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Abstract

Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in
grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have
also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have
studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of
the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX
compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is
based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida
identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed
motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with GREEN FLUORESCENT PROTEIN (GFP)-expressing P.
putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than
roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground
semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of
maize.
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Introduction

Plants have evolved to interact with soil-borne microbes. In

addition to arbuscular mycorrhizal fungi and nodule-forming

rhizobia, plants interact with a wide range of rhizosphere-

colonising bacteria. These are attracted to root surfaces by

chemical components in root exudates, which are rapidly

assimilated into microbial biomass [1]. This so-called rhizosphere

effect supports bacterial cell densities in the root vicinity up to 100-

fold greater than in surrounding soil [2]. The chemical

composition of root exudates differs between plant species and

evidence suggests that the structure of bacterial communities in the

rhizosphere differs accordingly [3]. Observations that the

rhizosphere community is directly influenced by plant species

have led to the hypothesis that plants may recruit specific bacteria

[4]. However, it remains difficult to determine whether plants are

actively recruiting specific microbes, or whether dominance of a

limited number of bacterial species is simply based on a greater

‘fitness’ to exploit root exudates [5].

When rhizospheric dominance by a single micro-organism

occurs, the plant-microbe interaction can range from deleterious,

in the case of phytopathogens, to beneficial, where rhizobacteria

can promote plant growth and resistance to plant stress. Growth

promotion by rhizobacteria involves a variety of different

mechanisms, including N2-fixation by diazotrophs [6] and

improved availability of poorly soluble inorganic ions, such as

PO4
32 and Fe[III], but can also result from modulation of plant

regulatory mechanisms, such as phytohormone homeostasis [7]. In

addition, rhizobacteria can promote growth indirectly by protect-

ing the host plant against pests and diseases. This protection can

be based on direct antibiosis or competition for nutrients [8], but

can also result from induced systemic resistance (ISR) [9].

Evidence suggests that plant-associating bacteria have evolved

the ability to metabolise plant-derived aromatic compounds [10].

For instance, plant-associating bacteria have been shown to

metabolise umbelliferone, salicylic acid and 4-hydroxybenzoate

[10]. As a consequence, these bacteria are often also capable of

metabolising aromatic pollutants, such as naphthalene, toluene

and 2,4-dichlorophenoxyacetic acid [10]. Some aromatic acids

can also act as bacterial chemo-attractants [11], suggesting that

plant derived aromatic compounds could serve to recruit plant-

beneficial rhizobacteria to the rhizosphere.

Benzoxazinoids (BXs), such as 2,4-dihydroxy-7-methoxy-2H-

1,4-benzoxazin-3(4H)-one (DIMBOA), are heteroaromatic metab-

olites with benzoic acid moieties [12]. Since their identification as

major secondary defence metabolites in Poaceae, investigations

have predominantly focussed on their role in plant defence against

above-ground pests and pathogens [13,14]. BXs are typically

produced during relatively early, vulnerable plant growth stages

[12]. In response to tissue damage, vacuolar reservoirs of BX-

glucosides are hydrolysed by plastid-targeted b-glucosidases,

causing rapid accumulation of aglucone BX biocidal metabolites
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[15]. A recent study in maize revealed that Spodoptera larvae can

detoxify DIMBOA by glycosylation and that the contribution of

maize BXs to defence against these herbivores is based on an

inducible conversion of DIMBOA-glc into 2-b-D-glucopyranosy-

loxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-glc) [16].

Interestingly, BXs are also active against attackers causing

relatively minor tissue damage, such as aphids and pathogenic

fungi. This function is based on an increased accumulation of

DIMBOA in the apoplast before the onset of large-scale tissue

damage, where it signals increased deposition of callose-rich

papillae [17]. Thus, the above-ground defence contribution of

BXs is not only limited to their biocidal properties, but also

includes a within-plant signalling function in the activation of plant

innate immune responses against pests and diseases.

BXs have also been implicated in plant defence below-ground.

BXs are exuded in relatively large quantities from cereal roots,

where they can act as allelochemicals against microbes, insects or

competing plants [13,18]. Once released, BXs degrade relatively

quickly in aqueous environments with a half-life of less than

24 hours [19]. Upon hydrolysis, DIMBOA is converted into 6-

methoxy-benzoxazolin-2-one (MBOA), a compound considerably

more stable in sterile soil, but with significantly less toxicity than

DIMBOA [20]. Biodegradation of MBOA leads to accumulation

of phenoxazinones [21], and requires activity by microbes, such as

Acinetobacter calcoaceticus [22], soil-borne fungi [23], or unidentified

members in the rhizosphere community of oat [24]. Phenoxazi-

none products are typically more biocidal than benzoxazolinones

and have antifungal [25], antibacterial [26], and plant allelopathic

properties [27]. Hence, BX exudation by plants can have a major

impact on rhizosphere communities in the soil.

Plant-derived aromatic metabolites can act as chemo-attractants

for Pseudomonas putida [10,11]. We therefore hypothesised that BXs

from root exudates of maize may attract and support P. putida cells.

To address this hypothesis, we studied the influence of BXs on P.

putida KT2440, a competitive coloniser of the maize rhizosphere

with plant-beneficial traits [28,29]. We identified DIMBOA as the

dominant BX species in maize root exudates and found that

exposure of P. putida to DIMBOA induces bacterial genes with

putative functions in chemotactic responses. In vitro chemotaxis

assays indeed revealed that P. putida KT2440 displays taxis towards

DIMBOA. The ecological relevance of this response was

confirmed by root colonisation assays in soil, using maize mutant

lines impaired in BX biosynthesis. Our study presents evidence

that root exudation of DIMBOA during the vulnerable growth

stages of maize promotes colonization by plant-beneficial rhizo-

sphere bacteria.

Materials and Methods

Plant material and cultivation
Maize lines were derived from reciprocal crosses between a bx1

single mutant and an indole-deficient igl mutant, as described by

Ahmad et al. [17]. Since the bx1 single mutant contains residual

levels of benzoxazinoids due to a functional Indole-3-Glycerol

phosphate Lyase (IGL) gene [17], comparisons within each progeny

were made between the benzoxazinoid-producing BX1 and

benzoxazinoid-deficient bx1 genotypes in the background of the

igl mutant genotype (i.e. BX1 igl versus bx1 igl). For each

experiment, progenies from two independent crosses (Line A

and Line B) were analysed for phenotypes. Seeds were allowed to

germinate at 22uC and high humidity in petri-dishes in the dark.

Germinated seedlings of similar size were planted in pots

containing compost and were cultivated under controlled

conditions (16:8 h L:D, 22uC).

Bacterial strains and cultivation
Two Pseudomonas putida strains were used. KT2440 was used for

all in vitro experiments, including transcriptome profiling. For soil

experiments, a green fluorescent protein (GFP)-tagged KT2440

derivative strain, FBC004, was used which carries a stable

chromosome-inserted PA1/04/03-RBSII-gfpmut3*-T0-T1 transpo-

son at a negligible metabolic cost [30]. Stocks of KT2440 and

FBC004 were routinely stored at 280uC. For each experiment,

fresh cultures were started from stocks. Depending on the

experiment, cells were grown overnight at 21uC with 150 r.p.m.

agitation, either in LB medium, or in M9 minimal medium

supplemented with 0.1% glucose as the sole carbon source. To

assess tolerance of P. putida to DIMBOA, the ubiquitous soil

bacterium Agrobacterium tumefaciens was used as a comparator. A.

tumefaciens was grown in M9 medium supplemented with 0.1 mM

FeCl3. In this case, growth of the two bacteria was followed by

assessing OD600 in five replicate 200 mL cultures at 21uC in 96-

well plates with a Varioskan plate reader (Thermo Scientific,

Cramlington, UK)

Pseudomonas putida transcriptome response to DIMBOA
To test the response of P. putida to DIMBOA, we employed a

KT2440 specific cDNA microarray [31,32]. Preliminary experi-

ments indicated that DIMBOA hydrolyses rapidly in M9 medium

(half-life, 21 hours). Therefore, to test the bacterial response to

DIMBOA, P. putida KT2440 cells were grown to mid-exponential

phase in 100 mL M9 medium before DIMBOA was added to a

final concentration of 5 mg mL21. After 1 hour of exposure, cells

were harvested by centrifugation at 4uC. RNA was extracted from

three independently performed experiments. Cell pellets were

treated with RNAprotectTM (Qiagen, Valencia CA) immediately

following centrifugation. Cell membrane lysis was achieved with

1 mg mL21 lysozyme in buffer containing 10 mM TRIS and

1 mM EDTA at pH8 using Qiagen RNeasyH reagent kits

following the manufacturer’s instructions. Extracted RNA was

purified with TURBO DNA-freeTM kits (Ambion, Applied

Biosystems, Foster City, CA) and quantified on a NanoDrop

1000 spectrophotometer. cDNA was synthesised and labelled

using the SuperScriptTM indirect cDNA labelling system (Invitro-

gen, Carlsbad, CA). Synthesised cDNA paired samples (control or

DIMBOA) were labelled with Cy3 or HyPer5 (Amersham, Little

Chalfont, UK) fluorophores. To remove dye bias, the experimen-

tal design included dye-swap normalisation procedures, as

described by Dabney & Storey [33]. Dye incorporation was

verified to be more than 150 pmol dye per sample. Equal amounts

of Cy3-cDNA and HyPer5-cDNA, each representing a replicate

comparison between control and DIMBOA-treated cells, were

combined and dried in a speedvac before proceeding with array

hybridisation. Microarrays were pre-treated with BlockItTM Plus

blocking buffer (Arrayit Corporation, Sunnyvale, CA) in order to

inactivate reactive groups on the surface. Dried cDNA was

rehydrated in buffer and hybridised to arrays (Progenika

Biopharma S.A, Vizcaya, Spain) for 18 hours at 42uC, according

to the manufacturer’s instructions. Following hybridisation, arrays

were washed, dried, and scanned with a GenePixH 4000B scanner

(Molecular Devices, Sunnyvale, CA). Data were processed using

TM4 microarray software [34]. Data from the three independent

replicate experiments were combined and analysed together.

Using Statistical Analysis for Microarrays procedures [35], only

genes that were consistently induced by DIMBOA in all three

independent replicates were considered significant. Functional

annotation of induced genes was performed using the supporting

microarray documentation and the P. putida KT2440 KEGG

Recruitment of Beneficial Bacteria by Maize Roots
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genome database (www.genome.jp/kegg-bin/show_organism?org =

ppu).

In vitro Pseudomonas putida KT2440 chemotaxis assay
Chemo-attractiveness of DIMBOA was quantified using a

modified capillary-based chemotaxis assay [11], which relies on

accumulation of bacterial cells in microcapillary tubes (1 mL

volume, Drummond Scientific Company, Broomall, PA). Tubes

containing glucose-free M9 medium (control), M9 medium with

5 mg g21 DIMBOA, or M9 medium with 0.1% casamino acids

(positive control) [11] were incubated in individual wells of a 96-

well plate. Each well contained 200 mL glucose-free M9

suspension with P. putida KT2440 bacteria (OD600 = 0.06). After

30 minutes, capillary contents were carefully collected and plated

onto LB agar for cell enumeration.

Maize - Pseudomonas putida FBC004 colonisation assays
Seeds germinating after 2 days of imbibition were planted in

100 mL-pots (3 seeds per pot; 4 pots per genotype), containing

autoclaved (120uC; 20 min) or non-autoclaved soil that had been

supplemented with washed cells from overnight FBC004 cultures

at an approximate density of 56107 colony forming units (CFU)

g21 soil. At 7, 14, and 21 days of growth, root systems were gently

removed from the soil, rinsed in water, weighed and gently shaken

for 20 minutes in 50 mL phosphate-buffered saline (mmol L21;

NaCl 137, KCl 2.7, Na2HPO4?2H2O 10, KH2PO4 1.76; pH 7.4).

Serial dilutions of rhizosphere bacteria were plated onto LB agar,

containing 200 mg L21 cyclohexamide to inhibit fungal growth.

Plates were incubated at room temperature for 48 hours. GFP-

expressing colonies were counted using a DR88X Dark ReaderH
transilluminator (Clare Chemical Research Inc., Dolores, CO); the

total numbers of non-P. putida (other) culturable cells were

determined under natural light. Root colonisation by P. putida

and other culturable cells, assessed as CFU g21 root fresh weight,

was analysed for each maize line and time point by two-factor

analysis of variance (ANOVA), using the maize BX genotype

(BX1, bx1) and bacterial cell type (P. putida, other culturable cells)

as factors. All data were log10-transformed before analysis to

stabilise variances. Post-test comparisons were made using Holm-

Šidák step-down pairwise comparisons. All statistical analyses were

performed using SigmaPlot version 12.

Extraction and chromatographic analysis of
benzoxazinoids in root exudates and bacterial cultures

Seeds germinating after 2 days imbibition were planted in soil (3

seeds per pot). At days 7, 14, and 21 after planting, root systems

were gently removed from the soil, rinsed in water, and placed in

50 mL tubes containing 30 mL water for seven hours to collect

root exudates. Root exudates were lyophilised, re-suspended in

1 mL extraction buffer (2% acetic acid in methanol), sonicated for

5 min and centrifuged (12,6006 g, 10 min). Supernatants were

analysed by high performance liquid chromatography coupled to

diode array detection (HPLC-DAD), as described by Ahmad et al.

[17]. Root exudates from BX1 genotypes contained three main

peaks, absent in samples from bx1 genotypes. Spiking experiments

with previously confirmed standards [16,17] revealed that

exudates from BX1 wild-type roots consistently contain three

main BX species: DIMBOA and to a lesser extent DIMBOA-glc

and HDMBOA-glc. For analysis of DIMBOA breakdown by P.

putida KT2440 in M9 growth medium, 0.5 mL samples were

periodically removed and filtered (,0.2 mm) to remove cells. The

samples were then stored in an equal volume of extraction buffer

until analysis. Detection of DIMBOA and MBOA was based on a

modified HPLC protocol, using a mobile phase of 0.05%

trifluoroacetic acid in water (solution A) and 0.05% trifluoroacetic

acid in methanol (solution B) at a flow rate of 1 mL min21. The

gradient consisted of 0–1 minute 3–20% solution B, 1–20 min-

utes, 20–100% solution B, and 20–35 minutes isocratic conditions

of 100% solution B. Chromatograms were recorded at 254 nm

and retention times of DIMBOA and MBOA were established

from standards.

Results

Exudation of benzoxazinones from maize roots
Roots of BX1 wild-type and bx1 mutant lines were incubated for

7 hours in water, after which the collected exudates were subjected

to HPLC-DAD analysis of BXs. Root exudates from BX1 wild-

type plants consistently contained three BX compounds, all of

which were absent from exudates of bx1 mutant lines. The

dominant compound was DIMBOA, with concentrations up to

31 mg g21 fresh root weight (FW) in exudates from 7 days old

roots (Figure 1). Levels of DIMBOA exudation showed a

statistically significant linear decline in aging plants (Figure 1;

linear regression, Line A, F1,13 = 17.74; p,0.001, Line B,

F1,13 = 7.387; p = 0.018). The other plant-derived BXs in root

exudates from BX1 expressing plants were the BX glucosides

DIMBOA-glc and HDMBOA-glc. Concentrations of these

compounds did not exceed 3 mg g21 FW and remained constant

over time.

P. putida is tolerant to DIMBOA
To examine the effect of DIMBOA on plant-beneficial

rhizobacterial growth, we assessed in vitro growth of P. putida

KT2440 bacteria in the presence of increasing concentrations of

DIMBOA. P. putida KT2440 displayed similar growth rates up to

0.5 mM DIMBOA. By contrast, DIMBOA strongly affected

growth rates of the ubiquitous soil bacterium Agrobacterium

tumefaciens [36], effects were already apparent at 0.01 mM and

became proportionally more pronounced at 0.1 and 0.5 mM

DIMBOA (Figure 2A). Hence, P. putida KT2440 appears

relatively tolerant to DIMBOA in comparison to other soil

bacteria. For all subsequent experiments, DIMBOA was employed

at concentrations of 5 mg mL21 (0.023 mM). This relatively low

concentration has no detrimental effect on P. putida growth

(Figure 2A) and is quantitatively consistent with our root

exudation experiments (Figure 1).

P. putida accelerates DIMBOA breakdown
To study whether the observed tolerance of P. putida KT2440 to

DIMBOA is based on BX catabolism, we studied the effect of P.

putida KT2440 on stability of DIMBOA and its direct break-down

product, 6-methoxy-benzoxazolin-2-one (MBOA). In two inde-

pendent experiments, DIMBOA concentrations were consistently

reduced at a significantly greater rate, whereas MBOA accumu-

lation was significantly reduced in the presence of P. putida bacteria

(Figure 2B). These results demonstrate that P. putida KT2440

accelerates breakdown of DIMBOA. The reduced accumulation

of MBOA in the presence of P. putida could be explained by a

more rapid metabolic break-down of this compound, but could

also suggest DIMBOA degradation via products other than

MBOA. Although is not possible to distinguish which of these

processes is responsible for the observed compound dynamics in

the presence of P. putida, our results clearly show that P. putida has

the metabolic capacity to degrade DIMBOA and reduce overall

BXs quantities in its environment.

Recruitment of Beneficial Bacteria by Maize Roots
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Impact of DIMBOA on the P. putida transcriptome
The above in vitro analyses suggest that DIMBOA is metabolised

by P. putida. To assess the global impact of DIMBOA on P. putida

KT2440, whole-genome gene expression patterns were profiled at

1 hour of exposure to 5 mg mL21 DIMBOA in M9 growth

medium, deposited in NCBI’s Gene Expression Omnibus

(GSE36489). Using KT2440-specific cDNA microarrays and a

false discovery rate of 0.85% (D= 1.2) [35], we identified 55 genes

showing consistently increased levels of transcription in response to

DIMBOA treatment across three independent experiments. No

genes were identified as significantly repressed by DIMBOA. A

total of 36 genes could be ascribed predicted functions, whereas 19

genes encoded hypothetical proteins of unknown function

(Figure 3). The 36 DIMBOA-inducible genes with identifiable

function are further detailed in Table S1. Two groups of genes

were of particular interest with respect to P. putida behaviour in the

rhizosphere. One group of genes are typical of those associated

with degradation of N-heteroaromatic compounds (Table S1),

and are consistent with the accelerated breakdown of DIMBOA

by P. putida KT2440 (Figure 2B). A second group of genes are

indicative of bacterial motility (Figure 3; Table S1), thereby

suggesting a chemotactic response of P. putida KT2440 to

DIMBOA.

DIMBOA induces positive chemotaxis by P. putida
Based on the outcome of the transcriptome analysis, we

examined the possibility that DIMBOA acts as a chemo-attractant

for P. putida KT2440. A capillary-based assay was used to assess

chemotactic behaviour to DIMBOA [11]. Significantly more cells

(p = 0.022; t-test) were attracted into capillaries containing

5 mg mL21 DIMBOA compared to tubes with motility buffer

alone (Figure 4). The average number of DIMBOA-attracted

cells was statistically similar to the average number of cells that

were attracted to the positive control tubes, containing 0.1% w/v

casamino acids (Figure 4). Hence, P. putida KT2440 is attracted

to DIMBOA in vitro.

DIMBOA attracts P. putida to the rhizosphere
Having established that DIMBOA induces chemotaxis-associ-

ated genes in P. putida KT2440, and that P. putida KT2440 is

attracted to DIMBOA in vitro, we investigated whether these

responses are biologically relevant in the maize rhizosphere. To

this end, GFP-expressing cells of P. putida FBC004 were mixed into

the soil prior to planting seeds of either DIMBOA-producing wild-

type plants (BX1), or BX-deficient bx1 mutant plants. After 7, 14

and 21 days of growth, roots of BX1 and bx1 plants from 2

independent genetic lines were collected and analysed for

colonisation by P. putida FBC004 and other (non-GFP expressing)

culturable rhizobacteria.

The first experiment was performed with soil that had been

autoclaved once before the start of the experiment (Figure 5A),

presenting a relatively low competition environment for intro-

duced P. putida. Two-factor ANOVA of rhizosphere colonisation

of plants from Line A revealed a statistically significant interaction

between plant genotype (BX1 versus bx1) and bacterial cell type (P.

putida versus others) at all three time-points (7 days: F1,14 = 9.151,

p = 0.009; 14 days: F1,14 = 43.432, p,0.001; 21 days: F1,14 = 7.977;

p = 0.014), even though a statistically significant main effect of BX

genotype could not be detected. Inspection of the data revealed

that more P. putida cells were recovered from roots of DIMBOA-

producing BX1 plants than from roots of DIMBOA-deficient bx1

plants; this was not the case for numbers of other culturable

rhizobacteria. Holm-Šidák comparisons confirmed significantly

higher P. putida cell numbers in rhizosphere washes from BX1 roots

compared to that from bx1 roots (statistical probabilities are

presented in Figure 5A). For line B, a significant main effect of

BX genotype was evident at day 7 (F1,16 = 18.163; p,0.001) and

day 14 (F1,16 = 19.776; p,0.001), but not at day 21 (F1,16 = 3.775;

p = 0.070). However, a statistically significant interaction between

Figure 1. Root exudation of benzoxazinoids at different developmental stages in maize lines expressing a functional BX1 gene. The
dominant BX compound in root exudates is the aglucone 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which shows a statistically
significant linear decrease with plant age in both lines. Shown are average BX quantities, expressed as mg g21 root fresh weight (6 SEM; n = 3)
exuded over a 7 hour time period.
doi:10.1371/journal.pone.0035498.g001

Recruitment of Beneficial Bacteria by Maize Roots
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Figure 2. Tolerance of Pseudomonas putida KT2440 to DIMBOA. A. In vitro growth of P. putida KT2440 is not affected by up to 0.5 mM
DIMBOA, whereas the ubiquitous soil bacterium Agrobacterium tumefaciens is increasingly affected at concentrations of 0.01 mM DIMBOA and
greater. Growth was quantified by determining average OD600 values (n = 5). B. In the presence of P. putida KT2440, DIMBOA degradation is
significantly accelerated, but accumulation of MBOA is significantly reduced. Shown are best fitting polynomial regressions 699% confidence
intervals. DIMBOA and MBOA quantities are expressed as relative peak areas (HPLC-DAD), normalised to DIMBOA peak areas at the start of each
experiment.
doi:10.1371/journal.pone.0035498.g002

Recruitment of Beneficial Bacteria by Maize Roots
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BX genotype and rhizobacterial cell type was apparent at all three

time-points, including day 21 (F1,16 = 6.122; p = 0.025). Again,

Holm-Šidák comparisons indicated significantly greater numbers

of P. putida cells in the rhizosphere of BX1 plants compared to bx1

plants at all three time points (Figure 5A). Hence, BX1-dependent

exudation of DIMBOA stimulates rhizosphere colonisation by P.

putida bacteria.

To investigate whether BX-dependent attraction of P. putida is

also apparent in a more competitive soil environment, we repeated

the experiment in non-autoclaved soil (Figure 5B). A significant

main effect of BX genotype was observed at day 7 in seedlings

from line A (F1,10 = 6.725; p = 0.027), but not at any later growth

stage. Holm-Šidák comparisons confirmed significantly higher

numbers of P. putida cells in the rhizopshere of 7-day-old BX1

seedlings, but no statistically significant difference in the number of

other culturable rhizobacteria (statistical probabilities are present-

ed in Figure 5B). No main effect of BX genotype was identified

for plants of line A at days 14 (F1,11 = 0.110; p = 0.746) or 21

(F1,12 = 4.152; p = 0.064). For line B, a significant main effect of

BX genotype was observed at 7 days (F1,11 = 4.904; p = 0.049).

Although no significant main effect of BX genotype was observed

at 14 days (F1,12 = 4.547; p = 0.054), there was a significant

interaction between BX genotype and rhizobacterial cell type at

this time-point (F1,12 = 6.425; p = 0.026). Subsequent Holm-Šidák

comparisons confirmed significantly increased numbers of P. putida

in the rhizosphere of BX1 plants at both 7 and 14 days

(Figure 5B). At 21 days there was no longer a statistically

significant main effect of plant genotype, nor was there a

statistically significant interaction between plant genotype and

rhizobacterial cell type (Figure 5B). Together, these data indicate

that BX exudation in non-autoclaved soil stimulates rhizosphere

colonisation by P. putida of relatively young seedlings. This BX

effect becomes variable by 14 days and is absent in 21 day-old

plants.

Discussion

The rhizosphere is an energy-rich niche that is characterised by

a rapid turnover of chemical compounds exuded from plant roots

[37]. Before rhizobacteria can exploit these compounds in the

rhizosphere, they must first locate their host and tolerate

potentially toxic allelochemicals in root exudates. In this study,

we provide evidence that rhizosphere-colonising P. putida cells are

tolerant of the N-heteroaromatic allelochemical DIMBOA

(Figure 2), which is exuded in relatively high quantities from

roots of young maize seedlings (Figure 1). Since BXs are

nitrogen-containing metabolites, it might be expected that

constitutive DIMBOA exudation by seedlings must provide

significant ecological benefits, outweighing the high metabolic

cost. Apart from allelopathatic activity by DIMBOA [13,14], our

study revealed that DIMBOA also acts as a below-ground

Figure 3. Functional annotation of 55 DIMBOA-inducible genes of P. putida KT2440 at 1 hour after exposure to 5 mg mL21 DIMBOA
in the growth medium. Whole-genome transcriptome analysis was based on P. putida KT2440-specific cDNA microarrays, accommodating results
from three independent experiments.
doi:10.1371/journal.pone.0035498.g003
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semiochemical for recruitment of plant-beneficial rhizobacteria in

a competitive soil environment (Figure 5B). Interestingly,

mycorrhization of maize was recently reported to boost DIMBOA

production [38]. Since mycorrhization is known to cause major

qualitative changes in rhizobacterial communities [39], it is

possible that increased DIMBOA exudation from mycorrhizal

roots contributes to this so-called mycorrhizosphere effect.

The BX content of maize roots has been studied extensively

because of their demonstrable roles as allelochemicals [13,18].

Recent studies have identified the glucosides HDMBOA-glc and

DIMBOA-glc as the principal BXs in roots and root exudates of

maize [16,40]. DIMBOA was identified in both studies as only a

minor component of the total root BX content. A possible

explanation for this discrepancy lies in the different methods of BX

extraction. In our study, entire root systems were incubated in

water for 7 hours, whereas Robert et al. [40] used direct sampling

with a 50% (v/v) water:methanol extraction buffer on the root

surface. Hence, the latter method analysed root-exuded BXs

directly, while our method assessed root-exuded BXs after

prolonged incubation of the root system in water. Since BX

glucosides are readily hydrolysed in water and DIMBOA is more

stable than HDMBOA [41], it may not be surprising that our

study identified the aglycone DIMBOA as the dominant BX from

root exudates. Considering that soils constitute a hydrated

environment, we propose that the more refractory DIMBOA

compound functions as the long-distance BX signal, recruiting

beneficial rhizobacteria.

The P. putida strain used in our studies was originally isolated

from horticultural soil and is a competitive coloniser of

rhizospheres of economically important crops [42]. Using in vivo

expression techniques (IVET), Ramos-González et al. [43]

identified 29 genes that are induced following 14 days of growth

in the maize rhizosphere, including some with annotated functions

in chemotaxis and detoxification. However, despite the similarities

in general cellular functions, there were no overlapping genes

between this IVET study and our transcriptome analysis. A more

recent transcriptome study of P. putida KT2440 identified gene

induction as the dominant response after 6 days of colonisation in

the maize rhizosphere [44], which is in agreement with our finding

that DIMBOA induces only P. putida gene induction. In total,

Matilla et al. [44] revealed enhanced expression of 93 genes in the

maize rhizosphere, including genes with predicted functions in

general metabolism, transcriptional regulation, transport, chemo-

taxis and DNA metabolism. With the exception of the ISPpu14

transposase Orf1 (PP5398), there is again no overlap between this

study and our transcriptome analysis. This is not surprising, since

our analysis was specifically focussed on the bacterial response to

DIMBOA, and not to the multitude of responses that are required

for rhizopshere competence, such as attachment to the maize root

surface and metabolism of the wide range of compounds besides

DIMBOA in root exudates. Furthermore, the transcriptional

response reported in our study was expressed within 1 hour of

exposure to DIMBOA. It is, therefore, likely that these gene

expression patterns are specific to the initial stages of the

interaction: the bacterial response to chemical cues from the host

plant in the soil before they attach and establish themselves in the

rhizosphere. Since our ultimate objective was to study the maize-

bacterium interaction, rather than quantitative gene expression in

P. putida KT2440 per se, we made no further attempts to confirm

our in vitro transcription profiling with a complementary technique.

Therefore, it remains difficult to establish unequivocally that

specific genes identified as DIMBOA-inducible in vitro are in fact

responsible for the biological interactions described in this study.

Nevertheless, it is still instructive to consider the genes in the light

of what is already known about environmentally responsive P.

putida genes. Moreover, the DIMBOA-inducible gene expression

patterns associated with tolerance to N-heteroaromatic compounds

and bacterial motility led us to conduct follow-up experiments,

which revealed a novel signalling mechanism during the initial

phases of the maize-P. putida interaction.

Motility is an essential trait for rhizosphere competence [5].

Our transcriptome analysis identified two DIMBOA-inducible

genes that have been associated with bacterial chemotaxis (PP4340

and PP4888), and a third gene (PP2604) with a putative function

in DIMBOA transport (Table S1). The DIMBOA-responsive

gene cheY (PP4340) is a chemotactic response regulator in bacteria

[45]. Furthermore, benzoate chemotaxis in P. putida PRS2000

depends on a methyl-accepting chemotaxis transducer (M-ACT)

and an aromatic acid:H+ symporter (AAHS), PcaK [46]. Our

transcriptome analysis identified the M-ACT homologue PP4888,

and two genes, PP2241 and PP2604, belonging to the Major

Facilitator Superfamily (MFS) of AAHS transporters [47]. Of the

two latter genes, only PP2604 shares common features with pcaK

(STRING v.9 database) [48]. On the basis of these motility-related

transcription patterns, we considered the possibility that DIMBOA

acts as a chemo-attractant for P. putida. This hypothesis was

confirmed by our subsequent chemotaxis assays, demonstrating

positive taxis of P. putida KT2440 towards DIMBOA (Figure 4).

Figure 4. Taxis of P. putida KT2440 towards DIMBOA. A capillary-
based assay was used to assess chemotactic responses. Data represent
average numbers of colony forming units (CFU 6 SEM) from 1 mL glass
capillaries containing motility buffer (control), 0.1% casamino acid
(positive control), or 5 mg mL21 DIMBOA. Cells were extracted from
capillaries after 30 minutes of incubation and enumerated on solid
medium.
doi:10.1371/journal.pone.0035498.g004
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P. putida KT2440 is relatively tolerant of DIMBOA in

comparison to other soil bacteria (Figure 2A). We subsequently

found that P. putida KT2440 accelerates degradation of DIMBOA

and its direct break-down product MBOA (Figure 2B), indicating

BX catabolism [20]. Such a mode of tolerance is supported by our

transcriptome analysis, which revealed seven DIMBOA-inducible

genes that may be associated with degradation of N-heteroaro-

matic compounds (Table S1). These genes include nuoCD

(PP4121) and nuoG (PP4124), which encode subunits of NADH

dehydrogenase I, PP4690 encoding a Rieske 2Fe-2S family

subunit of soluble dioxygenases, PP0256 encoding a molybdop-

terin oxidoreductase, PP4661 encoding a putative oxidoreductase,

and the a/b hydrolase-fold Superfamily genes PP4540 and

PP4551, members of which catalyse degradation of the N-

heteroaromatic compound 1H-3-hydroxy-4-oxoquinoline by P.

putida 33/1 [49]. We conclude that this mechanism of BX

tolerance provides P. putida KT2440 with a competitive advantage

over other micro-organisms in exploiting the maize rhizosphere.

Our soil-based colonisation assays revealed that P. putida cells

colonise maize roots of DIMBOA-synthesising lines in greater

numbers than roots of DIMBOA-deficient lines. Although BX-

dependent rhizosphere attraction of P. putida occurred in both

Figure 5. Rhizosphere colonisation of DIMBOA-producing (BX1) and DIMBOA-deficient (bx1) maize lines by green fluorescent
protein (GFP)-expressing P. putida and other culturable rhizobacteria in autoclaved (A) and non-autoclaved soil (B). P. putida cells
were introduced into the soil prior to planting of maize seeds. Shown are average values (CFU g21 root fresh weight 6 SEM; n = 6–8), corresponding
to P. putida or other rhizobacteria. Cells were enumerated after 7, 14 and 21 days of plant growth by plating root surface washes onto solid agar
medium. Probabilities indicate the likelihood of the differences between BX1 and bx1 plants, within one line at each time-point, occurring by chance
(Holm-Šidák pair-wise multiple comparisons) when two-factor ANOVA indicated a statistically significant (a= 0.05) main effect of BX genotype and/or
a statistically significant interaction between maize BX genotype and bacterial cell type.
doi:10.1371/journal.pone.0035498.g005
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autoclaved and non-autoclaved soil (Figure 5), the difference in P.

putida colonisation between BX1 and bx1 lines in non-autoclaved

soil was only consistent between both lines during relatively young

developmental stages of the plants (Figure 5B). This age-

dependent decline in P. putida response to BXs concurs with our

finding that DIMBOA root exudation declines steadily as seedlings

age (Figure 1). In autoclaved soil however, this age-dependence

was unclear. Autoclaved soil provides a much less competitive

environment for introduced P. putida cells than non-autoclaved

soil. It is therefore possible that the lower DIMBOA exudation

rates of older plants remains sufficient to attract bacteria from non-

autoclaved soil to the rhizosphere. Alternatively, it is possible that

HDMBOA-glc, which did not show a noticeable age-dependent

decline in exudation rate (Figure 1), contributes to bacterial

recruitment at later developmental stages of the host plant. In both

autoclaved and non-autoclaved soil, numbers of other rhizosphere

bacteria were similar between roots of BX1 and bx1 plants

(Figure 5). The difference in response to BX-exuding roots

between P. putida and other rhizobacteria indicates that the

composition of the rhizophere microbial community is strongly

influenced by the presence of DIMBOA in root exudates of the

host plant. Apart from direct anti-microbial effects, DIMBOA root

exudation may have an additive effect considering that DIMBOA-

exposed P. putida showed enhanced expression of the phzF gene

(Table S1), which encodes an enzyme in the biosynthesis of the

broad-spectrum antibiotic phenazine [50]. Other studies have

revealed bacterial attraction to primary metabolites in plant roots:

L-leucine and L-malate attract P. fluorescens to tomato roots [51],

while L-malate was found to promote attraction of Bacillus subtilis

to the rhizosphere of Arabidopsis thaliana [4]. To our knowledge,

DIMBOA is the first allelochemical shown to act as a chemo-

attractant for beneficial rhizobacteria, and may explain why P.

putida KT2440 is such a successful coloniser of the maize

rhizosphere [29]. Our discovery also strengthens the notion that

certain bacteria have acquired the ability to detoxify aromatic

plant compounds, allowing them to exploit the energy-rich

rhizosphere of plant roots exuding allelochemical compounds.

These same bacteria can be exploited for the remediation of

aromatic pollutants and herbicides [10].

In summary, our study has shown that root exudation of BXs

attracts plant beneficial rhizobacteria. Although BX biosynthesis is

mostly developmentally regulated [12], recent evidence has

revealed that BX production by maize seedlings is to a certain

extent responsive to environmental stimuli [52,53]. It would

therefore, be interesting to examine BX-dependent effects on

rhizobacteria during adaptive interactions between above- and

below-ground defences. Our study also provides important

knowledge for agricultural programmes aiming at sustainable

yield improvement of cereal crops. Management of soil-borne

diseases has proved problematic, because plant roots are relatively

inaccessible to fungicidal chemicals. Furthermore, growth promo-

tion by excessive soil fertilisation can have detrimental environ-

mental impacts. Selection of cereal varieties with increased

capacity for BX root exudation may lead to crops with an

improved ability to recruit disease-suppressive and growth-

promoting rhizosphere communities, reducing the need for

repeated applications of fungicides and fertilisers. However, there

is evidence that the specialist herbivore Western Corn Rootworm

(Diabrotica virgifera) uses root-exuded BXs, such as DIMBOA and

MBOA, as feeding cues [40,54]. The potential for crop

improvement by selection for increased BX exudation should

therefore be approached with caution. On the other hand, the

accelerated degradation of DIMBOA and MBOA by P. putida

(Figure 2B) may interfere with host location by D. virgifera,

presenting a potential opportunity for biocontrol of this pest

Supporting Information

Table S1 Functional annotation of Pseudomonas putida KT2440

genes with a statistically significant induction at 1 h after exposure

to 5 mg mL21 DIMBOA. Presented are 36 genes with annotated

functions out of a total of 55 DIMBOA-inducible genes.
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