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Composite correlated random walks (CCRW) have been posited as a potential replacement for Lévy walks
and it has also been suggested that CCRWs have been mistaken for Lévy walks. Here I test an alternative,
emerging hypothesis: namely that some organisms approximate Lévy walks as an innate CCRW. It is shown
that the tri-modal CCRW found to describe accurately the movement patterns of mussels (Mytilus edulis)
during spatial pattern formation in mussel beds can be regarded as being the first three levels in a hierarchy
of nested movement patterns which if extended indefinitely would correspond to a Lévy walk whose
characteristic (power-law) exponent is tuned to nearly minimize the time required to form patterned beds.
The mussels realise this Lévy walk to good approximation across a biologically meaningful range of scales.
This demonstrates that the CCRW not only describes mussel movement patterns, it explains them.

évy walks are a popular model of organism movement pattern data'. In a Lévy walk the mean-squared step-

length diverges over time and this implies the absence of a characteristic scale and so fractal scaling. It has

long been recognised that these superdiffusive and fractal properties of Lévy walks can be advantageous when
searching and as a consequence may be selected for>*. This expectation is now amply supported by empirical
observations. Many organisms including E-coli, T-cells, honeybees, the wandering albatross and some marine
predators have been reported to have movement patterns that can be approximated by Lévy walks* .
Nonetheless, Lévy walks have not been accepted in some quarters. This is partly because many earlier studies
had wrongly ascribed Lévy walks to some species through the use of inappropriate statistical analyses and through
misinterpreting data'>'. This has cast a long shadow over Lévy walk research'>"". It is also because ‘composite
correlated random walks’ (CCRW) appear to be a strong alternative model of movement pattern data resembling
Lévy walks'®.

In these models, organisms are assumed to switch between two or more kinds of simple walk pattern. CCRW
can resemble Lévy walks when frequently occurring movements with relatively short steps are interspersed with
more rarely occurring longer steps. This leaves open the question of why CCRW can come to resemble Lévy walks.
Close resemblance requires fine tuning of the parameters in a CCRW that determine the step-lengths for each
mode and the rates of switching between the different modes. The issue was first articulated by de Jager et al.’ who
hypothesised that organisms can approximate a Lévy walk by adopting an intrinsic CCRW in which switching
between different modes is internally triggered rather than externally triggered, by, for instance, the detection or
depletion of food, as in the original model of Benhamou'. The hypothesis of de Jager et al."” stemmed from
analyses of the movement patterns of mussels (Mytilus edulis) made during the formation of regularly patterned
beds when individuals are searching for conspecifics®. The mussels aggregate with some conspecifics to minimize
wave forces from the water, but also keep their distance from other clusters of mussels to avoid high competition.
The mussel movement patterns resemble Lévy walks™ but are, in fact, better represented by CCRW?'. This finding
led Jansen et al.*' to suggest that Lévy walks have been wrongly identified in mussels and to conclude that one has
to be cautious in inferring the presence of Lévy walks in biological systems, implying that the concept is not
applicable to organisms. Nonetheless, repeated switching between movement strategies induced by changing
environmental conditions, as in the model of Benhamou'®, does not provide a plausible explanation for the
observed composite walk, as the mussels were placed in a bare, homogeneous environment'”. de Jager et al."* also
precluded the possibility that variation in individual walking behaviours - for example, multiple different
Brownian (exponential) walks - together make up the observed composite walk as Brownian walks fitted indi-
vidual movement pattern data very poorly. The observed CCRW therefore appears to be intrinsic. de Jager et al.*®
subsequently showed that the intrinsic pattern is Levy-like in a bare tank (sparse conditions) but emerges as
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Brownian when encounters with conspecifics are frequent. A similar
resemblance between intrinsic CCRW and LW to that seen in the
mussels has subsequently been found in the movement patterns of
the Australian desert ants Melophorus bagoti®. In these desert ants a
bi-modal walk is utilized when searching in visually unfamiliar sur-
roundings, a setting which favours Lévy walk searching. When
searching in visually familiar surroundings, the ants adopt a
Brownian walk. The hypothesis of de Jager et al." finds support in
the theoretical analysis of Reynolds** who showed how selection
pressures can give intrinsic CCRW Lévy walk characteristics. In this
note I show explicitly that the CCRW seen in mussels approximates
to a Lévy walk that is optimized for the formulation of patterned
beds, i.e., for searching for conspecifics. The approach taken draws
heavily upon the work of Hughes et al.>> who constructed a family of
random walks — now sometimes called Weierstrass random walks or
Weierstrass Lévy flights because of their association with the
Weierstrass function - having a hierarchy of self-similar clusters that
coincides with a Lévy walk. The tri-modal CCRW is shown to corre-
spond to the first three hierarchy levels of a Weierstrass Lévy flight.
Weierstrass random walks are one of the simplest random walks
which do not satisfy the Central Limit Theorem. In the continuum
limit they are governed by Lévy stable distributions and not by
Gaussians. Weierstrass random walks have thus become the para-
digmatic Markov process giving rise to Lévy walks and have come
epitomize scale-invariance”. The new finding explains why the
CCRW so closely resembles a Lévy walk and accounts naturally for
the optimization, as Weierstrass Lévy flights can have similitude with
self-avoiding random walks*. Self-avoidance is advantageous when
randomly searching because it avoids needlessly revisiting prev-
iously-searched locations.

Results
The step-length distribution found to describe accurately the move-
ments of mussels is the tri-exponential

p(h)= Zpiﬂv;‘ exp(—1/4) (1)

The maximum likelihood estimates for the mode-occurrence prob-
abilities and the mean step-lengths are p; = 0.867, p, = 0.099, p; =
0.034, A; = 0.28 mm, A, = 1.5 mm and A; = 14.5 mm (reference 21;
full data set). Here without loss of generality and to simplify analysis
the mean-steps, 4;, are rescaled so that smallest mean-step has length
1. This gives 4; = 1.0, 2, = 5.4 and 45 = 51.

It is readily seen that the empirical distribution, Eqn. 1, is an
approximate, truncated form of the model distribution given by
Eqn.2 in the Methods section. The observed occurrence probability
for the first mode, p; = 0.867, corresponds to g = 7.53. With this
specification, the occurrence probability of the second mode is pre-
dicted to be 0.11. This prediction differs from observation (p, =
0.099) by just 10%. The observed occurrence probability for the third
mode is determined by the requirement that the occurrence prob-
abilities sum to unity, and so cannot be meaningfully compared with
the model distribution, Eqn. 2, which has many more modes. The
observed mean-step lengths 4; = 1.0 and 4, = 5.4 correspond to b =
5.4. With this specification, the mean-step length in the third mode is
predicted to be b” = 29.1 and so at variance with the observed value 4;
= 51. Nonetheless, it is possible that the mussels are compensating
for the absence of a 4™ mode by modifying the step-length in the 3
mode so that it is equivalent to the arithmetic average step-length of
the 3 and 4™ modes. Support for this speculative notion comes from
the fact that the predicted value of this average step-length, b + b’/q
= 51, coincides with the observed value A; = 51. This mismatch
between the observed and predicted values of 43 could also be indi-
cative of the presence of 4™ mode that has not been properly resolved
in the analysis of Jansen et al.* because there is insufficient data. The

occurrence probability for this mode is predicted to be 0.002 which
corresponds to just 7 steps in the dataset. The model parameters q =
7.52 and b = 5.41 correspond to a Lévy exponent u = 1+ Ing/Inb =
2.195. This prediction is close to the observed value, 1.975%,
(obtained by fitting a power-law to the tail of the step-length distri-
bution using maximum likelihood estimates) and close to the theor-
etical expectation, u = 2.0, for optimal behaviour®. Jansen et al.*!
obtained a smaller maximum likelihood estimate, 4 = 1.397, but this
was because they had in essence fitted a single power-law to the entire
step-length distribution which includes a relatively flat core and a
tail. The core could be represented by a power-law with a power-law
exponent close to zero. The stepper tail would be better represented
by a power-law with a larger power-law exponent. The resemblance
between the progression, Eqn. 2, and a step-length distribution with a
heavy, u = 2.195 power-law tail is illustrated in Fig. 1. In the presence
of 3 or 4 modes, close adherence to a power-law is seen to be attained
across about 2 orders from magnitude. The presence of 3 or 4 modes
is also significant to attain near optimal search efficiencies when the
mean spacing between targets (clusters of conspecifics) is between
1004, and 5004,; a range which encompasses empirical observations
of mussel beds*. The potential to deploy more modes only becomes
advantageous when targets are much scarcer (Fig. 2). The close cor-
respondence between the CCRW with 3 or 4 modes and a Lévy walk
per se with u = 2.195 is further illustrated in Fig. 3 which shows that
these models of movement pattern have nearly identical mean-
squared displacements characteristics up to the typical time needed
to find a conspecific (Fig. 2).

Discussion

The step-length distribution that characterises mussel movements
during patterned bed formation is well represented by a tri-exponen-
tial and less well represented by an exponential and by a power-law*'.
Jansen et al.”' argued that this convincingly shows that mussels are
not doing a Lévy walk but are instead doing a CCRW. Here it was
shown that the tri-exponential step-length distribution is finely
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Figure 1 | Step-length distributions produced by the progression of
Hughes et al.*, Eqn. 2, truncated at the N* hierarchy level. Model
parameters values, g = 7.52and b = 5.41, are derived from the fitting of a
tri-exponential by Jansen et al.*! to the movement pattern data of de Jager
et al.* for mussels (Mytilus edulis) during the formation of mussel beds (see
text). Step-length distributions are shown for N = 1, 2, 3and 4 (solid-lines)
and for a modified N = 3 progression that compensates for the absencea N
= 4level (see text) (dash-line). Shown for comparison (dotted-line) is the
1= 2.195 power-law scaling which is obtained from Eqn. 2 when N — o°.
The average step-length for the first level has been rescaled to unity. The
average step-lengths for each of the uncompensated levels () and the
compensated 3™ level (o) are shown.
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Figure 2 | Simulation data showing that the tri-exponential CCRW is as
effective as higher-order, hyper-exponential models that better
approximate an optimal Lévy search when randomly searching for
clusters of conspecifics. The models correspond to the progression of
Hughes et al.”*, Eqn. 2, with ¢ = 7.52 and b = 5.41. The average lengths of
the search paths are shown for cluster spacings of 100,(@), 5004,(H)
and 50004, (A). The lines are added to guide the eye.

tuned to produce Lévy walk characteristics of the type predicted to
minimize the time for pattern formation®. It is common knowledge
that long-tailed step-length distributions — the hallmark of Lévy
walks - can be approximated by a superposition of several short-
tailed distributions. Many such progressions can approximate a
Lévy walk, albeit over a limited range of scales. Here it was found
that the 3 modes seen in the mussels approximate to the first three
terms in the progression proposed by Hughes et al.”, i.e., to the first 3
levels of the regular hierarchy structure of a Weierstrassian Lévy walk
rather than to other less schematic suppositions that not readily
extended to encompass progressively more scales. This identification
of the spatial-temporal hierarchical structure in the CCRW addresses
directly the pertinent concluding remarks of de Jager
et al."” who noted that it is “most advisable to examine the switch-
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ing behaviour by means of temporal and spatial correlations of
movement steps within animal tracks rather than [just] fitting multi-
modal models to step size distributions”. It is unlikely that such fine
tuning of the CCRW has come about by chance. This suggests that
the mussels are approximating an optimal Lévy walk by adapting a
CCRW, as first hypothesised by de Jager et al."”. This is significant
because the fundamental mechanisms leading to Levy walks are in
general not elucidated and remain the subject of intense study’.
More generally, it shows that CCRW and Lévy walks are not neces-
sarily competing models of movement pattern data. Instead Lévy
walks can be viewed as simple integrative models whilst CCRW with
their added complexity provide more mechanistic descriptions of
movement patterns. An alternative explanation for the CCRW was
posited by Jansen et al.*! who suggested that “the smallest average
movement (~0.4 mm) is related to non-movement, combined with
observational error”; “the next mode (average movement ~ 1.5 mm)
is related to mussels moving their shells but not displacing, and the
mode with largest movements (on average 14 mm, about the size of a
small mussel) is related actual displacement”. This is biologically
plausible. Shell-wobble-movements could provide mussels with a
way of noting the (continued) presence of neighbouring mussels.
The longer displacements could allow mussels to gauge the overall
population density or perhaps the size of the entire cluster or distance
to other clusters, and thereby facilitate the formation of ‘optimal’
clusters. This alternative explanation does not account for the
observed frequency of occurrence of the 3 movement modes and
so does not explain why the CCRW resembles an optimized Lévy
walk.

Although the CCRW does not capture a Lévy walk in its entirety, it
does capture its essence; namely a scale-free hierarchy of nested
movements across a range of ecologically important scales that allow
for intensive searching whilst restricting needless resampling of prev-
iously visited location. Such CCRW can, on average, have the same
number of subclusters per cluster with a change in scale as self-
avoiding random walks, i.e., have the same fractal dimension as
random walks that do not visit the same location more than once®.
Such behaviour has ancient origins and has been seen in the deep-sea
trace fossil Cosmorhaphe that are typically found in Mesozoic (about
252-66 million years ago) and younger strata®®. Trace fossils are the
preserved form of tracks made by organisms that occupied ancient
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Figure 3 | Simulation data for mean-square displacements as functions of time, t, for CCRW corresponding to the progression of Hughes et al.%%,
Eqn. 2, with ¢ = 7.52 and b = 5.41 and truncated at the N = 1, 2, 3and 4 hierarchy levels (solid-lines). Shown for comparison are simulation data for a
Lévy walk with g = 2.195 (which is obtained from Eqn. 2 when N — ) (dotted-line) together with the theoretical expectations, (x*) o *7*, for a Lévy
walk with ¢ > 2 at long-times® (dashed-line). Walkers move with speed I in arbitrary speed units.
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sea beds. These traces are the only direct record of the behaviour of
ancient organisms and thus provide critical indications of the early
evolution of movement patterns. Self-avoiding behaviour persists to
this today and has, for example, been observed directly in the grazing
tails of the Valviferan isopod Chiridotea coeca which resides in inter-
tidal zones containing sporadically distributed resources that are
replenished semi-diurnally®; conditions that can favour Lévy walk
search patterns (Viswanathan et al. 1999). Self-avoiding behaviour is
also evident in the limpet Lottia gigantea®. This algal gardener must
obtain an adequate ration without compromising the productivity of
its garden and achieves this balance by seldom grazing over an area
more than once, i.e., the limpets avoid crossing previous grazing
trails.

In the case of the mussels, 3 modes are sufficient for Lévy char-
acteristics to be realised across all scales of their searching®. The re-
interpretation of the analysis of Jansen et al.”! posited here therefore
brings mussels’ movements back into the family of Lévy walks*®. For
some of these other taxa, as with the mussels, it is possible that the
tails of the step-length distributions are strictly not power-laws but
are instead better represented by functions with multiple parameters.
This, however, masks the resemblance between taxa in the Lévy
family, and disguises the apparent ubiquitous occurrence of Lévy-
like search patterns.

The correspondence between the theoretical expectations and the
empirical data suggests that the movements of ~0.4 mm in mode 1
are not, after all, on a biologically irrelevant scale or a possible artefact
of the recording accuracy, as proposed by Jansen et al.*'. This merits
further investigation. A key question is whether mussels do, indeed,
have only 3 modes or whether there are, in fact, more modes which
are not seen because conspecifics are located and searching ceases
prior to their employment. It would therefore be interesting to
investigate whether 4" and higher modes in the CCRW are employed
by isolated mussels that cannot locate a conspecific. And, if present,
whether these modes approximate the 4™ and higher hierarchy levels
of the Weierstrassian Lévy walk or instead introduce new behaviours,
leading to departures from fractal scaling. It would also be interesting
to test for the presence of hierarchical CCRW in other taxa.

Methods

Following Hughes et al.** the step-length distribution is here taken to be a hyper-
exponential:

0
p()=T15 " g b exp(— 1) )
q j=0

This differs slightly from the original random walk of Hughes et al.>* where steps had
length 1, b, b?, 1’ rather than mean lengths I, b, b%, b® because they were drawn from
delta-functions rather than from exponential distributions. This change allows for a
connection to be established with CCRW in which step-lengths are typically drawn
from hyper-exponential distributions. Notice that a step drawn from an exponential
distribution with mean ¥ is g times more likely than is a step drawn from an expo-
nential with the next longest mean. As a consequence, a walker will typically make a
cluster g steps with mean I before making a step of length b, and so initiating a new
cluster. About g such clusters separated by a distance of about b are formed before a
step of length b” is made. And so on. Eventually a hierarchy of clusters within clusters
is formed. This is the hallmark of a Lévy walk. Following the analysis of Hughes et al.*®
it is readily shown that the step-length distribution, Eqn, 2, has infinite variance when
b*> > g and in this case corresponds to a Lévy walk with Lévy exponent i = 1 + Ing/
Inb. The construction, Eqn, 2, therefore provides a recipe for approximating Lévy
walks as CCRW, an approximation that becomes ever more precise as the number of
modes (number of terms included in the summation) increases.

The searching efficiencies of movement patterns resulting from hyper-exponential
CCRW corresponding to truncated forms of Eqn. 2 was examined in numerical
simulations. These simulations capture some key behaviours of mussels during
patterned bed formation but are not intended to be realistic in detail. Mussels stay in
places where they can aggregate with direct neighbours, but move away from crowded
locations where food becomes limiting, to search for dispersed conspecifics®. Each
search therefore begins in the neighbourhood of one cluster of conspecifics but distant
from all other clusters which because of pattern formation tend to be regularly spaced.
In the numerical simulations, clusters of conspecifics are taken to be stationary and
regularly spaced, and each search begins at a distance 4, from a cluster. A simulated
mobile mussel chooses a direction of travel at random (either right or left) and a

step-length drawn at random from a truncated form of Eqn. 2. It then moves incre-
mentally towards the new location whilst constantly seeking out conspecifics. If it
does not meet a conspecific, it stops after traversing the distance / and chooses a new
direction of travel and a new step-length. A search ends when the mussel first comes
into contact with a conspecific. The average length of a search path was obtained by
ensemble averaging over 10° searches.
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