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Summary 

 

Inorganic arsenic is a highly toxic element known to cause various cancers and other 

diseases in humans. Arsenic contamination is widespread worldwide, particularly in 

South-East Asia where arsenic-contaminated groundwater is used for drinking and rice 

cultivation. Unlike other cereals, paddy rice can efficiently accumulate arsenic in the 

grain. Rice is a staple food for around 50% of the world’s population, and so arsenic 

accumulation in rice is of great concern. Arsenite, As(III), is the predominant form of 

arsenic within plants, but rice grains often contain significant proportions of organic 

arsenic species. The most common of these are dimethylarsinic acid (DMA) and 

monomethylarsonic acid (MMA). 

Arsenic methylation is a well-characterised detoxification mechanism in micro-organisms 

and animals, but it was unknown whether plants were also able to methylate inorganic 

arsenic. A variety of plant species were exposed to inorganic arsenic under axenic 

conditions, and additional treatments including nutrient deficiency and symbiosis with 

root-nodulating bacteria were also investigated. In all plant species tested, and under all 

treatments, exposure to inorganic arsenic resulted in detection solely of inorganic arsenic 

in plant tissues. When present in the growth medium, rice was able to take up MMA and 

DMA, and MMA and DMA were also detected in shoots of rice grown in soils from the UK 

and Bangladesh. Sub-optimal preservation of arsenic species in soil water samples, and 

the high translocation efficiency of organic arsenic in plants, explains why MMA and DMA 

are detected in plants more frequently than soil. 

The uptake of undissociated MMA by rice roots is predominantly facilitated by OsNIP2;1 

(OsLsi1), a member of the NIP subfamily of aquaporins, which also accounts for 50% of 

root DMA uptake. Therefore the transport of MMA and DMA by other NIP aquaporins 

was investigated using heterologous expression in Xenopus laevis oocytes. OsNIP1;1 and 

OsNIP3;3 were permeable to MMA, as well as arsenite, silicon and water. Additionally, 

OsNIP3;2 was found to be permeable to arsenite and boron. However, uptake of DMA 

was not observed for oocytes expressing any NIP gene, including OsNIP2;1. The role of 
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different regions of NIP aquaporins in substrate selectivity is discussed, as well as 

limitations of expressing plant proteins in Xenopus oocytes. 

MMA and DMA have acid dissociation constants (pKa1) of 4.19 and 6.14 respectively, and 

so increasing the pH of the medium increases the proportion of dissociated, charged 

complexes. Inorganic arsenate has a low pKa1 of 2.21, and as a chemical analogue of 

phosphate is taken up by phosphate transporters in plants. Rice plants overexpressing the 

high-affinity phosphate transporter OsPT8, and the phosphate-starvation transcription 

factor OsPHR2, were used to determine if the phosphate transport pathway also 

contributes to transport of MMA and DMA.  

In hydroponic culture, shoots of the OsPT8-overexpression line contained significantly 

more MMA and DMA than wild-type. Additionally, the presence of phosphate in the 

medium significantly decreased root uptake of MMA and DMA, by both OsPT8-

overexpressor and wild-type rice plants. Expression of OsPT8 in Xenopus oocytes 

conferred significant uptake of arsenate and MMA compared to the control. Roots and 

shoots of the OsPHR2-overexpression line contained significantly more MMA than wild-

type when the exposure medium was at pH 7.0, but not at pH 5.5. However, pH does not 

only affect the dissociation of MMA and DMA. Phosphate transporters are more active 

under lower pH conditions due to the increase in protons for co-transport. Therefore, the 

effect of lower pH on MMA and DMA transport is the net result of enhanced phosphate 

transporter activity, and decreased availability of dissociated MMA and DMA for 

transport. 

Overall the work contained in this thesis shows that methylated arsenic species are not 

formed within plants, and are transported by two different classes of transporters 

depending on the pH of the medium.  
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1. General introduction 

1.1 Chemical properties of arsenic 

Arsenic (As) is the twentieth most abundant element in the Earth’s crust and is widely 

distributed in the environment (Mandal & Suzuki, 2002). Arsenic compounds are potent 

poisons and have been implicated in the deaths of several historical figures including 

Napoleon Bonaparte, American president Zachary Taylor and Chinese Emperor Guangxu. 

A member of group V of the periodic table, As is classified as a metalloid; having 

properties of both metals and non-metals. Inorganic arsenic can occur in several 

oxidation states (-3, 0, +3 and +5), but exists mainly in the environment as one of two 

oxidation states: +5 termed arsenate, and +3 termed arsenite. In solution pH and redox 

potential (Eh) are the dominant factors that control As speciation. Under oxidising 

conditions arsenate (H2AsO4
-, HAsO4

2-) is dominant, whereas arsenite (H3AsO3
0) is 

predominant under reducing conditions below pH 9 (Supplementary Figure 1.1). 

In addition to these inorganic As species, organoarsenicals including monomethylarsonic 

acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), 

tetramethylarsonium ion (Tetra), arsenobetaine, arsenocholine, and numerous 

arsenosugars have been detected in various organisms and environmental samples 

(Rezanka & Sigler, 2008; Figure 1.1). The mechanism of As methylation is discussed in 

Section 1.5.2 and Section 1.5.3. The properties of As species is affected not only by their 

structure, but also by the pH of the medium, as the acid dissociation constant (pKa) of As 

compounds varies greatly (Supplementary Figure 1.2).  
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1.2 Environmental occurrence of arsenic 

The global average concentration of As in soils is around 6 mg kg-1, however the value 

varies greatly geographically (Mandal & Suzuki, 2002). Arsenic levels in certain areas are 

elevated due to natural processes including volcanic eruptions and the weathering of 

rocks containing minerals of As. Anthropogenic activities including the mining and 

smelting of precious metals, burning of fossil fuels and use of As-containing herbicides, 

pesticides, fungicides and wood preservatives accounts for around 75% of environmental 

As (Mandal & Suzuki, 2002). In the United States (USA), As is also found in broiler chicken 

feed in the form of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) which is excreted in 

the manure, and is often added to soil as fertiliser (Christen, 2001). 

Arsenic-contamination of groundwater is a growing global problem, affecting countries 

including Bangladesh, Nepal, Mongolia, Taiwan, Pakistan, China, Chile and the USA 

(Chakraborti et al., 2002; Brammer & Ravenscroft, 2009; Thakur et al., 2011; Rodríguez-

Lado et al., 2013). Arsenic can be released into groundwater through four mechanisms: 

reductive dissolution, alkaline desorption, sulphide oxidation, and geothermal activity. In 

South-East Asia reductive dissolution; whereby the reduction of ferric iron by microbial 

activity liberates adsorbed As from sediments, is the main process of As release into 

groundwater (Ravenscroft et al., 2009). Arsenic is also the fourteenth most abundant 

Figure 1.1 Structure of common As compounds, taken from Zhao et al., (2010b).
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element in seawater, with concentrations generally between 1 to 8 µg L-1 (Mandal & 

Suzuki, 2002). 

1.2.1 Environmental arsenic speciation  

Arsenate [As(V)] is predominant in aerobic soils, but generally has low mobility due to a 

strong binding affinity for minerals including ferrihydrite and goethite (Fitz & Wenzel, 

2002). Arsenite [As(III)] is the main species of As in anaerobic soils such as flooded rice 

paddies, and due to a high pKa of 9.22 (Figure S1.2) is present predominantly as 

undissociated arsenous acid [As(OH)3] making it much more mobile (Zhao et al., 2009). 

Additionally, organic As species including MMA, DMA, TMAO and arsenobetaine have 

been detected in soils (Takamatsu et al., 1982; Bednar et al., 2002a; Geiszinger et al., 

2002; Huang & Matzner, 2006). 

In seawater, inorganic As is predominant, with a ratio of arsenate to arsenite of 10:1, 

arising from microbial reduction of the more thermodynamically-stable arsenate 

(Johnson, 1972). Additionally, groundwater largely contains only inorganic As, whereas 

lakes and ponds can contain small amounts of methylated As species such as MMA and 

DMA (Mandal & Suzuki, 2002). 

1.3 Arsenic toxicity 

Arsenic is highly toxic to almost all organisms, and was one of the first chemicals 

identified to cause cancer in humans (Smith et al., 2002). Chronic exposure to 

concentrations of inorganic As in drinking water above 50 µg L-1 has been associated with 

skin lesions including melanosis and keratosis; cancers of the bladder, liver, lung, kidney 

and skin; and other conditions including diabetes mellitus, hypertension, decreased liver 

and kidney function, respiratory problems, and neurological disorders (for review see 

NRC, 1999). Long-term exposure to As-contaminated drinking water may also negatively 

affect pregnancy and foetal development, as both inorganic and methylated arsenicals 

are able to cross the placental membrane. Arsenic exposure during pregnancy in humans 

increases the incidence of spontaneous abortion, stillbirth, preterm birth, low birth 

weight and birth defects (NRC, 1999). Additionally, smoking and poor nutritional status 
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and have been found to exacerbate As toxicity in humans (Ferreccio et al., 2000; 

Maharjan et al., 2007). 

The toxicity of As is exploited in medicine, and historically As compounds were used to 

treat various ailments including psoriasis, asthma, eczema and haemorrhoids (for review 

see Dilda & Hogg, 2007). More practical treatments include Salvarsan, which was used to 

treat syphilis, caused by the bacterium Treponema pallidum, and trypanosomiasis 

(sleeping sickness), caused by the parasitic protozoan parasite Trypanosoma brucei sp. 

Arsenic trioxide (As2O3) under the name Trisenox, is currently used to treat acute 

promyelocytic leukaemia (Sanz et al., 2005).  

Arsenic is also toxic to plants and was used historically as a herbicide and defoliant. In 

rice, As causes ‘straighthead’ in which the panicles are erect rather than deflexed and in 

extreme cases do not form at all (Marin et al., 1992). Arsenic-contaminated groundwater 

used to irrigate paddy fields decreased rice grain yield from nine to seven, and three to 

two tonnes per hectare in successive field trials in Bangladesh (Panaullah et al., 2009).  

On a cellular level, arsenite has a very strong binding affinity for sulphydryl groups of 

proteins and so can disrupt various cellular processes; whereas arsenate is a phosphate-

analogue and can displace phosphate from biological molecules including ATP to form 

non-functional ADP-As (Hughes, 2002; Rezanka & Sigler, 2008). Despite being a well-

known carcinogen, As does not interact directly with DNA, and instead causes genotoxic 

effects through generation of reactive oxygen species (ROS), direct inhibition of DNA 

repair enzymes, and alteration of DNA methylation patterns (Schuhmacher-Wolz et al., 

2009). 

Until recently it was thought that As methylation; resulting mainly in MMA, DMA and to a 

lesser extent TMAO, was the main mammalian detoxification pathway for inorganic As 

(see Section 1.5 for the biochemical pathway of As methylation). Pentavalent MMA and 

DMA were found to be ten times less cytotoxic than arsenate, and 1000-fold less 

cytotoxic than arsenite to mouse macrophage cell cultures (Sakurai et al., 1998). 

Additionally, methylated As species present in food and water are less well absorbed 

during digestion (compared to 80-90% absorption of ingested inorganic As), and are more 

readily excreted in the urine (NRC, 1999). However, intermediates in the methylation 
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pathway MMA(III) and DMA(III), that is MMA and DMA containing trivalent As, are more 

cytotoxic, genotoxic and more potent inhibitors of certain enzymes than arsenite or 

arsenate (Thomas et al., 2001). Although these intermediates are assumed to be short-

lived, in vitro MMA(III) and DMA(III) were found to be associated with cytosolic proteins 

and so may be able to produce toxic effects (Styblo & Thomas, 1997). Additionally, due to 

advances in As speciation techniques, MMA(III) and DMA(III) have been detected in 

human urine after exposure to moderately high concentrations of As in drinking water 

(Mandal et al., 2004). Based on data from in vitro exposure of mammalian cell cultures, 

the rank order of arsenicals based on their genotoxicity is proposed to be:  

DMA(III)≈ MMA(III) > arsenite  > arsenate >> MMA ≈ DMA (Schuhmacher-Wolz et al., 

2009). 

1.3.1 Legislation 

In 1967 the Joint FAO (Food and Agriculture Organization of the United Nations)/WHO 

(World Health Organization) Expert Committee on Food Additives (JECFA) concluded that 

in the absence of sufficient data, the maximum daily load of As should be set at 50 µg kg 

body weight (b.w.)-1 day-1 (JECFA, 1967). In 1983, due to emerging evidence of the link 

between inorganic As and lung and skin cancer, the Committee decreased the provisional 

maximum tolerable daily intake for inorganic As to 2.0 µg kg b.w.-1 day-1 (JECFA, 1983). 

Based on this value, in 1988 the JECFA set a provisional tolerable weekly intake (PTWI) for 

inorganic As of 15 µg kg b.w.-1 (JECFA, 1989). 

In 2011 the JECFA concluded from epidemiological studies that the benchmark dose 

lower confidence limit for a 0.5% increase on the incidence of lung cancer (BMDL0.5) was 

3.0 μg kg-1 b.w. day-1. Therefore the Committee  withdrew the previous PTWI for 

inorganic As (equivalent to 0.21 µg kg b.w.-1 day-1) as it was too close to the BMDL0.5 value 

(JECFA, 2011). Currently the JECFA has not issued a new PTWI for inorganic As. In 2007 

the U.S. Agency for Toxic Substances and Disease Registry (ATSDR) set a minimal risk level 

(MRL) for chronic oral inorganic As exposure of 0.3 µg kg b.w.-1 day-1 (ATSDR, 2007). In 

2009 the European Food Safety Authority (EFSA) concluded from epidemiological data 

that the benchmark dose lower confidence limit for a 1% increase on the incidence of 

lung cancer (BMDL01) for inorganic As is also 0.3 µg kg b.w.-1 day-1 (EFSA, 2009).  
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In 2009, the WHO International Agency for Research on Cancer (IARC) classified MMA and 

DMA to Group 2B: possibly carcinogenic to humans. Arsenobetaine and ‘other organic 

arsenic compounds that are not metabolised in humans’ were assigned to Group 3: not 

classifiable as to its carcinogenicity to humans (IARC, 2009). The ATSDR has set a MRL for 

chronic oral exposure to DMA at 20 µg kg b.w.-1 day-1, and for MMA at 10 µg kg b.w.-1  

day-1 (ATSDR, 2007).  

The guideline concentration of As in drinking water set by the World Health Organization 

(WHO) and European Union (EU) is 10 µg L-1, however in Bangladesh and other 

developing countries the limit is set at 50 µg L-1 (WHO, 1993; Council of the European 

Union, 1998; Alam et al., 2002). Until recently the maximum contaminant level (MCL) for 

As in drinking water in the USA was also 50 µg L-1, but was lowered to 10 µg L-1 in 2006, 

because the cancer risk from drinking water containing 50 µg L-1 As is estimated to be as 

high as 13 per 1000 people (Smith et al., 1992; Smith et al., 2002). 

The Food Standards Agency (FSA) estimated the daily intake for an average UK adult to be 

1.33 µg kg b.w.-1 day-1 total As, and 0.018-0.082 µg kg b.w.-1 day-1 inorganic As (Food 

Standards Agency, 2004). 

1.4 Exposure routes 

Due to advances in analytical techniques, the number of studies into the As content of 

various foodstuffs has risen dramatically in recent years. In areas with As-contaminated 

water, drinking water is the primary source of As in the human diet (Kile et al., 2007). 

However, as strategies to remediate, or find alternative sources of drinking water are 

installed, the contribution of non-rice food sources to As intake will increase. Additionally, 

inorganic As is classified as a non-threshold carcinogen, and so all sources should be 

studied in order to minimise human exposure. 

1.4.1 Drinking water 

In the 1970s, international aid agencies began a tubewell-installation programme in 

Bangladesh to combat the high infant mortality due to consumption of surface water 

contaminated with pathogens responsible for cholera and dysentery. However, the 

groundwater reached by the tubewells is contaminated with inorganic As, and now 
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endangers the lives of millions of people in Bangladesh and West Bengal, India 

(Chakraborti et al., 2002). It is thought that up to half of Bangladesh’s 10 million tubewells 

are contaminated, pumping water above the 10 µg L-1 WHO guideline, and that around 85 

million people in Bangladesh alone are at risk of As poisoning (BGS, 1999; Hossain, 2006). 

However, the problem is not confined to the Bengal Delta region; contamination of 

groundwater with As is a growing problem and has been reported for over 70 countries 

including China and the USA (Brammer & Ravenscroft, 2009). 

1.4.2 Rice  

Rice (Oryza sativa) is the primary source of inorganic As for populations not exposed to 

As-contaminated drinking water in developed countries such as the USA (Meacher et al., 

2002; Meliker et al., 2006). Recently, consumption of As in rice was found to increase the 

prevalence of micronuclei in urothelial cells, an indicator of DNA damage, in a human 

population from West Bengal, India not exposed to elevated As concentrations in drinking 

water (Banerjee et al., 2013). There is no international limit for As in food, however the 

Chinese government set a regulatory limit of 150 µg kg-1 inorganic As in rice (USDA 

Foreign Agricultural Service, 2006). 

Consumption of rice also represents a major route of As exposure to people living in areas 

with As-contaminated drinking water, such as Bangladesh (Kile et al., 2007; Ohno et al., 

2007). This is partly due to the reliance of these populations on rice, which provides 73% 

of the calorific intake of people in Bangladesh (Ninno & Dorosh, 2001). The relative 

contribution of dietary sources of As increases, as drinking water As concentrations 

decrease (Kile et al., 2007). Even if alternative uncontaminated sources of water could be 

found, irrigation of crops has deposited thousands of tonnes of As in the soils of this 

region (Meharg & Rahman, 2003; Meharg, 2004).  

Unlike other cereals, rice is able to accumulate a significant amount of As in the grain 

(Williams et al., 2007b). This is due to two main factors: the first being that under flooded 

paddy conditions in which rice is typically cultivated, arsenite, the more bioavailable 

species of As predominates (Xu et al., 2008). However this does not fully account for the 

increased grain As levels in rice compared to other cereal crop species. When supplied 

with arsenite in hydroponic culture, the translocation of As from root to shoot was double 
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that in rice than for wheat (Triticum aestivum) or barley (Hordeum vulgare; Su et al., 

2010). The second factor is that rice accumulates silicon (Si) up to 10% shoot dry weight 

(Ma et al., 2006), and that arsenous acid [As(OH)3] is an analogue of silicic acid [Si(OH)4]. 

Arsenous acid and silicic acid have similar molecular diameters, 4.11 Å and 4.38 Å 

respectively, and both have high pKas, 9.22 and 9.84 respectively, meaning they exist 

mainly as undissociated complexes below pH 8 (Ma et al., 2008). Silicon, although not 

considered an essential plant nutrient, has many beneficial effects in plants such as 

increased resistance to pathogens and insect pests, increased drought and salt tolerance, 

and reduced lodging (Ma, 2004; Ma & Yamaji, 2006). Low Si-accumulation by rice results 

in a significant reduction in both the yield and quality of grain produced (Ma & Yamaji, 

2006). Arsenite transporters in plants are discussed in detail in Section 1.8.2. 

A global ‘normal’ range of As concentrations in rice grains has been proposed of 80 to 

200 µg kg-1, based on analysis of 204 commercial samples originating from various 

countries including China and the USA (Zavala & Duxbury, 2008). Analysis of 901 

commercially available white rice samples originating from uncontaminated sources 

revealed a mean total As concentration of 150 µg kg-1, which is within the proposed 

normal range (Meharg et al., 2009). However, samples from Egypt contained extremely 

low As concentrations, averaging 50 µg kg-1, and samples from France and the USA 

contained the highest concentrations with means of 280 and 250 µg kg-1 respectively. 

Additionally, modelling global As concentrations in rice must take into account the 

contribution of the individual countries to global rice supply (Meharg et al., 2009). The 

highest reported As concentration for field-grown rice grain is 1835 µg kg-1, found in a 

highly contaminated region of Bangladesh (Meharg & Rahman, 2003).  

The highest As concentration of the 204 rice samples analysed by Zavala and Duxbury 

(2008) was 714 µg kg-1 in a brown long-grain sample purchased in the USA, and on 

average brown rice contained 40% more As than white rice. Brown rice contains higher As 

concentrations than white rice as a large proportion of As is located in the bran, pericarp 

and subaleurone and layers which are removed by polishing (Ren et al., 2006; Rahman et 

al., 2007; Meharg et al., 2008b; Moore et al., 2010). 
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Arsenic speciation in rice grains shows considerable geographical and genotypic variation. 

Generally inorganic As and DMA are predominant but their proportions are highly 

variable. The reasons for this are discussed in detail in Chapter 3. Synchrotron x-ray 

fluorescence microtomography revealed that treatment with inorganic As or MMA 

resulted in As located primarily in the ovular vascular trace; the source of nutrient influx 

into grain located opposite the embryo, whereas DMA treatment resulted in As spread 

throughout the grain including the endosperm (Carey et al., 2010; Carey et al., 2011). 

NanoSIMS analysis revealed that in rice grains with high DMA concentrations, As is 

primarily located in the subaleurone region. In contrast, in grains from plants treated with 

inorganic As, the majority of As was in the aleurone cells near the ovular vascular trace 

(Moore et al., 2013). 

1.4.3 Rice products 

Due to the high levels of As in rice grains, certain rice products have also been found to 

contain significant quantities of As. Rice crackers and crisped rice breakfast cereals were 

found to contain high percentages of inorganic As (75-90%), with a total As concentration 

of 390 µg kg-1 found in one brand of rice crackers (Sun et al., 2009). Rice bran is marketed 

as a health food because it is a good source of fibre and high in minerals, vitamins and 

antioxidants. However, commercially available rice bran products were found to contain 

As concentrations up to 1980 µg kg-1, with iAs accounting for 70% of the total on average 

(Sun et al., 2008). Brown rice syrup, made from whole brown rice grains, is commonly 

used as a sweetener in processed foods. Samples of brown rice syrup purchased in the UK 

contained between 80 and 330 µg kg-1 total As, and over 70% of As in the highest sample 

was found to be inorganic (Signes-Pastor et al., 2009). Similar As concentrations were 

found in samples of brown rice syrup purchased in the USA, where total As ranged 

between 80 and 410 µg kg-1 As. Inorganic As was predominant in the brands containing 

lower total concentrations of As, however almost equal proportions of inorganic As and 

DMA were found in the sample with the highest As concentration (Jackson et al., 2012a). 

Baby rice, recommended for weaning children due to its low allergen potential, 

purchased in the UK was found to contain As concentrations up to 310 µg kg-1, and 35% of 

the products sampled would be banned in China (Meharg et al., 2008c). Infant foods 

purchased in Spain, including baby rice, were also found to contain significant quantities 
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of As, up to a maximum of 2310 µg kg-1 in a fish-based food. Inorganic As only made up a 

small portion of the total As in this sample (see Section 1.4.5 for As speciation in 

seafood), however inorganic As was predominant in rice and meat-based foods 

(Carbonell-Barrachina et al., 2012). Another study into infant formulas, purees and infant 

foods on sale in the USA found and that inorganic As was predominant in all samples. 

Estimated servings of formula, pear purees and infant foods would give median As 

exposures of 0.05, 0.20 and 0.39 µg kg b.w.-1 day-1 respectively (Jackson et al., 2012b). 

Although the infant formulas and purees tested do not exceed the 0.3 µg kg b.w.-1 day-1 

BMDL01/MRL (ATSDR, 2007; EFSA, 2009), other sources of inorganic As may be present in 

the child’s diet such as drinking water or rice milk. Furthermore, evidence is emerging 

that As exposure in childhood can negatively affect health into adult life (Vahter, 2008). 

Finally, rice milk samples purchased from supermarkets in the UK were also found to 

contain alarming quantities of As. All had As concentrations above the WHO drinking 

water guideline of 10 µg L-1, with a maximum concentration of 30 µg L-1, and inorganic As 

accounted for 82% of the total As on average (Meharg et al., 2008a). In the UK, babies 

and toddlers (under 4.5 years) are advised against consuming rice milk to limit their 

intake of inorganic As (Food Standards Agency, 2009). Arsenic concentrations in toddler 

formulas containing brown rice syrup were more than 20-fold higher than those lacking 

brown rice syrup. Additionally inorganic As concentrations in the reconstituted soy-based 

formula were 1.5 to 2.5-fold higher than the WHO drinking water guideline (Jackson et 

al., 2012a).  

1.4.4 Fruit and vegetables 

Reported As concentrations in vegetables vary greatly, with a maximum of 3.99 µg kg-1 

reported in Kachu sak (Colocasia antiquorum) from Bangladesh (Das et al., 2004). 

However, the tubewell water used for irrigation in the sample area was highly 

contaminated, with a mean concentration of 520 µg L-1 As; over 50 times the WHO 

standard. The average As content of vegetable samples grown on contaminated soils in 

West Bengal, Chile and Bangladesh respectively were 0.075 µg g-1 DW (Signes-Pastor et 

al., 2008), 0.114 µg g-1 FW (Munoz et al., 2002) and 0.210 µg g-1 DW (Alam et al., 2003). It 

is again noteworthy that the mean As concentration in tubewell water in the study area 
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of Bangladesh was well above the WHO limit at 240 µg L-1, and that soil As concentrations 

averaged 13.3 mg kg-1 (Alam et al., 2003). 

A study of 88 apple and grape juices purchased in the USA found that 10% of samples had 

As concentrations higher than the WHO drinking water standard (10 µg L-1), and that 

inorganic As was predominant (Consumer Reports, 2012). Another study into the As 

content of apple juice from the USA reported that one-third of the 38 samples tested 

contained As ‘nearly at or above’ the drinking water limit (Wilson et al., 2012). Arsenic 

levels in fruit juices are of particular concern because they are consumed by children, 

which due to their small body size, are at higher risk of As poisoning. Apple juice, 

particularly, can contain high concentrations of As due to the historical use of As-

containing pesticides, such as lead arsenate (PbHAsO4) in orchards (MacLean & Langille, 

1981). 

1.4.5 Meat and seafood 

Arsenic may also enter the food chain through consumption of meat products or seafood. 

Arsenic levels in fish and seafood have consistently been reported amongst the highest of 

all food products investigated (Dabeka et al., 1993; Tsuda et al., 1995; Schoof et al., 1999; 

Llobett et al., 2003; Al Rmalli et al., 2005). Additionally, seafood accounted for around 

90% of total dietary As in a study of U.S. citizens (Adams et al., 1994). However, in all 

samples tested inorganic As represents a very low proportion of the total As in seafood. 

The majority instead consists mainly of arsenobetaine, with minor amounts of MMA, 

DMA, TMAO, arsenocholine and arsenosugars reported (Edmonds & Francesconi, 1993; 

Borak & Hosgood, 2007). Arsenobetaine and ‘other organic arsenic compounds that are 

not metabolised in humans’ are assigned to Group 3: “not classifiable as to its 

carcinogenicity to humans” by the International Agency for Research on Cancer (IARC, 

2009). MMA and DMA are in Group 2B: “possibly carcinogenic to humans”, and so diets 

high in seafood might still be of concern. 

Rice straw is often fed to cattle in many countries, and was found to contain around 10 

mg kg-1 As when rice plants were irrigated with water containing 50 µg L-1 As; the 

Bangladeshi drinking water limit (Abedin et al., 2002a). Milk produced by cattle from five 

areas of Bangladesh was analysed and found to contain an average of 26.2 µg L-1 As. Cows 
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were exposed to As through rice straw and drinking water, containing an average of 

1114.4 µg kg-1 and 89.6 µg L-1 As respectively (Ghosh et al., 2013). Cow dung cakes, found 

to contain As concentrations of up to 8997 µg kg-1, can be burnt as a kitchen fuel 

providing an additional route of As exposure through inhalation of ash and particulate 

matter (Pal et al., 2007). Arsenic in the meat of animals fed rice straw has not yet been 

investigated, but will represent a further exposure route for people living in areas with 

As-contaminated water (Abedin et al., 2002a; Das et al., 2004). 

Recently, a market basket survey of chicken was conducted in the USA. Conventionally-

reared chicken (treated with roxarsone) was found to contain the same amount of total 

As as organically-reared chicken, however the concentration of inorganic As was three 

times higher in both raw and cooked samples of conventional chicken (Nachman et al., 

2013). Mean concentrations of around 20 to 50 mg kg-1 total As have been reported in 

roxarsone-fed poultry litter, which is often used by farmers to fertilise their crops (Arai et 

al., 2003; Garbarino et al., 2003). In fresh poultry litter roxarsone is the predominant As 

species, but is rapidly degraded by anaerobic bacteria liberating inorganic As (Garbarino 

et al., 2003; Stolz et al., 2007). It is estimated that chicken production in the Delmarva 

peninsula, USA produces 20 to 50 metric tonnes of As annually (Hancock et al., 2001). In 

contrast to roxarsone-fed poultry, eggs and excreta from hens exposed to As-

contaminated drinking water in Bangladesh, were found to contain just 19.2 µg kg-1 and 

1440 µg kg-1 As respectively (Ghosh et al., 2012). 

Llama meat is part of the staple diet of people living in the Andean highlands of 

Argentina, and was found to contain up to 280 µg kg-1 total As (originally published in 

Spanish, reviewed in Bundschuh et al., 2012). Average As concentrations in goat’s milk 

from Illapata, Chile were found to be 440 µg L-1; far exceeding the Chilean limit of 

120 µg L-1 total As in foods (Bundschuh et al., 2012). Arsenic was transferred to livestock 

from their primary foodstuff, alfalfa, which is irrigated with local groundwater containing 

incredibly high As concentration of 1300 µg L-1. Arsenic concentrations in cow’s milk from 

neighbouring Camarones, also exceeded the national limit with an average of 260 µg L-1. 

Cheeses made from the caprine or bovine milk were also analysed, and contained 420 

and 300 µg kg-1 total As respectively (originally published in Spanish, reviewed in 

Bundschuh et al., 2012).  
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1.4.6 Herbal medicines and supplements 

There is no international guideline for As in medicines or supplements, but the Singapore 

Ministry of Health set a maximum permissible level of As at 5000 µg kg-1 (Koh & Woo, 

2000), and the Chinese government has set a maximum contaminant concentration of As 

in Chinese herbal medicines at 2000 µg kg-1 (Ministry of Health of the People's Republic of 

China, 2005). A study of 247 traditional Chinese medicines on sale in Queensland, 

Australia found that based on the recommended daily dose, five would exceed the total 

tolerable daily intake of As for females. Alarmingly, one of the samples gave 276-fold 

more As than the tolerable daily intake (based on the WHO guideline, and mean daily 

Australian dietary exposure; Cooper et al., 2007). Additionally, analysis of As 

concentration and speciation in Chinese herbal medicines sampled directly from fields or 

purchased at markets, found that inorganic As was generally predominant (Liu et al., 

2013). 

A study of 16 dietary supplements on sale in Denmark conducted by Hedegaard et al. 

(2013), found As concentrations ranging from 580 to 5000 µg kg-1. Arsenic speciation 

varied with the type of sample; plant-based supplements were dominated by inorganic 

As, whereas for algal-based samples inorganic As accounted for just 15% of the total on 

average. Based on the recommended dose of the supplements, daily inorganic As 

exposure was calculated to be up to 13.0 µg day-1 (4.14 g day-1 of Chuan Xin Lian 

containing 5000 µg kg-1 total As), which for a 60 kg adult would provide 72% of the 0.3 µg 

kg b.w.-1 day-1 BMDL01/MRL (ATSDR, 2007; EFSA, 2009).  

1.5 Arsenic tolerance mechanisms 

Arsenic is a highly toxic element, but is also ubiquitous in the environment, and so As 

tolerance mechanisms are present in virtually all organisms. However, there are some 

exceptions and As-hyperaccumulating plants including the Chinese brake fern Pteris 

vittata (Ma et al., 2001) have been identified, as well as dissimilatory arsenate-reducing 

microbes which use arsenate as an electron donor in respiration (for review see 

Oremland & Stolz, 2003). Recent reports that a bacterium can survive using As instead of 

phosphorus (Wolfe-Simon et al., 2011) have since been refuted, as DNA extracted from 

strain GFAJ-1 was found to contain phosphorus (Erb et al., 2012; Reaves et al., 2012). 



14 
 

1.5.1 Reduction 

It may seem paradoxical for arsenate to be reduced to arsenite which is more toxic (see 

Section 1.3) however, the detoxification mechanisms of methylation and complexation 

both require As to be present in reduced form. Arsenate can be reduced to arsenite non-

enzymatically by glutathione (GSH), but it is thought that this occurs too slowly to be 

physiologically relevant (Zhao et al., 2009). 

Arsenate reductases (ARs) have been extensively studied in micro-organisms. Disruption 

of arsC from Escherichia coli and ACR2 in yeast (Saccharomyces cerevisiae) resulted in 

arsenate sensitivity (Mukhopadhyay & Rosen, 1998; Mukhopadhyay & Rosen, 2002). 

Although structurally unrelated, both ArsC and ACR2 require GSH for arsenate reduction. 

ACR2 homologues bear structural similarity to the catalytic domain of the human Cdc25 

phosphatase. Expression of the catalytic domains of hCDC25B and hCDC25C in E. coli 

mediated arsenate reduction in the presence of GSH (Bhattacharjee et al., 2010). 

In mammals, there is an emerging model of adventitious arsenate reduction by 

phosphorolytic enzymes. Arsenylated compounds produced by these enzymes are 

reduced by various thiols liberating arsenite (Gregus et al., 2009; Németi & Gregus, 2009). 

This mechanism could explain arsenate reductase activity observed for a diverse range of 

enzymes including glyceraldehyde-3-phosphate dehydrogenase, mitochondrial ATP 

synthase, glycogen phosphorylase-a and purine nucleoside phosphorylase (Németi & 

Gregus, 2002; Gregus & Németi, 2005; Németi & Gregus, 2007; Németi et al., 2010). 

Arsenate reductases with homology to yeast ACR2 have been identified in plant species 

including Arabidopsis thaliana (Dhankher et al., 2006), rice (Duan et al., 2007), As-tolerant 

Holcus lanatus (Bleeker et al., 2006) and the As hyperaccumulator P. vittata (Duan et al., 

2005). Knockdown of AtACR2 expression using RNA interference (RNAi) was reported to 

increase sensitivity to arsenate, and cause over 10-fold higher As accumulation in shoots 

compared to wild-type (Dhankher et al., 2006). Additionally, an Arabidopsis knockdown 

mutant (caused by a T-DNA insertion in the AtACR2 promoter), was hypersensitive to 

arsenate and accumulated around 6-fold more As in the shoots (Nahar et al., 2012). 

However, T-DNA insertion lines of AtACR2 characterised by Liu et al. (2012) accumulated 

similar concentrations of As in the shoots to the wild-type, and was only more tolerant to 
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arsenate under extremely low phosphate concentrations (1 µM). Furthermore, As 

speciation in Arabidopsis was unaffected by either knockout or overexpression of AtACR2. 

The authors propose that multiple pathways of arsenate reduction may exist in plants, as 

has been demonstrated for mammals. 

An arsenate-activated glutaredoxin from P. vittata, PvGRX5, conferred tolerance to 

arsenite and arsenate when expressed in E. coli strain AW3110 which lacks the ars operon 

(Sundaram et al., 2008). Expression of PvGRX5 in Arabidopsis increased tolerance to 

arsenite and arsenate, and significantly decreased As accumulation in leaves (Sundaram 

et al., 2009). Additionally, a cytosolic triosephosphate isomerase from P. vittata was 

found to increase arsenate tolerance when expressed in E. coli lacking ArsC 

(Rathinasabapathi et al., 2006). 

1.5.2 Arsenic methylation by mammals 

Soon after exposure to inorganic As, the methylated species MMA and predominantly 

DMA, were detected in human urine (Braman & Foreback, 1973). Early in vitro studies, 

performed mainly using hepatic tissue from mouse or rat, found that S-

adenosylmethionine (SAM) and GSH are required for methylation of inorganic As (Buchet 

& Lauwerys, 1985; Buchet & Lauwerys, 1988). SAM is considered to be the universal 

donor of methyl groups in mammalian systems. As3MT, As(III) methyltransferase, is 

responsible for catalysing the transfer of a methyl group from SAM to reduced As, and 

was first purified from rat liver cytosol (Lin et al., 2002). It is thought that the reductant 

power in vivo is provided by thioredoxin (Trx) which is regenerated by Trx-reductase and 

NADPH, as is the case in Staphylococcus aureus (Messens et al., 1999; Thomas et al., 

2004). Interestingly certain mammals including guinea pigs (Cavia porcellus) appear to be 

unable to methylate As, but do not appear to be any more As-sensitive (Aposhian, 1997; 

Healy et al., 1997). 

1.5.3 Arsenic methylation by microbes 

Since As3MT was identified as the enzyme responsible for converting arsenite to DMA in 

mammals (Thomas et al., 2004), over 200 homologues have been identified in archaea, 

fungi, metazoa and bacteria (Bhattacharjee & Rosen, 2007). Some have been termed 

ArsM as they are downstream of an arsR gene, encoding an As-responsive transcriptional 
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repressor which controls transcription of ars operons (Xu et al., 1998). The model E. coli 

arsRDABC operon also includes arsC; encoding an arsenate reductase, arsB; encoding a 

plasma membrane arsenite/proton antiporter, arsA; encoding an ATPase which fuses 

with ArsB to form an active arsenite pump, and arsD; encoding a chaperone that delivers 

arsenite to ArsAB  (Carlin et al., 1995; Lin et al., 2006). Expression of arsM, from the soil 

bacterium Rhodopseudomonas palustris, alone conferred arsenite tolerance to a strain of 

E. coli lacking enodogenous As resistance genes (Qin et al., 2006). ArsM proteins are able 

to sequentially methylate arsenite, with trimethylarsine gas as the end-product (Qin et 

al., 2009).  

1.5.4 Arsenic methylation by plants 

A gene containing the arsM family UbiE/Coq5 motif was found to be up-regulated under 

arsenate exposure (Norton et al., 2008). However, this gene lacks three conserved 

cysteine residues found in all proven As methyltransferases (Ye et al., 2012) and has not 

yet been characterised. Arsenic methylation has not been demonstrated in higher plants 

and is the focus of Chapter 3. 

1.5.5 Complexation 

In humans it is estimated that 99% of cellular arsenite is thiol-bound (Kitchin & Wallace, 

2005). Glutathione is the most abundant low molecular weight thiol in human cells, with 

concentrations ranging between 0.5 and 10 mM. At physiological pH, trivalent As species 

will form the As-glutathione conjugates As(III)-GS3, MMA(III)-GS2 and DMA(III)-GS. 

Detection of As-conjugates in biological samples is uncommon due to the extraction 

procedures used, and the instability and short half-life of these complexes (for review see 

Leslie, 2012). However, As(III)-GS3 and MMA(III)-GS2 were identified in the bile of rats 

treated with arsenite (Kala et al., 2000). See Section 1.7.3 for transporters of As 

complexes in micro-organisms and animals. 

Phytochelatins (PCs) are heavy metal-binding peptides synthesised by plants from 

glutathione, and have the general structure of (γ-Glu-Cys)n-Gly, where n can be as high as 

11, but generally lies between two and five (Cobbett, 2000). Exposure to either arsenate 

or arsenite induces PC-synthesis (Schmoger et al., 2000). Numerous As-PC and As-GS 

complexes have been identified in various plants, with As(III)-PC3 predominant in both 
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sunflower (Helianthus annuus) and H. lanatus (Raab et al., 2004; Raab et al., 2005). 

Additionally, significant proportions of As(III)-PC4 were detected in duckweed (Wolffia 

globosa) and Arabidopsis (Liu et al., 2010b; Zhang et al., 2012). Exposure of sunflower to 

MMA produced only trivalent arsenicals such as MMA(III)-(PC)2 (Raab et al., 2005). 

Transporters of As-complexes in plants are discussed in Section 1.8.3.  

1.6 Transport in plants 

In As-sensitive plants, reduction and conjugation prevent As translocation to the aerial 

tissues, presumably to protect the vital photosynthetic and reproductive tissues. 

However, the most common organic species, MMA and DMA, are readily translocated 

from roots to shoots. This has been observed in plants including tomato (Burlo et al., 

1999), turnip (Carbonell-Barrachina et al., 1999; Yao et al., 2009), pepper (Száková et al., 

2007), rice (Marin et al., 1992), radish (Tlustoš et al., 2002), cotton (Marcuswyner & Rains, 

1982) and Spartina patens and Spartina alterniflora (Carbonell-Barrachina et al., 1998). 

Perhaps most significantly, in a study of 46 plant species from 13 different families, Raab 

et al. (2007b) found that all but one species (Melica aristata) had shoot to root 

translocation factors (TFs) higher for DMA than that for arsenate; with the average of all 

species studied almost ten times higher.  

One explanation for the higher translocation efficiency of pentavalent DMA and MMA is 

that, unlike arsenite, they are not conjugated to thiols such as phytochelatins (Raab et al., 

2007b). A pentavalent DMA-GS complex was identified in cabbage (Brassica oleracea), 

but the high levels of sulphur in members of the Brassicaceae may mean they contain 

unusual As complexes (Raab et al., 2007c). Arsenic-thiol complexes are only stable at 

acidic pH, and so are proposed to be located in the vacuole (Sneller et al., 2000), which 

limits As translocation to the shoots. Arsenic-thiol complexes have not been identified in 

xylem or phloem sap (Pickering et al., 2000; Raab et al., 2005; Ye et al., 2010) and 

decreased complexation in PC-deficient cad1-3, and GSH-deficient cad2-1 Arabidopsis 

mutants, resulted in increased accumulation of As in shoots (Liu et al., 2010b). 

Complexation with PCs was also shown to decrease As translocation from shoots to rice 

grain. Foliar sprays with BSO (L-buthionine-sulphoxime), a potent inhibitor of γ-

glutamylcysteine synthetase, the first enzyme in the glutathione biosynthesis pathway, 
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decreased shoot As concentrations but increased As concentrations in husk and brown 

rice (Duan et al., 2011). Furthermore, the low levels of As-complexation in the As 

hyperaccumulator P. vittata is proposed as one mechanism resulting in the exceptionally 

high foliar concentrations of As in this species (Zhao et al., 2003; Su et al., 2008). 

Recently, the mechanisms of As transport to rice grain were investigated by feeding flag 

leaves and excised panicles (Carey et al., 2010; Carey et al., 2011; Zhao et al., 2012). 

Pulsing excised panicles with DMA resulted in ten-fold higher grain As concentrations 

than those treated with arsenite, arsenate or As(III)-GS3. Additionally, stem-girdling 

treatment revealed that 90% of arsenite is transported to developing grains via the 

phloem, compared to 55% for DMA (Carey et al., 2010). Feeding flag leaves with arsenite 

or arsenate resulted in very little remobilisation of As to developing grains, whereas 

treatment with MMA or DMA gave 100-fold higher grain As concentrations than the 

inorganic As treatments (Carey et al., 2011). Using radioactive 73As, Zhao et al. (2012) 

showed that inorganic As fed to flag leaves was exported to tissues in the order of  

stem > rachis > grain > other leaves. Furthermore, when roots were fed with 73As, only 

around 10% was translocated to the shoots, and only 3.3% of total 73As in aboveground 

tissues within the grain. Steam-girdling at the base of the panicle decreased grain 73As by 

97% (Zhao et al., 2012). 

1.7 Arsenic transporters in micro-organisms and animals 

Due to their different chemical properties, different As species are transported by diverse 

transporter families and will be discussed separately.  

1.7.1 Arsenate 

Arsenate (H2AsO4
-/ HAsO4

2-; see Figure S1.2 for dissociation) is a chemical analogue of 

phosphate (H2PO4
-/ HPO4

2-) and due to similar size; 2.66 Å and 2.52 Å respectively, shape 

and acid dissociation constants, is thought to be taken up by phosphate transporters. 

Both of the inorganic phosphate transporters in E. coli, Pst and Pit, are able to transport 

arsenate (Willsky & Malamy, 1980). Two high-affinity; Pho84 and Pho89, and three low-

affinity phosphate transporters; Pho87, Pho90 and Pho91, have been identified in yeast 

(Persson et al., 2003). A screen of yeast mutants identified pho84, and the pho86 pho87 
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double mutant as arsenate tolerant (Bun-ya et al., 1996). Pho86 is located in the 

endoplasmic reticulum (ER) and is necessary for targeting of Pho84 to the plasma 

membrane under phosphate-limiting conditions (Lau et al., 2000). 

Mammals possess five inorganic phosphate transporters that mediate transport of 

phosphate across the plasma membrane, which are classified into two families; type II 

and type III sodium/phosphate co-transporters (Virkki et al., 2007). Expression of the rat 

isoforms of all five transporters; rNaPiIIa, rNaPiIIb, rNaPiIIc, rPit1 and rPit2, in Xenopus 

laevis oocytes resulted in significant arsenate uptake in the absence of phosphate. 

Furthermore, when expressed in Xenopus oocytes, NaPi-IIb1 from zebrafish (Danio rerio) 

facilitated arsenate uptake, which was coupled with sodium ions and inhibited by 

phosphate (Beene et al., 2011). 

The presence of 1 mM inorganic phosphate in the medium decreased arsenate uptake of 

oocytes expressing the rat phosphate transporters by an average of 96.3% (Villa-Bellosta 

& Sorribas, 2010). The average concentration of phosphate in human plasma was found 

to be 1.15 ± 0.19 mM (Walser, 1961), therefore the physiological significance of arsenate 

transport by phosphate transporters in mammals is probably minimal. This is supported 

by the finding that arsenate uptake by mammalian cell lines is generally negligible 

compared to arsenite (Hirano et al., 2003), apart from when phosphate-free culture 

medium is used (Huang & Lee, 1996). However, one of the transporters, rNaPiIIb, 

displayed a much higher affinity for arsenate and is highly expressed in enterocytes, so 

may be involved in uptake of ingested arsenate (Villa-Bellosta & Sorribas, 2010).  

1.7.2 Arsenite 

The first arsenite transporter to be identified was the glycerol facilitator from E. coli, GlpF. 

Arsenite uptake in the glpF mutant is reduced by 80% (Meng et al., 2004). In solution 

arsenite is present as arsenous acid [As(OH)3] which is an analogue of glycerol. GlpF 

belongs to the major intrinsic protein (MIP) superfamily of aquaporins. Aquaporins 

facilitate diffusion of small neutral solutes across membranes, and as they are not 

coupled to an energy source facilitate bi-directional transport of substrates depending on 

the concentration gradient. In yeast, Fps1, a homologue of GlpF, was also shown to be 

permeable to arsenite (Wysocki et al., 2001). 
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Aquaporins AQP7 and AQP9, from mouse (Mus musculus), rat (Rattus norvegicus) and 

man (Homo sapiens), have been shown to transport arsenite when heterologously 

expressed in yeast or Xenopus oocytes (Liu et al., 2002; Liu et al., 2004b; McDermott et 

al., 2010). However, arsenite permeability is not a common feature of all mammalian 

aquaporins, and arsenite transport was not observed for hAQP3 or hAQP10 (Liu et al., 

2004b). Additionally, expression of zebrafish AQP3, AQP3l, AQP9a, AQP9b and AQP10 in 

Xenopus oocytes facilitated uptake of arsenite (Hamdi et al., 2009). 

Interestingly, uptake of arsenite by yeast lacking Fps1 (fps1Δ) in the absence of glucose 

was only reduced by 25%, and arsenite uptake was inhibited by glucose, galactose, 

fructose and mannose. Yeast has 18 hexose permeases, and expression of HXT1, HXT3, 

HXT4, HXT5, HXT7 or HXT9 restored arsenite transport in strain HD300; which lacks all 

endogenous hexose transporters (Liu et al., 2004a). The glucose transporter GLUT1, 

isolated from either rat or human, was also able to transport arsenite when expressed in 

yeast and Xenopus oocytes (Liu et al., 2006a).  

Transport of arsenite by hexose transporters may seem strange, but polymerisation of 

three arsenous acid [As(OH)3] molecules is predicted to form a six-membered ring with 

structural similarity to glucose (Meng et al., 2004). Alternatively, the binding site of 

hexose transporters may be occupied by two or three arsenite monomers (Liu et al., 

2006a). Lastly, mammalian glucose transporters are proposed to facilitate water transport 

(Fischbarg et al., 1990), and so arsenite may be transported via the water-translocation 

pathway (Liu et al., 2006a). 

Members of the organic anion transporting polypeptide (OATP) family have also been 

implicated in arsenite transport in humans. Expression of OATPB in the human colon 

adenocarcinoma Caco-2 cell line was upregulated under arsenite treatment, and silencing 

OATPB caused a significant decrease cellular arsenite accumulation (Calatayud et al., 

2012). Expression of OATPC in the human embryonic kidney HEK-293 cell line significantly 

increased uptake of arsenite and arsenate, although the difference was greater for 

arsenite treatment (Lu et al., 2006). 

Micro-organisms also possess two families of arsenite efflux transporters. Members of 

the ArsB family are widespread in prokaryotes, whereas Acr3 members have been 
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identified in bacteria, archaea, fungi and the As-hyperaccumulating fern P. vittata 

(Wysocki et al., 1997; Rosen, 1999; Fu et al., 2009; Indriolo et al., 2010). ArsB from E. coli 

is best characterised and is an arsenite/proton antiporter, but can fuse with ArsA to form 

an ATP-driven arsenite pump (Dey & Rosen, 1995). Acr3 transporters belong to the 

bile/arsenite/riboflavin transporter (BART) superfamily (Mansour et al., 2007). Acr3 from 

yeast is best characterised, and is an arsenite/proton antiporter (Maciaszczyk-Dziubinska 

et al., 2011). 

1.7.3 Methylated arsenic 

Aquaporins have also been shown to transport methylated As species. Interestingly, yeast 

expressing hAQP9 accumulated significantly more trivalent MMA [MMA(III)] than arsenite 

(Liu et al., 2006b). Furthermore, expression of hAQP9 in Xenopus oocytes resulted in 

uptake of pentavalent MMA and DMA. Uptake of MMA and DMA decreased with 

increasing medium pH, demonstrating that the undissociated, neutral forms of MMA and 

DMA are the substrates of hAQP9 (McDermott et al., 2010). Expression of zebrafish AQP3l 

and AQP10 facilitated significant uptake of MMA(III) in Xenopus oocytes (Hamdi et al., 

2009). However, yeast Fps1 was not permeable to trivalent MMA, suggesting that 

arsenite transport is not a predictor of permeability to trivalent MMA (Liu et al., 2006b). 

The mammalian glucose transporter, GLUT1 also facilitated uptake of trivalent MMA 

when expressed in Xenopus oocytes, but unlike arsenite, MMA(III) transport was not 

inhibited by glucose (Liu et al., 2006a). Site-directed mutagenesis in the rat isoform to 

increase water permeability also increased MMA(III) uptake (Jiang et al., 2010). This 

suggests that water and MMA(III) share a common transport mechanism that differs from 

that of sugars, and possibly arsenite (Liu et al., 2006a; Jiang et al., 2010).  

1.7.4 Conjugated arsenic 

Once chelated to glutathione, As-GS complexes are transported into the vacuole or out of 

the cell by members of the ATP-binding cassette (ABC) transporter superfamily. In yeast 

arsenite-glutathione complexes are transported into the vacuole by Ycf1 (Ghosh et al., 

1999). Ycf1 belongs to the multidrug resistance-associated protein (MRP) subfamily of 

ABC transporters. Ycf1 has been found to mediate the transport of complexes such as 

cadmium Cd(II)-GS2; mercury Hg(II)-GS2; lead Pb(II)-GS2; selenium Se(IV)-GS2 and 
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antimony Sb(III)-GS3 in addition to arsenite As(III)-GS3 (Ghosh et al., 1999; Gueldry et al., 

2003; Song et al., 2003; Prévéral et al., 2006; Lazard et al., 2011).  

Humans possess nine MRP members, also known as ABCC transporters, of which 

MRP1/ABCC1 and MRP2/ABCC2 are best characterised (Leslie, 2012). ABCC1 and ABCC2 

both transport As(III)-GS3 and MMA(III)-GS2 (Kala et al., 2000; Leslie et al., 2004; Carew et 

al., 2011). ABCC2 is highly expressed in hepatocytes and is proposed to have a critical role 

in transporting As-conjugates, including As(III)-GS3 and MMA(III)-GS2 into the bile for 

excretion (Kala et al., 2000).  

1.8 Arsenic transporters in plants 

1.8.1 Arsenate 

Arsenate, as a chemical analogue of phosphate, is thought to be taken up by phosphate 

transporters at the root surface. Indirect evidence for this theory comes from studies 

reporting the inhibition of arsenate uptake by phosphate (including: Ullrich-Eberius et al., 

1989; Abedin et al., 2002b), and increased arsenate tolerance of Arabidopsis phosphate 

transporter mutants (Shin et al., 2004; Gonzalez et al., 2005; Catarecha et al., 2007). 

Additionally, arsenate represses phosphate starvation responses in Arabidopsis, possibly 

through a shared arsenate/phosphate signalling pathway (Catarecha et al., 2007). 

Furthermore, arsenate tolerance in H. lanatus appears to involve post-translational 

modification of the high-affinity phosphate transporter system (Meharg & Macnair, 1990; 

Macnair et al., 1992; Meharg & MacNair, 1992; Meharg et al., 2013), and phosphate 

transporters in P. vittata appear to have a higher affinity for arsenate than those from 

non-tolerant species (Wang et al., 2002; Poynton et al., 2004). 

Evidence for the uptake of arsenate by phosphate transporters in rice came from Wu et 

al. (2011) who found that in hydroponic culture, overexpression of the high-affinity 

phosphate transporter OsPT8 significantly increased concentrations of both arsenate and 

arsenite in roots, shoots and xylem sap compared to wild-type when exposed to arsenate. 

Additionally, mutation in OsPHF1 (phosphate transporter traffic facilitator1) significantly 

decreased root uptake of 33P and arsenate compared to the background, an OsPHR2-

overexpression line (Wu et al., 2011). 
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Uptake kinetics revealed that OsPT8 has a high affinity for both phosphate and arsenate 

(Wu et al., 2011). Furthermore, arsenate induced significant inward currents, similar to 

those for phosphate, measured by two-electrode voltage clamp of Xenopus oocytes 

expressing the high-affinity phosphate transporter from barley HvPht1;1, (Preuss et al., 

2011). However, As concentrations in grains and straw of OsPT8-overexpression lines 

grown in flooded soils were no different to wild-type, suggesting that the phosphate 

transport pathway makes little contribution to As accumulation in rice grain grown under 

flooded paddy conditions (Wu et al., 2011). 

1.8.2 Arsenite 

The transporters responsible for the uptake, and transport to the stele for xylem loading, 

of silicon in rice roots were identified as OsLsi1 and OsLsi2 respectively (Ma et al., 2006; 

Ma et al., 2007a). Casparian strips present in the endodermis and exodermis of rice roots 

prevent the apoplastic flow of solutes to the vascular tissue. Therefore the localisation of 

OsLsi1 to the distal plasma membrane, and OsLsi2 to the proximal plasma membrane, of 

exodermal and endodermal cells permits effective transcellular transport of Si (Ma et al., 

2007a). Based on sequence similarity, OsLsi1 was identified as a member of the MIP 

superfamily, belonging to the Nodulin26-like intrinsic protein (NIP)-subfamily and is also 

known as OsNIP2;1. OsLsi2 is an active efflux transporter with no similarity to OsLsi1, and 

instead shares low sequence similarity with the arsenite efflux transporter, ArsB from E. 

coli (Meng et al., 2004; Ma et al., 2007a).  

Due to the similar size, shape and charge of arsenous acid [As(OH)3] and silicic acid 

[Si(OH)4], it was hypothesised that Si transporters were also able to transport arsenite. 

Transport activity of OsLsi1 for arsenite was confirmed through heterologous expression 

in Xenopus oocytes and yeast, and lsi1 and lsi2 mutant shoots contained 71% and 25% As 

compared to wild-type respectively (Ma et al., 2008). Expression of OsLsi1 sensitised 

yeast to arsenite, but intriguingly increased tolerance to arsenate. This is due to the fact 

that OsLsi1 facilitates bi-directional arsenite transport, and so facilitated the diffusion of 

arsenite resulting from arsenate reduction. OsLsi1 was found to be mediate arsenite 

efflux from rice roots after arsenate exposure in hydroponic culture (Zhao et al., 2010b). 
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Other members of the NIP subfamily of aquaporins in rice; OsNIP1;1, OsNIP2;2 (Lsi6), 

OsNIP3;1 and OsNIP3;2, have also shown arsenite transport in Xenopus oocytes or yeast 

(Bienert et al., 2008; Ma et al., 2008; Mitani et al., 2008). In Arabidopsis, AtNIP1;1, 

AtNIP1;2, AtNIP5;1, AtNIP6;1 and AtNIP7;1 have demonstrated permeability to arsenite in 

Xenopus oocytes or yeast, and also by increased arsenite tolerance of atnip1;1 and 

atnip7;1 mutants  (Bienert et al., 2008; Isayenkov & Maathuis, 2008; Mitani et al., 2008; 

Kamiya et al., 2009; Mitani-Ueno et al., 2011). 

Recently, Mosa et al. (2012) demonstrated that members of the plasma membrane 

intrinsic proteins (PIP)-subfamily of aquaporins are also involved in arsenite transport in 

rice. Expression of OsPIP2;4, OsPIP2;6 and OsPIP2;7 resulted in arsenite accumulation in 

Xenopus oocytes. Additionally, Arabidopsis expressing OsPIP2;4, OsPIP2;6 and OsPIP2;7 

were more tolerant to arsenite, although root and shoot total As content was not 

significantly different from wild-type. Although OsPIP1;2 and OsPIP1;3 showed no 

arsenite transport in Xenopus oocytes, root expression of all five PIP genes studied was 

significantly down-regulated during short-term exposure (12 hours) to 100 µM arsenite. 

Although no homologues of the yeast arsenite effluxer, ACR3 are found in higher plants 

such as Arabidopsis and rice, the As-hyperaccumulating fern P. vittata expresses two 

similar genes; PvACR3 and PvACR3;1 (Indriolo et al., 2010). Gametophytes of P. vittata 

with reduced expression of PvACR3 were more sensitive to arsenite than both wild-type, 

and those with decreased expression of PvACR3;1. Additionally, arsenite and arsenate 

treatment upregulated expression of PvACR3 in gametophytes, whereas expression of 

PvACR3;1 was unaffected by As treatment. PvACR3 is localised to the tonoplast, and so is 

proposed to mediate transport of arsenite into the vacuole (Indriolo et al., 2010). 

Recently the gene encoding yeast ACR3 (ScACR3) was introduced into Arabidopsis and 

rice (Ali et al., 2012; Duan et al., 2012). In Arabidopsis, expression of ScACR3 resulted in 

increased tolerance to arsenite and arsenate of transgenic protoplasts, seedlings grown 

on agar plates and hydroponically-cultured mature plants (Ali et al., 2012). ScACR3 

localised to the plasma membrane, and increased As efflux of protoplasts and roots 

treated with arsenate. Expression of ScACR3 did not significantly affect the concentration 

of As in tissues of transgenic Arabidopsis, but did affect As partitioning, with an increase 
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translocation factor (TF) which is the ratio of As in the shoot to root (Ali et al., 2012). Very 

similar results were observed for Arabidopsis transformed with PvACR3 (Chen et al., 

2013b). 

Expression of ScACR3 in rice resulted in some phenotypic differences compared to 

Arabidopsis (Duan et al., 2012). Root efflux of arsenite was significantly increased by 

expression of ScACR3, however, As concentrations in roots and shoots were significantly 

lower than in the wild-type, with no difference in As translocation. Most importantly, As 

concentrations in ScACR3-expressing straw, flag leaves, husks and brown rice grains were 

significantly decreased compared to wild-type (Duan et al., 2012). Therefore introduction 

of ACR3 genes could be utilised to decrease As concentrations in edible crops, or to 

increase As-accumulation for phytoremediation (Chen et al., 2013b). 

1.8.3 Methylated arsenic 

DMA and MMA are the major organic As species present in the terrestrial environment. Li 

et al. (2009) recently discovered that OsLsi1 is also responsible for the uptake of 

undissociated pentavalent methylated arsenic species in rice roots. The lsi1 mutant lost 

around 80% uptake capacity for MMA and 50% for DMA. In contrast, mutations in lsi2 had 

little effect on uptake. Additionally, Xenopus oocytes expressing OsLsi1 accumulated 

significantly more MMA than control, water-injected oocytes. 

However, MMA and DMA have relatively low acid dissociation constants (pKa1) of 4.19 

and 6.14 respectively (Figure S1.2), and increasing the pH of the medium greatly 

decreased uptake of MMA and DMA by wild-type rice (Li et al., 2009a). The transporters 

responsible for the uptake of the dissociated forms of MMA and DMA have yet to be 

identified in plants, and are the subject of Chapter 5.  

1.8.4 Conjugated arsenic 

Arsenic-PC complexes are only stable under acidic conditions such as within the vacuole 

(Sneller et al., 2000). It was presumed that an ABC protein was responsible for the 

transport of these complexes into the vacuole (Bleeker et al., 2006), however the ABC 

superfamily is very large; with 131 members in Arabidopsis (Jasinski et al., 2003). Recently 

the major vacuolar arsenite-PC transporters were identified in Arabidopsis (Song et al., 

2010). AtABCC1 and AtABCC2 were identified from the sensitivity of the single mutants to 
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a sodium salt of MMA, however increased sensitivity to arsenate was only observed in the 

atabcc1 atabbc2 double mutant, indicating some functional redundancy (Song et al., 

2010). Intact vacuoles isolated from the Arabidopsis atabcc1 atabbc2 double mutant took 

up just 15% of the As(III)-PC2 complexes compared to wild-type vacuoles, demonstrating 

that these transporters are the major pathway for As(III)-PC accumulation in vacuoles. 

The low level residual As(III)-PC2 uptake was proposed to be mediated by AtABCC11 and 

AtABCC12; which show high homology to AtABCC1 and AtABCC2 (Song et al., 2010). ABC 

transporters generally show broad substrate specificity, and AtABCC1 and AtABCC2 were 

also found to be permeable to complexes of mercury, including Hg(II)-PC and Hg(II)-GS2 

(Park et al., 2012). The rice genome encodes 12 putative full-size ABC transporters 

belonging the ABCC/MRP subfamily (Jasinski et al., 2003) however, none of these have 

yet been characterised.  

1.9 Aims 

The two major objectives of this thesis were to determine the origin of methylated As 

species in plants, and to identify the transport pathway of these organic As species. The 

chemical properties of MMA and DMA mean that they are strongly affected by changes in 

pH, and so two distinct classes of plant transporters were investigated. Therefore the 

main aims of the thesis were: 

1. To determine whether plants are capable of methylating As under a range of 

conditions including nutrient stress and symbiosis with root-nodulating bacteria. 

2. To characterise the substrate specificity of rice aquaporins OsNIP1;1, OsNIP3;2 

and OsNIP3;3 using heterologous expression in Xenopus laevis oocytes. 

3. To investigate the contribution of the phosphate transport pathway to the uptake 

and translocation of MMA and DMA using rice mutants grown in hydroponic 

culture. 
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1.10 Supplementary information 

 

 

Supplementary Figure 1.1 Eh-pH diagram for aqueous inorganic As species, taken from Marini & 
Accornero (2007). Shaded areas represent uncertainty in relationships between As species under 
high pH and strongly reducing conditions.
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Supplementary Figure 1.2 Dissociation curves of arsenite (pKa = 9.22), arsenate (pKa1 = 2.21,
pKa2 = 6.95), MMA (pKa1 = 4.19, pKa2 = 8.77) and DMA (pKa = 6.14).
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2. General materials and methods 

 

All chemicals used were of analytical grade or better, and water used to make reagents 

was ultrapure (18.2 MΩ). All seeds were stored in the dark at 4°C before use. 

2.1 Analysis of total arsenic concentration 

2.1.1 ICP-MS: Agilent 7500ce 

From October 2009 to August 2012, total As concentration in digested materials was 

determined by ICP-MS (Agilent 7500ce; Agilent Technologies, Santa Clara, CA, USA). An 

autosampler (Cetac ASX-520; Teledyne Cetac Technologies, Omaha, NE, USA) was 

connected to the water-jacketed nebuliser of the ICP-MS. Samples were diluted 5-fold by 

the Agilent Integrated Sample Introduction System (ISIS). A solution of 250 ppb of mixed 

internal standard elements (Li6, Sc, Ge, Y, In, Tb, Bi) was mixed continuously with the 

diluted sample through a peristaltic pump. Signals at m/z 75 (As), 72 (Ge) and 35 (Cl) were 

collected with a dwell time of 0.5 seconds for As and Ge, and 0.2 seconds for chlorine. 

The possible polyatomic interference of 40Ar35Cl on m/z 75 was removed by the Agilent 

Octopole Reaction System operating in helium (He) gas mode. The As signal (m/z 75) was 

normalised by the germanium (Ge) signal (m/z 72) to correct any drift during analysis. 

Standards were made using a 1000 ppm As stock solution (Certipur®; Merck Millipore, 

Darmstadt, Germany) traceable to SRM (standard reference material) from NIST (National 

Institute of Standards and Technology) in 5% HNO3, to match the matrix of the samples. 

Blanks and check standards were repeated throughout the run of samples to ensure 

accuracy and precision of measurements, and assess any possible contamination or carry-

over. Limits of detection (LOD) and quantitation (LOQ) for As in digested plant material 

were 0.60 and 2.00 µg L-1 respectively (calculated from blank values: LOD = 3-fold, and 

LOQ = 10-fold blank). 

2.1.2 ICP-MS: PerkinElmer NexION 

From September 2012 onwards, total concentration of elements in digested materials 

was determined by ICP-MS (PerkinElmer NexION 300X; PerkinElmer, Waltham, MA, USA). 
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An autosampler (Cetac ASX-520; Teledyne Cetac Technologies, Omaha, NE, USA) was 

connected to the water-jacketed nebuliser of the ICP-MS via a oneFAST high-throughput 

sample introduction system (oneFAST; Elemental Scientific, Omaha, NE, USA). A solution 

of 25 ppb of mixed internal standard elements (Li6, Sc, Ge, Y, In, Tb, Bi) was mixed 

continuously with sample through a peristaltic pump.  

For analysis of total As concentration, the possible polyatomic interference of 40Ar35Cl on 

was removed by operating in Kinetic Energy Discrimination (KED) mode using He gas. The 

As signal (m/z 75) was normalised by the Ge signal (m/z 72) to correct any drift during 

analysis. For analysis of total boron (B) concentration, the B signals (m/z 10 and 11) were 

normalised by the lithium (Li) signal (m/z 6) to correct any drift during analysis. To limit 

contamination of B from borosilicate glass, all standards and reagents were made in 

plasticware. For analysis of total Ge concentration the Ge signal (m/z 72) was normalised 

by the yttrium (Y) signal (m/z 89).  

Standards were made using 5% HNO3, to match the matrix of the samples, and 1000 ppm 

stock solutions of the elements of interest (Certipur®; Merck Millipore, Darmstadt, 

Germany) traceable to SRM from NIST. Blanks and check standards were repeated 

throughout the run of samples to ensure accuracy and precision of measurements, and 

assess any possible contamination or carry-over. Limits of detection (LOD) and 

quantitation (LOQ) for As in digested plant material were 0.09 and 0.30 µg L-1 respectively 

(calculated from blank values: LOD = 3-fold, and LOQ = 10-fold blank). 

2.2 Statistical analysis 

 

Means, standard errors and t-tests were performed using Microsoft Excel (Redmond, WA, 

USA). ANOVAs were performed using GenStat (VSN International, Hemel Hempstead, UK). 

For ANOVA, when necessary data were transformed (log10 or square root) to homogenise 

sample variances. 
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3. Origin of methylated arsenic in plants 

3.1 Literature review 

3.1.1 Occurrence of methylated As in soils 

Arsenic speciation of soils is generally dominated by inorganic As, but MMA and DMA 

have been detected in orchard soils (Takamatsu et al., 1982), paddy fields (Takamatsu et 

al., 1982), acidic fens (Huang & Matzner, 2006) and cotton fields (Bednar et al., 2002a). 

Acids or chelating agents must be added to soil water extracts to prevent precipitation of 

oxidised iron compounds which can sorb soluble As. Infrequent detection of methylated 

As in soil waters may be due to sample preparation, as it was found that acidification with 

hydrochloric acid (HCl) preserved DMA peaks better  than the previously recommended 

chelator, EDTA (Bednar et al., 2002b; Zhao et al., 2013b).  

3.1.2 Occurrence of methylated As in plants 

A number of studies have reported finding methylated As species in plant samples. A 

comprehensive index of studies, including the plant species analysed and the As species 

determined, originally compiled by Meharg and Hartley-Whitaker (2002) and Panda et al. 

(2010), updated to contain all studies up until September 2013 can be found in 

Supplementary Table 3.1. However the occurrence of organic As species in plants alone 

does not provide proof for the existence of an As-methylation pathway in planta. 

After indications that phosphate (and nitrate) deficiency increase As-methylation in 

marine algae, Nissen and Benson (1982) reported that methylated As species were 

detected in phosphate and nitrate deficient tomato plants (Solanum lycopersicum); and 

to a lesser extent in those deficient in phosphate only. The majority of methylated species 

were detected in the leaves of plants from both treatments. Leaves contained mostly 

DMA, roots primarily contained MMA, and shoots were intermediate; containing roughly 

equal proportions of the two species. The authors discounted the possibility that the 

methylated As originated from microbes associated with the roots, as there were 

considerable amounts of methylated As in the leaves. However, As speciation was 

determined by 2D-chromatography which is difficult to interpret, and as plants were 

grown under non-sterile conditions methylation by microbes cannot be ruled out. Also 
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the high translocation efficiency of DMA is now well-established (see Section 1.6), and so 

methylated As taken up from the growth medium would be found predominantly in 

leaves. 

Significant concentrations of methylated As was detected in moso bamboo (Phyllostachys 

pubescens Mazel) shoots in a market basket survey of seven Chinese provinces (Zhao et 

al., 2006). Methylated species were not detected in any of the 21 other edible terrestrial 

plants sampled, including tomato. Inorganic As was generally predominant, but in one 

sample DMA accounted for 71% of total As. DMA was detected in all samples analysed 

whereas MMA was only present in seven of 15 samples. The authors propose this is 

because MMA is an intermediate during the methylation process. Interestingly winter 

bamboo shoots, which grow underground, all contained a high proportion of DMA, 

whereas DMA was only present in one of three samples of spring bamboo shoots which 

grow aboveground. Organic species were not detected in soil samples taken from one of 

the bamboo farms (Zhao et al., 2006). However, this may be because the concentration 

was below detection limits, or due to low extraction efficiency. High proportions of 

methylated As species were also reported in the aboveground tissues of red clover 

(Trifolium pratense) growing on an arsenopyrite vein in Austria. Unlike the other plant 

species investigated T. pratense was found to contain a high proportion of methylated 

species (62%), of which MMA was predominant. The authors proposed that the close 

association with symbiotic bacteria in Fabaceae may influence As methylation (Geiszinger 

et al., 2002).  

3.1.3 Occurrence of methylated As in rice 

Arsenic speciation in rice grain is dominated by inorganic As and DMA, but their 

proportions are highly variable, with inorganic As accounting for 11 to 91% of total grain 

As (Heitkemper et al., 2001). Low proportions of other As species including MMA and 

Tetra are also occasionally detected, but usually only in samples with abnormally high As 

concentrations (Batista et al., 2011; Hansen et al., 2011; Kuramata et al., 2011). Arsenic 

speciation in rice grains shows considerable genotypic and geographical variation (Norton 

et al., 2009b; Pillai et al., 2010; Kuramata et al., 2013; Lei et al., 2013). Based on 

differences in grain As speciation, Zavala et al. (2008) proposed that rice be split in to two 

groups; inorganic or DMA type. Rice produced in the USA, China and Australia was 
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categorised as DMA type, whereas rice from the rest of Asia and Europe was classified as 

inorganic type. The authors proposed that these differences were due to different 

capacities for As methylation between the regional cultivars.  

3.1.4 Arsenic methylation in vitro 

Cullen et al. (1989) reported detecting 4% DMA in cell suspension cultures of Madagascar 

periwinkle (Catharanthus roseus) treated with MMA for 12 days. The majority of As 

remained as MMA, however 1% inorganic As was also detected. Exposure to DMA 

resulted in 12% of the total As present as MMA, with ‘traces’ of inorganic As and 

trimethylarsenicals and the majority remaining as DMA. However the authors do not 

provide any detailed information on the As speciation data (replicates, total As, extraction 

efficiency etc.) or the analytical method used. 

Arsenic methylation by cell extracts of bentgrass, Agrostis capillaris (formerly known as 

Agrostis tenuis), has been also been reported (Wu et al., 2002). Plants were grown 

hydroponically with or without arsenate, and cell extracts were obtained from plants 

after three days exposure. Arsenic methyltransferase activity was then measured in the 

cell extracts with an assay using 3H-radiolabelled SAM. Arsenic methylation activity was 

detected in leaf extracts from plants exposed to arsenate, with lower activity in control 

plants not exposed to As. Root extracts showed low activity in both treatments. In leaf 

extracts MMA was the predominant early product, but during longer assay times DMA 

accumulation exceeded that of MMA. The authors suggest that arsenate is taken up by 

roots and reduced to arsenite before methylation in leaves. 

However the authors did not describe how often the nutrient solution was changed and 

significant microbial, and possibly algal, growth would occur during the four week growth 

period. Furthermore the cell extraction and protein fractionation procedures undertaken 

appear to make no attempt to exclude proteins not originating from bentgrass. The 

authors concede that methyltransferases may incorporate 3H-SAM into compounds other 

than methylated As, and ‘background methylation’ was substantial in assays conducted 

without arsenite using extracts of plants not exposed to As. Finally, despite the method 

being based on the determination of 3H-radioactivity, there was no evidence that the 

methylated As compounds actually contained 3H. 
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3.1.5 Arsenic methylation by transgenic rice 

Recently an arsM gene from the soil bacterium Rhodopseudomonas palustris was 

introduced into rice (Meng et al., 2011). When exposed to arsenite, roots of the 

transgenic plants did contain small quantities of MMA and DMA; however inorganic As 

was still predominant accounting for over 99% of total As. Interestingly methylated As 

was not detected in shoots of the transgenic plants, however significantly more volatile 

As (presumed to be TMA(III) but not identified) was collected in chemotraps from plants 

expressing arsM. In all hydroponic experiments MMA and DMA were not detected in the 

wild-type plants, however significant proportions of DMA were present in wild-type field-

grown grain and husks; accounting for 14.1 and 7.6% of total As respectively. 

Overall rice expressing arsM contained significantly lower total As concentrations in roots, 

evolved 10-fold more volatile As, and had significantly lower concentrations of arsenite 

and arsenate in grain and husk. The amount of volatile As collected amounted to just 

0.06% of plant total As, however some volatile As may have been lost from the 

chemotraps when the nutrient solution was renewed. Therefore although only low levels 

of As methylation were observed, these results provide a promising method of reducing 

As accumulation in rice (Meng et al., 2011).  

3.2 Aims 

Therefore, the aim of the experiments within this chapter was to determine whether As 

methylation occurs within plants, or if methylated As species are taken up by plants from 

the surrounding medium.   
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3.3 Materials and methods 

 

Generally, plants were grown under axenic conditions and exposed to different As species 

in the growth medium until harvest. Any replicates contaminated with fungi or bacteria 

were discarded and excluded from analysis. Arsenic speciation of the root and shoot 

tissues was determined by HPLC-ICP-MS (see Section 3.3.6). Growth conditions used for 

all rice experiments were 27°C/20°C day/night temperatures, 14-h photoperiod with a 

light intensity of 300 μmol m-2 s-1. Tomato and red clover plants were grown under a 

constant temperature of 22°C, 16-h photoperiod with a light intensity of 250 μmol m-2 s-1. 

3.3.1 Axenically-grown rice 

Obtaining sterile rice seedlings was problematic and so Plant Preservative Mixture™ 

solution (PPM™; Plant Cell Technology, Washington, DC, USA) was included in the 

solution to germinate seedlings after seed sterilisation, but was not added to the agar 

medium. 

Rice seed (Oryza sativa cv. Nipponbare) were de-husked and sterilised by washing twice 

with 70% (v/v) ethanol, followed by 30 minutes in 1% (v/v) active sodium hypochlorite 

(NaClO). Seed were washed thoroughly with sterile water and left to germinate in 1% 

(v/v) PPM™ solution for 5-7 days in the growth conditions for rice given above. After 

germination, 4 seedlings were placed on full-strength Yoshida nutrient solution [1.43 mM 

NH4NO3, 0.32 mM NaH2PO4·2H2O, 0.51 mM K2SO4, 0.10 mM CaCl2·2H2O, 1.64 mM 

MgSO4·7H2O, 9.47 µM MnCl2·4H2O, 0.075 µM (NH4)6Mo7O24·4H2O, 0.02 mM H3BO3, 

0.15 µM ZnSO4·7H2O, 0.16 µM CuSO4·5H2O, 0.04 mM FeCl3·6H2O, 0.07 mM citric acid, pH 

5.5; Yoshida et al. (1976)] set with 1% (w/v) agar in coupled Magenta™ vessels (Sigma, St. 

Louis, MO, USA) and were grown under the same conditions until harvest.  To investigate 

the effect of nutrient deficiency, concentrations of nitrogen (N) and phosphorus (P) in the 

growth medium were decreased from 2.86 and 0.32 mM in the control Yoshida medium, 

to 200 and 10 μM respectively.  

3.3.2 Axenically-grown tomato  

Tomato (cv. Alicante) seed were sterilised in 1% (v/v) active NaClO for 10 minutes, 

washed thoroughly with sterile water and 4 seed were placed on half-strength Murashige 
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and Skoog (MS) growth medium [9.4 mM KNO3, 10.3 mM NH4NO3, 0.62 mM KH2PO4, 

1.5 mM CaCl2·2H2O, 0.75 mM MgSO4·7H2O, 0.05 mM H3BO3, 0.05 mM Na2EDTA·2H2O, 

0.05 mM FeSO4·7H2O, 0.05 mM MnSO4·H2O, 0.05 µM CoCl2·6H2O, 0.05 µM CuSO4·5H2O, 

0.52 µM Na2MoO4·2H2O, 2.5 µM KI, 15.0 µM ZnSO4·7H2O, pH 5.8; Murashige and Skoog 

(1962)] set with 1% (w/v) agar in each Phytatray™ II box (Sigma). Nutrient deficiency was 

also investigated in tomato, and the concentrations of N and P were also reduced to 200 

and 10 μM, from 30.0 and 0.62 mM in the control half-strength MS medium respectively. 

3.3.3 Red clover with nodulation 

The experiments with red clover were conducted as a modified most probable number 

plant-infection assay (MPN; Vincent, 1970). Red clover seed were sterilised in 95% (v/v) 

H2SO4 for 5 minutes, rinsed thoroughly with sterile water and germinated on 1% (w/v) 

agar for 3 days. One germinated seedling was placed on each slope of sterile quarter-

strength Hewitt’s nutrient solution [0.37 mM MgSO4·7H2O, 0.33 mM Na2HPO4, 1.0 mM 

CaCl2·6H2O, 0.50 mM K2SO4, 6.25 µM NaFeEDTA, 2.5 µM NaCl, 1.25 µM H3BO3, 0.25 µM 

MnSO4·4H2O, 0.04 µM ZnSO4·7H2O, 0.03 µM CuSO4·5H2O, 0.005 µM CoSO4·6H2O, 

0.002 µM (NH4)6Mo7O24·4H2O, pH 6.5; Hewitt (1966)], lacking major nitrogen sources, set 

with 1.5% (w/v) agar in boiling tubes. After one week, 100 μL of Rhizobium 

leguminosarum (bv. trifolii) cultured in yeast extract-mannitol broth (YM; 54.89 mM 

mannitol, 2.87 mM K2HPO4, 0.81 mM MgSO4·7H2O, 1.71 mM NaCl, 39.64 mM CaCO3, 

0.04% (w/v) yeast extract; pH 6.8) was placed on each plant’s root system. Rhizobium 

were verified by culturing on YM agar with Congo red (54.89 mM mannitol, 2.87 mM 

K2HPO4, 0.81 mM MgSO4·7H2O, 1.71 mM NaCl, 0.04% (w/v) yeast extract, 1.5% (w/v) 

agar, 0.025% (w/v) Congo red; pH 6.8). Most rhizobia absorb the red dye weakly, whereas 

most other bacteria take it up strongly (Hirsch & Skinner, 1992). Control plants were 

grown on medium amended with 0.26 mM NH4NO3 and were inoculated with 100 μL 

sterile YM. Before harvest, nodule number was recorded and 4 or 5 plants with similar 

numbers of nodules were grouped together to form a single replicate for As extraction 

and speciation. 

3.3.4 Soil grown rice 

Soil was collected from a paddy field in Faridpur, Bangladesh and an arable field at 

Rothamsted, UK, sieved to 4 mm and air-dried. The Bangladeshi soil contained 34 mg kg-1 
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total As, and the UK soil (containing 11 mg kg-1 total As) was amended with 10 mg As kg-1, 

in the form of sodium arsenate (Na2HAsO4 · 7H2O). 150 g of each soil was weighed into 

coupled Magenta™ vessels, 25 mg NH4NO3 was added to all soils and 300 mg glucose was 

added to those in the glucose treatment. The soils were flooded with de-ionised water 

and incubated at 20°C for one month to induce reducing conditions. Autoclaving was 

carried out three times in total with week-long intervals at 20°C between autoclaving. 

After the second and third rounds of autoclaving, soil sterility was tested by spreading 

10 µL of standing water onto 1/10th tryptic soy agar (TSA; 0.3% (w/v) tryptic soy broth, 

1.5% (w/v) Bacto Agar) plates incubated at 25°C. After 5 days plates were inspected 

visually for the presence of microbial colonies. Rice (cv. Nipponbare) seed, dehusked and 

sterilised as above, were germinated in 1% (v/v) PPM™ solution for 14 days before 

planting in the flooded soils. After 42 days growing under the same conditions for rice 

described above, shoots were harvested and As extracted. Standing water above the soil 

was collected using a syringe. Pore water was collected by centrifuging 70 g soil for 10 

minutes at 3600 rpm. Both soil water samples were immediately acidified with 6 M HCl to 

keep the pH between 1-2, filtered through a sterile 0.2 μm filter, and immediately 

analysed for As speciation using HPLC-ICP-MS. 

3.3.5 Arsenic extraction from plant tissues for As speciation 

All the plants within one vessel were grouped together to form a single replicate (apart 

from red clover). After sufficient growth (30-38 days) plants were removed from agar and 

shoots, roots and remnants of the seed coat were separated using a scalpel. Shoots were 

rinsed with de-ionised water, blotted dry and weighed before grinding in liquid nitrogen 

using a mortar and pestle. Roots were rinsed with de-ionised water and submerged in 

250 mL ice-cold desorption solution (1 mM K2HPO4, 0.5 mM Ca(NO3)2, 5 mM MES, pH 6.0; 

Xu et al., 2007). After 15 minutes, roots were removed, blotted dry, weighed and ground 

in liquid nitrogen. The seed remnant was discarded. Arsenic speciation in the growth 

medium was measured by removing approximately 1 g of agar from the area beneath the 

root mat using a spatula. Finely ground shoots and roots, and agar samples were 

transferred to 30 mL vials with 20 mL of phosphate buffer solution (2 mM NaH2PO4, 

0.2 mM Na2-EDTA, pH 6.0), and sonicated for one hour at 100% ultrasound power 

(Fisherbrand FB11002; Thermo Fisher Scientific Inc., Waltham, MA, USA); keeping the 
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samples as cold as possible. Samples were then double-filtered through Whatman 40s 

and sterile 0.45 µm filters into 2 mL vials for analysis by HPLC-ICP-MS.  

3.3.6 Analysis of arsenic speciation  

Arsenic speciation in plant extracts and soil waters was determined using HPLC-ICP-MS 

(Agilent LC1100 series and Agilent ICP-MS 7500ce), as described by Li et al. (2009a) with 

modification: arsenite, arsenate, DMA and MMA were separated using method 1, and 

arsenite, MMA(III), MMA(V) and DMA were separated using method 2. Both methods use 

an anion-exchange column fitted with a guard column (Hamilton PRP X-100; Hamilton 

Company, Reno, NV, USA). For method 1 the mobile phase consisted of 6.6 mM 

NH4H2PO4, 6.6 mM NH4NO3, 0.2 mM EDTA and 3% methanol (pH adjusted to 6.2). For 

method 2 the same solution was used but diluted by 75% with deionised water. In both 

methods the mobile phase was run isocratically at 0.7 mL min−1. The outlet of the 

separation column was connected to the nebuliser of the ICP-MS, see Section 2.1.1. 

Germanium (Ge) was continuously mixed with the post-column solution to act as an 

internal standard. Arsenic species in the samples were quantified by external calibration 

curves with peak areas. Figure 3.1A gives an example chromatogram produced from 

mixed standards of arsenite, arsenate, MMA and DMA. 

3.3.7 NPOC analysis 

Total organic carbon (TOC) of pore water samples was measured as non-purgeable 

organic carbon (NPOC) by wet chemical UV oxidation (TOC-V WP; Shimadzu Corporation, 

Kyoto, Japan) by the Rothamsted Research Analytical Unit. 
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3.4 Results  

3.4.1 Investigating As methylation in rice 

Preliminary experiments found no difference in As speciation or concentration of rice 

exposed to arsenite or arsenate (Supplementary Figure 3.1) so all further experiments use 

arsenate only. Rice exposed to 10 μM arsenate under axenic conditions only contained 

inorganic As, predominantly arsenite, in roots and shoots (Figures 3.1B; 3.1C).  

 

 

Figure 3.1 Chromatograms obtained through HPLC-ICP-MS of A, standards containing 50 μg As L-1 

arsenite, DMA(V), MMA(V) and arsenate; and representative chromatograms of As speciation in 
extracts of rice (cv. Nipponbare) B, roots and C, shoots exposed to 10 µM arsenate under axenic 
conditions. cps = counts per second. 
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Therefore, due to the reports of Nissen and Benson (1982) that As methylation in tomato 

was increased by nutrient deficiency; rice plants were grown axenically and exposed to 

arsenate in growth medium with reduced concentrations of nitrogen (low N), phosphorus 

(low P) or both (low NP).  

 

 

However, deficiency of nitrogen, phosphorus or both nitrogen and phosphorus did not 

affect As speciation, and after exposure to arsenate only inorganic As was detected in rice 

tissues (Figure 3.2). Although nutrient deficiency did not induce As methylation, some 

differences in As concentrations of roots and shoots were observed. Shoots under the low 

NP treatment, and roots under the low N treatment, contained significantly lower As 

concentrations than control (P < 0.05). Additionally, shoot fresh weights were significantly 

decreased (P < 0.001) in all treatments with reduced nutrient concentrations compared to 

the control (Figure S3.2). 

Interestingly, the low N treatment significantly increased the root to shoot translocation 

factor (TF) of As compared to control (P < 0.001). The reason for this has not been 

investigated; however nitrogen deficiency may decrease the pool of GSH or PCs able to 

complex arsenite for sequestration in vacuoles. Non-chelated arsenite would then be 

translocated to the shoot more efficiently than in the control treatment, as has been 

demonstrated in Arabidopsis (Liu et al., 2010b). 
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Figure 3.2 Mean arsenic speciation of rice plants under nutrient deficiency exposed to 10 µM 
arsenate in axenic culture. Plants were grown in Magenta boxes containing Yoshida’s agar with full 
nutrients (Control), 200 μM N (Low N), 10 μM P (Low P), or 200 μM N and 10 μM P (Low NP); for 
30 days. Error bars represent SE (n = 2-4).
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To ensure that all of these findings were not due to lack of detection of methylated As 

species, rice was grown axenically in the presence of 5 μM pentavalent MMA or DMA. 

 

 

Analysis of root and shoot samples showed that under DMA treatment, shoots contained 

DMA only, whereas low concentrations of MMA, accounting for 17.8% of the total on 

average, were detected in roots (Figure 3.3; Table S3.2). MMA exposure resulted in As 

present in shoots predominantly as MMA, but also some MMA with trivalent As 

[MMA(III)] (8.6%) and arsenite (3.6%). The same three As species were present in roots 

but MMA(III) was predominant, accounting for 67.5% of the total As on average. 

Interestingly, MMA exposure significantly increased root fresh weight compared to 

control plants not exposed to As and those under DMA treatment (Figure S3.3; P < 0.001). 

The MMA stock solution used contained 2.5% arsenite as an impurity; however the DMA 

stock solution was pure and so MMA detected in roots of plants exposed to DMA may 

result from de-methylation. Li et al. (2009a) also detected trivalent MMA in rice roots, 

accounting for 13.6% of total As, after exposure to pentavalent MMA in hydroponic 

culture for 24 hours. Additionally, MMA was not detected in an extraction of the agar 

medium surrounding roots under DMA treatment (data not shown). 

All experiments with rice were conducted using Nipponbare, a japonica cultivar used to 

sequence the rice genome (Goff et al., 2002). Therefore an experiment was conducted 

using two other rice cultivars; Italica carolina another japonica, and Kasalath an indica, to 

Figure 3.3 Mean arsenic speciation in rice plants exposed to 5 μM MMA or DMA in axenic culture. 
Plants were grown in Magenta boxes filled with Yoshida’s agar for 30 days. Error bars represent
SE (n = 5).
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ensure that lack of As methylation is not a trait specific to Nipponbare. 

 

 

Methylated As species were not detected in roots or shoots of any of the rice cultivars 

exposed to arsenate under axenic conditions (Figure 3.4). There were however, 

differences in As uptake and translocation between the cultivars. The greatest of these 

was that the TF (ratio of shoot:root As concentration) of Nipponbare was significantly 

higher than that of Italica carolina and Kasalath (P < 0.001). Additionally, Italica carolina 

appears to be most sensitive to As, because unlike the other two cultivars, both root and 

shoot fresh weight were significantly decreased by arsenate compared to the As-free 

control (P < 0.001; Figure S3.4). 

3.4.2 Investigating As methylation in tomato and red clover 

Nissen and Benson (1982) reported that As methylation in tomato was increased by 

nutrient deficiency. However, reduced concentrations of N and P in the nutrient medium 

did not induce As methylation in axenically-grown rice (Figure 3.2). Therefore, As 

metabolism in tomato was investigated by exposing plants to arsenate under axenic 

conditions with reduced concentrations of N and P in the medium. 
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Figure 3.4 Mean arsenic speciation of different rice cultivars exposed to 10 µM arsenate in axenic 
culture. Nip = Nipponbare (japonica), Italica = Italica carolina (japonica) and Kas = Kasalath (indica). 
Plants were grown in Magenta boxes containing Yoshida’s agar for 30 days. Error bars represent SE 
(n = 5).
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However, once again only inorganic As was detected in plants exposed to arsenate (Figure 

3.5). For tomato, induced N and P deficiency generally resulted in significantly decreased 

total As concentrations in roots and shoots compared to control (P < 0.01), with the 

exception of shoots under low P treatment. An As-free control was included in the 

experiment to measure the effect of As on growth of tomato plants (Figure S3.5). The 

presence of arsenate in the nutrient medium had no effect on root weight, but did 

significantly decrease shoot fresh weight compared to the As-free control (P < 0.001). 

Interestingly, nutrient deficiency increased several fresh weight measurements. In 

particular, the low NP treatment resulted in significantly increased root fresh weight 

(mean 0.069 g in the control and 0.254 g in low NP treatment; Figure S3.5). Increased root 

growth to aid nutrient acquisition in response to deficiency is often observed, however 

shoots under low N and low NP treatments were also significantly larger than the control 

treatment (P < 0.001; Figure S3.6). Similarly to rice, the TF of As in tomato under low N 

treatment was also increased compared to control, however this difference was not 

significant (P = 0.09). 

Since methylated As species were not detected in axenically-grown rice or tomato, even 

under nutrient deficiency, As speciation of red clover plants was investigated. Geiszinger 

et al. (2002) reported very high proportions of MMA in red clover, and suggested that 

association with symbiotic root-nodulating bacteria may affect As speciation in the plants. 

Figure 3.5 Mean arsenic speciation of tomato plants exposed to 10 µM arsenate.  Plants were 
grown in Phytatray II™s filled with half-strength MS medium set with 1% agar, with full nutrients  
(Control), 200 μM N (Low N), 10 μM P (Low P), or 200 μM N and 10 μM P (Low NP); for 37 days. 
Error bars represent SE (n = 6).
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Inoculation of red clover plants with R. leguminosarum (bv. trifolii) resulted in an average 

of 5.3 ± 1.1  root nodules per plant. However the presence of root nodules had no 

significant effect on the total As concentration or As speciation in red clover, and only 

arsenite was detected in roots and shoots under both treatments (Figure 3.6). Inoculation 

with root-nodulating Rhizobium significantly increased root fresh weight (data not shown; 

P < 0.05) of red clover, most likely due to the presence of root nodules.  

A further experiment was conducted with red clover, as the previous study found only 

arsenite in root and shoots when plants were exposed to arsenate, showing a great 

capacity for As reduction. Additionally, root As concentrations were comparable to rice, 

and over four-fold higher than those for tomato (Figures 3.2, 3.5). Therefore, red clover 

was again grown with or without nodulation from R. leguminosarum, with 5 or 10 μM 

arsenate, or 5 μM DMA in the growth medium. An As-free control was also included to 

determine whether As influences nodule formation. 

Figure 3.6 Mean arsenic speciation of red clover plants exposed to 10 µM arsenate with (+Nod) or 
without (Control) inoculation with Rhizobium leguminosarum (bv. trifolii). Plants were grown in 
boiling tubes on slopes of quarter-strength Hewitt’s agar; the control treatment received 
ammonium nitrate, for 57 days. Error bars represent SE (n = 6).
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Again, no methylated As species were detected in plants exposed to arsenate (Figure 3.7). 

However, unlike the previous experiment, arsenate was present in shoots of plants in the 

arsenate treatments, accounting for 0-27% of the total As. Additionally, root As 

concentrations in the 10 μM arsenate treatment were not as high as found previously 

(Figure 3.6). Inoculation of plants with Rhizobium significantly decreased root As 

concentration in the 10 μM arsenate treatment (P = 0.015); which again is in contrast to 

the previous experiment. The reason for this discrepancy remains unclear. 

Only DMA was detected in plants in the DMA treatment, unlike rice roots which 

contained MMA after DMA exposure (Figure 3.3). However, concentrations of DMA in 

clover roots was very low (2 of 7 replicates actually had no detectable As species in root 

extracts) and so the products of de-methylation may be present in roots, but at extremely 

low concentrations. DMA was the only As species present in clover shoot extracts also, 

Figure 3.7 Mean arsenic speciation of red clover plants exposed to arsenic with (+Nod) or without 
(Control) inoculation with Rhizobium leguminosarum (bv. trifolii); the control treatment received 
ammonium nitrate. Plants were grown in boiling tubes on slopes of quarter-strength Hewitt’s agar 
for 57 days. Error bars represent SE (n = 5-7).
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although at higher, quantifiable, concentrations. In their study, Geiszinger et al. (2002) 

only sampled plant shoots. It is possible that red clover shows the same high level of 

translocation efficiency for MMA as DMA, so any MMA present in the soil solution would 

be quickly transported to the aerial tissues. 

The presence of 5 or 10 µM As in the medium had no effect on the number of nodules 

present on individual plant roots in the +Nod treatments (P = 0.231). Additionally, As 

treatment had no effect on shoot fresh weight (Figure S3.7; P = 0.307), and the only 

significant differences in root weights were between the control and +Nod treatments 

within the different As treatments, again most likely due to the presence of root nodules. 

3.4.3 Rice grown in flooded soil 

Having confirmed that plants are able to take up methylated As species if they are 

present in the growth medium, the formation of MMA and DMA in soil was investigated. 

Two soils were used; a Bangladeshi paddy soil (Faridpur; BGN) and a UK arable soil 

(Rothamsted: UK), and rice plants were grown under flooded conditions.  

 

 

Due to difficulty in removing roots from soil only rice shoots were analysed. Rice shoots 

grown in the Bangladeshi soil contained DMA (6.3% of the total As), and in the UK soil 

contained both MMA and DMA, accounting for 3.4% and 21.7% of the total As 

respectively (Figure 3.8; Table S3.3). Additionally soil pore water and standing water 
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Figure 3.8 Mean arsenic speciation in rice (cv. Nipponbare) and waters from 2 soils: BGN = 
Bangladeshi paddy soil and UK = UK soil. Plants were grown in Magenta boxes containing flooded 
soil for 57 days. Error bars represent SE (n = 5).
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collected at the end of the experiment also showed the presence of MMA and DMA; at 

higher concentrations in the UK soil than in the Bangladeshi soil.  

An attempt was made to sterilise the soils to act as a control treatment, however 

although soils appeared sterile after autoclaving and incubating three times, when this 

was checked again after plant growth, all replicates were found to be non-sterile. Also a 

further treatment included the addition of glucose to the soils, as it was hypothesised 

that this would promote microbial activity, and so increase As methylation (Figures S3.8; 

S3.9). Interestingly, the addition of glucose significantly increased shoot total As for both 

soils compared to the autoclaved and control treatments (P < 0.001). Standing and soil 

pore water total As concentrations were significantly increased by autoclaving for both 

soils (P < 0.001), and DMA and MMA concentrations in pore water were also significantly 

higher compared to the control treatment (P = 0.004 and P < 0.001 respectively). 

Interactions between the As speciation of rice shoots with soil pore and standing waters 

were investigated. The only significant relationship found was between DMA 

concentrations in standing water and rice shoots from the UK soil amended with glucose 

(Figure S3.10). 

Total organic carbon (TOC) was determined for the pore water samples (Figure S3.9), and 

was around 50 and 15-fold higher in the autoclaved samples compared to the control and 

glucose treatments for the Bangladeshi and UK soils respectively. Autoclaving is known to 

destroy soil structure and cause the release of organic carbon as well as manganese, N, P 

and sulphur (Berns et al., 2008). The increase in soluble essential nutrients may actually 

promote microbial growth and explain why As methylation was increased in the 

autoclaved treatment compared to the control. Additionally the breakdown of soil 

structure may modify the redox potential and increase the soluble, bioavailable fraction 

of As. Surprisingly the addition of glucose to the soils did not increase TOC in the pore 

water, however the long duration of soil incubation and plant growth (70 days in total) 

may mean that all the glucose added was respired by micro-organisms. 

Therefore although sterile soil was not achieved, it is clear that methylated As is formed 

in soils, and is taken up by plants.  
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3.5 Discussion 

 

Methylated As species were not detected in rice, tomato or red clover tissues exposed to 

arsenate under axenic conditions, even with nutrient deficiency or symbiosis with root-

nodulating bacteria (Figures 3.1; 3.2; 3.5; 3.6). Methylated As was detected however in 

rice plants exposed to MMA and DMA, demonstrating that plants are able to take these 

As species up when they are present in the growth medium (Figure 3.3; Table S3.2). MMA 

and DMA were also detected in rice shoots grown in flooded soil from Bangladesh or the 

UK, and were also present in the soil pore and standing waters (Figure 3.8).  

Furthermore, Arao et al., (2011) reported that addition of the antibiotic chloramphenicol 

to nutrient solution significantly decreased DMA formation under MMA treatment in 

hydroponic culture of rice. It is highly likely that microbial methylation explains the 

presence of methylated As species in plants cultured in non-sterile media reported 

previously (Nissen & Benson, 1982; Quaghebeur & Rengel, 2003; Raab et al., 2007a). 

Using GeoChip analysis, Lomax et al. (2012) found that arsM genes were highly abundant 

in a Bangladeshi paddy soil. 

Recently, several studies have reported an increase in MMA and DMA in soils after the 

addition of fertilisers with high organic matter contents such as dried distillers’ grain 

(DDG; Jia et al., 2012), biogas slurry (Jia et al., 2013b) and rice straw (Jia et al., 2013a). The 

addition of organic matter is thought to enhance As mobilisation through competition for 

sorption sites and by lowering the redox potential (Jia et al., 2013b). Additionally, 

increasing the organic matter content of 14 different paddy soils by addition of rice straw 

was found to increase the abundance of microbial arsM genes by an average of almost 

140% (Jia et al., 2013a).  

The results also suggest that the methyltransferase containing a UbiE/Coq5 motif found 

to be upregulated by arsenate exposure (Norton et al., 2008), does not function as an As 

methyltransferase in planta (Ye et al., 2012). When data from several market basket 

surveys were combined, the relationship between total grain As and the proportion of 

inorganic As varied greatly by region (Zhao et al., 2013a). Rice from Asia (including 

Bangladesh, India, China and Thailand) shows a strong linear relationship, whilst rice from 
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the U.S. displayed a hyperbolic pattern; reaching a maximum around 0.15 mg kg-1. Rice 

produced in Europe (including Italy, Spain and France) was more variable and displayed 

an intermediate relationship. Recent studies have found that differences in grain As 

speciation are due to environmental conditions, rather than genetic differences between 

cultivars. Norton et al. (2009a) grew 13 rice cultivars at sites in Bangladesh, India and 

China under normal field conditions and found that site had the biggest influence on grain 

DMA percentage. There were also significant effects of genotype and site by genotype 

interaction; however these contributed only slightly to grain As speciation in comparison 

to site. Therefore there is little evidence to support the classification of rice cultivars to 

DMA or inorganic type by Zavala et al. (2008). 

Although unable to further methylate MMA, rice roots clearly have a capacity to reduce 

MMA to trivalent MMA (Figure 3.3; Table S3.2). Interestingly, in humans MMA reduction 

is the rate-limiting step in As methylation (Zakharyan et al., 2001). Recently it was 

reported that rice plants are also able to reduce TMAO to volatile TMA gas (Jia et al., 

2012). Trivalent DMA is very unstable (Gong et al., 2001) which may explain the lack of 

detection of this As species in plants, although it has been found in human urine (Le et al., 

2000). Rice plants may even be able to demethylate As, as MMA was detected in roots 

after exposure to DMA (Figure 3.3; Table S3.2). MMA has also been detected in the As 

hyperaccumulators, P. vittata and Pteris cretica and As-tolerant Boehmeria nivea exposed 

to DMA in sand culture (Huang et al., 2008), and in radish (Raphanus sativus) grown in soil 

amended with DMA. De-methylation of DMA (Huang et al., 2007) and MMA (Yoshinaga et 

al., 2011) mediated by micro-organisms has also been observed in soils, however the 

significance of this process to the global As biogeocycle is not yet fully understood. 

The lack of methylated As species in red clover with nodulation from R. leguminosarum 

(Figures 3.6; 3.7) is unsurprising as a BLAST search (tBlastn) failed to find any genes with 

homology to arsM from Rhodopseudomonas palustris (accession number: NP_948900.1; 

Qin et al., 2006) in the genomes of Rhizobium species. However, the possibility cannot be 

excluded that As methylation by other symbiotic micro-organisms may result in 

accumulation of methylated As in the host plant. For example, Ultra et al., (2007) found 

elevated DMA concentrations in soil surrounding sunflower roots colonised with the 

arbuscular mycorrhizal (AM) fungus Glomus aggregatum. Furthermore, AM fungal 



50 
 

hyphae were found to facilitate transport of arsenate in a split-compartment pot 

experiment (Meding & Zasoski, 2008), and shoot DMA concentrations of maize (Zea 

mays) were higher in plants inoculated with the AM fungus G. mosseae compared to the 

uninoculated control (Yu et al., 2009). However rice plants inoculated with G. intraradices 

contained only inorganic As after exposure to arsenate for 10 days in sand culture (Chen 

et al., 2013a). Phosphate is transferred from AM fungi to the host in the form of 

polyphosphate, however polyarsenate is too unstable to be translocated in the same way 

(Smith et al., 2010). A further BLAST search (tBlastn) using the protein sequence of arsM 

from R. palustris (Qin et al., 2006) did not find any homologous genes in the genomes of 

members of the phylum Glomeromycota. However, difficulties in culturing AM fungi 

mean that these species are underrepresented in genetic databases. Further investigation 

into the contribution of AM fungi to the uptake of As from soils and As methylation is 

needed. 

  



51 
 

3.6 Conclusions 

 

Taken together, these results show that diverse plant species are unable to methylate 

inorganic As, and that these As species instead originate from soil micro-organisms. The 

high translocation efficiency MMA and DMA, coupled with suboptimal preservation of 

organic As species in soil water extracts, explains why methylated As species are more 

frequently detected in plants than soil.   

Geographical variation in As speciation in rice is likely to be caused by environmental 

factors, and possibly different microbial communities within the soil. Genotypic 

differences in As speciation in rice (Norton et al., 2009b; Pillai et al., 2010) are most likely 

due to variation in the uptake and/or translocation of methylated As. Undissociated 

pentavalent MMA and DMA are taken up by rice roots via Lsi1 (OsNIP2;1; Li et al., 2009a), 

and variation in the expression of OsNIP2;1 has been reported between rice cultivars (Ma 

et al., 2007b). Possible transport systems of the methylated As species MMA and DMA, 

are discussed in the following two chapters. 

 

The majority of the experiments within this chapter; along with hydroponic data from W.-

J. Liu, and soil micro-array data from L. Wu, was accepted for publication in 2011: Lomax 

et al., 2012. Methylated arsenic species in plants originate from soil microorganisms. New 

Phytologist 193: 665-672. A copy of the manuscript can be found in the Appendix. 
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3.7 Supplementary information 

 
Supplementary Table 3.1 Detection of organic As species in terrestrial plant samples. Originally 
compiled by Meharg and Hartley-Whitaker (2002) and Panda et al. (2010), updated to contain 
references until September 2013.  

 

Organic As species detected in different plant species Reference 

Monomethylarsonic acid (MMA)   

Crowberry (Empetrum nigrum) Bergqvist and Greger (2012) 

Scots pine (Pinus sylvestris) Bergqvist and Greger (2012) 

Cattail (Typha latifolia) Larios et al. (2012) 

Bearded creeper (Crupina vulgaris) Larios et al. (2012) 

Teasel (Dipsacus fullonum) Ruiz-Chancho et al. (2011) 

European alder (Alnus glutinosa) Ruiz-Chancho et al. (2011) 

Heather (Calluna vulgaris) Šlejkovec et al. (2010) 

Gorse (Ulex europaeus) Šlejkovec et al. (2010) 

Blackberry (Rubus ulmifulmus) Šlejkovec et al. (2010) 

Moss (Brachythecium cf. Reflexum) Ruiz-Chancho et al. (2008) 

Hard rush (Juncus inflexus) Ruiz-Chancho et al. (2008) 

Downy oak (Quercus pubescens) Ruiz-Chancho et al. (2008) 

Boxtree (Buxus sempervirens) Ruiz-Chancho et al. (2008) 

Broom (Sarothamnus scoparius) Ruiz-Chancho et al. (2008) 

False brome (Brachypodium phoenicoides) Ruiz-Chancho et al. (2008) 

Carrot (Daucus carota) Yathavakilla et al. (2008) 

Slender wheat grass (Agropyron trachycaulum) Mir et al. (2007) 

Bluejoint (Calamagrostis canadensis) Mir et al. (2007) 

Field horsetail (Equisetum arvense) Mir et al. (2007) 

Moso bamboo (Phyllostachys pubescens) Zhao et al. (2006) 

Spike rush (Eleochairs spp.) Zheng et al. (2003) 

Red clover (Trifolium pratense) Geiszinger et al. (2002) 

Rice (Oryza sativa)  Heitkemper et al. (2001) 

Apple (Malus domestica)  Caruso et al. (2001) 

Foxtail barley (Hordeum jubatum)  Koch et al. (2000) 

Agrostis scabra  Koch et al. (2000) 

Moss (Drepanocladus sp.) Koch et al. (2000) 

Green spleenwort (Asplenium viride) Kuehnelt et al. (2000) 

Tufted hair grass (Deschampsia cespitosa)  Kuehnelt et al. (2000) 

Norway spruce (Picea abies)  Kuehnelt et al. (2000) 

White Alder (Alnus incana)  Kuehnelt et al. (2000) 

Wild strawberry (Fragaria vesca)  Kuehnelt et al. (2000) 

Bilberry (Vaccinium myrtilis)  Kuehnelt et al. (2000) 

Cowberry (Vaccinium vitis-idaea)  Kuehnelt et al. (2000) 

Yarrow (Achillea millefolium)  Kuehnelt et al. (2000) 

Shady horsetail (Equisetum pretense)  Kuehnelt et al. (2000) 

Sedge (Scirpus sp.)  Kuehnelt et al. (2000) 
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Monomethylarsonic acid (MMA) continued..  

Cedar (Thuja plicata)  Kuehnelt et al. (2000) 

N- and P-deficient tomato (Solanum lycopersicum)  Nissen and Benson (1982) 

Dimethylarsinic acid (DMA)   

Blueberry (Cyanococcus sp.) Koch et al. (2013) 

Cattail (Typha latifolia) Larios et al. (2012) 

Bearded creeper (Crupina vulgaris) Larios et al. (2012) 

Heather (Erica andevalensis) Márquez-García et al. (2012) 

Teasel (Dipsacus fullonum) Ruiz-Chancho et al. (2011) 

Heather (Calluna vulgaris) Šlejkovec et al. (2010) 

Gorse (Ulex europaeus) Šlejkovec et al. (2010) 

Blackberry (Rubus ulmifulmus) Šlejkovec et al. (2010) 

Beetroot (Beta vulgaris) Száková et al. (2010) 

Moss (Brachythecium cf. Reflexum) Ruiz-Chancho et al. (2008) 

European alder (Alnus glutinosa) Ruiz-Chancho et al. (2008) 

Hard rush (Juncus inflexus) Ruiz-Chancho et al. (2008) 

Downy oak (Quercus pubescens) Ruiz-Chancho et al. (2008) 

Boxtree (Buxus sempervirens) Ruiz-Chancho et al. (2008) 

Broom (Sarothamnus scoparius) Ruiz-Chancho et al. (2008) 

Moss (Hydnum cupressiforme) Ruiz-Chancho et al. (2008) 

Fern (Dryopteris filix-max) Ruiz-Chancho et al. (2008) 

False brome (Brachypodium phoenicoides) Ruiz-Chancho et al. (2008) 

Moss (Hydnum sp.) Ruiz-Chancho et al. (2008) 

Carrot (Daucus carota) Yathavakilla et al. (2008) 

Purple loosestrife (Lythrum salicaria) Mir et al. (2007) 

Panicle aster (Aster lanceolatus) Mir et al. (2007) 

Canada goldenrod (Solidago canadensis) Mir et al. (2007) 

Blue vervain (Verbena hastata) Mir et al. (2007) 

Moso bamboo (Phyllostachys pubescens) Zhao et al. (2006) 

Spike rush (Eleochairs spp.) Zheng et al. (2003) 

Red clover (Trifolium pratense) Geiszinger et al. (2002) 

Ribwort plantain (Plantago lanceolata) Geiszinger et al. (2002) 

Cock’s-foot grass (Dactylis glomerata) Geiszinger et al. (2002) 

Rice (Oryza sativa)  Heitkemper et al. (2001) 

Apple (Malus domestica)  Caruso et al. (2001) 

Foxtail barley (Hordeum jubatum)  Koch et al. (2000) 

Agrostis scabra  Koch et al. (2000) 

Moss (Drepanocladus sp.) Koch et al. (2000) 

Broad buckler fern (Dryopteris dilate)  Kuehnelt et al. (2000) 

Green spleenwort (Asplenium viride) Kuehnelt et al. (2000) 

Tufted hair grass (Deschampsia cespitosa)  Kuehnelt et al. (2000) 

Norway spruce (Picea abies)  Kuehnelt et al. (2000) 

White Alder (Alnus incana)  Kuehnelt et al. (2000) 

Wild strawberry (Fragaria vesca)  Kuehnelt et al. (2000) 

Bilberry (Vaccinium myrtilis)  Kuehnelt et al. (2000) 

Cowberry (Vaccinium vitis-idaea)  Kuehnelt et al. (2000) 



54 
 

Dimethylarsinic acid (DMA) continued..  

Yarrow (Achillea millefolium)  Kuehnelt et al. (2000) 

Sedge (Scirpus sp.)  Kuehnelt et al. (2000) 

Cedar (Thuja plicata)  Kuehnelt et al. (2000) 

Fleabane (Erigeron sp.)  Koch et al. (1999) 

N- and P-deficient tomato (Solanum lycopersicum)  Nissen and Benson (1982) 

Trimethylarsine oxide (TMAO)   

Labrador tea (Rhododendron groenlandicum) Koch et al. (2013) 

Teasel (Dipsacus fullonum) Ruiz-Chancho et al. (2011) 

Heather (Calluna vulgaris) Šlejkovec et al. (2010) 

Moss (Brachythecium cf. Reflexum) Ruiz-Chancho et al. (2008) 

Boxtree (Buxus sempervirens) Ruiz-Chancho et al. (2008) 

European alder (Alnus glutinosa) Ruiz-Chancho et al. (2008) 

Hard rush (Juncus inflexus) Ruiz-Chancho et al. (2008) 

Downy oak (Quercus pubescens) Ruiz-Chancho et al. (2008) 

Broom (Sarothamnus scoparius) Ruiz-Chancho et al. (2008) 

Moso bamboo (Phyllostachys pubescens) Zhao et al. (2006) 

Spike rush (Eleochairs spp.) Zheng et al. (2003) 

Red clover (Trifolium pratense) Geiszinger et al. (2002) 

Ribwort plantain (Plantago lanceolata) Geiszinger et al. (2002) 

Cock’s-foot grass (Dactylis glomerata) Geiszinger et al. (2002) 

Bilberry (Vaccinium myrtilis)  Kuehnelt et al. (2000) 

Broad buckler fern (Dryopteris dilate)  Kuehnelt et al. (2000) 

Green spleenwort (Asplenium viride) Kuehnelt et al. (2000) 

Tufted hair grass (Deschampsia cespitosa)  Kuehnelt et al. (2000) 

Norway spruce (Picea abies)  Kuehnelt et al. (2000) 

European Larch (Larix deciduas)  Kuehnelt et al. (2000) 

White Alder (Alnus incana)  Kuehnelt et al. (2000) 

Wild strawberry (Fragaria vesca)  Kuehnelt et al. (2000) 

Cowberry (Vaccinium vitis-idaea)  Kuehnelt et al. (2000) 

Raspberry (Rubus idaeus) Kuehnelt et al. (2000) 

Yarrow (Achillea millefolium)  Kuehnelt et al. (2000) 

Shady horsetail (Equisetum pretense)  Kuehnelt et al. (2000) 

Tetramethylarsonium ion (Tetra)   

Teasel (Dipsacus fullonum) Ruiz-Chancho et al. (2011) 

Boxtree (Buxus sempervirens) Ruiz-Chancho et al. (2011) 

Rice (Oryza sativa) Hansen et al. (2011) 

Moss (Brachythecium cf. Reflexum) Ruiz-Chancho et al. (2008) 

Spike rush (Eleochairs spp.) Zheng et al. (2003) 

Red clover (Trifolium pratense) Geiszinger et al. (2002) 

Ribwort plantain (Plantago lanceolata) Geiszinger et al. (2002) 

Broad buckler fern (Dryopteris dilatata)  Kuehnelt et al. (2000) 

Green spleenwort (Asplenium viride) Kuehnelt et al. (2000) 

Wild strawberry (Fragaria vesca)  Kuehnelt et al. (2000) 

Cowberry (Vaccinium vitis-idaea)  Kuehnelt et al. (2000) 
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Tetramethylarsonium ion (Tetra) continued..  

Moss (Drepanocladus sp.) Koch et al. (2000) 

Monkey flower (Mimulus sp.)  Koch et al. (1999) 

Arsenobetaine (AsB)   

Labrador tea (Rhododendron groenlandicum) 
Tufted hair grass (Deschampsia cespitosa)  

Koch et al. (2013) 
Kuehnelt et al. (2000) 

 

 

 

Supplementary Table 3.2 Mean ± SE arsenic speciation (µg g-1 fresh weight) of rice plants exposed 
to 5 μM MMA or DMA in axenic culture (n = 5). 
 

Arsenic 
treatment 

Tissue 
Arsenic species detected 

As(III) DMA MMA(V) MMA(III) 

MMA 
Root 0.141 ± 0.017 

 
3.795 ± 0.256 8.151 ± 0.457 

Shoot 0.089 ± 0.005 
 

2.183 ± 0.080 0.214 ± 0.003 

DMA 
Root 

 
0.137 ± 0.006 0.030 ± 0.003 

 
Shoot 

 
0.276 ± 0.020 

  
 

 
Supplementary Table 3.3 Mean ± SE arsenic speciation of rice shoots (µg g-1 fresh weight) and 
pore and standing water samples (µg L-1) from rice plants grown in flooded soils (n = 5). 
 

Sample Soil As(V) As(III) MMA(V) DMA(V) 

Rice shoot 
BGN 0.082 ± 0.010 0.088 ± 0.015  0.012 ± 0.003 

UK 0.106 ± 0.033 0.064 ± 0.007 0.01 ± 0.004 0.049 ± 0.010 

Pore water 
BGN 
 

6.807 ± 0.669 0.483 ± 0.047   

UK 5.646 ± 1.231 16.88 ± 1.922  1.051 ± 0.645 

Standing water 
BGN 
 

3.947 ± 0.533 1.065 ± 0.193  0.162 ± 0.124 

UK 36.67 ± 5.88 1.182 ± 0.247 1.075 ± 0.285 2.432 ± 0.689 
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Supplementary Figure 3.1 Mean arsenic speciation of rice plants (cv. Nipponare) exposed to 
10 µM arsenate or arsenite in axenic culture. Plants were grown on Petri dishes containing 
Yoshida’s  agar for 10 days before transfer to dishes containing agar amended with As for a 
further 16 days. Error bars represent SE (n = 5-7).

Supplementary Figure 3.2 Mean fresh weight of rice plants under nutrient deficiency exposed to 
10 µM arsenate in axenic culture. Plants were grown in Magenta boxes containing Yoshida’s agar 
with full nutrients  (Control), 200 μM N (Low N), 10 μM P (Low P), or 200 μM N and 10 μM P (Low 
NP); for 30 days. Error bars represent SE (n = 2-4). *** = P < 0.001, significant difference from 
control (ANOVA).
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Supplementary Figure 3.3 Mean fresh weight of rice plants exposed to 5 μM MMA or DMA in 
axenic culture. Plants were grown in Magenta boxes filled with Yoshida’s agar  for 30 days. Error 
bars represent SE (n = 5). *** = P < 0.001 significant difference from control (ANOVA).
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Supplementary Figure 3.4 Mean fresh weights of different rice cultivars grown in the absence 
(Control) or presence of 10 µM arsenate (+As) in axenic culture. Plants were grown in Magenta 
boxes containing Yoshida’s agar for 30 days. Error bars represent SE (n = 5).
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Supplementary Figure 3.5 Mean fresh weight of tomato plants exposed to 10 µM arsenate.  
Plants were grown in Phytatray II™s filled with half-strength MS medium set with 1% agar with full 
nutrients (Control +As), 200 μM N (Low N), 10 μM P (Low P), or 200 μM N and 10 μM P (Low NP); 
for 37 days. A treatment with full nutrients without arsenate (Control -As) was also included. Error 
bars represent SE (n = 6). *** = P < 0.001 significant difference from control +As (ANOVA).
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Supplementary Figure 3.6 Photos of tomato plants exposed to 10 µM arsenate. Plants were 
grown in Phytatray II™s filled with half-strength MS medium set with 1% agar with full nutrients 
(Control), 200 μM N (Low N), 10 μM P (Low P), or 200 μM N and 10 μM P (Low NP); for 37 days.  
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Supplementary Figure 3.7 Mean fresh weights of red clover plants exposed to arsenic with (+Nod) 
or without (Control) inoculation with Rhizobium leguminosarum (bv. trifolii); the control treatment 
received ammonium nitrate. Plants were grown in boiling tubes on slopes of quarter-strength 
Hewitt’s agar for 57 days. Error bars represent SE (n = 4-7). * = P < 0.05 significant difference from 
control (ANOVA).
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Supplementary Figure 3.8 Mean arsenic speciation in rice (cv. Nipponbare) shoots and standing 
water samples. Plants were grown in Magenta boxes containing flooded soil for 57 days. Error 
bars represent SE (n = 5).
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Supplementary Figure 3.9 Mean arsenic speciation and non-purgeable organic carbon (TOC) of 
pore water samples. Rice plants were grown in Magenta boxes containing flooded soil for 57 days. 
Error bars represent SE (n = 5).
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Supplementary Figure 3.10 Interaction between mean rice shoot and standing water DMA 
concentrations. Rice plants were grown in Magenta boxes containing flooded soil for 57 days. 
Filled symbols represent samples from the Bangladeshi soil, and open symbols represent samples 
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4. Transport of methylated arsenic: NIP 
aquaporins 

 

Both MMA and DMA have been detected in paddy soils (Takamatsu et al., 1982), and are 

consistently found in rice grain (for review see Zhao et al., 2010c). The finding that plants 

are unable to methylate As (Chapter 3) poses questions about the transport pathway of 

these As species. MMA and DMA have lower pKa1 values than arsenite, but higher than 

arsenate, and so will exist as both charged and uncharged forms in the physiological pH 

range of around 4.0 to 8.5 (Smith & Raven, 1979; Figure S1.2). 

4.1 Literature review 

Recently aquaporins in rice and humans have been reported to transport undissociated 

MMA and DMA. The rice aquaporin OsLsi1 (OsNIP2;1) was shown to transport 

undissociated pentavalent MMA and DMA in hydroponic culture. Increasing the pH of the 

exposure medium, decreases the proportion of undissociated complexes, and decreased 

As uptake by rice roots. Direct uptake of MMA was also shown for Xenopus oocytes 

expressing OsLsi1 (Li et al., 2009a). Additionally, oocytes expressing the human aquaporin 

hAQP9 took up significantly more pentavalent MMA and DMA when the pH of the 

exposure solutions was decreased (McDermott et al., 2010).  

4.1.1 Aquaporins 

Aquaporins belong to the major intrinsic protein (MIP) superfamily, and are integral 

membrane proteins which mediate the passive flow of small polar molecules, such as 

water and glycerol, across membranes. Transport is not coupled to an energy source, and 

so aquaporins have been shown facilitate bi-directional transport of substrates depending 

on the concentration gradient (Meinild et al., 1998; Bienert et al., 2008; Maciaszczyk-

Dziubinska et al., 2010; Zhao et al., 2010a). The phenomenon of channel-mediated water 

transport was first observed by Benga et al. (1986) in human red blood cells. 

Subsequently, a 28 kDa protein was purified from erythrocytes (Denker et al., 1988), and 

expressed in Xenopus oocytes where water transport was directly demonstrated (Preston 

& Agre, 1991; Preston et al., 1992). The protein, then known as CHIP28 for ‘channel-like 
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integral protein of 28 kDa’, was renamed aquaporin-1 (AQP1). In 1999, the crystal 

structure of AQP1 at 4.5 Å resolution was published by Agre’s group (Mitsuoka et al., 

1999), and further studies revealed the structural features that determine aquaporin 

selectivity (Murata et al., 2000). In 2003, Peter Agre was jointly-awarded the Nobel Prize 

for Chemistry for his role in ‘the discovery of water channels’. 

Aquaporins have been identified in almost all classes of life from bacteria to humans, and 

are highly divergent in higher plants. The human genome encodes just 13 aquaporins 

(Ishibashi et al., 2009), whilst Arabidopsis has 35 (Johanson et al., 2001), and rice has 33 

or 39 (Sakurai et al., 2005; Bansal & Sankararamakrishnan, 2007). Historically the term 

‘aquaporin’ was used exclusively for water-transporting MIPs, but now applies to all MIP 

superfamily members (Hachez & Chaumont, 2010). Those permeable to water only are 

known as strict-aquaporins or orthodox-aquaporins, whereas aquaporins permeable to 

water and small uncharged molecules such as glycerol are often termed 

aquaglyceroporins.  

Aquaporins are relatively small with an average molecular weight between 28 and 30 

kDa. Typically they contain six transmembrane helices (1-6) connected by five loops (A-E) 

with both the N- and C- terminal domains protruding into the cytoplasm. Two half-helices 

(loops B and D) form a characteristic ‘hourglass’-like seventh transmembrane domain, 

and bring together two highly conserved NPA (asparagine-proline-alanine) motifs (Jung et 

al., 1994). The quaternary structure is a tetramer with a fifth putative pore at the centre.  

Plant aquaporins are classified into four subfamilies based on their sequences and 

subcellular-localisations in Arabidopsis: tonoplast intrinsic proteins (TIPs), plasma 

membrane intrinsic proteins (PIPs), Nodulin 26-like intrinsic proteins (NIPs) and small 

basic intrinsic proteins (SIPs; Johanson et al., 2001). Additionally a further three 

subfamilies were proposed based on sequences from the moss Physcomitrella patens; 

GlpF-like intrinsic proteins (GIPs), hybrid intrinsic proteins (HIPs), and uncategorised X-

intrinsic proteins (XIPs; Gustavsson et al., 2005; Danielson & Johanson, 2008). XIP 

members have since been identified in higher plants including poplar (Populus 

trichocarpa), tobacco (Nicotiana tabacum) and tomato (Bienert et al., 2011; Lopez et al., 

2012). 
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4.1.2 Selectivity of aquaporins 

Aquaporins are channels that allow passive diffusion of substrates across membranes, but 

are selective on the basis of size and charge. Two constrictions within the pore have been 

identified as selectivity filters. The first is the NPA region, which has been shown to orient 

water molecules to force them to pass through the pore in single-file (Tajkhorshid et al., 

2002). Aquaporins with single substitutions of all three NPA motif residues have been 

identified; however those for asparagine are least common. Mutation of asparagine to 

serine (N76S) in the first NPA motif of rat AQP1 caused the aquaporin to leak sodium ions. 

The authors propose that the critical role of asparagine in cation exclusion is the reason 

for the overwhelming prevalence of this residue in NPA motifs (Wree et al., 2011). 

Interestingly, mutations of the NPA motifs of rat AQP4 affected membrane targeting. 

Both A99T and A215T mutant proteins were retained in the ER, whereas native AQP4 is 

localised to the plasma membrane (Guan et al., 2010).  

The second region involved in substrate selectivity, located approximately 8 Å from the 

NPA region towards the cytoplasmic face of the pore, is the aromatic/arginine (ar/R) 

filter. This consists of four residues; one each from helices 2 and 5, and two from loop E 

(H2, H5, LE1, LE2). Typically the region contains aromatic residues, such as phenylalanine 

(F), tyrosine (Y) or tryptophan (W), with a conserved arginine (R) residue in the fourth 

position (LE2). The size of the ar/R filter of the mammalian strict-aquaporin AQP1 (FHCR) 

was determined by high-resolution X-ray crystallography to exactly fit a single water 

molecule (Sui et al., 2001). Searching the MIPMod database (Gupta et al., 2012), shows 

that plant PIPs generally have an ar/R filter similar to that of AQP1 (FHTR). However, as 

can be seen in Supplementary Table 4.1, members of the NIP subfamily have particularly 

diverse ar/R regions. 

Although aquaporins can be permeable to a range of solutes, protons must be excluded 

to avoid losing the proton motive force which drives numerous cellular processes. This is 

particularly difficult as protons can move along columns of water molecules by hydrogen 

bond exchange, forming transient hydronium ions, known as a ‘proton-wire’ (Pomes & 

Roux, 1996). Both the NPA region and ar/R filter have been separately implicated in 

proton exclusion by aquaporins (de Groot & Grubmuller, 2005). However, recently a 

model of synergistic interaction between the two selectivity filters has emerged (Li et al., 
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2011a). The amide groups of asparagine residues present in the NPA motifs interact with 

the oxygen atoms of water molecules. This prevents them from forming hydrogen bonds 

with adjacent water molecules and so inhibits proton permeation (Murata et al., 2000). 

The ar/R filter increases the overall free energy barrier to proton transport through 

electrostatic repulsion and can also orient water molecules to prevent proton-wire 

formation (Li et al., 2011a). 

Finally, the extracellular and cytosolic vestibules of aquaporins may contribute to solute 

pre-selection. For example, the strict mammalian aquaporin AQP1 has hydrophilic 

vestibules, whereas these regions of the glycerol facilitator from E. coli, GlpF, are more 

hydrophobic (Sui et al., 2001). 

4.1.3 Substrates of aquaporins 

Since the purification and characterisation of hAQP1 from red blood cells (Smith & Agre, 

1991; Preston et al., 1992), aquaporins have been identified in a diverse range of 

organisms. The genomes of terrestrial plants, in particular, encode a large number of 

aquaporins, which have been proposed to play a role in the adaptation of green plants to 

life on land (Danielson & Johanson, 2010; Anderberg et al., 2011). The archetypal 

aquaporin from spinach (Spinacia oleracea) SoPIP2;1 is water-specific (Johansson et al., 

1998), whilst GmNod26 from soybean (Glycine max) is permeable to both water and 

glycerol (Rivers et al., 1997; Dean et al., 1998). Early research on aquaporins focussed on 

transport of water and glycerol, whereas recently a number of novel substrates have 

been identified.  

Carbon dioxide is a neutral molecule, with a diameter similar to that of water. Transport 

of carbon dioxide by aquaporins was first demonstrated by heterologous expression of 

hAQP1 in Xenopus oocytes (Nakhoul et al., 1998). hAQP1 is highly expressed in red blood 

cells, and tissues involved in gas-exchange including the pulmonary capillaries and 

vascular smooth muscle (Preston & Agre, 1991; Effros et al., 1997; Shanahan et al., 1999). 

The physiological relevance of transport of carbon dioxide by aquaporins has been 

debated. This was mainly due to data from artificial and simulated membranes, which 

indicated that carbon dioxide could pass through the lipid bilayer with lower energy cost 

than transport by aquaporins (Verkman, 2002; Hub & de Groot, 2006). However, studies 
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of biological membranes generally found carbon dioxide permeability to be 10 to 1000-

fold lower than values obtained for pure lipid bilayers (Uehlein et al., 2012). 

Overexpression of NtAQP1 increased photosynthetic rate of tobacco plants proportionally 

to the level of carbon dioxide in the atmosphere, suggesting that plant aquaporins may 

also be permeable to carbon dioxide (Uehlein et al., 2003). Additionally, overexpression 

of native NtAQP1 in tobacco, and expression of HvPIP2;1 from barley in rice, were found 

to significantly increase the conductance of carbon dioxide by mesophyll cells (gm; Hanba 

et al., 2004; Flexas et al., 2006). However, expression of HvPIP2;1 also  affected several 

important physical characteristics of rice leaves including mesophyll cell size, cell wall 

thickness, stomatal density, stomatal size and Rubisco levels (Hanba et al., 2004). 

Although overexpression of native NtAQP1 did not affect any physical leaf traits (Flexas et 

al., 2006). Reduced photosynthetic rate of knock-out mutants, and heterologous 

expression in yeast, demonstrated that AtPIP1;2 transports carbon dioxide in Arabidopsis 

(Heckwolf et al., 2011; Uehlein et al., 2012). Interestingly, analysis of NtAQP1 in yeast 

suggested that carbon dioxide was transported through the pore at the centre of the 

aquaporin tetramer (Otto et al., 2010).  

Another ‘unconventional permeant’ of aquaporins is hydrogen peroxide. By expressing a 

range of aquaporins in strains of yeast with increased sensitivity to oxidative stress, 

Bienert et al. (2007) demonstrated that hAQP8, AtTIP1;1 and AtTIP1;2 are permeable to 

hydrogen peroxide. Using the mammalian cell line, HEK 293, Miller et al. (2010) confirmed 

transport of hydrogen peroxide by hAQP8, and also reported permeability for hAQP3. 

Decreased growth of yeast expressing AtPIP2;1, AtPIP2;4, AtTIP2;3 or AtNIP2;1 on 

medium containing hydrogen peroxide suggests that these aquaporins are also able to 

transport hydrogen peroxide (Dynowski et al., 2008). In Arabidopsis roots, expression of 

AtPIP2;1, AtPIP2;2, AtPIP2;3, AtPIP2;4, AtPIP2;5, AtPIP2;6, AtPIP2;7 and AtPIP2;8 was 

down-regulated following hydrogen peroxide treatment. Additionally, expression of 

AtPIP2;2, AtPIP2;4, AtPIP2;5 and AtPIP2;7 increased sensitivity of yeast to hydrogen 

peroxide (Hooijmaijers et al., 2012). Interestingly, simulations of SoPIP2;1 found that in 

contrast to carbon dioxide, hydrogen peroxide and urea permeate through the individual 

aquaporin pores (Dynowski et al., 2008). 
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Finally, identification of metalloids, including arsenite (see Sections 1.7.2; 1.8.2), as 

substrates of aquaporins has become increasingly common in recent years. With a pKa of 

11.8, antimonite, like silicic acid and arsenite, is almost entirely present as undissociated 

Sb(OH)3 at physiological pH. A mutagenesis screen revealed that GlpF from E. coli is 

permeable to antimonite [Sb(III)] (Sanders et al., 1997). Additionally, rat AQP7 and mouse 

AQP9 were shown to transport antimonite when expressed in yeast or Xenopus oocytes 

(Liu et al., 2002). A screen of plant NIP aquaporins in yeast and oocytes demonstrated 

that AtNIP5;1, AtNIP6;1 and AtNIP7;1 from Arabidopsis; OsNIP2;1, OsNIP2;2 and OsNIP3;2 

from rice; LjNIP5;1 and LjNIP6;1 from lotus (Lotus japonicus), as well as rat AQP9, Fps1 

from yeast and GlpF from E. coli, are permeable to antimonite (Bienert et al., 2008). 

Additionally, the atnip1;1 mutant was found accumulate less Sb, and so was more 

tolerant to antimonite than wild-type, and atnip1;2 and atnip5;1 mutants (Kamiya et al., 

2009). Wu and Beitz (2007) speculate that the size and shape of arsenite and antimonite 

make discrimination from glycerol impossible, meaning that all ‘aquaglyceroporins’ may 

be permeable to these toxic metalloids. 

Unlike antimony and arsenic, boron is essential for higher plants as a component of cell 

walls (for review see O'Neill et al., 2004). Boric acid has a pKa of 9.24 and so at 

physiological pH is present predominantly as undissociated B(OH)3. AtNIP5;1 was found to 

be upregulated in boron-deficient roots of Arabidopsis, and when expressed in Xenopus 

oocytes was found to transport boric acid and water (Takano et al., 2006). AtNIP6;1 is 

83.1% similar to AtNIP5;1 at the amino acid level, and when expressed in Xenopus 

oocytes was permeable to boric acid but not water (Tanaka et al., 2008). The final 

member of the NIPII-subgroup of aquaporins in Arabidopsis, AtNIP7;1, was found to 

transport boric acid, urea and glycerol in Xenopus oocytes but is impermeable to water. 

However, an unusual tyrosine residue in transmembrane helix 2 (Tyr81) occludes the pore, 

and so this residue was modified (Y81C) for characterisation (Li et al., 2011b). AtNIP7;1 is 

expressed in developing anthers, and so the authors propose that Tyr81 may be involved 

in regulating AtNIP7;1 to prevent B toxicity in the pollen. Assays in yeast demonstrated 

that barley HvPIP1;3 and HvPIP1;4 are both permeable to boric acid, however their 

expression in plants was unaffected by boron deficiency or toxicity (Fitzpatrick & Reid, 

2009). Finally, mutation or overexpression of Fps1 altered boric acid tolerance and B 
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uptake of yeast, suggesting that Fps1 may also be permeable to boric acid (Nozawa et al., 

2006). 

4.1.4 Regulation of aquaporins 

The major role of aquaporins in water transport means their function must be tightly 

regulated to maintain water homeostasis. Regulation of aquaporins first occurs through 

altered gene expression depending on factors including cell-type, developmental stage 

and environmental conditions. However aquaporins can also undergo a variety of post-

translational modifications such as phosphorylation, glycosylation and methylation, and 

respond to environmental factors such as pH, calcium ions and pressure (for review see 

Maurel et al., 2008). All together these mechanisms allow organisms to fine tune 

aquaporin activity.  

Phosphorylation of soybean GmNod26 was the first reported post-translational 

modification of a plant aquaporin (Weaver & Roberts, 1991). Direct evidence has shown 

that spinach SoPIP2;1, formally known as PM28A, and kidney bean (Phaseolus vulgaris) 

PvTIP3;1, formally called α-TIP, are also phosphorylated in planta (Johnson & Chrispeels, 

1992; Johansson et al., 1998). Additionally, mutagenesis studies in Xenopus oocytes 

suggest that a serine residue near to the first NPA motif, present in both SoPIP2;1 and 

PvTIP3;1, is also a target of several protein kinases (Maurel et al., 1995; Johansson et al., 

2000). Phosphorylation of aquaporins in response to water and temperature stress has 

been reported for several plant species. It has been proposed that phosphorylation of key 

serine residues the N- and C- cystosolic termini  causes rapid, reversible channel gating 

(Johansson et al., 2000), however the exact mechanism is yet to be elucidated. In the case 

of mammalian AQP2, phosphorylation of Ser256 in the N-terminus causes relocalisation 

from intracellular vesicles to  the apical plasma membrane (Brown, 2003).  

Approximately one-quarter to one-third of newly synthesised human AQP2 monomers 

are glycosylated. Glycosylation was found not to alter tetramerisation or selectivity, but 

was essential for AQP2 to exit the Golgi and be correctly targeted to the plasma 

membrane (Hendriks et al., 2004). In plants, glycosylation is thought to be involved in the 

regulation of McTIP2;1 from ice plant (Mesembryanthemum crystallinum). Under osmotic 

stress induced by mannitol treatment, a glycosylated isoform of McTIP2;1 was detected, 
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and McTIP2;1 was re-localised from the tonoplast to higher density membrane fractions. 

Treatment with various inhibitors revealed that McTIP2;1 is also phosphorylated during 

re-distribution (Vera-Estrella et al., 2004). 

AtPIPs isolated from Arabidopsis roots were the first reported methylated membrane 

proteins in plants. Residues in the N-terminus of members of both the PIP1 and PIP2 

subclasses were found to be methylated, dimethylated or acetylated (Santoni et al., 

2006). Additionally, methylation of glutamate and lysine residues in the C-terminus of 

PIP2;2 from broccoli (Brassica oleracea) has been reported (Casado-Vela et al., 2010). 

However, analysis of atpip2;1 mutants in membrane vesicles showed that methylation of 

Lys3 or Glu6 is not required for water transport (Santoni et al., 2006), and the role of 

methylation in regulating aquaporin activity is currently unknown. 

Activity of aquaporins can also be regulated by pH and calcium ions (Ca2+). In the case of 

bovine AQP0, pH and Ca2+ were found to have separable effects on water permeability. 

pH sensitivity is modulated by a histidine residue in loop A; which is postulated to re-

orient water molecules so they cannot enter the pore, while regulation by Ca2+ involves 

calmodulin binding to the C-terminus (Németh-Cahalan & Hall, 2000); which may also re-

organise water molecules to prevent their passage through AQP0 (Chaumont et al., 

2005). Heterologous expression in Xenopus oocytes revealed that water transport of 

AtPIP1;2, AtPIP2;1 and AtPIP2;2 was abolished when the cytosolic pH was lowered from 7 

to 6 (Tournaire-Roux et al., 2003). Structural modelling of AtPIP2;2 suggests that under 

low pH a histidine residue in loop D (His197) is protonated, which stabilises interactions 

between basic residues in the N-terminus and acidic residues in loop D. This blocks the 

pore and abolishes water transport (Chaumont et al., 2005). This model is supported 

experimentally as mutating His197 to an acidic aspartate residue (H197D) results in a pH-

insensitive, constitutively open channel. Additionally, substituting His197 with a basic 

lysine residue (H197K) results in a channel with very little water permeability (Tournaire-

Roux et al., 2003). 

High resolution crystal structures of human AQP1 and E. coli GlpF have shown that these 

aquaporins exist as homotetramers (Fu et al., 2000; Murata et al., 2000). However, 

several plant TIPs and PIPs have been shown to exist as heterotetramers. When 
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expressed in Xenopus oocytes, ZmPIP1;2 from maize (Zea mays) demonstrated little to no 

water permeability. However, co-expression with different ZmPIP2 genes showed co-

operative water transport. The authors suggest that an interaction between PIP1s and 

PIP2s is required for correct trafficking of PIP1s to the plasma membrane (Fetter et al., 

2004). The requirement of PIP2 isoforms for the correct targeting of PIP1 proteins to the 

plasma membrane has been confirmed in other plant species including tobacco, grape 

(Vitis vinifera) and durum wheat (Triticum turgidum; Mahdieh et al., 2008; Vandeleur et 

al., 2009; Ayadi et al., 2011) . Modelling mutations of residues in loop E altered putative 

interactions between ZmPIP1 and ZmPIP2 isoforms (Chaumont et al., 2005). However, 

loop A was implicated in interactions between Beta vulgaris BvPIP1 and BvPIP2 isoforms 

(Jozefkowicz et al., 2013). Recently, using a bimolecular fluorescence complementation 

(BiFC) assay in yeast, heterotetramers of AtTIP1;2, AtTIP2;1 and AtTIP3;1 were observed. 

Interestingly, AtTIP1;2 and AtTIP2;1 were also found to interact with AtPIP2;1 (Murozuka 

et al., 2013). 

4.1.5 NIPs 

Members of the NIP subfamily are classified by their structural similarity to the archetypal 

GmNod26, however they are functionally diverse. Soybean nodulin-26 was one of the first 

aquaporins identified in higher plants, and is abundant in the symbiosome membrane 

which forms during nodulation of leguminous plants by members of the soil bacteria 

family Rhizobiaceae (Fortin et al., 1987). GmNod26 has since been characterised by 

expression in Xenopus oocytes and purified membrane vesicles, and has been shown to 

transport water, glycerol and formamide, but not urea (Rivers et al., 1997; Dean et al., 

1998; Table S4.1). 

Generally NIPs show relatively low water permeability and are able to mediate the flux of 

various uncharged solutes, thought to depend on the composition of the ar/R region. The 

Arabidopsis genome encodes nine NIP aquaporins (Johanson et al., 2001), and rice has 10 

or 13 (Sakurai et al., 2005; Bansal & Sankararamakrishnan, 2007). The NIP subfamily is 

further divided into three subgroups depending on their pore size, which is largely 

determined by the composition of the ar/R region (Rouge & Barre, 2008; Figure 4.1). 

OsLsi1 (OsNIP2;1) belongs to subgroup III due to a large pore size of ≥ 6 Å, compared with 

3.5 Å and ≤ 5 Å for subgroups I and II respectively (Liu et al., 2009). 
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Unlike other plant aquaporins, NIP members show permeability to a range of solutes, and 

have been implicated in the transport of essential nutrients. A comprehensive index of 

reported substrate permeability of NIP subfamily members can be found in 

Supplementary Table 4.1. For example, AtNIP6;1 was identified to mediate boron uptake 

in Arabidopsis roots (Takano et al., 2006), and NIP members from several plant species 

have been shown to transport silicon (Ma et al., 2006; Yamaji et al., 2008; Chiba et al., 

2009; Mitani et al., 2009; Grégoire et al., 2012; Montpetit et al., 2012). Boron is 

transported by NIPs in the form of boric acid [B(OH)3], which at 2.57 Å, is a similar size to 

urea (2.62 Å; Takano et al., 2006). Silicon and arsenite, however, are transported in the 

form of silicic acid [Si(OH)4] and arsenous acid [As(OH)3], which at 4.38 Å and 4.11 Å 

respectively, are significantly larger molecules (Wu & Beitz, 2007; Ma et al., 2008). 

The ar/R filter of aquaporins has been shown to play a crucial role in proton exclusion. 

Additionally, site-directed mutagenesis experiments have found that substrate specificity 

of aquaporins can be altered by modifying the tetrad of residues which make up this 

filter. Wallace and Roberts (2005) found that modifying the first residue of the ar/R filter 

Figure 4.1 Phylogenetic tree of plant aquaporins constructed by Mitani et al., (2008). NIPs from 
rice (Os-), Arabidopsis (At-) and maize (Zm-), as well as soybean nodulin-26 (GmNod26) and 
courgette (Cucurbita pepo) CpNIP1 were classified into three subgroups based on the two NPA 
motifs and ar/R selectivity filter. The NPA motifs and the ar/R residues of each subgroup are given, 
and minor substitutions of those residues are in parentheses. 
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of AtNIP6;1 from alanine to tryptophan (A119W) conferred transport properties similar to 

GmNod26 when expressed in Xenopus oocytes. Native AtNIP6;1 is impermeable to water, 

but transports urea and glycerol, whereas GmNod26, and the mutated AtNIP6;1, 

transport water, glycerol and formamide but exclude urea. AtNIP6;1 differs from 

GmNod26 in the NPA region as well as the ar/R filter. However substitution of valine to 

alanine (V252A) in the second NPA motif had no effect on transport. The authors 

concluded that the H2 position of the ar/R filter is critical in determining substrate 

specificity of NIPs (Wallace & Roberts, 2005). However, Mitani-Ueno et al. (2011) found 

that substitution of the H2 residue of OsLsi1 (G88A) had no effect on transport of silicon, 

arsenite, boron or water when expressed in Xenopus oocytes. Substitution of the H5 

residue (S207I), on the other hand, abolished silicon, boron and water uptake, and 

significantly decreased arsenite transport. Interestingly, mutation of both the H2 and H5 

residues of the ar/R filter (A117G-S236S), and NPA motifs (S139A-V250A) of AtNIP5;1 to 

mimic the pore of OsLsi1 did not confer Si transport ability (Mitani-Ueno et al., 2011). 

Therefore residues other than those in the NPA and ar/R filters may also be involved in 

substrate specificity of NIP aquaporins. 

Unlike other solutes, arsenite permeability is common to members across the three 

different subgroups (Zhao et al., 2009; Table S4.1). For rice, in addition to OsLsi1 

(OsNIP2;1) from group III; OsNIP1;1 (group I), OsNIP2;2 (group III), OsNIP3;1 (group II) and 

OsNIP3;2 have all shown arsenite transport ability when expressed in Xenopus oocytes or 

yeast (Bienert et al., 2008; Ma et al., 2008; Mitani et al., 2008). Furthermore arsenite 

transport has also been demonstrated for AtNIP1;1 and AtNIP2;1 from group I; and 

AtNIP5;1, AtNIP6;1 and AtNIP7;1 from group II (Bienert et al., 2008; Isayenkov & 

Maathuis, 2008; Mitani et al., 2008; Kamiya et al., 2009; Mitani-Ueno et al., 2011). In fact 

the only NIP aquaporin found not to transport arsenite is OsNIP3;1 (Ma et al., 2008). This 

is especially surprising given that the size of the arsenous acid molecule is larger than the 

predicted pore of group I NIPs. Furthermore, arsenite permeability was affected less by 

mutations in the ar/R residues of OsLsi1 and AtNIP5;1 than silicon or boron (Mitani-Ueno 

et al., 2011).  



72 
 

4.2 Aims 

Having concluded that methylated As species in plants originate from soil micro-

organisms, the aim of the experiments within this chapter is therefore to identify and 

characterise the transporters responsible for the transport of undissociated MMA and 

DMA in rice. The major silicon and arsenite transporter in rice roots, OsLsi1 (OsNIP2;1), 

has been shown to transport MMA and DMA, therefore other members of the NIP 

aquaporin subfamily may also be permeable to undissociated MMA and DMA. 

The transporters of dissociated MMA and DMA complexes, which increase in abundance 

with increasing pH, is the subject of Chapter 5.  



73 
 

4.3 Materials and methods 

For comprehensive protocols on heterologous expression of plant proteins in Xenopus 

oocytes see Theodoulou and Miller (1995).  

4.3.1 Heterologous expression in Xenopus oocytes 

The construct for expressing OsLsi1 and the human aquaporin hAQP9 in oocytes were 

gifts from Prof J.F. Ma (Okayama University, Japan) and Dr Z.J-. Liu (Oakland University, 

USA) respectively. The oocyte expression constructs of OsNIP1;1, OsNIP3;2 and OsNIP3;3 

were made by Dr Y. Chen (Rothamsted Research, UK) from cDNA of rice (cv. Nipponbare). 

Competent E. coli cells were transformed using heat shock with plasmid pXβG-ev1 

containing the cDNA of OsLsi1 or hAQP9, or with plasmid pT7TS containing the cDNA of 

OsNIP1;1, OsNIP3;2, OsNIP3;3, or HvPIP2;2. Plasmids were purified using a Qiagen 

QIAprep Spin miniprep kit according to manufacturer’s instructions. Once purified, the 

plasmids were linearised using an appropriate restriction enzyme (SpeI pXβG-ev1, and 

BamHI for pT7TS) and cRNA synthesised in vitro using the Ambion mMessage mMachine 

kit according to manufacturer’s instructions (T3 for pXβG-ev1, and T7 for pT7TS). The 

cRNA produced has a 7-methyl guanosine cap structure at the 5' end, and a poly-

adenosine tail on the 3' end, which increases RNA stability in the oocytes. The synthesised 

cRNAs were purified by phenol/chloroform extraction and precipitation with isopropanol, 

and were stored at -80°C. 

Ovaries of adult female Xenopus laevis frogs were collected from the University of 

Cambridge and stored in modified Barth’s solution (MBS; 88 mM NaCl, 1 mM KCl, 2.4 mM 

NaHCO3, 15 mM Hepes, 0.3 mM CaNO3, 0.41 mM CaCl2, 0.82 mM MgSO4, 10 µg mL-1 

sodium penicillin and 10 µg mL-1 streptomycin sulphate; pH 7.4; osmolality 195±5  

mmol kg-1). Oocytes were isolated by separating lobes into clusters of around 30 oocytes 

using forceps, and gentle swirling in 1 mg mL-1 type II collagenase dissolved in calcium-

free MBS (88 mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 15 mM Hepes, 0.82 mM MgSO4, 

10 µg mL-1 sodium penicillin and 10 µg mL-1 streptomycin sulphate; pH 7.4; osmolality 

195±5 mmol kg-1) for around 45 minutes. Oocytes were then rinsed thoroughly with MBS 

containing calcium to prevent degradation by the collagenase. Healthy stage V or VI 

oocytes were selected by visual inspection and kept in small Petri dishes coated with a 
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Nunclon™Δ surface (Nunc, Naperville, IL, USA). All instruments for handling oocytes were 

stored in 70% ethanol and MBS (both normal and Ca-free) were autoclaved before the 

addition of antibiotics. 

Healthy oocytes were injected with approximately 50 nL of 1 ng nL-1 cRNA using a non-

filamented borosilicate glass capillary pulled into a fine tip of 5-10 µm diameter 

connected to a compressed air picolitre injector (Medical Systems PLi-100). Injection tips 

were baked at 180°C for 12 hours before use to degrade ribonucleases (RNases) and were 

calibrated to give around 20 injections of 1 µL of water. Non-injected oocytes, as well as 

those injected with 50 nL of nuclease-free water, serve as controls. After injection, 

oocytes were stored at 20°C with twice daily washing in MBS. After two days incubation 

transport assays were conducted.  

4.3.2 Oocyte transport assays 

To measure water permeability, single oocytes were osmotically-challenged by placing 

them in MBS diluted with de-ionised water. Oocytes were imaged using a Leica MZ8 

microscope linked to a DCF300FX camera taking a photo every 20 seconds for a total of 

three minutes. The diameter of the oocytes was then measured using ImageJ (NIH; 

Bethesda, MD, USA) and converted to volumes by using the formula V = 4/3 π r3. 

Germanium hydroxide [Ge(OH4)] was prepared by adding NaOH to a solution of 

germanium chloride (GeCl4). All solutions for B analysis were made in plasticware to avoid 

contamination from borosilicate glass. After exposure to MBS amended with As, Ge or B 

(see figure legends for exact uptake conditions), oocytes were rinsed at least 6 times with 

clean MBS and several oocytes forming one replicate were placed in centrifuge tubes. 

Oocytes were then digested with 0.4 mL HNO3 heated to 90°C for 45 minutes in a water 

batch. Once cooled, samples were diluted to 7 or 8 mL with ultrapure water and analysed 

for total As, Ge or B concentration by ICP-MS (see Section 2.1).  

Table 4.1 LOD and LOQ for elements analysed in digested Xenopus oocytes calculated 
from blank values (LOD = 3-fold, and LOQ = 10-fold blank) in ng oocyte-1. 

Analyte LOD LOQ 

As 0.021 0.070 
Ge 0.027 0.090 
B 0.047 0.150 



75 
 

4.4 Results 

Due to variability between batches of Xenopus oocytes, data are presented with all tested 

genes and treatments in a single figure. Specific conditions for uptake, including the 

concentration of the substrate and the incubation time, can be found in the figure 

legends. In all cases water-injected oocytes were included as a negative control, and 

OsLsi1 as a positive control for arsenite uptake and water permeability (discussed below). 

4.4.1 Transport of arsenite and MMA 

To validate the methods of cRNA synthesis, oocyte injection and arsenite uptake, OsLsi1 

(OsNIP2;1) was used as a positive control. A plasma membrane aquaporin from barley 

(Hordeum vulgare) previously found to be highly water permeable, HvPIP2;2, was also 

included as a positive control for oocyte swelling upon osmotic challenge (Besse et al., 

2011). 

 

Expression of OsLsi1 resulted in significantly higher uptake of arsenite and MMA 

compared to the water-injected control oocytes (Figure 4.2). HvPIP2;2, included as a 

positive control for water permeability, shows no arsenite or MMA uptake. Recently, 

Mosa et al. (2012) reported that OsPIP2;4, OsPIP2;6 and OsPIP2;7 are able to transport 

arsenite, however when expressed in oocytes OsPIP1;2 and OsPIP1;3 showed no arsenite 

uptake. 

Figure 4.2 Mean arsenic content of Xenopus oocytes expressing OsLsi1 and HvPIP2;2. Oocytes 
were exposed to MBS containing  0.1 mM arsenite at pH 7.4 for 30 minutes, or MMA at pH 4.5 
for 30 minutes. After exposure oocytes were rinsed thoroughly and split into replicates of 5-6 
oocytes for analysis. Error bars represent SE (n = 3-4). ** = P < 0.01, *** = P < 0.001 significant 
difference from control (water) of Student’s t-test.
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Arsenite and MMA permeability of other NIP members was tested. OsNIP1;1 belongs to 

subgroup I (Figure 4.1), and has previously been shown to be permeable to arsenite when 

expressed in Xenopus oocytes (Ma et al., 2008; Mitani et al., 2008). OsNIP3;2 and 

OsNIP3;3 are not assigned to a subgroup in the NIP phylogeny constructed by Mitani et 

al., (2008), but have been classified to group II by other studies (Wallace et al., 2006; 

Bienert et al., 2008; Grégoire et al., 2012). OsNIP3;2 was found to confer arsenite 

sensitivity when expressed in yeast (Bienert et al., 2008) but OsNIP3;3 has not previously 

been studied. 

  

Although expression of OsNIP1;1, OsNIP3;2, and OsNIP3;3 all increased the capacity for 

oocytes to accumulate arsenite, there were differences between the genes (Figure 4.3). 

Expression of OsLsi1 and OsNIP1;1 increased As content of the oocytes by 7.3- and 8.5- 

0

5

10

15

20

25

30

35

40

45

Lsi1 NIP1;1 NIP3;2 NIP3;3 water

A
rs

en
it

e 
u

p
ta

ke
 (

n
g 

o
o

cy
te

-1
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lsi1 NIP1;1 NIP3;2 NIP3;3 water

M
M

A
 u

p
ta

ke
 (

n
g 

o
o

cy
te

-1
)

Figure 4.3 Mean arsenite, MMA and water uptake of Xenopus oocytes expressing OsLsi1,
OsNIP1;1, OsNIP3;2, and OsNIP3;3. Oocytes were exposed to MBS containing 1 mM arsenite at 
pH 6.0 for 60 minutes; 1 mM MMA at pH 6.0 for 60 minutes; or MBS diluted to 20% for 3 minutes. 
After As exposure oocytes were rinsed thoroughly and split into replicates of 9-15 oocytes for 
analysis. Error bars represent SE (n = 2-4). ** = P < 0.01, and *** = P < 0.001 significant difference 
from control (water) of Student’s t-test.
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fold on average respectively compared to the water-injected control. However oocytes 

expressing OsNIP3;2 accumulated only 2.6-fold more As on average than the control 

oocytes. OsNIP3;3 was intermediate, with 4.5-fold more As accumulation on average 

compared to the control. 

As found previously (Figure 4.2), OsLsi1 demonstrated permeability to MMA. Expression 

of OsNIP3;3 also greatly increased MMA uptake, whereas expression of OsNIP1;1 gave 

only a moderate increase, and oocytes expressing OsNIP3;2 were no different from the 

water-injected control. Interestingly, the pattern of arsenite uptake for the oocytes 

expressing the different genes is not reflected in MMA uptake. Therefore NIP aquaporins 

which are highly permeable to arsenite may not necessarily show significant transport of 

other As species.  

Additionally, all genes showed higher water permeability than the water-injected control. 

The increase was greatest for OsNIP1;1, whereas oocytes expressing OsNIP3;2 showed 

only a small increase compared to the control oocytes. 

4.4.2 Transport of DMA 

Although transport of MMA has previously been reported for oocytes expressing OsLsi1, 

uptake of DMA by a plant transporter is unreported to date. The only transporter showing 

direct DMA uptake is the human aquaporin, hAQP9, which was highly permeable to both 

MMA and DMA when expressed in Xenopus oocytes (McDermott et al., 2010).  

DMA uptake was not observed in five independent batches of oocytes (data not shown). 

In all cases, expression of OsLsi1 and other NIP genes was confirmed by positive results 

for arsenite uptake. A variety of modifications to the assay conditions were tested, such 

as increasing the concentration of DMA in the exposure medium, increasing the 

incubation time in the treatment solution, and decreasing the pH of the exposure 

medium (to increase the proportion of undissociated DMA complexes). Additionally the 

exact method reported by McDermott et al. (2010) was tested, whereby oocytes were 

exposed to 1 mM As at pH 6.0 for 60 minutes. 
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However, DMA transport was not observed for any NIP (Figure 4.4). Additionally, 

OsNIP1;1 and OsNIP3;2 demonstrated permeability to arsenite and MMA. This is in 

contrast to the previous experiment which found little difference in arsenite uptake, and 

no difference in MMA transport, of OsNIP3;2 compared to the control (Figure 4.3).  

To investigate DMA transport by OsNIP3;3, oocytes were incubated in MBS containing 

0.1 mM DMA at pH 7.0 for 90 minutes. The optimum pH for storing Xenopus oocytes is 

7.4-7.6 (Theodoulou & Miller, 1995), so a compromise must be achieved between a pH 

which preserves the integrity of the cells; especially for longer exposure times, and a pH 

at which a significant proportion of MMA and DMA complexes are undissociated. 

Figure 4.4 Mean arsenic content of Xenopus oocytes expressing OsLsi1, OsNIP1;1 and OsNIP3;2. 
Oocytes were exposed to MBS containing 1 mM arsenite, MMA or DMA at pH 6.0 for 60 minutes. 
After exposure oocytes were rinsed thoroughly and split into replicates of 5-11 oocytes for 
analysis. Error bars represent SE (n = 3). * = P < 0.05, ** = P < 0.01, *** = P < 0.001 significant 
difference from control (water) of Student’s t-test.
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Oocytes expressing OsNIP3;3 and OsLsi1 did accumulate more As than the control after 

exposure to DMA (Figure 4.5). Although this increase was statistically significant, the 

absolute difference is very small. Interestingly oocytes expressing OsNIP3;3 showed 

significantly higher arsenite uptake than those expressing OsLsi1 (P < 0.01), although 

there was no difference in MMA uptake (P = 0.21).  

High uptake of DMA by oocytes expressing hAQP9 has been reported (McDermott et al., 

2010), and so an oocyte-expression construct was obtained to act as a positive control. 

 

 

Figure 4.5 Mean arsenic content of Xenopus oocytes expressing OsLsi1 and NIP3;3. Oocytes were 
exposed to MBS containing 0.1 mM arsenite at pH 7.4 for 30 minutes, 0.1 mM MMA at pH 4.5 for 
45 minutes, or 0.1 mM DMA at pH 7.0 for 90 minutes. After exposure oocytes were rinsed 
thoroughly and split into replicates of 6-8 oocytes for As analysis. Error bars represent SE (n = 3). 
* = P < 0.05, ** = P < 0.01, *** = P < 0.001 significant difference from control (water) of
Student’s t-test.
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Figure 4.6 MMA and DMA uptake of Xenopus oocytes expressing Lsi1 and hAQP9. Oocytes were 
exposed to MBS containing 1 mM MMA or DMA at pH 6.0 for 60 minutes. After exposure oocytes 
were rinsed thoroughly and split into replicates of 7-10 oocytes for analysis. Error bars represent 
SE (n = 3). ** = P < 0.01, *** = P < 0.001, significant difference from control (water) of Student’s
t-test.
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Although MMA uptake by oocytes expressing OsLsi1 is similar to that of hAQP9, there is a 

vast difference in DMA uptake (Figure 4.6). This result validates the methods for DMA 

exposure and As analysis of oocytes. On average DMA uptake was 2.6-fold higher in 

OsLsi1-expressing oocytes compared to the control, however this was not significant  

(P = 0.06). 

 

 

When repeated, oocytes expressing hAQP9 again showed considerably higher DMA 

uptake than those expressing OsLsi1 (Figure 4.7). However, in this batch of oocytes DMA 

uptake was statistically significantly higher in OsLsi1-expressing oocytes compared to the 

water-injected control. Additionally, the increase in volume of oocytes under osmotic 

challenge, was much greater for those expressing hAQP9 than OsLsi1. 

4.4.3 Transport of other substrates 

To further characterise OsNIP1;1, OsNIP3;2 and OsNIP3;3, permeability to some common 

substrates of aquaporins; water, germanium and boron, was investigated. OsLsi1 has 

been reported to be permeable to all substrates tested except glycerol (see Table S4.1).  

Silicon permeability was measured by exposing oocytes to a solution containing germanic 

acid [Ge(OH)4], as an analogue of silicic acid [Si(OH)4]. It is not possible to use Si directly as 

it spontaneously and irreversibly polymerises at higher concentrations. Plant roots take 
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Figure 4.7 DMA uptake and water permeability of Xenopus oocytes expressing OsLsi1 and hAQP9. 
For DMA uptake, oocytes were exposed to MBS containing 1 mM DMA at pH 6.0 for 60 minutes. 
After  exposure oocytes were rinsed thoroughly and split into replicates of 5-10 oocytes for 
analysis. For water permeability, oocytes were exposed to MBS diluted by 50% with oocyte 
diameter measured every 20 seconds. Error bars represent SE (n = 3-4). * = P < 0.05,
*** = P < 0.001, significant difference from control (water) of Student’s t-test.
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up Si and Ge through the same transport pathway, but Ge causes toxicity in the leaves 

and so can be used to screen for Si transport mutants (Rains et al., 2006; Nikolic et al., 

2007).    

 

Both OsLsi1 and OsNIP3;3 show good permeability to Ge (Figure 4.8), whereas oocytes 

expressing OsNIP1;1 or OsNIP3;2 are similar to the water-injected control. hAQP9 was 

also included in the assay and shows high transport of Ge, which has not previously been 

reported. 

Water permeability of was investigated by measuring oocyte swelling under osmotic 

challenge. Previously, OsLsi1 was found to be permeable to water (Figures 4.3; 4.7) and so 

HvPIP2;2 was not required to act as a positive control. Boron transport was measured by 

exposing oocytes to a solution containing boric acid [B(OH)3].  

Figure 4.8 Mean germanium content of Xenopus oocytes expressing OsLsi1, OsNIP1;1, OsNIP3;2, 
OsNIP3;3 and hAQP9. Oocytes were exposed to MBS containing 0.1 mM germanium hydroxide at 
pH 7.4 for 30 minutes. After exposure oocytes were rinsed thoroughly with MBS and split into 
replicates of 7-9 oocytes for analysis. Error bars represent SE (n = 3). ** = P < 0.01, *** = P < 0.001 
significant difference from control (water) of Student’s t-test.
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Expression of OsLsi1, OsNIP1;1 and OsNIP3;2 all significantly increased boron uptake 

compared to the control oocytes (Figure 4.9). However oocytes expressing OsNIP3;3 were 

not significantly different from the water-injected control.  

Additionally, oocytes expressing OsNIP3;3 showed high water permeability, but those 

expressing OsNIP3;2 and OsNIP1;1 were similar to the water-injected controls (Figure 

4.9). Previously OsNIP1;1 expression significantly increased water permeability of oocytes 

(Figure 4.3). Oocytes expressing OsNIP1;1 in the same batch did take up arsenite, so the 

difference is unlikely to be due to lack of expression and remains unclear. 
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Figure 4.9 Mean arsenic, boron and water uptake of Xenopus oocytes expressing OsLsi1,
OsNIP1;1, OsNIP3;2, and OsNIP3;3. Oocytes were exposed to MBS containing 0.1 mM arsenite at 
pH 7.4 for 30 minutes; 5 mM boric acid at pH 7.4 for 60 minutes or MBS diluted to 20%. After 
exposure to arsenite or boron oocytes were rinsed thoroughly and split into replicates of 5-7 
oocytes for analysis. Error bars represent SE (n = 2-4). ** = P < 0.01, *** = P < 0.001, significant 
difference from control (water) of Student’s t-test.
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4.5 Discussion 

 

The ability of OsLsi1 (OsNIP2;1) to transport arsenite and MMA when expressed in 

Xenopus oocytes was confirmed (Figures 4.2; 4.3; 4.4; 4.5; S4.1). Additionally, OsNIP1;1 

and OsNIP3;3 were also shown to transport MMA (Figures 4.3; 4.4; 4.5; S4.1). Expression 

of OsNIP3;2 in oocytes resulted in significant MMA uptake in one batch of oocytes (Figure 

4.4), but no measurable MMA uptake in two others (Figures 4.3; S4.1). In two of the 

experiments MMA uptake was proportional to arsenite uptake, i.e. transport of both 

arsenite and MMA was either high or low (Figures 4.3; 4.4), but in the third experiment 

arsenite uptake was high whereas MMA uptake was absent (Figure S4.1). Therefore, 

further investigation is required into the permeability of OsNIP3;2 to MMA (see below for 

discussion on limitations of using Xenopus oocytes). 

Ma et al. (2008) found that OsNIP1;1 was only weakly expressed in rice roots, and Sakurai 

et al. (2005) reported relatively high expression in both young and old leaves. Expression 

of OsNIP3;2 and OsNIP3;3 was found to be highest in older leaves (Sakurai et al., 2005). 

Arsenite uptake by roots was reduced by 53% in the lsi1 mutant compared to wild-type, 

and MMA uptake was reduced by 80% (Ma et al., 2008; Li et al., 2009a). Therefore 

although OsNIP1;1 and OsNIP3;3 probably play a minor role in uptake of MMA by rice 

roots, they may be involved in root to shoot translocation or transport to grain. 

Furthermore, higher expression in old leaves may suggest a role in retranslocation of 

methylated As from flag leaves during grain filling (Carey et al., 2011). Due to the high 

toxicity of As, it is imperative that all transporters permeable to As are identified, 

especially those involved in transporting As to rice grain. 

In all experiments; with different batches of oocytes and varying exposure conditions, 

OsLsi1, OsNIP1;1 and OsNIP3;3 show higher uptake of arsenite than MMA (Figures 4.2; 

4.3; 4.4; 4.5; S4.1). The difference in total As content of oocytes after exposure to MMA 

suggests that these NIP aquaporins are less permeable to MMA than arsenite. However, 

MMA uptake was either conducted at pH 4.5 (Figures 4.2; 4.5; S4.1) or 6.0 (Figures 4.3; 

4.4) whereby just 32.9% and 1.53% of MMA complexes are undissociated respectively, 

compared to arsenite which is 99.9% undissociated at both pH 4.5 and 6.0 (Figure S1.2). 
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Therefore it is difficult to draw conclusions on the relative permeability of NIPs to MMA 

without more evidence, such as competition studies or rice mutants. 

Unlike MMA, consistent uptake of DMA by Xenopus oocytes expressing plant NIPs was 

not observed (Figures 4.5; 4.6; data not shown). Expression of OsLsi1 and OsNIP3;3 did 

significantly increase DMA uptake statistically (Figure 4.5; 4.7); but the absolute 

differences compared to the water-injected controls were very small. Expression of 

hAQP9 resulted in considerable uptake of DMA (Figures 4.6; 4.7) and validated the DMA 

uptake assay. In humans, DMA, and to a lesser extent MMA, are produced in the liver by 

activity of the As3MT enzyme (Thomas et al., 2004). hAQP9 is predominantly expressed in 

hepatocytes, where it is proposed to facilitate transport of both arsenite into cells, and 

DMA and MMA into the bloodstream for excretion (McDermott et al., 2010). Therefore, 

hAQP9 may have evolved to transport methylated As to increase detoxification. This is in 

contrast to plants, which cannot methylate As (Lomax et al., 2012). Uptake of DMA by rice 

roots is significantly slower than that of inorganic As and MMA (Raab et al., 2007b), and 

so longer incubation may be necessary to observe DMA transport by Xenopus oocytes 

expressing rice NIPs. 

Interestingly, NIPs from rice show less variation in the NPA motifs than those from 

Arabidopsis. Of the ten NIP aquaporins expressed by rice, nine of them possess two 

unmodified NPA motifs (Figure 4.1). The lack of B transport by OsNIP3;3 (Figure 4.9) is 

particularly interestingly as OsNIP3;3 has the same ar/R filter as the Arabidopsis boron 

transporter, AtNIP6;1 (Tanaka et al., 2008; Table S4.1). However, AtNIP6;1 has a 

substitution in the second NPA motif (NPA-NPV) which may be required for boron 

transport (Figure 4.1). Furthermore, OsNIP3;1 has mutations in both motifs, NPS-NPV, 

and is proposed to mediate boron transport in rice (Hanaoka & Fujiwara, 2007). 

The highly conserved NPA motifs may suggest that substrate specificity of rice NIP 

aquaporins is predominantly determined by the ar/R filter. OsNIP3;2 and OsNIP3;3 have 

similar ar/R filters, differing by just one residue; AAAR for OsNIP3;2, and AIAR for 

OsNIP3;3, but show very different transport profiles. Whereas OsNIP3;3 shows 

permeability to arsenite, MMA and silicon (Figures 4.3, 4.5; 4.8; 4.9; S4.1), OsNIP3;2 

shows limited arsenite and MMA transport, and no silicon uptake (Figures 4.3; 4.8; 4.9; 
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S4.1). Additionally, OsNIP3;3 is more permeable to water than OsNIP3;2 (Figures 4.3; 4.9). 

However, substrate permeability of aquaporins may rely on residues other than those in 

the NPA and ar/R regions. Analysis of mutated forms of E. coli AqpZ by X-ray 

crystallography revealed that residues in loops C and E which do not line the pore or 

interact directly with substrates also contributed to selectivity (Savage et al., 2010). 

Additionally, the extracellular and cytoplasmic regions of aquaporins may act as pre-

selectivity filters (Sui et al., 2001).  

Oocytes expressing OsLsi1, OsNIP3;3 and hAQP9 all showed significantly higher Ge uptake 

than the water-injected control (Figure 4.7). Transport of Ge by OsNIP3;3 is surprising as 

that it was believed that Si transport was limited to members of subgroup III with the 

classic GSGR pore (Mitani et al., 2008). Additionally, site-directed mutagenesis studies 

found that Si transport was lost when the ar/R filter of OsLsi1 was changed to GIGR 

(Mitani-Ueno et al., 2011). The ar/R filter of OsNIP3;3 has an isoleucine residue in the H5 

(second) position, which makes silicon transport seemingly more unlikely. 

The lack of arsenite uptake by HvPIP2;2-injected oocytes (Figure 4.2), is interesting given 

the recent finding that OsPIP2;4, OsPIP2;6 and OsPIP2;7 are highly permeable to arsenite 

when expressed in oocytes (Mosa et al., 2012). The authors speculated that lack of 

arsenite uptake by OsPIP1;2 and OsPIP1;3 was due to incompatibility between certain 

transporters and the Xenopus expression system. The requirement of PIP2-aquaporins for 

correct targeting of PIP1 isoforms to the plasma membrane has been demonstrated in 

various plant species (Fetter et al., 2004; Mahdieh et al., 2008; Vandeleur et al., 2009; 

Ayadi et al., 2011). HvPIP2;2 shows high water-permeability when expressed in Xenopus 

oocytes (Besse et al., 2011), and so correct targeting is implied. Therefore it may be 

interesting to compare PIPs from rice with those from other plant species, to see what 

factors determine arsenite permeability in PIP-aquaporins.  

Expression of hAQP9 in Xenopus oocytes resulted in considerably higher accumulation of 

DMA compared to those expressing OsLsi1 (Figures 4.6; 4.7). Interestingly, expression of 

hAQP9 gave similar levels of arsenite and MMA uptake compared to OsLsi1 (Figures 4.6; 

S4.1). However, when the pH of the exposure medium was decreased from 6.0 to 4.5, 

MMA uptake by hAQP9-expressing oocytes was far greater than that for OsLsi1 (Figures 
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4.6; S4.1). Additionally, hAQP9 appears to be more permeable to water than OsLsi1 

(Figure 4.7). The reason for the differences may be the ar/R filters of the transporters; 

FACR for hAQP9, and GSGR for OsLsi1. The main difference is the bulky, aromatic 

phenylalanine residue in the pore of hAQP9, compared to the smaller glycine residues of 

OsLsi1. Members of NIP subgroup I have an aromatic tryptophan residue in the first 

position of the ar/R filter (H2), and have been shown to transport arsenite (see Table 

S4.1). OsNIP1;1 is permeable to MMA (Figures 4.3; 4.4) but to a lesser extent than hAQP9 

(Figure S4.1). 

An explanation other than substrate affinity could also account for higher MMA, DMA and 

water transport of hAQP9 compared to OsLsi1. hAQP9 is a human aquaporin and may be 

more highly expressed in Xenopus oocytes. One of the main differences between plant 

and animal genes is codon usage. For example, the codon GCG shows the biggest 

difference in frequency between Xenopus laevis (4.7‰) and Oryza sativa (26.6‰) as 

given in the Codon Usage Database (Nakamura et al., 2000). Optimising the primary 

structure plant genes has been shown to increase expression of plant nitrate transporters 

and aquaporins in Xenopus oocytes (T. Miller, personal communication). Overall, the 

average difference in codon frequency between rice and Xenopus is 4.90‰, compared to 

3.48‰ for human and Xenopus genes. 

Another difference which may affect transporter activity in Xenopus oocytes is post-

translational modification. Although the complete mechanism of aquaporin regulation is 

not currently understood, it has been demonstrated that plant aquaporins can be 

phosphorylated, methylated, acetylated, and glycosylated. Therefore differences 

between animal and plant protein modifications may mean that activities of transporters 

in Xenopus oocytes are different to those in planta. Furthermore, the intracellular and 

extracellular conditions such as pH and concentration of salts; particularly sodium 

chloride, are very different between Xenopus oocytes and plant cells (Miller & Zhou, 

2000). The key histidine residue responsible for the pH-dependant gating of SoPIP2;1 

(Törnroth-Horsefield et al., 2006) is not conserved in NIPs, suggesting that either a 

different residue is protonated, or a different mode of regulation (Hove & Bhave, 2011). 

Finally, expression of plant genes has been found to modify the activity of endogenous 



87 
 

transporters in Xenopus oocytes, which can be misinterpreted as properties of the foreign 

protein (Miller & Zhou, 2000).  
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4.6 Conclusions  

 

Permeability to arsenite and MMA was demonstrated for Xenopus oocytes expressing 

OsNIP1;1, and OsNIP3;3, as well as OsLsi1. Additionally, OsNIP1;1 and OsNIP3;3 were 

shown to transport water, and OsNIP3;3 is also permeable to germanium, an analogue of 

silicon. Finally, OsNIP1;1 and OsNIP3;2, as well as OsLsi1, demonstrated permeability to 

boric acid. Expression of OsNIP3;2 resulted in permeability to arsenite, but varying levels 

of MMA transport.  

Consistent, significant DMA uptake by Xenopus oocytes was not observed for any rice NIP, 

including OsLsi1. Transport of DMA by OsLsi1 is inferred by the finding that lsi1 mutant 

rice roots accumulated 49% less DMA compared to wild-type (Li et al., 2009a). The 

experimental methods were validated by the use of hAQP9 as a positive control for DMA 

and MMA uptake. Expression of hAQP9 was also shown to increase uptake of germanium. 

The difficulties of using Xenopus oocytes to characterise plant transporters; such as 

differential codon usage, post-translational modifications and membrane-targeting, as 

well as variation between individual cells and batches of cells, may be the cause of 

inconsistent MMA uptake by OsNIP3;2, and possibly the lack of observed DMA transport. 

Both OsNIP1;1 and OsNIP3;3 are expressed at low levels in rice roots, but are more highly 

expressed in older leaves. Root uptake of MMA is dominated by OsLsi1, demonstrated by 

the lsi1 mutant, which accumulated 80% less MMA in the roots compared to wild-type (Li 

et al., 2009a). Therefore, although OsNIP1;1 and OsNIP3;3 probably only play a minor role 

in MMA uptake by rice roots, they may be more important in translocation from roots to 

shoots, or to the grain.  

Expression of the human aquaporin, hAQP9, conferred considerable transport of MMA 

and DMA compared to both control oocytes, and those expressing rice NIPs including 

OsLsi1. Interestingly, transport of arsenite was similar for hAQP9 and the rice aquaporins. 

Additionally, OsNIP3;2 and OsNIP3;3 displayed significant differences in transport ability 

for MMA, germanium and water, despite only a single residue difference in the selectivity 

region of the two transporters. Therefore, it may be possible to modify plant NIPs to 
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decrease transport of arsenite, whilst maintaining transport ability for essential 

substrates.  
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4.7 Supplementary information 

 
Supplementary Table 4.1 Summary of characterisation of NIPs from Arabidopsis (At-), courgette (Cp-), Equisetum arvense (Ea-), soybean (Gm-), hydrangea (Hm-), 
barley (Hv-), Lotus japonicas (Lj-), rice (Os-), pea (Ps-), Pinus taeda (Pt-), wheat (Ta-) and maize (Zm-). The experimental methods are given after the specific 
reference and are: heterologous expression in Xenopus laevis oocytes (1), yeast (2) or Arabidopsis (3); knock-out or RNAi mutants (4), and (5) sub-cellular 
localisation. 
 

Group Name ar/R H2O As Si B Sb urea glycerol other References 

I AtNIP1;1 WVAR         
Weig and Jakob (2000)2; Kamiya et al. (2009)1,4,5; Kamiya 
and Fujiwara (2009)2,4 

I AtNIP1;2 WVAR        H2O2 
Weig and Jakob (2000)2; Dynowski et al. (2008)2; Kamiya 
et al. (2009)1,4; Kamiya and Fujiwara (2009)4 

I AtNIP2;1 WVAR        Lactic acid 
Mizutani et al. (2006)2,5; Choi and Roberts (2007)1,5; 
Bienert et al. (2008)2 

II AtNIP5;1 AIGR         
Takano et al. (2006)1,4,5; Bienert et al. (2008)2; Kamiya et 
al. (2009)1,4; Kamiya and Fujiwara (2009)4; Mitani-Ueno 
et al. (2011)1 

II AtNIP6;1 AIAR        Formamide 
Wallace and Roberts (2005)2; Bienert et al. (2008)2; 
Tanaka et al. (2008)1,4,5 

II AtNIP7;1 AVGR         
Bienert et al. (2008)2; Isayenkov and Maathuis (2008)2,4; 
Li et al. (2011b)1 

III CpNIP1 GSGR         Klebl et al. (2003)2 

II EaNIP3;1 STAR         Grégoire et al. (2012)1,3 

II EaNIP3;3 STAR         Grégoire et al. (2012)1,3 

II EaNIP3;4 STAR         Grégoire et al. (2012)1,3 

I GmNod26 WVAR        
Ammonia, 
Formamide 

Rivers et al. (1997)1; Dean et al. (1998)1; Wallace et al. 
(2002)1; Hwang et al. (2010)* 

II HmPALT1 TIAR        Al Negishi et al. (2012)2,3,5 



91 
 

Group Name ar/R H2O As Si B Sb urea glycerol other References 

III HvNIP2;1 GSGR         Chiba et al. (2009)1,5; Schnurbusch et al. (2010)1,2,4; 

II LjNIP5;1 AIGR         Bienert et al. (2008)2 

II LjNIP6;1 TIAR         Bienert et al. (2008)2 

I OsNIP1;1 WVAR         Bienert et al. (2008)2; Ma et al. (2008)1 

III OsNIP2;1 GSGR        
Se, MMA, 
DMA 

Ma et al. (2006)1,4,5; Bienert et al. (2008)2; Ma et al. 
(2008)1; Mitani et al. (2008)1; Li et al. (2009a)1,4; 
Schnurbusch et al. (2010)2,4; Zhao et al. (2010d)2,4; 
Mitani-Ueno et al. (2011)1; Montpetit et al. (2012)1,3 

III OsNIP2;2 GSGR         
Bienert et al. (2008)2; Ma et al. (2008)1; Mitani et al. 
(2008)1; Yamaji et al. (2008)4,5; Yamaji and Ma (2009)4 

II OsNIP3;1 AIGR         Ma et al. (2008)1; Hanaoka and Fujiwara (2007)5 

II OsNIP3;2 AAAR         Bienert et al. (2008)2 

I PsNIP-1 WVAR         Schuurmans et al. (2003)1 

I PtNIP1;1 WVAR         Ciavatta et al. (2001)1,2 

III TaLsi1 GSGR         Montpetit et al. (2012)1,3,5 

III ZmNIP2;1 GSGR         Mitani et al. (2009)1,5; Gu et al. (2012)2 

III ZmNIP2;2 GSGR         Mitani et al. (2009)1,5 

III ZmNIP2;4 GSGR         Gu et al. (2012)2 

 
*Recombinant GmNOD26 was characterised in isolated proteoliposomes of Pichia pastoris by Hwang et al. (2010).
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Supplementary Figure 4.1 Arsenite and MMA uptake of Xenopus oocytes expressing OsLsi1, 
OsNIP1;1, OsNIP3;2, OsNIP3;3 and hAQP9. Oocytes were exposed to MBS containing 1 mM 
arsenite at pH 7.4, or 1 mM MMA at pH 4.5, for 60 minutes. After exposure oocytes were rinsed 
thoroughly and split into replicates of 3-7 oocytes for analysis. Error bars represent SE (n = 2-4). 
* = P < 0.05, ** = P < 0.01, *** = P < 0.001 significant difference from control (water) of
Student’s t-test. 
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5. Transport of methylated arsenic: Phosphate 
transporters 

 

NIP aquaporins are permeable to the undissociated (uncharged) forms of MMA and DMA. 

However due to their pKa values, dissociated (charged) forms of MMA and DMA will exist 

in the physiological pH range of around 4.0 to 8.5 (Smith & Raven, 1979; Figure S1.2). 

When studying undissociated MMA and DMA uptake via OsNIP2;1 (Lsi1), Li et al. (2009a) 

observed that increasing the pH of the medium decreased As uptake (by decreasing the 

proportion of undissociated complexes available for uptake). However, the amount of 

MMA taken up by rice roots at pH 5.5 and 6.5 was higher than predicted by the 

proportion of undissociated complexes. Additionally the rice lsi1 mutant retained 50% of 

root DMA uptake (Li et al., 2009a). Therefore, a transport pathway for dissociated 

methylated As species may exist. 

5.1 Literature review 

Phosphate transporters (PTs) are well known to transport inorganic arsenate in plants 

(see Section 1.8.1) which, like inorganic phosphate (Pi), exists almost entirely as charged 

forms at physiological pH (H2AsO4
- or HAsO4

2-). Due to the similarity of arsenate and the 

dissociated forms of MMA and DMA, phosphate transporters may also be able to 

facilitate the transport of MMA and DMA at higher pH levels. Supportive evidence for this 

hypothesis comes from the finding that phosphate starvation increased DMA uptake by 

maize seedlings by ten-fold, compared to only a two-fold increase in arsenate uptake 

(Abbas & Meharg, 2008). 

5.1.1 Phosphate transport  

Phosphorus is an essential plant nutrient as a component of ATP (adenosine 

triphosphate), nucleic acids and phospholipids, and is also involved in regulating enzyme 

function and signal transduction. In soils, phosphate can exist in several different forms, 

but is predominantly taken up by plants in the form of orthophosphate, Pi (Ullrich-Eberius 

et al., 1981; Tu et al., 1990). Although the total concentration of P in soils can be relatively 

high, the average concentration of orthophosphate in the soil solution is around 1 µM, 
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and seldom exceeds 10 µM (Bieleski, 1973). The concentration of P within plant cells is 

estimated to be in the millimolar range, and so phosphate uptake by roots is strongly 

against the concentration gradient. 

The Arabidopsis genome contains at least five distinct classes of membrane proteins 

displaying phosphate transport activity. Four of the families are named Pht1, Pht2, Pht3 

and Pht4 whereas the fifth is called the plastidic phosphate translocator group (pPT; 

Muchhal et al., 1996; Daram et al., 1999; Takabatake et al., 1999; Knappe et al., 2003; 

Guo et al., 2008). It is thought that only members of the Pht1 family facilitate uptake of 

phosphate from the external medium. Members of the other four families are implicated 

in phosphate transport across internal membranes. 

Pht1 members are thought to be high-affinity phosphate transporters, and belong to the 

phosphate-proton symporter (PHS) family; part of the major facilitator superfamily (MFS). 

Pht1 transporters (PTs) are predicted to have 12 transmembrane (TM) domains, with 

both the N- and C-terminal domains in the cytoplasm. A large hydrophilic, cytoplasmic 

loop connects TM domains 5 and 6, giving the characteristic ‘6+6’ structure of MFS 

members (Marger & Saier, 1993). Electrophysiological studies have shown that PTs are 

secondary active transporters, coupling the transport of orthophosphate to the proton 

gradient across the plasma membrane (Ullrich-Eberius et al., 1981). It has been estimated 

that four protons are co-transported with each phosphate anion (Sakano, 1990).  

Interestingly, when expressed in oocytes, the low-affinity barley transporter, HvPht1;6 

was able to transport sulphate, nitrate and chloride in addition to phosphate (Preuss et 

al., 2010). However oocytes expressing HvPht1;1 showed no response to external nitrate 

or sulphate using two-electrode voltage clamp, whereas external phosphate and arsenate 

induced significant inward currents (Preuss et al., 2011). Additionally, nitrate and 

sulphate did not compete with 32Pi  for uptake by LePT1-expressing yeast (Daram et al., 

1998), and the presence of chloride, sulphate or nitrate also had no effect on Pi uptake of 

yeast expressing AtPht2;1 (Daram et al., 1999; Versaw & Harrison, 2002). Therefore the 

affinity of PTs to anions other than phosphate may show variation between individual 

transporters.  
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5.1.2 Rice phosphate transporters  

Based on homology with the yeast phosphate transporter Pho84, the rice genome 

contains 13 putative transporters belonging to the Pht1 high-affinity phosphate 

transporter family named OsPT1-13 (Paszkowski et al., 2002). So far six of the 13 genes 

have been characterised. 

OsPT11 and OsPT13 are involved in acquiring phosphate from arbuscular myccorhizal 

(AM) fungi (Paszkowski et al., 2002; Glassop et al., 2007). Expression of OsPT11 is induced 

exclusively upon colonisation by AM fungi. OsPT11 was able to complement the yeast 

pho84 mutant under low phosphate supply and so is putatively characterised as a high-

affinity transporter (Paszkowski et al., 2002). Unlike OsPT11, OsPT13 is expressed in non-

myccorhizal roots but is significantly upregulated by AM fungal colonisation. This suggests 

a dual role of OsPT13 in phosphate transport in non-myccorhizal roots and acquisition of 

phosphate from AM fungi (Glassop et al., 2007). 

Both OsPT2 and OsPT6 are expressed mainly in leaves under normal conditions, but 

expression in roots is strongly induced under P-deficient conditions (Ai et al., 2009). 

Expression of both OsPT2 and OsPT6 in roots was found to be strongly down-regulated 

under colonisation with the AM fungus G. intraradices (Paszkowski et al., 2002). 

Expression of OsPT6 was able to restore growth of yeast strain MB192, which lacks 

endogenous high-affinity PTs, under low phosphate conditions. Analysis of 33Pi uptake in 

the transformed yeast gave an apparent Km of 97 µM Pi for OsPT6. However, expression 

of OsPT2 did not functionally complement the mutant yeast, and was instead identified as 

a low-affinity transporter, with a putative role in internal phosphate transport and 

translocation (Ai et al., 2009).  

OsPT8 was found to be expressed independently of phosphate supply in various tissues 

including root tips and lateral roots, leaves, stamen and grain. Analysis of 32Pi uptake in 

Xenopus oocytes and yeast strain MB192 expressing  OsPT8 had apparent Km values of 27 

and 23 µM Pi respectively (Jia et al., 2011). RNAi and T-DNA insertion lines of OsPT8 had 

significantly decreased seed setting rate and increased phosphate concentrations in the 

panicle axis, demonstrating a critical role of OsPT8 in transporting phosphate to the 

developing grains (Jia et al., 2011). Overexpression of OsPT8 causes excessive 



96 
 

accumulation of P, especially in the shoots, with P toxicity symptoms present in leaves 

when grown under high phosphate supply (Jia et al., 2011; Wu et al., 2011). 

Finally, OsPT1 expression was detected in various cells of both rice roots and shoots, and 

was unaffected by phosphate supply (Sun et al., 2012). Expression of OsPT1 in the yeast 

pho84 mutant complemented growth at low phosphate levels, and uptake of 33Pi of the 

transformants gave an apparent Km of 177 µM Pi. Under sufficient phosphate supply, 

shoots of overexpression and RNAi lines contained significantly more and less P than wild-

type respectively (Sun et al., 2012). 

5.1.3 Regulators of PTs: OsPHR2 

In Arabidopsis the MYB transcription factor, AtPHR1 (phosphate starvation response1), 

plays a key role in phosphate-starvation signalling. AtPHR1 binds to the imperfect 

palindromic sequence of GNATATNC, also known as the PHR1 binding sequence (P1BS), 

which is found in the upstream region of all phosphate starvation-induced genes, apart 

from AtPHR1 itself (Rubio et al., 2001). 

Two homologous genes were found in rice, designated OsPHR1 and OsPHR2, however 

only OsPHR2 appears to be a functional homologue of AtPHR1 (Zhou et al., 2008). 

Analysis of the promoter region of phosphate starvation induced (PSI) genes and yeast 

one-hybrid assays suggested that another P1BS-like motif is required for OsPHR2 binding. 

Of the 13 rice PTs only OsPT2, OsPT3, OsPT7, OsPT10 and OsPT11 have both P1BS and 

P1BS-like motifs in their promoter (Wu et al., 2013). The remaining PSI PTs may be under 

the regulation of other members of the phosphate signalling pathway, including OsPHO2 

which is negatively regulated by OsPHR2 via the mature microRNA, miR399 (Bari et al., 

2006). OsSPX1 is also downstream of OsPHR2, and was found to regulate the expression 

of PSIs including OsPT2, OsPT3, OsPT6, and OsPT8 (Wang et al., 2009). 

Overexpression of OsPHR2 under phosphate-sufficient conditions leads to excessive 

accumulation of phosphate in root and shoots; enhanced root elongation and root hair 

growth; and up-regulation of phosphate transporters including OsPT9 in root, and OsPT1, 

OsPT5, OsPT7, OsPT9, and OsPT12 in shoot (Zhou et al., 2008). The accumulation of 

excess phosphate in OsPHR2-overexpression (PHR2-ov) lines is mainly attributed to the 

up-regulation of OsPT2, as shoot phosphate concentrations were reduced by 70% in 
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PHR2-ov/pt2 double mutants compared to PHR2-ov (Liu et al., 2010a). Expression of 

OsPT8 in roots and shoots is also enhanced in PHR2-ov (Wu et al., 2011).  

5.1.4 Regulators of PTs: OsPHF1 

OsPHR2 regulates the transcription of PTs, but their activity can also be regulated post-

translationally. In Arabidopsis, mutations in AtPHF1 (phosphate transporter traffic 

facilitator1) resulted in reduced phosphate uptake and increased arsenate tolerance 

(Gonzalez et al., 2005). AtPHF1 is localised to the endoplasmic reticulum (ER) and is 

required for correct trafficking of AtPht1;1 (and possibly other members of the Pht1 

family) to the plasma membrane (Bayle et al., 2011). 

Two homologous genes were found in rice, designated OsPHF1 and OsPHF1L, however 

only OsPHF1 seems to be a functional homologue of AtPHF1 (Chen et al., 2011). Screening 

of an EMS (ethylmethanesulphonate)-generated mutant library for arsenate tolerance 

and low P accumulation identified three independent osphf1 mutants. Additionally, 

overexpression of OsPHF1 resulted in excessive accumulation of P in both roots and 

shoots, causing growth inhibition and phosphate toxicity symptoms in leaves. OsPHF1 

was also localised to the ER, and regulated proper trafficking of OsPT2 and OsPT8 to the 

plasma membrane. Interestingly, despite significant upregulation under phosphate 

limiting conditions, OsPHF1 expression was found not to be under the regulation of 

OsPHR2 (Chen et al., 2011). 

5.2 Aims 

Undissociated MMA was shown to be substrate of NIP aquaporins in Chapter 4, and 

previous studies (Li et al., 2009a). However DMA transport by NIPs was very limited. 

Additionally the low pKa1 of MMA and DMA means dissociated MMA and DMA complexes 

will be present in the physiological pH range. Arsenate is transported by phosphate 

transporters, and so may also be able to transport charged methylated As species. 

Therefore the aim of the experiments within this chapter is to determine whether 

phosphate transporters can transport dissociated MMA and DMA in rice. 
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5.3 Materials and methods 

5.3.1 Hydroponic culture of rice phosphate transport mutants 

Three transgenic lines were grown in hydroponic culture: PT8-ov; an overexpression line 

of OsPT8 driven by the cauliflower mosaic virus (CaMV) 35S promoter, PHR2-ov; an 

overexpression line of OsPHR2 also driven by the CaMV 35S promoter, and phf1; a 

mutation in OsPHF1 isolated from an EMS-mutagenised population of PHR2-ov seeds. 

Wild-type for PT8-ov and PHR2-ov is Nipponbare, and for phf1 is PHR2-ov. These lines 

were a generously provided by Prof P. Wu (Zhejiang University, China) and have been 

characterised previously for phosphate and arsenate transport (Zhou et al., 2008; Wu et 

al., 2011). 

Rice seed were surface sterilised with 0.5% (v/v) active NaClO for 15 mins, rinsed and 

soaked in de-ionised water overnight, and placed on a nylon net floating on a 0.5 mM 

CaCl2 solution. After one week the solution was replaced with modified half-strength 

Kimura nutrient solution with decreased phosphate concentration (0.091 mM KNO3, 

0.183 mM Ca(NO3)2, 0.274 mM MgSO4, 0.183 mM (NH4)2SO4, 10 μM KH2PO4, 1.0 μM 

MnCl2, 3.0 μM H3BO3, 0.1 μM (NH4)6Mo7O24, 0.4 μM ZnSO4, 0.2 μM CuSO4, 80 μM 

NaFe(III)-EDTA; pH 5.5). After a further week individual seedlings were transferred to 

300 mL Magenta™ boxes (Sigma) filled with half-strength Kimura solution (as above but 

0.091 mM KH2PO4). The nutrient solution was renewed twice weekly. The growth 

conditions were 16 hour photoperiod with a light intensity of more than 350 μmol m-2 s-1, 

day/night temperatures of 28°C/25°C, and relative humidity of 70%. To minimise changes 

in pH during the exposure period, As-amended nutrient solution lacked ammonium 

sulphate and was buffered with 5 mM MES or Hepes for pH 5.5 or 7.0 respectively. 

After As exposure (exact conditions are given in figure legends) aliquots of nutrient 

solution were collected to monitor changes in pH during the uptake period. Roots and 

shoots were separated and rinsed with de-ionised water. Apoplastic As was removed 

from roots by submerging in desorption solution (1 mM K2HPO4, 0.5 mM Ca(NO3)2, 5 mM 

MES, pH 6.0; Xu et al., 2007) for 15 minutes.  

Shoots and roots were oven-dried at 60°C overnight before weighing into 25 mL Pyrex 

digestion tubes. For digestion, 5 mL HNO3/HClO4 (85/15 v/v) acid was added to each 
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sample. Pre-digestion at room temperature lasted for between 12-48 hours depending on 

sample weight. The heating program: 3 hours at 60°C, 1 hour at 100°C, 1 hour at 120°C 

and finally 2 hours at 175°C, was run overnight in an acid-scrubbed fume cupboard. The 

next day 5 mL of 20% (v/v) HNO3 was added to each sample and heated at 80°C for 30 

minutes. Approximately 10 mL of water was then added, and reheated at 80°C for a 

further 30 minutes. Samples were allowed to cool completely before making up to 20 mL 

with water, giving a final concentration of 5% (v/v) HNO3. Blanks and the certified 

reference materials BCR-414 (plankton; As concentration 6.82 ± 0.28 mg kg-1) or NIST 

1568a (rice flour; As concentration 0.29 ± 0.03 mg kg-1) were included in all batches for 

quality assurance. 

Total As concentration in samples was determined by ICP-MS (see Section 2.1), and other 

elements including P were analysed by ICP-OES. 

5.3.2 Analysis of total concentration of elements by ICP-OES  

Analysis of the total concentration of P and As in digested samples was carried out by ICP-

OES (PerkinElmer Optima 7300 DV; Waltham, MA, USA) by the Rothamsted Research 

Analytical Unit. 

5.3.3 Oocyte transport assays 

The construct for expressing OsPT8 in oocytes (pT7TS backbone) was a gift from Dr X. Fan 

(Nanjing Agricultural University, China). cRNA was produced and injected into oocytes as 

described in Section 4.3.1. BamHI was used for plasmid linearization, and the T7 

mMessage mMachine kit (Ambion) was used to synthesise the cRNA. 

To measure As uptake, oocytes were incubated in MBS (see Section 4.3.1) amended with   

1 mM arsenate, MMA or DMA at pH 7.4 for 60 minutes. After exposure oocytes were 

rinsed at least 6 times with clean MBS and between 5 and 11 oocytes, forming one 

replicate, were placed in centrifuge tubes. Pooled oocytes were then digested with 

0.4 mL HNO3 heated in a water bath at 90°C for 45 minutes. Cooled samples were diluted 

to a final volume of 7 mL with ultrapure water and analysed for total As concentration by 

ICP-MS (see Section 2.1.2). 
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Phosphate uptake was measured by the method given in Ai et al. (2009), modified from 

Vanveldhoven and Mannaerts (1987). Briefly, oocytes were incubated in MBS amended 

with 0.5 mM phosphate (NaH2PO4) for 14 hours. After exposure oocytes were rinsed 

thoroughly with ice-cold MBS, and single oocytes were placed in centrifuge tubes. 250 µL 

of ultrapure water was added to each sample and oocytes were lysed in a sonicating bath 

at 100% ultrasound power for around 30 seconds (Fisherbrand FB11002; Thermo Fisher 

Scientific Inc., Waltham, MA, USA). 25 µL aliquots of the lysed oocyte samples were 

placed in the wells of a 96-well plate and diluted to a final volume of 250 µL. 50 µL of 

1.75% (NH4)6Mo7O24·4H2O in 6.3 N H2SO4 was added to each well. After incubating for 

10 minutes, 50 µL of 0.035% malachite green in 0.35% polyvinyl alcohol was added to 

each well. Samples were incubated at room temperature for a further 30 minutes before 

absorbance was measured at 610 nm (Thermo Varioskan; Thermo Fisher Scientific Inc., 

Waltham, MA, USA). Standards containing a range of phosphate concentrations were 

included in duplicate in each plate, and were used to construct calibration curves to 

measure the phosphate concentration of oocyte samples. 
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5.4 Results  

5.4.1 Arsenic uptake by a rice PT8-overexpression line 

OsPT8 is a high-affinity phosphate transporter, and previous studies have found that 

when overexpressed, rice plants accumulate increased phosphorus especially in the 

shoots (Jia et al., 2011; Wu et al., 2011). To investigate the role of OsPT8 in the uptake of 

dissociated methylated As, hydroponically-grown wild-type (Nipponbare) and OsPT8 

overexpressing (PT8-ov) rice plants were exposed to MMA or DMA in the nutrient 

solution, in the absence (-P) or presence (+P; 0.091 mM) of phosphate, and at pH 5.5 or 

7.0 for 48 hours. At pH 5.5, 95.3% of MMA and 18.6% of DMA complexes are dissociated. 

At pH 7.0 the proportion increases to 99.8% for MMA and 87.9% for DMA. 

 

Both root and shoot dry weights of the PT8-ov line were significantly decreased compared 

to wild-type (P < 0.001; Figure 5.1). The other treatments (pH, As species and ± P) had no 

effect on dry weight and so the mean of all treatments is presented. Additionally, roots 

and shoots of PT8-ov contained significantly higher concentrations of P than wild-type, 

especially in the +P treatment (P < 0.001; Figure 5.1). Both pH and As treatments had no 

effect on the P concentration of plants. Jia et al. (2011) found that when grown under 

both high (300 µM) and low phosphate (15 µM) conditions, PT8-ov plants accumulated 

significantly more P in their shoots than wild-type. Furthermore, under normal phosphate 

supply, root and shoot biomass of PT8-ov was significantly decreased compared to wild-

Figure 5.1 Mean dry weights and total P concentration of hydroponically-grown rice plants. WT = 
Nipponbare, PT8-ov = OsPht1;8 over-expression line. Plants were grown in half-strength Kimura 
nutrient solution for 34 days before treatment in the absence (-P) or presence (+P) of phosphate. 
Error bars represent SE (n = 32 for DW; n = 16 for P). *** = P < 0.001 significant difference from 
wild-type (ANOVA).
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type, presumably due to phosphate toxicity. Tips of older leaves of the PT8-ov line, in 

particular, presented areas of chlorosis and necrosis (see Figure S5.1). 

 

Total As concentrations in roots (Figure 5.2) were analysed by 4-way ANOVA (see Tables 

S5.1; S5.2 for full output). The treatment with the greatest overall effect was phosphate 

(P < 0.001), which did not interact significantly with any of the other factors. Three two-

way interactions were also significant; As x pH (P < 0.001), As x genotype (P < 0.001) and 

genotype x pH (P = 0.04).  

Root As concentrations were significantly lower in the +P treatment compared to the -P 

treatment, regardless of the pH or As species in the exposure medium, or the genotype.  

Figure 5.2 Mean root As concentration of hydroponically-grown rice plants exposed to 5 µM MMA 
or DMA, with (+P) or without (-P) phosphate, at A, pH 5.5 or B, 7.0 for 48 hours. WT = Nipponbare, 
PT8-ov = OsPht1;8 over-expression line. Plants were grown in half-strength Kimura nutrient 
solution for 34 days before As treatment. Error bars represent SE (n = 4). 
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Root MMA uptake was significantly higher than DMA uptake under both pH treatments, 

but the difference was significantly greater at pH 5.5 than pH 7.0. This effect was 

independent of P treatment and genotype.  

The PT8-ov line had significantly higher root As concentrations compared to wild-type 

after exposure to either As species, although the difference between the genotypes was 

greater under MMA treatment than DMA treatment. 

Finally, root As concentrations of the PT8-ov line were significantly higher than wild-type, 

irrespective of P treatment or As species, but the difference between the genotypes was 

significantly greater at pH 5.5 than at pH 7.0. 
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Figure 5.3 Mean shoot As concentration of hydroponically-grown rice plants exposed to 5 µM 
MMA or DMA, with (+P) or without (-P) phosphate, at A, pH 5.5 or B, 7.0 for 48 hours. WT = 
Nipponbare, PT8-ov = OsPht1;8 over-expression line. Plants were grown in half-strength Kimura 
nutrient solution for 34 days before As treatment. Error bars represent SE (n = 4). 
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Total As concentrations in shoots (Figure 5.3) were also analysed by 4-way ANOVA (see 

Tables S5.3; S5.4 for full output) and show some interesting differences from the root 

data. The treatment with the greatest overall effect on shoot As, was genotype 

(P < 0.001), which did not interact significantly with any of the other factors. Two 

two-way interactions were also significant; As x P (P < 0.001), and P x pH (P = 0.029). 

Shoots of the PT8-ov line had significantly higher As concentrations than wild-type, 

regardless of the pH, presence of phosphate, or As species in the exposure medium. 

Exposure to MMA in combination with -P treatment, resulted in significantly higher shoot 

As concentrations than exposure to DMA with both P treatments, or MMA under +P 

treatment.  

Finally, shoot As concentration was significantly higher in plants exposed to medium 

lacking phosphate at pH 5.5, compared to those under +P treatment, or at pH 7.0 with 

either P treatment. 

5.4.2 Heterologous expression of OsPT8 in Xenopus oocytes 

Expression of OsPT8 in Xenopus oocytes allows uptake of dissociated MMA and DMA to 

be measured directly. Arsenate was included as a positive control.  

 

Oocytes expressing OsPT8 showed considerably enhanced uptake of arsenate and MMA 

compared to the water-injected controls (Figure 5.4). However, after exposure to DMA 

Figure 5.4 Mean As content of oocytes expressing OsPT8. Oocytes were exposed to MBS 
containing 1 mM arsenate, MMA or DMA at pH 7.4 for 60 minutes. After exposure oocytes were 
rinsed thoroughly and split into replicates of 5-11 oocytes for analysis. Error bars represent SE
(n = 2-3). 
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there was no difference in As content of oocytes injected with OsPT8 or water. An 

attempt was made to repeat this experiment, and measure phosphate uptake, in another 

batch of oocytes. However for an unknown reason, the cRNA was not expressed and no 

difference was seen between the OsPT8 and water-injected oocytes under any treatment 

(data not shown).  

5.4.3 Arsenic uptake by rice PHR2-overexpression and phf1 mutants 

To further investigate the contribution of the phosphate transport pathway to the uptake 

and translocation of dissociated pentavalent MMA and DMA, two transgenic rice lines; 

PHR2-ov, phf1, and wild-type (Nipponbare) were grown in hydroponic culture and 

exposed to arsenate, MMA or DMA in medium lacking phosphate, at pH 5.5 (where 95.3% 

of MMA complexes and 18.6% DMA complexes are dissociated) for 24 hours. 

 

Figure 5.5 Mean As concentration of hydroponically-grown rice plants exposed to 5 µM arsenate 
(AsV) MMA or DMA, without phosphate, at pH 5.5 for 24 hours. Nip = Nipponbare; PHR2-ov = 
OsPHR2 over-expression line in a Nipponbare background; and phf1 = osphf1 mutant in the PHR2-
ov background. Plants were grown in half-strength Kimura nutrient solution for 43 days before As 
treatment. Error bars represent SE (n = 3-4). *** = P < 0.001 significant difference in flagged 
comparisons with background (ANOVA).
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When previously characterised, PHR2-ov was found to accumulate excessive P in the 

shoots (Zhou et al., 2008), whereas phf1 showed decreased root and shoot 33P uptake 

compared to PHR2-ov (Wu et al., 2011). Consistent with these reports, at the end of the 

growth period, PHR2-ov shoot P concentrations were significantly higher than  

Nipponbare, and phf1 shoot P concentrations were significantly lower than PHR2-ov 

(Figure S5.2). Additionally, root dry weight was significantly decreased in both PHR2-ov 

compared to wild-type, and phf1 compared to PHR2-ov. Shoot dry weight of phf1 was 

also significantly decreased compared to PHR2-ov. 

Exposure to arsenate gave the highest root As concentrations, followed by MMA, with 

DMA treatment resulting in the lowest root As (Figure 5.5). Shoots followed a similar 

pattern, but the difference between MMA and DMA is much smaller. Irrespective of 

genotype, arsenate and MMA have similar average TFs (translocation factors) of 0.05 and 

0.04 respectively, whereas that of DMA is considerably higher at 0.61. 

No significant differences were found in As concentration between Nipponbare and 

PHR2-ov, or PHR2-ov and phf1 in roots or shoots exposed to MMA or DMA. Root As was 

significantly higher in the PHR2-ov line compared to background (Nipponbare), and was 

significantly lower in the phf1 mutant compared to background (PHR2-ov), under 

arsenate treatment. However in shoots under arsenate treatment, only the difference 

between phf1 and PHR2-ov was significant.  

The experiment was also conducted with the pH of the exposure medium at 7.0, whereby 

99.8% of MMA complexes and 87.9% of DMA complexes are dissociated. 
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Differences between the experiments conducted on the PHR2-ov and phf1 lines at pH 5.5 

and 7.0 cannot be analysed directly as the plants varied greatly, especially in biomass 

(Figures S5.2; S5.3). However, overall trends in the data can be compared. 

The results for As exposure at pH 7.0 are generally similar to those at pH 5.5, but there 

are some interesting differences. Firstly, under arsenate treatment both root and shoot 

As concentrations of the PHR2-ov line were significantly higher than background 

(Nipponbare), whereas root and shoot As concentrations of the phf1 mutant were 

significantly decreased compared to PHR2-ov (Figure 5.6). Additionally PHR2-ov roots and 

shoots had significantly higher As concentration after exposure to MMA compared to 

wild-type. Again no differences in As concentration of tissues after exposure to DMA was 

observed between the genotypes. 
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Figure 5.6 Mean As concentration of hydroponically-grown rice plants exposed to 5 µM arsenate 
(AsV) MMA or DMA, without phosphate, at pH 7.0 for 24 hours. Nip = Nipponbare; PHR2-ov = 
OsPHR2 over-expression line in a Nipponbare background; and phf1 = osphf1 mutant in the PHR2-
ov background. Plants were grown in half-strength Kimura nutrient solution for 40 days before As 
treatment. Error bars represent SE (n = 3-4). *** = P < 0.001 significant difference in flagged 
comparisons with background (ANOVA).
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Exposure to arsenate at pH 7.0 also resulted in the highest root and shoot As 

concentrations. Again MMA treatment gave an intermediate root As concentration, 

whereas little difference was seen in shoots after exposure to MMA or DMA. In this 

experiment arsenate and MMA both have average TFs of 0.05, whilst the TF for DMA is 

again much greater at 0.37; but is lower than for the experiment conducted at pH 5.5. 
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5.5 Discussion 

 

The ability of OsPT8 to transport MMA and arsenate was clearly demonstrated by 

Xenopus oocytes expressing OsPT8 (Figure 5.4). Although the experiment has not been 

repeated in different batches of oocytes, and phosphate transport by OsPT8 has not been 

confirmed, the preliminary data are very strong. Rice plants overexpressing OsPT8 also 

had significantly higher As concentrations in roots and shoots after exposure to arsenate 

compared to wild-type when grown hydroponically (Figure S5.4). Uptake of arsenate and 

MMA was comparable for OsPT8-injected oocytes, which may indicate that the affinity of 

OsPT8 is similar for both substrates. This is in contrast to the NIP aquaporins, which show 

higher arsenite uptake than MMA (see Chapter 4). By measuring root uptake of the 

PT8-ov line in hydroponic experiments, Wu et al. (2011) determined the Km of OsPT8 to 

be 11.4 and 14.2 µM for phosphate and arsenate respectively. Further investigation into 

the affinity of PTs to MMA and DMA is required. 

The independent, highly significant, effect of P treatment on root As uptake of OsPT8-ov 

and wild-type plants (Figure 5.2) indicates that there is competition between phosphate, 

and MMA and DMA for root uptake. Alternatively, the lack of phosphate in the uptake 

medium may induce expression of phosphate starvation induced genes, including 

phosphate transporters. The treatments were applied for 48 hours before harvest, in 

which time the phosphate starvation response is induced and genes including OsPT2, 

OsPT4 and OsPT8 are upregulated (Kamiya et al., 2013; Wu et al., 2013).  

Shoot As concentration was significantly increased in the OsPT8-ov line compared to wild-

type, irrespective of the other treatments (Figure 5.3). Two independently generated 

OsPT8-ov lines show excessive P accumulation in the shoots, whilst root P concentration 

is only moderately increased (Jia et al., 2011; Wu et al., 2011; Figures 5.1; S5.1). The mean 

translocation factor (TF), measured as the ratio of As in paired root and shoot samples, 

was also significantly higher for OsPT8-ov plants compared to wild-type; regardless of the 

P, pH and As treatments (P = 0.012; Figure S5.5). Therefore, the significant increase in 

shoot uptake and translocation of MMA and DMA is consistent with the phenotype of 

phosphate over accumulation in the shoots of of OsPT8-overexpressor lines.  
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Overexpression of OsPHR2 causes increased expression of several PTs, including OsPT8 

(Zhou et al., 2008), and shows significantly increased As concentrations in roots and 

shoots when exposed to arsenate at both pH levels (Figures 5.5; 5.6). However unlike the 

PT8-ov line, there was no difference in MMA uptake between PHR2-ov and wild-type at 

pH 5.5 (Figure 5.5). Yet there was a significant difference in both root and shoot As 

concentration between the genotypes under MMA treatment, when the exposure 

medium was at pH 7.0 (Figure 5.6). The effect of pH on As uptake by all genotypes is 

discussed below.  

Although arsenate uptake was significantly decreased in roots and shoots of the phf1 line 

compared to background (PHR2-ov) at both pH levels, no differences were seen between 

the phf1 and PHR2-ov under MMA or DMA treatment (Figures 5.5; 5.6). The mutation in 

osphf1 causes retention of several PTs in the ER, causing significantly decreased biomass 

and tissue P concentrations (Chen et al., 2011; Figures S5.2; S5.3). However, plants do 

retain the ability to take up some phosphate and arsenate, presumably via PTs not 

regulated by OsPHF1 (Wu et al., 2011). Additionally, for the relatively small differences in 

MMA and DMA transport to be observed, variation between individual replicates must be 

low. However, as the large standard error bars present in Figures 5.5 and 5.6 

demonstrate, plant-to-plant variation in the phf1 line is relatively high, and so may mask 

any differences arising from As treatment. 

For all the tested genotypes (Nipponbare, PT8-ov, PHR2-ov, phf1) As uptake was higher at 

pH 5.5 (Figures 5.2; 5.3; 5.5) than at pH 7.0 (Figures 5.2; 5.3; 5.6). This is particularly 

apparent for arsenate uptake, which was 3.1 and 6.6-fold greater at pH 5.5 compared to 

pH 7.0, for wild-type roots and shoots respectively. At lower pHs there is a greater 

concentration of protons for co-transport by PTs. For example the yeast high-affinity 

phosphate transporter, Pho84 has a pH optimum of 4.5 (Berhe et al., 1995). Therefore, 

higher arsenate uptake under low pH is most likely due to higher activity of PTs. However 

changes in pH also affect the dissociation of MMA and DMA, and decreasing the pH 

decreases the proportion of dissociated complexes (Figure S1.2). Therefore, the effect of 

low pH on MMA and DMA transport is the net result of enhanced PT activity, and 

decreased availability of dissociated MMA and DMA. 
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A decrease in dissociation causes an increase in the proportion of undissociated MMA 

and DMA complexes. Transport of the neutral forms of MMA and DMA by NIP aquaporins 

(see Chapter 4) is thought to be the major pathway of methylated As uptake in rice. This 

is demonstrated by the oslsi1 mutant, which causes around 80% decrease in MMA, and 

50% decrease in DMA root uptake compared to wild-type (Li et al., 2009a). The change in 

dissociation of MMA between pH 5.5 and 7.0 is only 4.51% (4.67% undissociated at pH 5.5 

and 0.15% at pH 7.0), but uptake of MMA was 2.1-fold higher in absence of phosphate, 

and 2.3-fold higher in the presence of phosphate, at pH 5.5 compared to pH 7.0 for wild-

type roots (Figure 5.2).  

The difference in root As between PT8-ov and wild-type was significantly greater under 

MMA treatment than DMA treatment (Figure 5.2). Additionally, for DMA the change in 

dissociation between pH 5.5 and pH 7.0 is much greater (69.23%; 81.36% undissociated at 

pH 5.5 and 12.13% at pH 7.0), however pH had the smallest effect on DMA transport; 

DMA uptake was 1.3 and 1.8-fold greater at pH 5.5 compared to pH 7.0, for wild-type 

roots and shoots respectively. Furthermore, the uptake of MMA was significantly 

increased in roots and shoots of the PHR2-ov line compared to wild-type, but DMA 

concentrations were unaffected (Figure 5.6). Finally, DMA uptake was also not apparent 

for Xenopus oocytes expressing OsPT8 (Figure 5.4). However DMA uptake by rice roots is 

slower than for inorganic As or MMA (Raab et al., 2007b), and so longer incubation time 

may be necessary to observe differences in DMA uptake by oocytes. Overall, these results 

suggest that the phosphate transport pathway contributes less to the transport of DMA 

than MMA. The additional methyl group does not significantly alter the size of the DMA 

molecule, but does increase hydrophobicity. This property may allow DMA to be 

transported by another class of membrane proteins, and explain the differences in 

transport of DMA and MMA. 
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5.6 Conclusions  

 

Significantly increased concentrations of MMA and DMA in rice shoots were found in 

plants overexpressing the high-affinity phosphate transporter, OsPT8. Additionally, the 

presence of phosphate in the uptake medium was found to significantly decrease uptake 

of MMA and DMA, for both PT8-ov and wild-type. Furthermore, uptake of MMA by 

Xenopus oocytes demonstrated directly that OsPT8 is able to transport MMA. Finally, 

shoot As concentrations were significantly increased after MMA exposure at pH 7.0 for 

rice plants overexpressing the phosphate starvation transcription factor, OsPHR2. Taken 

together, these results show that the phosphate transport pathway does contribute to 

the uptake and translocation MMA and DMA in rice. 

Uptake of arsenate, MMA and DMA by rice roots in hydroponics was lower at pH 7.0 

compared to pH 5.5 for all genotypes. At lower pHs there is an increase in protons for co-

transport by PTs, but a decrease in dissociated MMA and DMA complexes. Additionally, 

the proportion of undissociated MMA and DMA complexes increases, which are 

substrates of NIP aquaporins. Therefore the contribution of PTs to methylated As 

transport is directly dependent on the pH, which determines the both the dissociation of 

MMA and DMA, and the proton gradient for co-transport. 

Although pH, P treatment and overexpression of OsPT8 did significantly affect DMA 

transport, the effects on MMA uptake were much greater. Additionally, overexpression of 

OsPHR2 caused significantly increased transport of arsenate and MMA compared to wild-

type, whereas DMA uptake was unaffected. Taken together these results indicate that the 

phosphate transport pathway contributes less to the transport of DMA than MMA. The 

more hydrophobic nature of DMA may mean that another transport pathway for this As 

species exists. 
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5.7 Supplementary information 

 
Supplementary Table 5.1 Four-way ANOVA of log10 root As (µg g-1 DW) data. See Figure 5.2 for 
raw means. Significant treatments/interactions are in bold. 
 

Treatment d.f. s.s. m.s. v.r. F pr. 

As 1 18.95745 18.95745 7533.91 <.001 

Genotype 1 0.16957 0.16957 67.39 <.001 

P 1 0.21884 0.21884 86.97 <.001 

pH 1 1.12232 1.12232 446.02 <.001 

As.Genotype 1 0.04829 0.04829 19.19 <.001 

As.P 1 0.00302 0.00302 1.20 0.279 

Genotype.P 1 0.00041 0.00041 0.16 0.689 

As.pH 1 0.14795 0.14795 58.79 <.001 

Genotype.pH 1 0.01123 0.01123 4.46 0.04 

P.pH 1 0.00050 0.00050 0.20 0.658 

As.Genotype.P 1 0.00112 0.00112 0.44 0.508 

As.Genotype.pH 1 0.00029 0.00029 0.12 0.735 

As.P.pH 1 0.00111 0.00111 0.44 0.510 

Genotype.P.pH 1 0.00812 0.00812 3.23 0.079 

As.Genotype.P.pH 1 0.00116 0.00116 0.46 0.501 

Residual 48 0.12078 0.00252 

 

  

Total 63 20.81215 
   d.f. = degrees of freedom; s.s. = sum of squares; m.s. = mean squares; v.r. = variance ratio; 

F pr. = F probability. 
 
Supplementary Table 5.2 Means tables of significant treatments and interactions from  
4-way ANOVA of root As (µg g-1 DW) data. Log-transformed values are given in parentheses. 
Different superscript letters indicate significant difference at the 5% LSD level (0.0252 for single, 
and 0.0357 for 2-way interactions of log10 means). 
 

P 
 

+P 
 

-P 

 
8.095 (0.908)a 10.597 (1.025)b 

     As.Genotype WT 
 

PT8-ov 

MMA 27.040 (1.432)a 38.896 (1.590)b 

DMA 2.503 (0.398)c 2.795 (0.446)d 

     As.pH 
 

5.5 
 

7.0 

MMA 49.136 (1.691)a 21.399 (1.330)b 

DMA 3.212 (0.507)c 2.178 (0.338)d 

     Genotype.pH 5.5 

 

7.0 

WT 10.824 (1.034)a 6.252 (0.796)b 

PT8-ov 14.581 (1.164)c 7.456 (0.873)d 
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Supplementary Table 5.3 Four-way ANOVA of log10 shoot As (µg g-1 DW) data. See Figure 5.3 for 
raw means. Significant treatments/interactions are in bold. 
 

Treatment d.f. s.s. m.s. v.r. F pr. 

As 1 0.3379 0.3379 38.97 <.001 

Genotype 1 0.4708 0.4708 54.29 <.001 

P 1 0.2051 0.2051 23.66 <.001 

pH 1 0.2054 0.2054 23.68 <.001 

As.Genotype 1 0.0303 0.0303 3.49 0.068 

As.P 1 0.2824 0.2824 32.56 <.001 

Genotype.P 1 0.0093 0.0093 1.08 0.304 

As.pH 1 0.0126 0.0126 1.45 0.234 

Genotype.pH 1 0.0027 0.0027 0.31 0.579 

P.pH 1 0.0439 0.0439 5.06 0.029 

As.Genotype.P 1 0.0001 0.0001 0.01 0.925 

As.Genotype.pH 1 0.0066 0.0066 0.76 0.386 

As.P.pH 1 0.0034 0.0034 0.39 0.536 

Genotype.P.pH 1 0.0000 0.0000 0.00 0.984 

As.Genotype.P.pH 1 0.0001 0.0001 0.01 0.939 

Residual 48 0.4162 0.0087 

 

  

Total 63 2.0267 

 

    

d.f. = degrees of freedom; s.s. = sum of squares; m.s. = mean squares; v.r. = variance ratio; 
F pr. = F probability. 
 
Supplementary Table 5.4 Means tables of significant treatments and interactions from  
4-way ANOVA of shoot As (µg g-1 DW) data. Log-transformed values are given in parentheses. 
Different superscript letters indicate significant difference at the 5% LSD level (0.0468 for single, 
and 0.0662 for 2-way interactions of log10 means). 
 

Genotype WT 

 

PT8-ov 

 

1.045 (0.019)a 1.552 (0.191)b 

 
    

As.P 
 

+P 
 

-P 

MMA 1.135 (0.055)a 2.000 (0.301)b 

DMA 1.102 (0.042)a 1.052 (0.022)a 

 
    

P.pH 
 

5.5 
 

7.0 

+P 1.199 (0.079)a 1.042 (0.018)a 

-P 1.754 (0.244)b 1.199 (0.079)a 
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Supplementary Figure 5.1 Typical phosphate toxicity symptoms present in older leaves of the 
OsPT8-overexpression line. Rice seed (PT8-ov and WT) were germinated in low phosphate 
(10 µM) nutrient solution for 7 days, then grown for a further 29 days in modified half-strength 
Kimura B nutrient solution (91 µM phosphate).
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Supplementary Figure 5.2 Mean dry weight and total P concentration of hydroponically-grown 
rice. Nip = Nipponbare, PHR2-ov = OsPHR2 over-expression line, and phf1 = osphf1 mutant. Plants 
were grown in half-strength Kimura nutrient solution for 43 days before As treatment. Error bars 
represent SE (n = 9-12). *** = P < 0.001 significant difference from background (ANOVA). 
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Supplementary Figure 5.3 Mean dry weight and total P concentration of hydroponically-grown 
rice. Nip = Nipponbare, PHR2-ov = OsPHR2 over-expression line, and phf1 = osphf1 mutant. Plants 
were grown in half-strength Kimura nutrient solution for 40 days before As treatment. Error bars 
represent SE (n = 9-12). *** = P < 0.001 significant difference from background (ANOVA).
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Supplementary Figure 5.4 Mean root As concentration of hydroponically-grown rice plants 
exposed to 5 µM arsenate (AsV), MMA or DMA, without phosphate, at 7.0 for 24 hours. WT = 
Nipponbare, PT8-ov = OsPht1;8 over-expression line. Plants were grown in half-strength Kimura 
nutrient solution for 40 days before As treatment. Error bars represent SE (n = 3-4). 
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Supplementary Figure 5.5 Mean shoot:root As ratio (TF) of hydroponically-grown rice plants 
exposed to 5 µM MMA or DMA, with (+P) or without (-P) phosphate, at A, pH 5.5 or B, 7.0 for 48 
hours. WT = Nipponbare, PT8-ov = OsPht1;8 over-expression line. Plants were grown in half-
strength Kimura nutrient solution for 34 days before As treatment. Error bars represent SE (n = 4). 
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6. General discussion 

 

The work presented in this thesis focussed on two specific aims: firstly to determine 

whether plants are able to methylate inorganic As, and secondly to identify and 

characterise transporters responsible for the transport of MMA and DMA into and within 

plants. 

6.1 Arsenic methylation in plants 

 

The data presented in Chapter 3 demonstrate that rice, tomato and red clover are unable 

to methylate inorganic As, and instead take up MMA and DMA from the growth medium. 

The species tested are from diverse plant families (Poaceae, Solanaceae and Fabaceae), 

and so it is unlikely that plants are unable to methylate As. The additional treatments of 

nutrient deficiency or symbiosis with root-nodulating bacteria, did not affect the As 

species present in roots or shoots. Exposure to inorganic As in axenic culture lasted for 

between 16 and 57 days, allowing sufficient time or any As-tolerance mechanisms to be 

induced. Additionally, the presence of arsenate in the nutrient agar had minimal effects 

on plant growth, and so the possible lack of As methylation due to overwhelming As-

toxicity can also be ruled out. 

Generally, inorganic As dominates soil extracts, however MMA and DMA were present in 

pore and standing water samples of flooded soils from Bangladesh and the UK, and have 

been reported in some studies (Takamatsu et al., 1982; Bednar et al., 2002a; Geiszinger et 

al., 2002; Huang & Matzner, 2006; Huang & Matzner, 2007). Chemical preservation of soil 

extracts before analysis is necessary to prevent As adsorbing to insoluble ferric 

compounds. However, it was recently discovered that hydrochloric acid preserves DMA 

peaks for speciation better than EDTA (Zhao et al., 2013b). Organic arsenicals may be 

present in soil from their past use as herbicides or pesticides; as was common practise in 

cotton fields and orchards (MacLean & Langille, 1981; Bednar et al., 2002a), or from 

organic fertilisers. Additionally, considerable As-contamination of phosphate fertilisers 

applied to the Rothamsted Park Grass Experiment between 1888 and 1947 was recently 
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discovered (Hartley et al., 2013). Alternatively methylated As may result from 

atmospheric deposition or microbe-mediated As methylation (Huang et al., 2011). 

In the USA, a large proportion of rice is produced on former cotton fields, which may 

explain the higher proportion of organic As in grain produced there (Williams et al., 

2007a; Zavala et al., 2008; Zhao et al., 2013a). The half-life of MMA and DMA applied to 

soils was estimated to be around 20 days in a lab-based study, but these As species were 

still detectable 1.5 years after application to an experimental field (Woolson et al., 1982). 

More recently, little change in DMA speciation was observed under anaerobic conditions 

over a 3 month period, and although a large proportion of MMA was degraded to 

inorganic As, some was also methylated to DMA (Shimizu et al., 2011b). MMA and DMA 

can bind to iron oxyhydroxides in soil (Shimizu et al., 2011a; Shimizu et al., 2011b), and 

sorption is affected by factors including redox potential, pH and organic matter (Bowell, 

1994). Furthermore, the persistence of MMA and DMA in certain soils may be due to the 

scale of As-containing compounds applied; it is estimated that over 3,000 tonnes per year 

of MMA was applied to cotton fields in the USA in the 1990’s (Bednar et al., 2002a). 

Alternatively, the past use of As-containing compounds may have increased the 

methylation capacity of the microbial communities in these soils. 

No change in As speciation was detected in arsenate-amended soil microcosms fumigated 

with formaldehyde, in contrast to control microcosms which contained MMA and DMA 

after 10 days incubation (Turpeinen et al., 2002). Additionally, methylation of MMA to 

DMA was significantly decreased by the addition of the antibiotic chloramphenicol to 

nutrient solution used to grow rice, compared to the antibiotic-free control (Arao et al., 

2011). Arsenic methylation by micro-organisms is well characterised, and several recent 

studies have reported links between fertiliser application and organic As in soils (Jia et al., 

2012; Jia et al., 2013a; Jia et al., 2013b; Norton et al., 2013; Zhao et al., 2013a), microbial 

arsM abundance (Jia et al., 2013a; Zhao et al., 2013b) and rice grain As speciation (Jia et 

al., 2013b; Zhao et al., 2013b). 

Total As concentrations in soil pore water were increased by addition of farm yard 

manure (Norton et al., 2013), and fertilisers including dried distillers’ grain, biogas slurry 

and rice straw were found to increase in MMA and DMA in soils (Jia et al., 2012; Jia et al., 
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2013a; Jia et al., 2013b). The addition of organic matter is thought to enhance As 

mobilisation through competition for sorption sites and by lowering the redox potential 

(Jia et al., 2013b; Norton et al., 2013). Increasing the organic matter content of 14 

different paddy soils by addition of rice straw was found to increase the abundance of 

microbial arsM genes by an average of almost 140% (Jia et al., 2013a). Recently, Zhao et 

al. (2013b) found that six soils from diverse geographical locations exhibited very 

different profiles of As mobilisation and methylation. Interestingly, formation of MMA 

and DMA was influenced more by pH and dissolved organic carbon than arsM abundance. 

GeoChip analysis measures the copy number and diversity of arsM genes, not the 

expression level, which may explain the lack of correlation (Lomax et al., 2012; Zhao et al., 

2013b). 

6.2 Transport of MMA and DMA 

 

Having concluded that As methylation does not occur in plants, the question of how these 

organic As species are taken up by, and transported within plants is raised. Different 

families of transporters are implicated in transporting arsenite and arsenate due to the 

inherent differences in their chemical properties. Arsenite has a high pKa and so mainly 

exists as an undissociated, neutral species with structural similarity to silicic acid and 

glycerol. Whereas the much lower pKa of arsenate means it is almost entirely dissociated, 

and an analogue of inorganic phosphate. Therefore the intermediate pKas of MMA and 

DMA were hypothesised to cause these organic As species to be transported by both 

aquaporins and phosphate transporters depending on the pH. 

6.2.1 Transport of undissociated MMA and DMA 

The NIP aquaporin OsNIP2;1 (OsLsi1), was identified as the major route of silicon and 

arsenite uptake in rice roots (Ma et al., 2006; Ma et al., 2008). Unlike silicic acid, arsenite 

is a common substrate of NIP aquaporins. Using the rice lsi1 mutant and expression in 

Xenopus oocytes, Li et al. (2009a) demonstrated that OsLsi1 also facilitates root uptake of 

undissociated MMA and DMA. The lsi1 mutant lost 80% and 50% of the uptake capacity 

for MMA and DMA respectively (Li et al., 2009a). Therefore other NIP aquaporins may 

facilitate the remaining MMA and DMA uptake by roots, or be involved in transport 
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within plants. OsNIP4;1 is highly expressed in anthers and so may be involved in transport 

of As to grain (Nguyen et al., 2013). However, aquaporins facilitate diffusion of substrates, 

and so over time considerable transport could be achieved even from low levels of 

expression. 

In Chapter 4, three NIP aquaporins from rice were characterised by heterologous 

expression in Xenopus oocytes. OsNIP1;1 was found to be permeable to arsenite, MMA, 

boric acid and water, but not germanic acid. Germanic acid is an analogue of silicic acid, 

widely-used as a tracer for silicon transport in plants (Nikolic et al., 2007). OsNIP3;3 

facilitated transport of arsenite, MMA, water and germanic acid, but not boric acid. 

OsNIP3;2 was permeable to arsenite and boric acid, but not germanic acid, and showed 

limited water transport. Unfortunately expression of OsNIP3;2 gave inconsistent levels of 

MMA uptake in Xenopus oocytes. 

Significant uptake of DMA by oocytes expressing OsLsi1 was observed once, however in 

further batches of oocytes there was no difference between those injected with OsLsi1 

and water. This was due to slightly decreased DMA uptake of OsLsi1-injected oocytes, and 

increased DMA content of the water-injected control oocytes. However, even in the one 

positive result, As content of oocytes expressing OsLsi1 exposed to DMA for 60 minutes 

was almost 25-fold lower than those exposed to arsenite for 30 minutes. To act as a 

positive control, a construct of the human aquaporin, AQP9 was obtained. When 

characterised previously, hAQP9 was found to be highly permeable to pentavalent MMA 

and DMA, as well as trivalent MMA (McDermott et al., 2010). Uptake of DMA by oocytes 

expressing hAQP9 was considerably greater than those expressing OsLsi1. Uptake of 

germanic acid, arsenite and MMA mediated by hAQP9 and OsLsi1 was broadly similar. 

However, when the pH of the medium was decreased to from 6.0 to 4.5, MMA transport 

by hAQP9 was 5-fold higher than that of OsLsi1. The proportion of undissociated MMA 

complexes increases from 1.53% at pH 6.0, to 32.9% at pH 4.5, however, as both 

OsLsi1and hAQP9 are permeable to neutral MMA the reason for this difference is 

unknown.  

In humans, AQP9 is highly expressed in the liver, which is the main site of As methylation. 

Therefore hAQP9 may have evolved to efficiently transport DMA, as a product of As 
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methylation, into the blood for excretion (McDermott et al., 2010). Plants cannot 

methylate As (Lomax et al., 2012), instead detoxifying As through complexation and 

sequestration in the vacuole, and so any ability to transport MMA and DMA is assumed to 

be adventitious. The aromatic/arginine (ar/R) filter of the two proteins is very different; 

FACR for hAQP9 and GSGR for OsLsi1, and may be the cause of differences in selectivity. 

However, different levels of protein expression or activity in the Xenopus oocytes could 

also explain the differences in DMA transport of hAQP9 and OsLsi1. Codon usage 

preference is greater between Xenopus laevis and Oryza sativa, than between Xenopus 

laevis and Homo sapiens (determined using the Codon Usage Database; Nakamura et al., 

2000). Furthermore, a variety of post-translation modifications have been identified for 

plant aquaporins (for review see Chaumont et al., 2005). Although the function of many 

of these modifications is not clear, it is reasonable to assume that processes such as 

methylation, phosphorylation and glycosylation will either be different in the Xenopus 

oocyte to those in planta, or be absent. Furthermore, Bienert et al. (2008) found that 

when expressed in yeast, OsNIP3;2 conferred the same level of arsenite sensitivity as 

OsLsi1 (OsNIP2;1), indicating high permeability to arsenite. This is in contrast with the 

results presented, and in addition to inconsistent MMA uptake, may indicate 

incompatibility between OsNIP3;2 and in the Xenopus expression system. 

In theory, transported substrates of NIP aquaporins would be related to their selectivity 

filters. For instance, the lack of boric acid transport by OsNIP3;3 is interesting, as 

OsNIP3;3 has the same ar/R filter as the Arabidopsis boron transporter, AtNIP6;1 (AIAR; 

Tanaka et al., 2008). However, AtNIP6;1 has a substitution in the second NPA motif (NPA-

NPV), and OsNIP3;1, which is proposed to mediate boron transport in rice (Hanaoka & 

Fujiwara, 2007), has mutations in both motifs (NPS-NPV). Therefore is seems that an NPV 

motif is critical for boron transport. Interestingly, the other nine expressed NIP 

aquaporins in rice have two conserved NPA motifs. This may suggest that substrate 

specificity is predominantly determined by the ar/R filter. 

The ar/R filters of OsNIP3;2 (AAAR) and OsNIP3;3 (AIAR) differ by a single reside, but the 

two proteins display different properties when expressed in Xenopus oocytes. Whereas 

OsNIP3;3 shows permeability to arsenite, MMA and silicon, OsNIP3;2 shows limited 
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arsenite and MMA transport, and no silicon uptake. Additionally, OsNIP3;3 is more 

permeable to water than OsNIP3;2. However, substrate permeability of aquaporins may 

rely on residues other than those in the NPA motifs and ar/R region. The most likely of 

these are the remaining pore-lining residues, and the extracellular and cytoplasmic 

regions; which may act as pre-selectivity filters (Sui et al., 2001; Wu & Beitz, 2007; Mitani-

Ueno et al., 2011).  

Finally, members of the PIP-subfamily of aquaporins were also shown to transport 

arsenite (Mosa et al., 2012), and so could also be permeable to MMA and DMA. OsPIP2;4, 

OsPIP2;6 and OsPIP2;7 transported arsenite in Xenopus oocytes and increased tolerance 

to arsenite when expressed in Arabidopsis (Mosa et al., 2012). OsPIP2;4 and OsPIP2;6 are 

most highly expressed in the reproductive tissues such as anther and ovary (Nguyen et al., 

2013) and so may be involved in As transport to grain. 

6.2.2 Transport of dissociated MMA and DMA 

The contribution of the phosphate transport pathway to MMA and DMA transport was 

investigated using two rice overexpressors and one mutant line. Overexpression of OsPT8 

(PT8-ov) causes excessive accumulation of phosphate, especially in the shoots, with P 

toxicity symptoms present in leaves when grown under high phosphate supply (Jia et al., 

2011; Wu et al., 2011; Figure S5.1). Overexpression of OsPHR2 under phosphate-sufficient 

conditions leads to excessive accumulation of phosphate in root and shoots and up-

regulation of phosphate transporters including OsPT8 and OsPT9 in roots, and OsPT1, 

OsPT5, OsPT7, OsPT8, OsPT9, and OsPT12 in shoots (Zhou et al., 2008; Wu et al., 2011). 

The phf1 mutant was isolated from an EMS-mutagenised population of PHR2-ov seeds 

based on arsenate tolerance, and showed decreased root and shoot 33P uptake compared 

to PHR2-ov (Wu et al., 2011). 

Roots of both wild-type and PT8-ov contained significantly less As when phosphate was 

present in the uptake medium; at either pH 5.5 or 7.0, and for both MMA and DMA 

treatment. The effect was highly significant and did not interact with the other 

treatments, suggesting that there is competition between phosphate, and MMA and DMA 

for root uptake. Alternatively, upregulation of phosphate transporter expression during 

the 48 hour treatment may account for the increase in uptake of MMA and DMA. Shoot 
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As concentrations were significantly higher in the PT8-ov line compared to wild-type, 

irrespective of the other treatments. Two independently generated OsPT8-

overexpression lines excessively accumulate P in the shoots, whilst root P concentration is 

only moderately increased (Jia et al., 2011; Wu et al., 2011). The mean ratio of As in 

paired root and shoot samples was also significantly higher for PT8-ov plants compared to 

wild-type; regardless of the other treatments. Therefore, the significant increase of MMA 

and DMA in the shoot is consistent with the phosphate-accumulating phenotype of 

OsPT8-overexpression.  

Both root and shoot As concentrations of the PHR2-ov line were significantly higher than 

wild-type under MMA treatment at pH 7.0. However, there were no significant 

differences between PHR2-ov and wild-type at pH 5.5. There was a considerable amount 

of plant-to-plant variation of the PHR2-ov line which may mask other significant 

differences, but pH also has conflicting effects on MMA and DMA transport.  

For all the tested genotypes (Nipponbare, PT8-ov, PHR2-ov and phf1) As uptake 

(arsenate, MMA and DMA) was higher at pH 5.5 than at pH 7.0. At lower pHs there is an 

increase in protons for symport through phosphate transporters, but a decrease in 

dissociated MMA and DMA complexes. Furthermore, as the proportion of dissociated 

MMA and DMA complexes decreases, the proportion of undissociated complexes 

increases. Increased transport of MMA and DMA under lower pH conditions could be due 

to either; increased activity of phosphate transporters compensating for the decrease in 

undissociated complexes, or increased transport of undissociated MMA and DMA by NIP 

aquaporins. The observation that the lsi1 mutation causes a decrease of 80% of MMA, 

and 50% of DMA root uptake compared to wild-type at pH 5.5 (Li et al., 2009a), suggests 

that low pH increases MMA and DMA uptake by increasing the proportion of 

undissociated complexes for transport by NIP aquaporins. 
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6.3 Overall conclusions 

 

Transport of undissociated MMA via aquaporins, predominantly OsLsi1 (OsNIP2;1), is the 

major route for MMA uptake by rice roots (Li et al., 2009a). However, once inside plant 

cells MMA and DMA, due to their pKa values, are more sensitive to changes in pH than 

arsenite and arsenate. Furthermore, Carey et al. (2011) found that MMA and DMA, unlike 

inorganic As, were readily retranslocated from flag leaves to developing rice grains. 

Phosphate is remobilised from senescing leaves to sink tissues, which is facilitated by 

increased expression of phosphate transporters (Himelblau & Amasino, 2001; Zhu et al., 

2003). Therefore phosphate transporters may make a greater contribution to transport of 

MMA and DMA within plants. Moreover, transport by aquaporins relies on existing 

chemical concentration gradients, and so phosphate transporters, which are driven by 

proton co-transport, may be responsible for the accumulation of MMA and DMA in 

certain tissues. 

OsLsi1 is implicated in the uptake of undissociated pentavalent DMA in rice roots (Li et al., 

2009a), and significant differences in DMA transport were observed for the OsPT8-

overexpression line. However, neither of these differences was as great as for MMA. 

Furthermore, the rice lsi1 mutant retained 50% of DMA uptake, compared to just 20% for 

MMA (Li et al., 2009a). Taken together, these results show that both the phosphate 

transport pathway and NIP aquaporins contribute less to the transport of DMA than 

MMA. The chemical nature of DMA may mean that it is transported by another, yet 

unidentified, family of transporters.  
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Overall the model of As methylation and transport in plants is as follows (see Figure 6.1): 

microbe-mediated As methylation causes an increase in MMA and DMA in the soil 

solution. Phosphate transporters mediate uptake of dissociated MMA and DMA, and NIP 

aquaporins transport undissociated MMA and DMA, into rice roots. The contribution of 

the different pathways depends on the pH; which modifies phosphate transporter activity 

and determines the dissociation of MMA and DMA, and the availability of phosphate; as 

phosphate competes with dissociated MMA and DMA for transport via phosphate 

transporters. Once inside plants, MMA and DMA are translocated with high efficiency to 

the aerial tissues, especially rice grains.  

  

Figure 6.1 Diagram showing formation of MMA and DMA and transport pathways in rice.
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6.4 Additional studies 

 

Determining the protein level of the NIP aquaporins and hAQP9 in Xenopus oocytes 

would be useful to link the level of expression to As uptake. For instance, the seemingly 

higher permeability of hAQP9 to MMA and DMA, may be due to increased expression 

rather than substrate selectivity. If necessary, the plant expression vectors could be 

modified to better match the Xenopus laevis codon preferences and enhance expression. 

Additionally, the assay for DMA uptake of Xenopus oocytes should be developed, possibly 

by increasing the incubation time, or by using 73As radiolabeled DMA for better 

quantitation at low levels of uptake.  

Further investigation into Xenopus oocytes expressing OsPT8 is also required. Although 

significant uptake of arsenate and MMA was observed, there was no uptake of DMA and 

phosphate transport was not determined. Experiments could also look into the effect of 

the pH of the exposure medium, and phosphate competition assays.  

Identification of the transporters that load MMA and especially DMA, into the vascular 

tissues would also be valuable. Other candidate DMA transporters, possibly members of 

the solute carrier superfamily, should also be studied. 

Finally, plant studies are required to fully understand the transport of MMA and DMA in 

plants. Heterologous expression can characterise individual transporters, but mutants 

would ideally be used to determine the contribution of these transporters to the overall 

uptake and translocation of MMA and DMA, especially to rice grain. A critical role in 

phosphate transport to developing grains means that knocking-down, rather than 

knocking-out expression of should be used to study the role of OsPT8 in grain As 

accumulation. Another potential candidate would be OsPT2, which may be involved in re-

translocation of phosphate, and MMA and DMA, to rice grains. OsPIP1;1 and OsPIP2;1 are 

the most highly expressed aquaporins in anthers and so may also be of interest. 
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6.5 Future prospects 

 

Recently the arsM gene from the soil bacterium Rhodopseudomonas palustris was 

expressed in rice. Transgenic plants gave off more volatile As, and had significantly lower 

concentrations of As in grains (Meng et al., 2011). This is a promising method of reducing 

As accumulation in rice, however caution is also required. Although pentavalent MMA 

and DMA are less toxic in cell cultures (Sakurai et al., 1998), they could be reduced to 

trivalent MMA and DMA, which were found to be more toxic than inorganic As (Thomas 

et al., 2001).  

Possible agronomic solutions to reduce As accumulation include growing rice aerobically 

(Xu et al., 2008; Talukder et al., 2012) and addition of silicon fertilisers (Li et al., 2009b). 

However, compromised yield and the cost of fertilisers may make these options less 

practical, especially in rural areas. Phytoremediation with Pteris vittata has significantly 

reduced As in rice grain in glasshouse experiments (Ye et al., 2011; Mandal et al., 2012). 

However, the land required for phytoremediation may also make this strategy unsuitable 

for most rice growers. 

A potential strategy would be to exploit the As-accumulating phenotype of rice to 

combine phytoremediation with an edible food crop. However, much more knowledge 

about the transport pathways of As to grain is needed, as well as maintaining yields and 

preventing reintroduction into the food chain through the use of rice tissues to feed 

livestock or as a fertiliser. 
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