
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
G - Articles in popular magazines and other technical publications

Haslam, R. P. and Michaelson, L. V. 2013. Oil production in the extreme. 

Wiley. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1111/aab.12058

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8qyq3.

© 16 August 2013, Wiley. This article is published with the permission of the Controller 

of HMSO and the Queen’s Printer for Scotland.

27/02/2019 15:45 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1111/aab.12058
https://repository.rothamsted.ac.uk/item/8qyq3
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


Annals of Applied Biology ISSN 0003-4746

E D I T O R I A L

Oil production in the extreme
R.P. Haslam & L.V. Michaelson

Biological Chemistry & Crop Protection, Rothamsted Research, Harpenden, UK

Correspondence
Dr R.P. Haslam, Biological Chemistry & Crop

Protection, Rothamsted Research, Harpenden,

AL5 2JQ, UK.

Email: Richard.Haslam@rothamsted.ac.uk

doi:10.1111/aab.12058

Vegetable oils are obtained from the seeds and fruits
of crop plants such as Oilseed rape (Brassica napus),
Sunflower (Helianthus annuus), Soybean (Glycine max) and
Palm (Elaeis guineensis Jacq.). They are a major commodity
and contribute significantly to the global economy with
production surpassing 150 million tonnes per year and,
led by developing countries, expected to increase over
30% by 2020. Oil palm is by far the highest yielding
oil crop (4–10.5 t ha−1), but future improvements in
global production appear to derive from expansion of
cultivation into drier environments where oil yields are
lower. Although the impact of drought on oil palm
physiology has been measured, a causal link has been
difficult to establish because of the long interval between
flower initiation and harvesting of the mature fruit (ca.
3 years). Currently oil palm is genetically vulnerable
to future challenges and improvements in performance
will likely come from the introduction of fresh breeding
stocks. As such, new methods to evaluate the potential of
novel genotypes to augment existing stocks are essential
(see Wening et al., 2012).

Vegetable oils consist principally of triacylglycerols
(TAGs); which are composed of three fatty acids bound
to a glycerol backbone. These molecules are an important
source of calories in human and animal diets, and are
also used in the preparation of margarines, salad oils
and fried foods. They are also increasingly used as a
source of biofuels, converted using transesterification
or hydrogenation processes, into biodiesel and blended
into fuel (Durrett et al. 2008). Consequently vegetable
oils are a highly desired commodity whose world-wide
consumption has increased by >50% during the past
decade. However, annual yield improvement is expected
to slow down, compared to the last decade, and the
productivity gap between developing and developed
countries will diminish only marginally. The growth in
oilseed plantings is also projected to slow down markedly
in both developed and developing countries due to

high marginal costs of area expansion, environmental
constraints and sustained profitability of competing crops
(OECD-FAO, Agricultural Outlook 2011–2012).

The influence of environmental perturbation on veg-
etable oil production and quality is significant. The impact
of low temperatures on flowering and senescence is well
established in the plant model of oil biosynthesis, Ara-

bidopsis thaliana (Wingler, 2011). It is generally accepted
that damage to cellular membranes is the major cause of
stress injury in plants. In particular, detailed lipid analyses
have shown that complex changes in lipid composition
take place during stress, for example, an increase in the
relative amounts of unsaturated phosphatidylcholine in
the plasma membrane. However the role of lipids in plant
stress is not just restricted to membranes. Recent work
examining cold tolerance in A. thaliana (Degenkolbe et al.,
2012) demonstrated not only that total TAG content
increased, but that there was also a change in compo-
sition with highly unsaturated fatty acids (specifically
with four to eight double bonds in their three fatty acyl
chains) up-regulated. In addition, fatty acid desaturase-6
(FAD6), which is responsible for the production of 18:2
(acyl carbons : double bonds) in the chloroplast, has
been demonstrated as an absolute requirement for salt
tolerance in A. thaliana (Zhang et al., 2009).

The implications of a change in the plant lipidome as a
result of abiotic stress are extensive and can incorporate
a potential for a change in the responses of oil crops
to pathogen attack. It has been demonstrated that a
change in oleic acid content can affect constitutive defence
signalling and enhanced resistance to multiple pathogens
in soybean (Kachroo et al., 2008). Furthermore, changes
in lipid metabolism may affect surface lipid (fatty acid)
composition, which have been shown to be relevant
in wider interactions with pathogens (see Kachroo &
Kachroo, 2009). It has been well established that lipids
are involved in the response of plants to stress and
pathogen attack, notably in signalling cascades. For
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example, oxylipins are a diverse group of signalling
molecules derived from the oxidation of polyunsaturated
fatty acids. They are able to mediate responses to plant
wounding and pathogen attack (Howe & Schilmiller,
2002). In addition the generation of phosphatidic acid
and Phosphatidylinositol 4,5-diphosphate (PI(4,5)P2) are
involved in pathogen resistance pathways (Laxalt &
Munnik, 2002). As yet, it is unclear what the effect
of an extreme environment is on the ability of a plant to
mobilise lipid signals and to resist pathogen attack.

Associated with stress tolerance, sphingolipids and
their phosphorylated derivatives are ubiquitous bio-
active components of cells involved in regulating cellular
processes. They are important structurally in membranes
and as dynamic regulators of cellular membranes.
Although sphingolipids have a better defined role in
animal systems they have been implicated in apoptosis
in plants and have been demonstrated to play a role
in drought-induced signal transduction and in the
response to abiotic stress. It has also been proposed that
sphingolipids (and sterols) accumulate in microdomains
of the plasma membrane, with these so called lipid
rafts playing important roles in sorting and trafficking of
specific plasma membrane proteins (Michaelson, 2011).
Significantly, recent work has demonstrated that different
sphingolipid profiles are associated with the ability to
tolerate different levels of abiotic stress. The �8 long
chain base desaturase from the drought-tolerant legume
Stylosanthes hamata shows a preference for producing the
8(Z)-isomer, which is the minority species in A. thaliana.
When this gene was overexpressed in transgenic A.
thaliana it conferred greater aluminium tolerance (Ryan
et al., 2007). In addition to this work it has recently been
shown that sphingolipid �8 unsaturation is important
for glucosylceramide biosynthesis and low-temperature
performance in A. thaliana (Chen et al., 2012).

Extreme weather events can cause stress resulting
in damage to plants and subsequent yield loss. For
example, unusual cold winter temperatures as recently
experienced in Europe (Cattiaux et al., 2010) affected
many countries with winter-grown canola (B. napus)
limiting production by frost and winter-kill. This has
been particularly noticeable over recent winters in the
European Union. In B. napus the effects of abiotic stress
such as drought or salinity results in a depreciation of
all yield components and a change in lipid composition
(Albert et al., 2012). In the UK at least, although the
2012 harvest yields were around average at 3.4 tonnes
per hectare, low sunlight levels during pod fill resulted
in the oil content being low and variable at 40–43%
(Agriculture in the UK 2012; www.gov.uk). If crops do
not have the capacity to tolerate cold winter temperatures
damage from cold spells will be more severe, whereas in

the Mediterranean climates of Southern Europe, oil crops
such as Sunflower, suffer repeated yield loss as a result
of drought and increasingly salinity. Di Caterina et al.
(2007) described not only the growth of Sunflowers in
saline conditions resulting in worsening of leaf water
status and an accumulation of toxic ions, leading to
yield loss, but also a change in the composition of the
harvested oil. The other oil crop associated with marginal
Mediterranean-type agroecosystems is the Olive tree (Olea

europaea L.). Although traditionally non-irrigated, the
capacity to withstand severe and long drought periods
is negatively correlated with growth and productivity,
hence there is an increasing use of irrigation to improve
yield. However, there is little understanding of the impact
deficit irrigation has on the qualitative parameters of
olive oil. It is likely that these irrigation regimes alter
the intrinsic oxidative stability of the oils. The use of
saline irrigation in regions where water availability is a
major limitation has implications for oil production. For
example, Yuldasheva et al. (2011) described the changes
in the composition of TAG species (oil quality) in Olive
fruits and Soybean under saline irrigation. However,
they went on to describe in detail how Safflower
(Carthamus tinctorius) a moderately salt-tolerant crop was
able to maintain its oil and lipid composition when
irrigated with moderate concentrations of saline water.
This raises the possibility that vegetable oil production
could not only continue in extreme environments, but
also be expanded to more marginal land, like the Aral
Sea basin.

Prospects for vegetable oil production in extreme
environments

Camelina sativa (L.) Crantz (Brassicaceae), described by
Martinelli & Galasso (2011), is an emerging alternative
oilseed crop with rising interest in its use for both
food and non-food purposes. C. sativa is adaptable to
marginal land and has been shown to surpass yields
of oilseed crops, such as Flax (Linum usitatissimum),
under drought-like conditions. Furthermore, C. sativa

has a number of agronomic attributes that make it
attractive; namely a moderate-to-low requirement for
nutrients, a low seeding rate, rapid growth cycle (reaching
maturity in only 110 days enabling use in double-
cropping systems with winter wheat) and a higher
resistance of siliques to dehiscence. With respect to
research and development, C. sativa is amenable to
Agrobacterium-mediated transformation by simple floral
dip infiltration under vacuum. This method permits the
generation of transgenic C. sativa lines in 6–8 weeks
allowing high through-put testing of improved seed
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quality and agronomic traits with minimal technical
expertise (Nguyen et al., 2013).

Although crops such as C. sativa offer the possibility of
a stress-tolerant oil production platform, if vegetable oil
production is to be achieved in extreme environments
it is essential to understand how seed oil metabolism
operates in plants tolerating environmental perturbation.
Therefore our attention must focus on those species that
have the traits of oil synthesis and stress tolerance.
Higher plants have adapted to virtually all terrestrial
environments. In particular, extremophiles are those
operating in the most challenging environments at the
far end of the stress tolerance continuum. Biodiversity
based prospecting as suggested by Rech & Arber (2013),
for oil and stress tolerance traits in extremophile plants
has the potential to provide viable options for oil supply.
One such model for oil synthesis in extreme conditions
are Thellungiella salsuginea and Thellungiella parvula, close
relatives of the recognised oil seed model A. thaliana. The
Thellungiella spp. have recently been utilised as models for
identifying processes, pathways and genes of importance
in plant abiotic stress tolerance; however, to date there
has been no exploration of lipid metabolism or the role
of their lipids in stress tolerance (Amtmann, 2009). The
Thellungiella spp. have been studied for extreme salt,
cold and drought tolerance and for efficient mobilisation
of resources in poor or degraded soils. Due to the
close phylogenetic relationship of Thellungiella spp. to
A. thaliana and because many transcripts have nucleotide
sequence identities with the better known model in the
90% range, focusing on Thellungiella spp. in order to
derive a molecular-level understanding of oil production
in challenging environments is particularly appropriate
(Dittami & Tonon, 2012). The ability of an oilseed like
Thellungiella salsuginea to tolerate a range of abiotic stresses
is likely intimately connected with its lipid profile.

Exploring how oil seed production can be expanded
into more marginal land and maintained in extreme
environments is essential. To do this requires a step
change in assessing abiotic stress tolerance, namely how
to measure success. Much of the work in this area is from
a physiological perspective; survival or recovery is the
major trait representing plant-stress tolerance, whereas
from an agronomic point of view, crop yield and quality
are the key determinants of a successful stress-tolerant
crop. If maintaining oil yield and quality traits are at the
centre of any research strategy then it becomes obvious
that a greater knowledge of how lipids (and ultimately
storage oil) are linked to environmental perturbation
is essential. It is clear that the different aspects of the
lipidome or total lipid pool are independent; from de novo
synthesis to maintenance of the fluidity of the membranes
and the storage pools of TAG, remodelling of the lipids

can occur in response to the changing environment. This
is a very useful trait and one that can be exploited to
extend the range of environments in which an oil seed
crop will flourish. Any increase in production will be
based equally on continued area expansion and yield
improvements. In terms of available land, relatively little
new land has been brought into agriculture in recent
decades. Indeed, areas like the US Great Plains and the
Canadian Prairie are being compromised with increasing
salinity in combination with short growing seasons and
extremely cold winters. So recalling Mark Twain’s famous
quote to ‘Buy land, they’re not making it any more’,
then the development of oil seed crops that are able to
contend with such environmental challenges is a key
factor in increasing production. Research must apply
new technologies to reveal mechanisms and signalling
pathways that regulate not just the plant lipid response
to abiotic stress, but also seed oil quality.
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