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Eventing competitions in Great Britain (GB) comprise three disciplines, each split into four grades, yielding 12 discipline-grade
traits. As there is a demand for tools to estimate (co)variance matrices with a large number of traits, the aim of this work was to
investigate different methods to produce large (co)variance matrices using GB eventing data. Data from 1999 to 2008 were used
and penalty points were converted to normal scores. A sire model was utilised to estimate fixed effects of gender, age and class,
and random effects of sire, horse and rider. Three methods were used to estimate (co)variance matrices. Method 1 used a method
based on Gibbs sampling and data augmentation and imputation. Methods 2a and 2b combined sub-matrices from bivariate
analyses; one took samples from a multivariate Normal distribution defined by the covariance matrix from each bivariate analysis,
then analysed these data in a 12-trait multivariate analysis; the other replaced negative eigenvalues in the matrix with positive
values to obtain a positive definite (co)variance matrix. A formal comparison of models could not be conducted; however,
estimates from all methods, particularly Methods 2a/2b, were in reasonable agreement. The computational requirements of
Method 1 were much less compared with Methods 2a or 2b. Method 2a heritability estimates were as follows: for dressage 7.2%
to 9.0%, for show jumping 8.9% to 16.2% and for cross-country 1.3% to 1.4%. Method 1 heritability estimates were higher for
the advanced grades, particularly for dressage (17.1%) and show jumping (22.6%). Irrespective of the model, genetic correlations
between grades, for dressage and show jumping, were positive, high and significant, ranging from 0.59 to 0.99 for Method 2a
and 0.78 to 0.95 for Method 1. For cross-country, using Method 2a, genetic correlations were only significant between novice and
pre-novice (0.75); however, using Method 1 estimates were all significant and low to moderate (0.36 to 0.70). Between-discipline
correlations were all low and of mixed sign. All methods produced positive definite 12 X 12 (co)variance matrices, suitable for the
prediction of breeding values. Method 1 benefits from much reduced computational requirements, and by performing a true
multivariate analysis.

Keywords: genetic evaluation, sport horse, eventing, (co)variance matrices

Implications 1.3% to 3.9% for cross-country, indicating that genetic
progress can be made by selection in the population. Genetic
correlations between grades for dressage and show jumping
were positive, high and significant, ranging from 0.59 to
0.99, indicating that selection for one grade within these
disciplines also selects for other grades.

There is demand for tools to estimate (co)variance matrices
with a large number of traits. Different methods to produce
large (co)variance matrices were examined using eventing data
Great Britain. Two methods that combined sub-matrices from
bivariate analyses, as well as an alternative, which performed a
12-trait multivariate analysis using data augmentation and
imputation, were found to be appropriate. Introduction

Depending on the trait, heritability estimates were 7.2%

t0 17.1% for dressage, 8.9% to 22.6% for show jumping and Eventing is the equestrian sport in which the horse and

rider compete in each of the three individual competition
disciplines — show jumping, dressage and cross-country.
* E-mail: 1.D.Stewart@sms.ed.ac.uk Internationally, genetic evaluations for performance in sport
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horses tend to focus on the individual disciplines of show
jumping and dressage, for which many studbooks produce
annual breeding value estimates. Genetic evaluations for
eventing competition are rare. Langlois (1980) and most
recently Ricard and Chanu (2001) performed evaluations in
the French population, the latter using earnings and ranks of
the overall competition, and Kearsley et al. (2008) performed
an evaluation in the horse population of Great Britain (GB),
using penalty points, and analysing individual disciplines and
an overall trait. The heritability of overall competition in the
French population was 0.11/0.17 (annual results; natural log
of earnings per number of starts and per number of places,
respectively) and 0.07 (rank in each event; Ricard and
Chanu, 2001). The heritability in the GB population was 0.09
to 0.11 for dressage, 0.08 to 0.23 for show jumping, 0.02 to
0.03 for cross-country and 0.05 for overall competition,
using the performance measure of penalty points in a single
competition (Kearsley et al., 2008). These estimates for the
show jumping and dressage phases were similar to those
derived from evaluations of the individual disciplines.

In GB eventing competition data, there are 12 traits for the
combinations of discipline (3) and grade (4; which are, in
order of increasing ability, pre-novice, novice, intermediate
and advanced). The overall performance in a competition is
based on a sum of the scores for the individual disciplines.
Ideally, genetic evaluations would be based on a 12-trait
model. To enable this, genetic parameters for each of the
discipline-grades and correlations between them would
need to be estimated. Separate breeding values for each of
the 12 competition-grades could then be predicted for each
horse. These would be available for all traits, or could be
combined into an aggregate index, for example, for each
discipline, or for the competition overall. The production of
12 traits, or an index based on these, is of interest as it
allows flexibility depending on the breeding goals. For
example, breeders may have a particular interest in breeding
for a specific level of competition, that is, advanced for the
professional rider, or novice for the amateur rider, or the
interest may be in producing a horse for competing in one or
more of the disciplines.

Genetic evaluations for sport horses typically estimate
variance components using residual maximum likelihood
(REML), and then predict breeding values using best linear
unbiased prediction (BLUP). Most BLUP programs require
estimated (co)variance matrices that are positive definite.
When the whole matrix is being estimated directly, this fre-
quently results in non-positive definite matrices (negative
eigenvalues), and the probability of this increases as the
number of traits increases (Hill and Thompson, 1978). This
can be avoided by imposing constraints to keep the matrix
positive definite. However, to cope with the computational
demands of estimating (co)variance matrices for a large
number of traits, often (co)variance matrices are calculated
for subsets of the traits, and the estimates are then com-
bined. Again, this frequently results in non-positive definite
matrices, and particular methods are required to combine
the sub-matrices and produce a positive definite full matrix.
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Such methods include Mantysaari (2004), which uses a random
regression model modified to use a rank-deficient sire (co)var-
iance matrix, Wall et al. (2005), which introduced a method
based on the Cholesky decomposition, minimising the Frobenius
distance (Higham, 2002; Sorensen et al,, 2002), among others
(Knol and Ten Berge, 1989). A disadvantage of this approach is
that combining sub-matrices to form a full (co)variance matrix
does not make best use of the available information. Alter-
natives to REML include Bayesian methods, such as Markov
Chain Monte Carlo (MCMC) simulation, which has been used in
horse populations (Stock et al., 2007). A comparison of Bayesian
methods and REML is discussed in detail in Misztal (2008). A
feature of MCMC is that it is suitable for multivariate analysis,
but may be slow to compute (Misztal, 2008).

This study was driven by the need to develop compre-
hensive genetic evaluations of horses competing in eventing
competitions in GB using the information from all 12 traits in
a multivariate fashion. However, the problems encountered
in obtaining a positive definite 12 X 12 (co)variance matrix
prompted the study to include a comparison of different
methodologies.

Material and methods

Data

Competition results, from 1999 to early 2008, were obtained
from British Eventing, the body regulating the sport in GB.
Results from GB competitors competing in national and
international competitions were included. The performance
traits used were the penalty point scores for each of the
three individual disciplines. Penalty points were converted to
normal scores within the competition class, using the method of
Kearsley et al. (2008), adapted from Royston (1982). The better
performing horses were awarded fewer penalty points, and
thus a negative Normal score represented a better performance
than a positive score. The competition class grouped competi-
tors competing against each other at the same event and
covers the standard of the competition, date, location and
related temporary environmental factors such as weather. The
transformation of penalty points to Normal scores achieved a
distribution closer to the Normal, with a zero mean score for
each competition class. Horses less than 4 years old were
excluded, and horses 20 years or older were grouped into a
single age group.

The ability-grade combinations were as follows: dressage
pre-novice (DP), dressage novice (DN), dressage inter-
mediate (DI), dressage advanced (DA), show jumping pre-
novice (SJP), show jumping novice (SJN), show jumping
intermediate (SJI), show jumping advanced (SJA), cross-
country pre-novice (XCP), cross-country novice (XCN), cross-
country intermediate (XCI) and cross-country advanced
(XCA). In the following discussion, those 12 combinations
were the 12 traits.

The dressage phase is always performed first, followed by
either show jumping or cross-country, depending on the
nature of the event. Therefore, the dressage data repre-
sented the full number of competition records; subsequent



exclusions during the latter phases resulted in slightly less
records for them. Records where penalty points did not follow
this pattern of performance-related exclusion were removed.

Horses and riders often appear in multiple grades in the
data set as a whole. Conversely, some horses may not have
competed in all (i.e. the latter) phases of competition because
of exclusions, or within every grade; however, because of
genetic connections between animals (in this case limited to
connections within half-sib groups) and genetic associations
between grades and disciplines, breeding values can be pre-
dicted for all horses at all grades and disciplines. The rider was
considered an important source of variation (Kearsley et al.,
2008) and is estimable because riders are associated with more
than one horse (mean number of horses per rider = 2.8), and
horses are also commonly associated with more than one rider
(mean number of riders per horse = 1.7). Riders have been
recorded consistently since 1999; data before this time where
rider was intermittently recorded were excluded. The sire of
competing horses was available from British Eventing, and was
generally well recorded. Sires were recorded by name, however,
with no other unique identifiers. Data were cleaned manually,
conservatively grouping sire names where they were con-
sidered to be the same animal. Variance components were
estimated using a data set reduced in size to include sires with
either (i) 30 or more individual progeny competing in either pre-
novice or novice grades or (i) any progeny in intermediate or
advanced grades.

Models
The basic model was a sire model with mixed linear effects,
fitted within each discipline-grade:

y = mean + gender + age + age® + class + sire + rider
+ horse + e.

The fixed effects were gender of the horse (‘gender’: stallion,
geldings and mares), the age of the horse at the time of
competition fitted as linear and quadratic covariates and
competition class (‘class’). Random effects were the additive
genetic effect of the sire ('sire’), the rider ('rider’), the perma-
nent environment of the horse (‘horse’) and the residual error
(€). The random effects of the sire, rider, horse and residual error
were assumed to be normally distributed with (co)variance
matrices 3ire®/ Srider®h Shorse®/ and Je@!.

Owing to computational constraints, it was impossible to
perform a standard 12-trait multivariate analysis for the full
model, and thus three alternative methods were used to
estimate the 12 X 12 (co)variance matrices. The relationship
between traits was assumed to be unstructured, that is,
there were no specified correlations between grades.

Method 1. A method called data augmentation was used to
perform a 12-trait multivariate analysis. This data augmen-
tation is based on work by Thompson (1994) and Clayton
and Rasbash (1999) where computational requirements are
reduced, using data with hierarchically nested random
effects, by repeatedly fitting sub-models in an overlapping
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series, with each sub-model being fitted in turn to data
adjusted for effects not in the current sub-model. In an
iteration of the full model, an internal iteration of each sub-
model is performed. This greatly reduces the computational
requirements. Fixed and random effects are updated as they
are re-estimated. A simplified form of Gibbs sampling is used
to add noise to the updated estimates at each step, thus
preventing bias in the estimated effects. For random effects,
the noise added to each solution is taken as a sample from a
normal distribution with a variance equal to the prediction
error variance of that solution; for fixed effects, the noise is
sampled from a normal distribution with variance equal
to the square of the standard error. The calculations were
carried out in a development version of ASReml 3 (Gilmour
et al., 2009).

For example, if the two sub-models are: (1) y— Zu=
XB+eand (2) y— XB=Zu+ e where y is a vector of
phenotypic observations, u and 3 are vectors of random and
fixed effects respectively, e is a vector of residual errors,
Z and X are design matrices allocating observations to
random and fixed effects, the process is as follows:

(i) Formodel 1, assume uis 0, estimate and add noise to 3.

(ii) For model 2, augment the data by subtracting X3 using
an imputed value of 8 from (i), estimate v and variances
and add noise to w.

(iii) For model 1, augment the data y by subtracting Zu using
an imputed value of ufrom estimate of u from (ji), estimate
and add noise to 5.

(iv) Repeat (i) and (i), for total number of iterations.

(v) Exclude burn-in iterations, and calculate averages of
estimates.

In this analysis, the full model was split into four sub-models.
These were: (1) the fixed effect of class within discipline and
grade, (2) the random effect of sire within discipline and grade,
(3) the random effect of rider within discipline and grade and
(4) the random effect of horse within discipline and grade. The
fixed effects of gender within discipline and grade and age
(linear) and age (quadratic) within discipline and grade were
included in all sub-models. A burn-in period of 60 iterations was
allowed, and 500 iterations were executed. Residual error
covariances were fixed at zero because, as a simplification, it
was assumed that there was no covariance between discipline-
grades for the remaining un-explained variance. (Co)variance
matrices for each random effect were estimated as the average
overall iterations excluding the burn-in period, making a total of
440 iterations.

The 12-trait multivariate model (before division into sub-
models) was

y=dg x mean+dg x gender+dg x age + dg
x age’ +dg x class+dg x sire4dg x rider
+dg x horse+dg x e,

where y is a matrix of responses and dg is the factor indi-
cating discipline-grade. The fixed effects were gender of the
horse (‘gender’), age of horse at the time of competition
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(polynomial, linear and quadratic) and competition class
(‘class’). Random effects were the additive genetic effect of the
sire ('sire”), the rider ('rider’), the permanent environment of the
horse (‘horse’) and the residual error (e). The random effects
sire, rider, horse and residual error were assumed to be normally
distributed with (co)variance matrices 34e®/ Zrider®/,
Shorse®land Z.® /. The estimated matrices were constrained to
be positive definite by performing an expectation-maximisation
update if the average information REML update generated a
non-positive definite matrix.

The analysis gives solutions plus their standard errors for
all fixed and random effects. Unfortunately, as yet no stan-
dard errors are available for estimates of variance compo-
nents; therefore, estimates of standard errors from the
bivariate analyses were used (see section 'Methods 2a/2b’
below). The standard errors from the various models are
unlikely to differ much, and we might expect the standard
errors from a 12-trait analysis to be lower than the standard
errors obtained if only 2 of the 12 traits were included in the
analysis. For this model, standard errors of correlations
between traits are approximate.

Methods 2a/2b. A series (66) of bivariate analyses, for every
possible pair of discipline-grade traits, was run using
ASReml. Two distinct methods were then used to combine
the series of 2 X 2 sub-matrices from each strata (sire, horse,
rider) into the 12 X 12 covariance matrices.

Method 2a: For each of the 66 bivariate analyses, three
pairs of observations were sampled from a multivariate
Normal distribution defined by the 2 X 2 covariance matrix.
These were analysed in a 12-trait multivariate analysis
using ASReml, where the only fixed effect in the model was
a separate mean for each of the 66 bivariate analyses.
At least three samples were required to ensure that the
resulting (co)variance matrix matched the (co)variance
matrix from the bivariate analysis. This is an extension of

Wall et al. (2005), designed to ensure that a mean could be
fitted in the final model.

Method 2b: The average (co)variance values for the 66
bivariates were calculated as simple means. To convert these
average (co)variance matrices into positive definite matrices,
they were decomposed to give the eigenvalues and eigenvec-
tors. Negative eigenvalues were changed to 1 X 10~ "% and the
matrices were re-composed. This method is a simplification of
more complex methods that minimise the Frobenius distance
between the original estimate and the final positive definite
estimate (Higham, 2002; Sorensen et al, 2002), that is,
equivalent to computing the positive definite matrix that is best
fitting by least squares (Knol and Ten Berge, 1989). Standard
errors of correlations were not accounted for in the process.

Thus, three methods were used to produce the positive
definite 12 X 12 (co)variance matrices, suitable for BLUP
estimation of breeding values. To estimate the effect of fixed
effects for Methods 2a/2b, the results from the 66 bivariates
were averaged.

Calculation of functions of variance components

Heritabilities (i), repeatabilities () and fractions of variance
due to permanent environment (&) and rider (w?) were calcu-
lated as functions of the various components using the phe-
notypic variance defined as o = o2 + o2 + o2, + o
The functions were calculated as h* = (4a?) /o%, rr =
(o2 + ag)_/ a2, = (03_—30’3) /ag and _WZ = /o,
where o2 is the total variance, a2 is the sire variance, o2
is the residual horse variance, ? is the rider variance and o2 is

[0)
the residual variance.

Results

Table 1 summarises the data set, giving the number of
records, horses, sires, number of records by horse gender and
number of riders for each discipline-grade in the data set.

Table 1 Number of records, horses, sires, number of records by horse gender and number of riders for each discipline-grade in the data set (the total
number of horses, sires and riders was 19829, 3017 and 11841, respectively)

Number of records by gender

Discipline-grade Number of records Horses Sires Stallions Geldings Mares Riders
DA 18413 2202 1308 138 16081 2194 1017
DI 77943 6863 2982 1133 61579 15231 3301
DN 113434 10731 2608 1162 81585 30687 6079
DP 135277 16 664 239% 814 90788 43675 10767
SIA 16 405 2163 1285 126 14325 1954 989
S 66430 6380 2844 934 52843 12653 2969
SIN 116304 10625 2626 1261 83801 31242 5948
SIP 130953 16460 2392 804 87874 42275 10597
XCA 14765 2052 1235 110 12907 1748 945
Xcl 59058 6090 2732 836 47052 11170 2810
XCN 106 558 10277 2612 1150 76991 28417 5715
XCP 120939 16 055 2383 747 81357 38835 10315

DA = dressage advanced; DI = dressage intermediate; DN = dressage novice; DP = dressage pre-novice; SJA =show jumping advanced; SJI = show jumping
intermediate; SIN = show jumping novice; SJP = show jumping pre-novice; XCA = cross-country advanced; XCl = cross-country intermediate; XCN = cross-country
novice; XCP = cross-country pre-novice.
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Comparison of models

The computing resources required by the data augmentation
method were extremely small compared with the bivariate
methods. Overall, fitting the data augmentation model took
~ 7h, compared with ~4h for each of the 66 bivariates
(i.e. 264 h in total). All runs were performed on a computer
with a 2.4 GHz clock speed. The bivariate analyses were each
allowed up to 4 GB of memory and the data augmentation
method up to 8 GB. The differences in the (co)variances and
solutions produced by the three methods were used to
compare models.

Phenotypic variance

As the trait was a normal score (mean 0, standard deviation 1),
the phenotypic variance is expected to be <1, depending on
class sizes. Estimates of the total phenotypic variance for the
three methods are shown in Tables 2 to 4. Estimates from all
methods were close to the anticipated value of 1. Estimates
from the data augmentation method had a greater range over
the disciplines, compared with the bivariate methods, and
tended to be higher within the more advanced grades.

Heritabilities

Heritability estimates for the 12 traits, as estimated by the
different methods, are given in Tables 2 to 4 for the indivi-
dual disciplines.

Irrespective of the method of analysis, heritabilities were
significantly >0 for all traits excluding the higher grades in
cross-county. Show jumping showed the greatest heritability,
followed by dressage and then cross-country.

From Method 1, the advanced grade of all disciplines had
the highest heritability (Tables 2 to 4). This was particularly
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true for dressage (17.1%) and show jumping (22.6%). The
remaining grades of dressage were very consistent (8.0% to
9.0%). For show jumping, pre-novice grade had the lowest
heritability (10.6%). Note that the higher heritability esti-
mates were associated with both higher phenotypic and
higher genetic variance.

Comparing Methods 2a and 2b, the differences were
slight, with the greatest absolute difference in heritability
estimates being 1.5%, and because the standard error of the
estimate was 0.9% this was likely to have been a chance
occurrence. The standard errors were taken as averages over
the bivariate analyses. Given this small difference, only
Method 2a will be described more fully.

The pattern of magnitudes of heritability across disciplines and
grades was similar to Method 1, with show jumping having the
highest heritability (8.9% to 16.2%), followed by dressage (7.2%
to 9.0%) and then cross-country (0.3% to 1.4%) and estimates
of heritability tending to be greatest in advanced grade.

Repeatabilities

Repeatability estimates, which are the proportion of phenotypic
variance explained by the horse genetics and the horse’s per-
manent environment combined, represent the upper limit to
the heritability. These are also given in Tables 2 to 4. Methods
2a and 2b were in good agreement. Estimates from Method 2a
were highest for dressage, 24.1% to 29.8%, followed by show
jumping, 15.8% to 21.0%, with cross-country being the lowest
again (8.5% to 9.8%).

Although the pattern was similar for Method 1, there were
differences: for dressage at advanced grade, the estimate
was lower compared with the bivariates; for show jumping
at advanced and intermediate grades, the estimates were

Table 2 Functions of variance components for dressage as estimated by the three methods

DA DN DP
Method Estimates s.e. Estimates s.e. Estimates s.e. Estimates s.e.
1
Total phenotypic 1.098 1.139 1.074 1.048
s 0.171%** 0.083*** 0.080*** 0.090***
Repeatability 0.259*** 0.272%** 0.247*** 0.246***
Permanent environment 0.088* 0.189*** 0.167*** 0.156***
Rider 0.372*** 0.289*** 0.260*** 0.251***
2a
Total phenotypic 0.987 1.036 0.993 1.01
W 0.090* 0.045 0.076*** 0.017 0.072*** 0.012 0.076*** 0.010
Repeatability 0.298*** 0.013 0.273*** 0.006 0.241%** 0.005 0.246*** 0.004
Permanent environment 0.209*** 0.043 0.198*** 0.017 0.169*** 0.011 0.170*** 0.010
Rider 0.291*** 0.019 0.244*** 0.010 0.223*** 0.007 0.232*** 0.006
2b
Total phenotypic 0.969 1.065 1.015 1.042
W 0.090* 0.081*** 0.080*** 0.087***
Repeatability 0.307*** 0.284*** 0.242*** 0.242***
Permanent environment 0.217*** 0.203*** 0.163*** 0.155***
Rider 0.275*** 0.246*** 0.233*** 0.251***

DA = dressage advanced; DI = dressage intermediate; DN = dressage novice; DP = dressage pre-novice.
*P<0.05, **P<0.01, ***P<0.001.
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Table 3 Functions of variance components for show jumping as estimated by the three methods

SJIA Sl SIN SJP
Method Estimates s.e. Estmates s.e. Estimates s.e. Estimates s.e.
1
Total phenotypic 1.044 0.997 0.940 0.866
i3 0.226*** 0.126*** 0.134*** 0.106***
Repeatability 0.246*** 0.207*** 0.197*** 0.169***
Permanent environment 0.019 0.081*** 0.063*** 0.063***
Rider 0.140*** 0.141*** 0.126*** 0.092***
2a
Total phenotypic 0.947 0.908 0.863 0.841
s 0.162*** 0.040 0.095*** 0.014 0.094*** 0.011 0.089*** 0.009
Repeatability 0.211%** 0.011 0.169*** 0.005 0.169*** 0.004 0.150*** 0.004
Permanent environment 0.049 0.036 0.074*** 0.013 0.075*** 0.009 0.062*** 0.007
Rider 0.113*** 0.010 0.113*** 0.006 0.091*** 0.004 0.084*** 0.003
2b
Total phenotypic 0.932 0.937 0.902 0.855
i 0.155%** 0.090*** 0.107*** 0.104%**
Repeatability 0.210%** 0.183*** 0.180*** 0.158***
Permanent environment 0.054 0.093*** 0.073*** 0.054***
Rider 0.105*** 0.120*** 0.111*** 0.088***
SJA = show jumping advanced; SJI = show jumping intermediate; SIN = show jumping novice; SJP = show jumping pre-novice.
*P<0.05, **P<0.01, ***P<0.001.
Table 4 Functions of variance components for cross-country as estimated by the three methods
XCA Xcl XCN XCP
Method Estimates s.e. Estimates s.e. Estimates s.e. Estimates s.e.
1
Total phenotypic 1.062 1.058 0.999 0.819
s 0.039 0.016** 0.023*** 0.018***
Repeatability 0.112%** 0.112*** 0.104*** 0.101***
Permanent environment 0.073*** 0.096*** 0.081*** 0.083***
Rider 0.181*** 0.161*** 0.144*** 0.101***
2a
Total phenotypic 0.956 0.974 0.960 0.800
1 0.027 0.021 0.003 0.005 0.013** 0.005 0.014*** 0.004
Repeatability 0.093*** 0.008 0.091*** 0.004 0.098*** 0.003 0.085*** 0.003
Permanent environment 0.066** 0.022 0.087*** 0.007 0.085*** 0.006 0.071%** 0.004
Rider 0.120%** 0.011 0.118*** 0.007 0.117*** 0.005 0.092*** 0.003
2b
Total phenotypic 0.955 0.982 0.974 0.803
H 0.032 0.008 0.021*** 0.018***
Repeatability 0.095*** 0.096*** 0.103*** 0.086***
Permanent environment 0.064** 0.088*** 0.082*** 0.069***
Rider 0.117%** 0.119%** 0.124*** 0.093***

XCA = cross-country advanced; XCl = cross-country intermediate; XCN = cross-country novice; XCP = cross-country pre-novice.
*P<0.05, **P<0.01, ***P<0.001.

higher; and for all grades of cross-country, estimates were
slightly higher. However, there is no evidence to suggest that
these differences are statistically significant.

Horse’s permanent environmental variance

The proportion of phenotypic variance explained by the
permanent environment of the horse is given in Tables 2 to 4.
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The permanent environmental variance is the variance due
to environmental effects that have consistently influenced
the horse’s performance, such as long-term training, sta-
bling, any early-life influences and also, in this analysis, the
maternal effects that cannot be identified, as dams were
unknown. Estimates were again very similar between
Methods 2a/2b. For Method 2a, the permanent environment



accounted for 16.9% to 20.9% of phenotypic variance in
dressage compared with 4.9% to 7.5% in show jumping and
6.6% to 8.7% in cross-country. The large estimate for the
influence of permanent environment on dressage perfor-
mance compared with show jumping explains why the
repeatability is estimated to be greater for dressage, yet its
heritability appeared smaller.

For Method 1, estimates were consistent with Methods
2a/2b, with the exception of advanced grades in dressage
and show jumping, which were noticeably smaller. For
dressage, estimates ranged from 8.8% to 18.9% and for
show jumping from 16.9% to 24.6%.

Rider variances as a proportion of total variance

The estimates of variance due to the rider were very similar
when estimated by Methods 2a and 2b. The maximum
absolute difference in the estimates was 2.7% of total pheno-
typic variance (standard error on rider variance was 0.6%).
The proportion of variance due to the rider, as estimated by
Method 2a, was 22.3% to 29.1% for dressage, 8.4% to 11.3%
for show jumping and 9.2% to 12.0% for cross-country.
Estimates by Method 1 tended to be greater in magnitude than
Method 2a/2b estimates.

Genetic correlations

Genetic correlations are presented in Table 5. Correlations
within grades were all significant. For dressage, these ranged
from 0.783 to 0.946; for show jumping, from 0.803 to 0.954;
and for cross-country, from 0.358 to 0.698. There was a clear
pattern that correlations between sequential grades were
higher than those between more distant grades. Results from
Methods 2a and 2b were very similar. For both methods,
genetic correlations between the grades were significantly dif-
ferent from zero for dressage and show jumping, positive and
high (for dressage 0.59 to 0.99, for show jumping 0.74 to 0.99).
For cross-country, there is a need for greater caution as genetic
correlations between the grades were only significantly differ-
ent from zero between novice and pre-novice, with an estimate
of 0.75. This provides evidence that for dressage and show
jumping, and at least within lower grades of cross-country,
within the discipline, the same loci (or loci in linkage dis-
equilibrium) are predominantly responsible for performance at
the different grades.

For Method 1, correlations between disciplines were largely
significant. Between show jumping and dressage, significant
correlations ranged from 0.011 to 0.385, but estimated corre-
lations between cross-country and other disciplines appeared
more heterogeneous in sign ranging from —0.163 to 0.093
for dressage. By contrast, from Methods 2a and 2b between-
discipline correlations were largely not significant, but also of
varied sign and magnitude. Correlations between the lower
grades of dressage and show jumping were statistically sig-
nificant, positive but low, and a low significant correlation
between show jumping and XCP and XCN was found. Esti-
mates for dressage and cross-country were indicative of there
being negative correlations of moderate magnitude. For
Method 2b, comparing the genetic correlation matrix before
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and after bending (considering only estimates that were sig-
nificantly different from zero in the positive definite matrix), the
average absolute change was 0.054.

Horse and rider correlations

Correlations for the horse (representing the permanent
environment and 3 X the sire genetic component) between
grades and within disciplines were all significant and generally
high (Table 5). Rider correlations are in Table 6.

From Model 1, correlations between disciplines were largely
significant, although low/moderate. Correlations between
show jumping and cross-country were slightly higher than
between other disciplines. Rider correlations were all significant.
Within-discipline correlations were very high. Between-
discipline correlations were moderate/high, although slightly
lower between dressage and cross-country compared with
the other disciplines.

By Method 2b, horse correlations within disciplines were
0.64 or more for dressage, but showed a greater range of
0.36 to 0.96 for show jumping and 0.10 to 0.80 for cross-
country. The correlation structures were clearly banded, with
high or moderate correlations observed between adjacent
grades, lower correlations between grades once removed and
lowest between pre-novice and advanced. Significant correla-
tions between disciplines were positive but low. In general,
rider correlations, both within and between disciplines, were
significant. Within-discipline correlations were high, and
between-discipline correlations were generally moderate.

Comparison of correlation estimates between Method 2a
and Method 1
Figure 1 shows a more detailed comparison of methods
restricted to estimates that were within discipline and statisti-
cally different from 0 (based on s.e.). The genetic correlations,
once away from 1, showed more scatter, probably because of
their greater sampling error. The horse correlations, comprising
both the genetic and permanent environment, were broadly
in agreement between the methods, with no evidence of
consistent bias. For the rider correlations, again there was no
evidence of a consistent bias between methods.
Between-discipline correlations were different (not shown).
There was a consistent trend for Method 1 to estimate genetic
correlations or horse correlations that were larger than for
Method 2a (with the comparison restricted to those that were
judged to be statistically significant). The same was true for
rider correlations, with the exception of correlations including
some of the more advanced grades, where estimates by
Method 2a were often higher than Method 1.

Fixed effects of gender and age

For the effects of gender, for all models, there were generally
significant gender effects for dressage, but not for the other
disciplines. For dressage, stallions and geldings performed
significantly better than mares in most grades. For show
jumping, estimates were in general not significant, but
stallions performed better than mares and mares performed
better than geldings. For cross-country, by Method 1, geldings
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Table 5 Horse (below diagonal) and genetic (above diagonal) correlation matrices for the 12 traits, as estimated by the three different methods

Method DA DI DN DP SJIA Sl SIN SJP XCA Xcl XCN XCP

1
DA 0.937* 0.846* 0.783* 0.001 0.197* 0.303* 0.258* —0.017* —0.071* 0.093* —0.052*
DI 0.901* 0.921* 0.869* 0.011* 0.259* 0.333* 0.313* —0.069* —0.075* —-0.016* —0.057*
DN 0.730* 0.920* 0.946* 0.085* 0.312* 0.356* 0.378*  0.019* —0.058* —0.073* 0.021*
DP 0.609* 0.782* 0.900* 0.084* 0.297* 0.325* 0.385* —0.061* —0.098* —0.163* 0.061*
SJA 0.395* 0.384* 0.351* 0.354* 0.880* 0.843* 0.803* 0.082* 0.319* 0.292* 0.210*
S 0.178* 0.179* 0.128* 0.106* 0.914* 0.954* 0.924* —0.057* 0.288* 0.280* 0.249*
SIN 0.060* 0.096* 0.131* 0.094* 0.757* 0.922* 0.945* 0.014* 0.313* 0.405* 0.263*
SJP 0.281* 0.213* 0.199* 0.231* 0.527* 0.685* 0.833* 0.028* 0.312* 0.342* 0.378*
XCA 0.279* 0.243* 0.174* 0.189* 0.571* 0.316* 0.316* 0.147* 0.603* 0.422* 0.358*
Xcl 0.191* 0.299* 0.234* 0.138* 0.435* 0.380* 0.380* 0.159* 0.858* 0.698* 0.492*
XCN  —0.027* 0.157* 0.219* 0.145* 0.231* 0.447* 0.447* 0.305* 0.457* 0.773* 0.550*
XCP 0.241* 0.186* 0.216* 0.287* 0.172* 0.259* 0.259* 0.466* 0.254* 0.305* 0.623*

2a
DA 0.917* 0.791* 0.588* —0.572 —-0.666 —0.165 —0.046 —0.005 —0.255 0.253 —0.338
DI 0.969 0.987* 0.942* —0.356 —0.040 0.138 0130 —0.646 —0.645 0114 —0.209
DN 0.746* 0.917* 0.986* —0.214 0.140 0.124 0.230* —0.233 —0.559 —-0.310 —0.109
DP 0.681* 0.739* 0.896* —0.070 0.197 0.203* 0.319* —0.630 —0.083 —0.496* 0.006
SJA 0.202* 0.093* 0.028 0.040 0.902* 0.895* 0.740* —0.358 —0.562 —0.002 0.190
Sl 0.063 0.105* —0.009 —0.012 0.963* 0.985* 0.948* 0.025 0.000 0.154 0.225
SIN  —0.041 —0.004 0.113* 0.050* 0.706* 0.912* 0.951* —0.068 0.071 0.273* 0.142
SJP —0.060 —0.060 0.068* 0.139* 0.362* 0.645* 0.842* -0.317 —0.229 0.208 0.260*
XCA 0.184* 0.172* —0.027 0.013 0.407* 0.235* —0.009 0.044 0.989 0.897 0.561
Xcl 0.029 0.170* 0.023 —0.049 0.324* 0.319* 0.116* 0.021 0.800* 0.665 0.046
XCN  —0.078 0.032 0.136* 0.052* 0.148* 0.051 0.339* 0.118* 0.264* 0.691* 0.753*
XCP 0.098 0.017 0.074* 0.161* 0.054 —0.031 0.049 0.273* 0.099 0.283* 0.493*

2b
DA 0.914* 0.788* 0.677* —0.439 —-0308 —0.135 —0.074 —0.078 -—0.217 0.163 —0.152
DI 0.950 0.899* 0.896* —0.268 —0.064 0.085 0.186 —0.366 —0.220 —0.020 —0.146
DN 0.745* 0.876* 0.948* —0.188 0.071 0.117 0.228* —0.296 —0.174 —0.230 —0.098
DP 0.642* 0.717* 0.911* —0.072 0.169 0.224* 0.347* —0.504 —0.152 —0.298 —0.065
SJA 0.170* 0.109* 0.013 0.038 0.832* 0.826* 0.756* —0.163 —0.234 0.002 0.157
S 0.078 0.072* 0.011  —0.016 0.924* 0.961* 0.955* —0.073 —0.039 0.095 0.174
SIN  —0.044 0.002 0.100* 0.058* 0.671* 0.853* 0.982* —0.095 —0.082 0.248 0.152
SJP —0.062 —0.049 0.071* 0.139* 0.351* 0.597* 0.825* -0.171  —0.122 0.172 0.172
XCA 0.178* 0.170* —0.031 0.017 0.368* 0.252* —0.009 0.025 0.445 0.704 0.451
Xcl 0.038 0.145* 0.030 —0.051 0.315* 0.272* 0.134* 0.019 0.798* 0.354 0.188
XCN  —0.077 0.032 0.133* 0.052* 0.119 0.089* 0.300* 0.130* 0.257* 0.672* 0.378*
XCP 0.086 0.020 0.067* 0.167* 0.041 —0.031 0.062* 0.262* 0.104 0.266* 0.486*

DA = dressage advanced; DI = dressage intermediate; DN = dressage novice; DP = dressage pre-novice; SJA =show jumping advanced; SJI = show jumping
intermediate; SIN = show jumping novice; SJP = show jumping pre-novice; XCA = cross-country advanced; XCl = cross-country intermediate; XCN = cross-country

novice; XCP = cross-country pre-novice.

*Correlation significantly greater than zero (P < 0.05); figures in italics were estimated at the boundary and no standard errors were available.

performed better than mares, and mares better than stallions.
For the Methods 2a and 2b, there were no discernable differ-
ences for cross-country.

For all models and all traits, there was a significant
quadratic association between performance and age, indicat-
ing a curvilinear increase in performance with age. Figures 2 to
4 illustrate the change in performance with age, using example
results from the bivariate analyses. As might be predicted,
performance in the more advanced grades peaked at a later
age. For all disciplines, similar patterns were observed, although
between disciplines peak performance between grades varied
and was least pronounced in show jumping.

1384

Discussion

There is a demand for tools to estimate (co)variance matrices
for a large number of traits in an acceptable time frame. The
current test day model used by the dairy cattle industry in the
United Kingdom requires a 27 X 27 (co)variance matrix, and
other industries may desire even larger matrices. For exam-
ple, a BLUP with 100 traits would be ideal for the silvicultural
objectives of Skogforsk (the Forestry Research Institute of
Sweden; B. Andersson, personal communication, December
2010). A rapid analysis would enable easy re-estimation
of (co)variance matrices, rather than the current situation
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Table 6 Rider correlation matrices for the 12 traits, as estimated by the three different methods

SIN SJP XCA Xcl XCN XCP

Method DI DN DP SJA Sl

1
DA 0.973 0.939 0.896 0.587 0.635
DI 0.975 0.943 0.612 0.689
DN 0.982 0.635 0.717
DP 0.615 0.717
SIA 0.912
S
SIN
SJp
XCA
Xcl
XCN

2a
DA 0.968 0.906 0.807 0.792 0.740
DI 0.974 0.915 0.763 0.758
DN 0.972 0.653 0.733
DP 0.513 0.644
SIA 0.968
S
SIN
SJP
XCA
Xcl
XCN

2b
DA 0.972 0.934 0.837 0.632 0.642
DI 0.987 0.938 0.624 0.673
DN 0.975 0.556 0.636
DP 0.470 0.579
SIA 0.974
S
SIN
SJP
XCA
Xcl
XCN

0.641 0.623 0.504 0.467 0.478 0.490
0.709 0.697 0.485 0.518 0.541 0.581
0.735 0.723 0.453 0.492 0.522 0.579
0.735 0.730 0.403 0.489 0.528 0.610
0.892 0.860 0.669 0.615 0.635 0.614
0.980 0.963 0.574 0.698 0.692 0.697
0.983 0.524 0.662 0.706 0.706

0.457 0.655 0.707 0.738

0.802 0.706 0.588

0.938 0.841

0.931

0.606 0.539 0.610 0.355 0.352 0.324
0.665 0.645 0.543 0.387 0.397 0.415
0.601 0.611 0.574 0.463 0.441 0.458
0.534 0.549 0.438 0.426 0.404 0.475
0.893 0.790 0.566 0.477 0.468 0.378
0.994 0.906 0.614 0.571 0.527 0.429
0.905 0.620 0.544 0.568 0.444

0.619 0.611 0.548 0.609

0.854 0.765 0.627

0.919 0.683

0.783

0.595 0.520 0.487 0.297 0.315 0.292
0.628 0.597 0.474 0.352 0.365 0.390
0.59 0.585 0.516 0.426 0.423 0.436
0.539 0.572 0.430 0.414 0.411 0.474
0.951 0.768 0.445 0.377 0.404 0.301
0.986 0.859 0.528 0.481 0.472 0.379
0.911 0.610 0.571 0.564 0.475

0.607 0.579 0.560 0.627

0.891 0.833 0.616

0.964 0.689

0.799

DI = dressage intermediate; DA = dressage advanced; DN = dressage novice; DP = dressage pre-novice; SJA = show jumping advanced; SJI =show jumping
intermediate; SIN = show jumping novice; SJP = show jumping pre-novice; XCA = cross-country advanced; XCl = cross-country intermediate; XCN = cross-country

novice; XCP = cross-country pre-novice.

Correlations other than those in italics were significantly greater than zero (P << 0.05); figures in italics were estimated at the boundary and no standard errors were available.

where in many genetic evaluation systems, due to comput-
ing overheads, the (co)variance components are not re-
estimated regularly and BLUP estimated breeding values
(EBVs) are being produced based on variance components
compiled using ad hoc methods from old data. Therefore,
any method offering an advance in such methodology would
have important applications.

We compared three methods of producing large (co)var-
iance matrices for genetic evaluations, using a data set of
results from eventing competitions in the United Kingdom.
Two methods that combined smaller sub-matrices from
bivariate analyses were investigated: (i) Method 2a, a novel
method based on Wall et al. (2005) that generates samples
of each bivariate distribution to perform a multivariate
analysis and obtain a positive definite 12 X 12 (co)variance

matrix and (ii) Method 2b, spectral decomposition of the
matrix of mean results replacing negative eigenvalues with
positive values to obtain a positive definite (co)variance
matrix. The latter is likely to be relatively well applied in
practice. The two ‘bivariate’ methods, differing only in the
way that the bivariate matrices were combined, gave, in this
case, very similar results for functions of variance compo-
nents. Method 1 was the novel data augmentation function
in ASReml. The multivariate nature of Method 1 will result in
greater accuracy (with the increase in accuracy determined
by the absolute differences between the residual and genetic
correlations between traits).

(Co)variance estimates and functions of variance compo-
nents produced by the three methods were in general similar.
Correlation estimates were more often significant for Method 1,
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Figure 1 Estimates of correlations within grades for the genetic (black),
horse (white) and rider (grey) effects plotted for Method 1 v. 2a. Only
correlations where standard errors indicated that values were significantly
different from zero are included.
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Figure 3 Performance with age for each grade of show jumping.
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Figure 2 Performance with age for each grade of dressage.

which may be partially due to the fact that standard errors for
these values were approximate values.

As the trait was a normal score (mean 0, standard devia-
tion 1), the variance of each trait would be expected to be
<1, depending on class sizes. In the data augmentation
analysis, the increase in phenotypic variance with grade
within a discipline could be explained by the fact that
Method 1 was a 12-trait analysis, with information on per-
formance at all grades included and thus the analysis at least
partly accounts for selection between grades, as well as
producing more accurate variance component estimates. It
would also be feasible to obtain phenotypic variances >1
when analysing heritable traits with substantial inbreeding
with a pedigree of many generations in depth. However, in
this analysis, it was only possible to use a sire model that
makes no allowances for inbreeding.

No formal comparison of the fits of the models could be
performed. The three methods produced largely consistent
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Figure 4 Performance with age for each grade of cross-country.

results. Methods 2a and 2b are suitable for implementation
and will produce large, positive definite (co)variance matri-
ces, but require large computing resources. Method 1 pro-
duced results that were generally consistent with Methods
2a and 2b. Method 1 enables the production of large (co)v-
ariance matrices in a computationally efficient way, and
harvests the full benefits of a multivariate analysis. Differ-
ences in variance component estimates between Methods 1
and 2a/2b may be due to the increased accuracy of Method
1, a result of the multivariate nature of the analysis.

The heritability estimates for the dressage phase of the
competition are comparable with estimates for the individual
competition discipline in GB, which were 0.15 (s.e. 0.018)
when breed is not accounted for (Stewart et al., 2010), and
also with international estimates. For example, heritabilities
ranging from 0.10 to 0.20 have been estimated in various
breeds (see Huizinga and Van Der Meij, 1989; Ricard et al.,
2000; Ducro et al, 2007; Janssens, 2008; Olsson et al.,
2008). Similarly, heritability estimates for show jumping
are comparable to international estimates for competition
data, ranging from 0.10 (Hanoverian, Trakehner, Oldenburg;
Janssens, 2008) through 0.20 in Dutch Warmbloods (Huizinga
and Van Der Meij, 1989) to 0.27 in the Swedish Warmblood
(Olsson, 2008).



The genetic variation detected in the analysis for cross-
country was low and to some extent it may be masked by
greater environmental variance. Improved pedigree data
may help to elucidate the genetic variation further. However,
our results indicate that in a selection programme, the
greatest genetic gain can be achieved in show jumping,
followed by dressage, and that little gain will be made in
cross-country. Therefore, a breeding programme designed to
select for eventing competition performance in GB will be
best suited to select for the show jumping or dressage
phases of the competition. Even if this were considered as a
phenotypic selection rather than a selection for breeding,
performance at lower grades was a poorer predictor of per-
formance at high grade for cross-country than for show
jumping or dressage. At present in the United Kingdom, the
situation in practice is directly contrary to this, as breeders of
eventing horses tend to consider cross-country performance
as the primary selection aim (J. Rogers, personal commu-
nication, May 2010). This traditional practice is derived from
the origins of the discipline that originated in the Military
and was dominated by cross-country. Greater weighting was
placed on cross-country, with requirements for dressage and
show jumping lower. The dressage phase was aimed at
increasing the control the rider has over the horse, and the
show jumping phase was used to test the recovery of the horse
after a cross-country competition. More recently, because of
international influences, the regulation of the discipline has
changed. A lower weight has been given to cross-country,
which is judged to be too dangerous and less and less con-
forming to animal welfare regulations. This has changed the
type of horses needed to compete in this discipline.

Within the disciplines of dressage and show jumping,
correlations between the grades were high, indicating that
the same loci (or loci in linkage disequilibrium) are respon-
sible for performance at the different grades, and therefore
selection for performance in one grade also selects for per-
formance in another grade. Analogous correlations between
the grades for cross-country were estimated by Method 1 as
significantly different from zero but more moderate; results by
Methods 2a/2b were harder to estimate partly due to a lack of
genetic variance detected, particularly in the higher grades.

Overall, the results from the data augmentation method
indicate that selection for performance in dressage will
improve performance in show jumping and that performance
in show jumping will improve performance in cross-country.
There was an indication that selection for dressage merit
would reduce the merit for cross-country. Higher correlations
between the lower grades may be due to general traits that
jointly affect performance in both, that is, an amateur horse
that is athletic and with good temperament should have
good ability, at lower levels of competition, in all disciplines.
However, at the highest grade of competition these effects
are less apparent, where more specific traits, such as the
gaits and jumping, have more influence on performance.

Variance components due to the horse and rider were
considered separate random effects. This was possible
because of the fact that one rider often rode multiple horses,
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and that many horses were ridden by multiple riders. If the
latter were not true, different treatments of the rider effect
within the model could be considered. For instance, a hier-
archical model (of horse within rider) could be used. Alter-
natively, rider could have been included as a fixed effect.

Gender effects for show jumping and particularly dressage
found indication of an advantage for stallions. Given that
stallions are a selection of the male population retained for
breeding, this is understandable. However, gender effects
were often not significant. It was surprising that no gender
effect was detected for cross-country, as there is clear evi-
dence of an advantage for males as evidenced for racing
(Entin, 2008).

The analysis was restricted to a sire model, and thus
genetic connections were limited (restricted to within half-
sib groups). Although this was sufficient to proceed with the
analysis, the precision of the estimates of variance compo-
nents and EBVs will have been reduced, with this reduction
reflected in the standard errors. Assortative mating was not
accounted for, possibly inflating the sire variance component,
and overestimating EBVs for superior sires (and under-
estimating for inferior sires). Selection and inbreeding were also
not accounted for. In horse populations, the assumption of
random mating rarely holds. Selection has been practised over
time and non-random mating occurs, in that superior horses
tend to be mated as do inferior horses, and there may be
specialised breeding for the different disciplines. Another
potential problem is the selection of horses present in the data.
The consequence of this will be to reduce heritability estimates.

The breeding objective for the British sport horse is to
cater for both professional elite levels of competition and
riders, as well as amateur riders. Traits such as athleticism,
soundness, rideability and conformation suitable for competing
in a range of disciplines, including dressage, show jumping and
eventing, are required. The data augmentation 12-trait analysis
enables all traits to be considered in the analysis, and thus the
accuracy of breeding values is maximised. The results for the
analysis suggest that there are positive genetic correlations
between dressage and show jumping and show jumping and
eventing, indicating that selection for one discipline will
also enhance performance in another. However, correlations
between eventing and dressage were sometimes negative. The
British sport horse has made its name in eventing competition,
and thus selection for this discipline may reduce performance in
dressage.

There is little literature assessing genetic correlations
between adult competition disciplines; instead, data tend to
be sourced from young horse tests. Internationally, estimates
for genetic correlations between dressage and show jump-
ing related traits at young horse tests are generally low and
mixed (either positive or negative), although correlations
between canter and jumping tend to be higher than corre-
lations between the other gaits and jumping (Thorén Hell-
sten et al, 2006). This study adds some evidence to this
area, indicating that simultaneous selection for both dres-
sage and show jumping may hinder genetic progress for the
disciplines individually.
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Twelve breeding values for each of the discipline-grade traits
are now available. These can be combined into an index for
overall competition performance, with weightings depending
on the breeding purpose. In breeding for elite levels of com-
petition, performance at the more advanced grades is impor-
tant. However, a main aim of sport horse breeding in the United
Kingdom is to produce horses for amateur and young riders,
which constitute the vast majority of the riding and competing
population, and for which traits such as temperament and
general ability have most influence. The accuracy of the
breeding values at lower and intermediate levels of competition
is likely to be higher, as the accuracy of breeding values is
dependent on the number of records. At advanced grade, a
horse may compete far less than at lower grades (possibly only
four times per year), resulting in fewer records and hence lower
accuracies for advanced breeding values.

In conclusion, this work investigated three methods of
estimating large (co)variance matrices. Two of these meth-
ods, based upon bivariate analysis, are computing intensive
but reliable and appropriate for implementation at present.
The third method (using data augmentation) requires far
fewer computing resources, is much quicker to run, and
will be valuable in the future for the production of large
(co)variance matrices.
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