamma(k) response in the SEmInR model. B, Extra flexibility available in the “full” SEmInR 
model with more than one infection rate non-zero does not lead to an improved fit when compared with the Gamma-distributed integer shape parameter response 
we considered in the main text of the article. Statistical assessment of these results is given in Appendix 1. 
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In the vicinity of the equilibrium (i.e., at the beginning of any 
epidemic, before the number/density of susceptibles becomes 
limiting), the approximate solution follows 

,ir t
i

i

e−=∑x v  (40) 

where ri is the ith Eigenvalue of the matrix J, and the vectors vi 
depend upon the initial condition. The time dependence is domi-
nated by the largest positive Eigenvalue which, therefore, controls 
the initial exponential growth of disease. In this case, the Eigen-
values of J are given implicitly by the roots, r, of its characteristic 
equation 
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and, thus, the rate of exponential increase in the initial density-
independent growth is given by the largest root of equation 41. 

In particular, because for the SEIR model m = n = 1 and β1 = β, 
the initial rate of increase is given by the positive root of the 
(quadratic) equation 
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which is (using R0 = βN/µ) 
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For the van der Plank model, because βi = β for all i 
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Summing the geometric progression 
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and, thus, in the limit m, n → ∞ 
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The initial growth rate is fixed by the largest root of equation 47. 
For the Gamma(k) model, only βn ≠ 0 and the relevant part of 

equation 41 becomes 
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Because m → ∞, the initial rate of disease increase is then given 
implicitly by the largest root of 
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APPENDIX 3: 
Mathematical Details  

of the Analysis of the SEmInXpR Model 

To obtain a final size equation in the SEmInXpR model, the 
conserved quantity φ (equation 34) can be augmented, 
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As before, all terms involving Ej, Ij, or Xj drop in the limit of long 
time, allowing us to fix φX(∞) and, thus, to show that f ≈ 1 –  
exp(–fR0), where R0 now involves components corresponding to 
primary and secondary infection and is given by equation 29. 

To find the initial rate of disease increase, r, we follow our 
earlier analysis. In particular, the (m + n + p + 2) by (m + n + p + 
2) Jacobian matrix for linearizing about the disease-free equi-
librium is given by 
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Manipulation of the corresponding characteristic equation indi-
cates that the initial growth rate is given by the largest root, r, of 
the equation 
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