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Low frequency aeration of slurries may reduce ammonia (NH3) and methane (CH4) emis-

sions without increasing nitrous oxide (N2O) emissions. The aim of this study was to

quantify this potential reduction and to establish the underlying mechanisms. A batch

experiment was designed with 6 tanks with 1 m3 of pig slurry each. After an initial phase of

7 days when none of the tanks were aerated, a second phase of 4 weeks subjected three of

the tanks to aeration (2 min every 6 h, airflow 10 m3 h�1), whereas the other three tanks

remained as a control. A final phase of 9 days was established with no aeration in any tank.

Emissions of NH3, CH4, carbon dioxide (CO2) and N2O were measured. In the initial phase

no differences in emissions were detected, but during the second phase aeration increased

NH3 emissions by 20% with respect to the controls (8.48 vs. 7.07 g m�3 [slurry] d�1, P < 0.05).

A higher pH was found in the aerated tanks at the end of this phase (7.7 vs. 7.0 in the

aerated and control tanks, respectively, P < 0.05). CH4 emissions were 40% lower in the

aerated tanks (2.04 vs. 3.39 g m�3 [slurry] d�1, P < 0.05). These differences in NH3 and CH4

emissions remained after the aeration phase had finished. No effect was detected for CO2,

and no relevant N2O emissions were detected during the experiment. Our results

demonstrate that low frequency aeration of stored pig slurry increases slurry pH and in-

creases NH3 emissions.

© 2017 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, the growth in intensive pig production has

lead the increasing global livestock production (FAOSTAT,

2016). However, intensive production of pigs tends to be

decoupled from other agricultural production systems, and

therefore a propermanagement of slurry becomes essential to

avoid environmental impacts and to enhance nutrient recy-

cling (Brockmann, Hanhoun, N�egri, & H�elias, 2014). During

their storage, pig slurries emit considerable amounts of

ammonia (NH3) and greenhouse gases to the atmosphere,

mainly in the form of methane (CH4). In intensive pig pro-

duction, slurry treatment techniques become essential to
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fulfil the environmental regulations (e.g. Industrial Emissions

Directive in Europe). These techniques are devised to facilitate

slurry management, reduce the environmental impacts or

obtain potential benefits such as high value fertilisers or

biogas (Burton& Turner, 2003). However, potential side effects

of certain treatments, such as nitrous oxide (N2O) emissions

from aerobic treatments, must be accounted for.

Aeration has long been proposed as a treatment technique

to reduce the nitrogen and organic matter loads of slurries,

and thus reduce the pollution risk (Bicudo & Svoboda, 1995;

Bicudo, 1995; Burton, 1992; Cumby, 1987). During the aera-

tion of animal slurries, the anoxic and reductive conditions in

which slurries are normally stored (e.g. <1 g L�1 dissolved O2)

change to aerobic and oxidising conditions (e.g. >4 g L�1 dis-

solved O2) (Cheng & Liu, 2001). Also, aeration normally in-

volves stirring the slurries, both avoiding sedimentation and

crust formation. This changes the biochemical and microbial

reactions in the slurry, depending on the aeration set-up pa-

rameters (for example aeration flow rates, frequency and

duration in case of intermittent aeration, tank size and air

bubble size, among others).

The effect of aeration on the fate of nitrogen has been long

demonstrated (B�eline & Martinez, 2002; B�eline, Martinez,

Chadwick, Guiziou, & Coste, 1999; Cheng & Liu, 2001). These

studies have revealed that using appropriate aeration flows in

the case of continuous reactors or intermittent aeration for

batch reactors achieves high nitrogen removals as a conse-

quence of nitrification and denitrification processes, produc-

ing nitrogen gases. Therefore, research has recently focused

on reducing N2O emissions by controlling the process vari-

ables including intermittent aeration or aeration flow rates

(Castro-Barros, Daelman, Mampaey, van Loosdrecht, &

Volcke, 2015; Hu et al., 2010; Hu, Zhang, Xie, Li, Wang, et al.,

2011; Hu, Zhang, Xie, Li, Zhang, et al., 2011; Lackner et al.,

2014; Mampaey, De Kreuk, van Dongen, van Loosdrecht, &

Volcke, 2016; Pan, Wen, Wu, Zhang, & Zhan, 2014; Wang,

Guan, Pan, & Wu, 2016). According to these authors, chang-

ing operation parameters leads to N2O emission factors

mostly between 1% and 10% of the initial N.

Aerobic treatment systems are not considered best avail-

able techniques because they involve a loss of a valuable

nutrient and the side effects on N2O emissions are still

considerable (European Commission, 2015). However, the

short time aeration (less than 1% of time) of slurries could

have the potential to reduce ammonia emissions without

these side effects, although to the authors' knowledge, very

limited research has been conducted in this area. In this

process, two effects are expected to occur: slurry mixing and

partial oxygenation. The mixing effect is the main hypothesis

for reduced NH3 emissions. As first suggested by Ni, Hendriks,

Vinckier, and Coenegrachts (2000) and reviewed by Hafner,

Montes, and Alan Rotz (2013), CO2 emission from slurry in-

creases surface pH, thus enhancing NH3 emissions. As a

consequence, NH3 emissions during and immediately after

aerationmay be lower than untreated slurries. However, it has

also been reported that the aerobic treatment of manure in-

creases slurry pH on average, as a consequence of the removal

of volatile fatty acids (Fangueiro, Hjorth, & Gioelli, 2015;

Sørensen & Eriksen, 2009; Zhang & Zhu, 2005). Therefore,

potential effects of short aeration times on pH and NH3

emissions must be evaluated by research.

The partial oxygenation caused by low frequency aeration

may have potential effects on CH4 and N2O emissions.

Research on aerobic treatment of slurries normally considers

a longer duration of the aerobic phase in comparison to the

anaerobic phase, and results indicate that nitrification and

denitrification is enhanced, whereas methanogenesis is

inhibited (Castro-Barros et al., 2015; Cheng & Liu, 2001; Hu

et al., 2010; Hu, Zhang, Xie, Li, Wang, et al., 2011; Hu, Zhang,

Xie, Li, Zhang, et al., 2011; Lackner et al., 2014; Wang et al.,

2016). However, no information is available on how these

emissions are affected by low aeration frequency.

The objectives of this study are: first, to determinewhether

a low frequency aeration (2 min each 6 h) of pig slurry affects

its composition and the related emissions of NH3, CH4, N2O

and CO2; and second, to analyse and describe themechanisms

underlying these changes.

2. Methodology

2.1. Experimental design

The experiment was conducted at the Rothamsted Research

North Wyke site from 8th June to 22nd July 2016. A slurry

storage system similar to that described byMisselbrook, Hunt,

Perazzolo, and Provolo (2016) was used, comprising six 1.25m3

tanks (1.20m diameter and 1.12m height) located in a covered

area to exclude rainfall. Slurry was obtained from a local

commercial finishing pig farm. Slurry stored for about 8 weeks

was collected from the below slat storage and transported to

the experimental site using a 6 m3 slurry tank. Slurry was

mixed and then representatively divided among the experi-

mental tanks, and thus each tankwas filledwith 1m3 of slurry

(88 cm depth). Three of the tanks were subjected to the aera-

tion treatment, whereas the other three tanks were not

treated and served as control tanks. Slurry composition and

gaseous emissions were monitored during the experiment.

The experiment consisted of three phases. The first phase

lasted for the first 7 days of storage and all tanks were sub-

jected to the samemanagement, that is, none of the tankswas

aerated. During this phase, potential differences among tanks

were evaluated. The second phase lasted for 4 weeks during

which aeration was conducted in the aeration treatment

tanks. The aeration system consisted of a low frequency in-

jection of air. Each slurry tank under the aeration treatment

had 170 L min�1 of ambient air injected over 2 min every 6 h.

Injection was programmed to occur at 03:00 h, 09:00 h, 15:00 h

and 21:00 h. An automatic controller was designed specifically

to control operation times, and air was injected using a pump

(Becker VT 4.10, Wuppertal, Germany). Air was injected at the

bottom of each tank through a 32 mm diameter PVC pipe.

Details of the aerated and non-aerated tanks can be seen in

Fig. 1. Finally, in a third phase over the last 9 days of the

experiment, no aeration was conducted in any of the tanks,

aiming to evaluate potential permanent changes in slurry

composition and gaseous emissions after the aeration treat-

ment had finished. From each tank, representative slurry
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samples were taken for analysis at the beginning of each

phase.

2.2. Slurry characteristics

Slurry samples were taken at the start of each storage phase

and analysed for total solids and volatile solids content, total

nitrogen (N), ammonium-N, and pH, following a similar pro-

cedure to Misselbrook et al. (2016). Total solids content was

determined by measuring the mass loss after drying at 85 �C
for 24 h. Volatile solids content was determined on a sub-

sample of the total solids by measuring the mass loss on

ignition at 550 �C. To determine total N content, samples were

pipetted and weighed into tin capsules containing liquid

absorbing pads. These were then analysed on an elemental

analyser (Carlo Erba, NA2000, Milan, Italy) connected to a

20e22 isotope ratio mass spectrometer (Sercon, Crewe, UK).

Ammonium-N was determined by automated colorimetric

analysis following extraction with 2 M KCl. Total oxidised ni-

trogen analysis was carried out with an extraction using 2 M

KCl and determined by the colorimetric vanadium chloride

method.

As pH was hypothesised to be a key driver for NH3 emis-

sions, it was monitored 3 times per week using a portable

meter with pH probe (HI 9025, Hanna Instruments, Leighton

Buzzard, UK). Measurements were conducted throughout the

experimental period at the slurry surface and at a depth of

10 cm. During phases 1 and 3, measurements were conducted

once per measurement day, whereas during the aeration

phase (phase 2) themeasurements were repeated 3 times: one

10 min before aeration, another immediately after aeration,

and the final 15 min after aeration. Ambient and slurry

Fig. 1 e Slurry tanks used in the experiment. Schematic of the control and aerated tanks (upper) and arrangement in the

polytunnel (lower).
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temperature of each tank (at a depth of 40 cm) was measured

every minute using an automated data logger (Grant Data

Acquisition Series 2040, UK). Changes in slurry temperature

due to aeration were therefore monitored.

In addition, the CH4 producing potential (Bo) of the slurry at

the start of each storage phase was determined using an

automated laboratory incubation system (AMPTSII, Bio-

process Control, Lund, Sweden). Slurry samples were incu-

bated at 37 �C with an inoculum obtained from a farm-fed

mesophilic anaerobic digester. To reduce direct production

of biogas from the inoculum, it was incubated in advance for 5

days at 37 �C to deplete residual biodegradable organic ma-

terial present. Samples were prepared for incubation in

500 mL reactor bottles; each bottle contained 400 g of inoc-

ulum and slurry substrate at a 2:1 ratio by mass of inoculum

VS to substrate VS. Gas generated from the incubation reactor

bottles passed through a 3 M NaOH solution (with thy-

molphthalein pH indicator) to remove CO2 and H2S gas, leav-

ing only CH4 to pass through the gas volume measuring

device, which operates on a principal of buoyancy and liquid

displacement. Blank samples consisting of just inoculumwere

included. The reactor bottles were stirred automatically at

110 rpm for a period of 60 s every 2 min. The system was

controlled via a PC, and the gas flow rate and cumulative gas

volume produced from each reactor were normalised for

temperature and pressure and recorded continuously for 45

days.

2.3. Gaseous emission measurements

The slurry storage tanks were fitted with specially adapted

lids, which had a central circular hole of 10 cm diameter to

which a fan was fitted to draw air from the tank headspace

(Fig. 1). Air was drawn into the tank headspace via ten holes

around the outer edge of the lid each of 3 cm diameter. The air

was exhausted from the tank headspace by the fan through a

duct to an area outside the shed. The lids were left in-situ

throughout the storage period with fans running continu-

ously. Air flow rate was nominally 150 m3 h�1, but was

measured at the duct outlet for each tank three times per

week. The tanks with lids therefore acted as large dynamic

chambers for emission measurements. Gas concentration

measurementsweremade via a cross-sectional sampling tube

within the outlet duct of each tank. Inlet concentrations were

alsomeasured and at two places within the shed. Estimates of

flux for each gas (F, g h�1) wasmade according to the following

equation:

F ¼ VðCo � CiÞ
1000

where V (m3 h�1) is the air volume flow rate and Co and Ci the

outlet and inlet gas concentrations (mg m�3), respectively.

Gas concentrations were measured using Los Gatos ana-

lysers (Model 911-0016 for NH3 and 915-0011 for CH4 and CO2,

Los Gatos Research, California) based on cavity enhanced

absorption spectroscopy, with a multiport inlet unit (Model

908-0003-9002, Los Gatos Research, California). Sampling was

on a semi-continuous basis with measurements from each

sampling position (6 tank duct outlets and 2 ambient air

sampling positions). Two sampling protocolswere established

for the different phases of the experiment. During the first and

third phases, no aeration was conducted and each sampling

position was monitored for 7.5 min. The analyser continu-

ously cycled around the eight sampling positions, thus

completing a measurement cycle in 1 h. The instrument

measured gas concentrations every 10 s and equilibration of

the concentration reading when switching between sampling

points was about 3 min. The mean concentration at each

sampling point for a given cycle was derived from the last

3.5 min of readings (20 concentration measurements) at each

sampling point, discarding the initial 4 min of readings. Dur-

ing the second phase when aeration took place every 6 h, the

cycle described before was programmed to take place every

2 h, alternating with 1 h of continuous monitoring of an

aerated tank (from 10 min before aeration began to 48 min

after aeration finished). Each tank was monitored in this way

during two days once a week. This was devised to determine

the emission profile during and after aeration.

Ammonia concentration measurements made by the Los

Gatos analyser were checked against those made by sampling

air through acid absorption flasks twice per week throughout

the experiment. These lattermeasurements weremade over a

6-h period by subsampling the air flow from the tank outlet

ducts or from the ambient sampling points and passing

through acid absorption flasks (100 mL of 0.01 M orthophos-

phoric acid per flask). The quantity of ammonia-N trapped in

the absorption flasks was determined by automated color-

imetry and was divided by the volume of air passing through

the flask to derive the concentration in the sampled air. A

linear correspondence was found between the automated

measurements and acid trapping of NH3, and thus all auto-

mated measurements taken with the Los Gatos analyser were

corrected accordingly.

Nitrous oxide concentrations were obtained by taking gas

samples manually from the tank outlet ducts and ambient

sampling points, storing in evacuated glass vials and ana-

lysing by gas chromatography (GC; Clarus 500, Perkin Elmer,

Buckinghamshire, UK). Samples were taken on two occasions

per week. The same samples were also analysed for CH4 and

CO2 concentration by GC, which provided data for verification

of the continuous analyser. During the first and third phase,

when no aeration was conducted, only one gas sample was

collected per tank. During the second phase of the experi-

ment, three samples were collected per tank (one 10 min

before, one during, and one 15 min after aeration).

Hydrogen sulphide (H2S) was measured for two days using

detection tubes (Draeger Safety). Spot measurements were

conducted two times during the aeration phase, both in the

aerated and non-aerated tanks, to obtain an approximate

value of the potential emission of this gas due to the aeration

and mixing process.

2.4. Data treatment and statistical analysis

The dataset of continuous emission fluxes was integrated to

obtain daily emissions (g day�1) of each gas. Daily averages of

control and treated tanks were obtained and are presented to

describe the temporal evolution of emissions. A two-way

analysis of variance was conducted considering phase, treat-

ment and their interaction as factors explaining differences in
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slurry composition and emissions. Differences were consid-

ered statistically significant at P < 0.05. The statistical analysis

was conducted using SAS.

During the second phase, the immediate effect of aeration

on slurry temperature and emissions was analysed in quali-

tative terms; measured values were integrated into a 1-min

time resolution and compared to values immediately before

aeration.

3. Results

3.1. Evolution of slurry characteristics

The slurry composition and characteristics at the start of each

phase are presented in Table 1. Slurry composition (dry mat-

ter, volatile solids, nitrogen content, ammonia content and

methane potential) did not differ among tanks assigned to

different treatments at the start of the experiment, and also at

the start of phase 2, before aeration was initiated. After phase

2, dry matter content of slurry increased in the control tanks

with respect to the aerated tanks, whereas no differences

were found for the rest of slurry properties. Nitrate and nitrite

content of the slurry was negligible compared to total N con-

tent (lower than 1 mg L�1) throughout the experiment.

Daily average ambient temperatures ranged from 13.4 �C
on 28th June to 22.5 �C on 19th July, and rangedmostly from 14

to 18 �C (Fig. 2). As the shed had no climate control, tank

temperature oscillated with ambient temperature, and

therefore changed between days and followed a sinusoidal

diurnal pattern with highest temperatures in the afternoon

and lowest temperatures early in the morning. Within each

phase, average slurry temperatures did not differ significantly

between treatments, as shown in Table 1.

The aeration had an immediate but non-permanent effect

on slurry temperature. Changes from an increase of 0.6 �C to a

decrease of more than 1 �C were detected immediately after

aeration compared to before aeration. However, this effect

was slight and inconsistent, and therefore no clear pattern

was obtained. The changes in slurry temperature varied

among tanks, and depended on the time of the day and on the

day of experiment. Temperature changes tended to be higher

during the first aeration days than during the last ones.

Figure 3 shows the daily evolution of temperature and tem-

perature changes in the aerated tanks at the aeration

moments.

No statistical differences in pH were found between

treatments during the initial phase where no aeration was

conducted in any tank. However, during phase 2 pH was

significantly higher for the aerated than for the control tanks

(Table 1). The average initial pH of all tanks during this phase

was 7.05. However, as shown in Fig. 2, pH increased steadily

during the first two weeks of aeration until it reached values

around 7.7. In contrast, the pH of control tanks remained

stable at around 7.1. In phase 3, when aeration had finished,

the pH of the aerated tanks tended to decrease, but after 10

days of no aeration it was still about 0.5 pH units higher than

in the control tanks, which remained constant.

Surface pH (1 cm depth) is also shown in Fig. 2. Some dif-

ficulties were foundwhenmeasuring surface pH, since a crust

formed during phases 2 and 3 in the control tanks. For this

reason, surface pH values were very variable and thus unre-

liable. Despite having a higher variability, surface pH was al-

ways higher at 1 cm depth than when measured at 10 cm

depth. Differences in pH between 1 and 10 cm depth were

about 0.3 units in all treatments for the first phase, when no

aeration was conducted on any tank. During phase 2 for the

aeration treatment, the difference between surface and 10 cm

depth surface decreased with time as pH at 10 cm increased,

and at the end of the experiment this difference was

about 0.05 units. In the control tanks this difference also

lowered during phase 2, andwas generally between 0.1 and 0.2

units.

The loss of slurry volume at the end of the experiment,

compared to the start, was similar among all treatments and

was about 10% of the initial volume.

3.2. Gas emissions

For NH3 concentrations, the comparison between the auto-

mated analyser and the reference acid trapping method

showed a linear relationship (R ¼ 0.96, P < 0.05, details not

Table 1 e Slurry characteristics at the start of each phase (total solids, volatile solids, total N, ammonium N, nitrate and
nitrite). Methane potential (B0) is also provided for the initial slurry. Average values of pH, temperature and gas emissions
during each phase are also provided. Within each phase, values with different letters in the same row indicate statistical
differences between treatments (P < 0.05). Standard errors (S.E.) and P-values for the effects of Treatment (T), phase (P) and
their interaction (T £ P) are also indicated. Non-significant differences (n.s.) are considered for P > 0.05.

Phase 1 Phase 2 Phase 3 S.E. P-values

Control Aeration Control Aeration Control Aeration T P T � P

Total solids (TS, g kg�1) 2.49a 2.60a 2.85ab 2.72a 3.14b 2.74a 0.12 n.s. 0.023 n.s.

Volatile solids (g kg�1 TS) 675 683 690 678 690 672 8.9 n.s. n.s. n.s.

Total N (g kg�1) 3.97 4.12 4.10 4.26 4.13 4.04 0.09 n.s. n.s. n.s.

Ammonium N (g kg�1) 3.02 3.03 2.93 2.97 3.07 2.93 0.04 n.s. n.s. n.s.

Bo (m3 CH4 kg
�1 VS) 0.76 0.71 0.64 0.70 0.60 0.69 0.04 n.s. n.s. n.s.

pH at 10 cm depth 7.06a 7.03a 7.05a 7.50b 7.09a 7.65c 0.02 <0.001 <0.001 <0.001
Slurry temperature (�C) 16.10abc 16.18ab 15.68a 16.03ab 17.68bc 17.88c 0.61 n.s. 0.015 n.s.

NH3 emission (g m�3 day�1) 7.14a 6.81a 7.07a 8.48b 9.35b 11.19c 0.38 0.009 <0.001 0.034

CH4 emission (g m�3 day�1) 4.33a 4.24ab 3.39b 2.04a 4.99a 1.62a 0.28 <0.001 <0.001 <0.001
CO2 emission (g m�3 day�1) 120.5d 107.1cd 90.4b 97.3bc 85.6b 67.9a 4,8 n.s. <0.001 n.s.

b i o s y s t em s e ng i n e e r i n g 1 5 9 ( 2 0 1 7 ) 1 2 1e1 3 2 125

http://dx.doi.org/10.1016/j.biosystemseng.2017.04.011
http://dx.doi.org/10.1016/j.biosystemseng.2017.04.011


shown) within the range of concentrations measured (be-

tween 0 and 6 mg m�3). However, the automated system

overestimated the results from the acid trapping by 54%, and

this bias was therefore corrected before data analysis. For CH4

and CO2 measurements, no significant differences were

detected between the automated measurement system and

the analysis of sample gases by gas chromatograph.

No statistical differences between treatments were found

for NH3, CO2 or CH4 gaseous emissions during the first phase,

when no aeration was conducted at any tank (Table 1). How-

ever, aeration during phase 2 significantly increased NH3

emissions by 20% and reduced CH4 emissions by 40%. This

effect was not only detected during phase 2, but also during

phase 3, after aeration had finished.

The short term effects of aeration on NH3 and CH4 emis-

sions are shown in Fig. 4, where the daily evolution of emis-

sions is presented. Ammonia emissions followed a daily

sinusoidal pattern in accordance with temperature variation.

During the first days of phase 2, NH3 emission did decrease

during and immediately after aeration, but after a few mi-

nutes it recovered to initial values, or even higher (Fig. 4). By

the end of phase 2 emissions increased during the aeration

and this increase remained after aeration ceased. These var-

iations, however, accounted for a small share of total emis-

sions because of their lowmagnitude and duration. Emissions

during the 2-min aeration events increased slightly with time,

as shown in Fig. 5, and at the end of phase 2 were approxi-

mately double with respect to the beginning of that phase.

Overall, the average NH3 emissions during phases 2 and 3

were significantly higher in the aerated than in the control

tanks (20% in both phases, Table 1 and Fig. 6).

Methane emissions tended to be stable throughout the day,

and during phases 2 and 3 were higher in the control than in

the aerated tanks (Fig. 6). However, aeration caused a sharp

release of CH4 during the aeration event (Fig. 4). The emission

during this short period was about 1000 times higher than the

baseline emission. Despite the fact that these outbursts of CH4

lasted for short time, due to the highmagnitude of the release

in the aeration events, they contributed a major proportion of

total CH4 emissions from the aerated tanks during phase 2.

Between 70 and 80% of total CH4 emissions emitted from this

treatment were produced during or in the few minutes

following the aeration (Fig. 6). In the aerated tanks, both CH4

emissions during aeration and baseline emissions decreased

exponentially over the first days of the second phase (Fig. 5),

whereas the emission level of the control tanks was relatively

constant (Fig. 6). Total CH4 emissions from aerated tanks were

significantly lower than in the control tanks, not only in phase

2, but also in phase 3 (Table 1).

The behaviour of CO2 emissions followed a similar pattern

to CH4 emissions, with very high emissions during and

immediately after the aeration. Some problems with the

analyser related to overnight measurements prevented the

calculation of daily averages for all days, as obtained for NH3

and CH4, and therefore details are not shown. However, the

evolution of emissions during the aeration events was moni-

tored (Fig. 5), showing a very similar tendency to CH4. From

the available data we found no significant differences, either
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for phase 2 or phase 3 (Table 1), while in general CO2 emissions

decreased with time, being significantly lower in phase 3

compared with phase 1.

Nitrous oxide concentrations measured at the tank

exhaust air were not significantly different from the inlet air at

any tank and at anymoment of the experiment, and therefore

N2O emissions were considered to be negligible and not

affected by the slurry treatment system. From the spot mea-

surements of H2S, it was found that concentrations were

lower than the detection limit of the colorimetric tubes used

(<0.5 ppm) for the control tanks, and also for the aerated tanks

when no aeration was being conducted. In contrast, during

aeration a sharp increase in H2S concentration was found

(between 60 and 80 ppm), which involved an emission of

roughly 4e5 mg m�3 s�1.

4. Discussion

The aeration of stored slurry produced slight changes in the

main chemical properties, significant changes in slurry pH,

increased NH3 emissions, whereas increased oxygen supply

reduced CH4 emissions. Furthermore, these effects showed an

evolution over the weeks of the experiment. Predominantly,

the low frequency aeration affected three main parameters

(pH, temperature and crusting), resulting in very different

behaviour of emissions with respect to the control tanks.

Aeration of slurry had a combined effect of mixing and

oxygenating. As reported through previous research (Blanes-

Vidal, Guardia, Dai, & Nadimi, 2012; Ni et al., 2000; Petersen,

Markfoged, Hafner, & Sommer, 2014), aeration initiated a

Fig. 3 e Daily variation in slurry temperature across 2 day at the beginning (18th June) and at the end (9th July) of the

aeration phase. Control tanks are shown in green (Control 1 in solid line, Control 3 in dashed line). Aeration tanks are

shown in blue (Aeration 1 in solid line, Aeration 2 in dashed line, Aeration 3 in dotted line). Ambient temperature is also

shown in red. The four aeration events during the day are indicated with arrows.
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mixing of the slurry and disturbed the pH gradient, thus

reducing the pH at the slurry surface and thus the NH3

emissions. This effect was clearly detected only during the

first days of treatment and had a very short duration, since

emissions returned to similar levels after a few minutes.

Despite the short duration, aeration increased the bulk pH

over the medium term, presumably because of the degrada-

tion of volatile fatty acids, as reported previously (Fangueiro

et al., 2015; Sørensen & Eriksen, 2009; Zhang & Zhu, 2005).

According to our results, the medium term and permanent

rise in pHhadmore influence onNH3 emissions than the short

term and transitory decrease in surface pH. Furthermore,

during the last days of the aeration phase very little difference

was detected between surface and bulk pH, and as both were

relatively high (about 7.7), NH3 was stripped to the atmo-

sphere during the aeration events.

Crusting can also affect ammonia emissions. The aerated

tanks were mixed during the aeration process four times a

day, whereas control tanks were not stirred at all. Conse-

quently, a crust formed in the control tanks (visual observa-

tion), which was not the case for the aerated tanks. Although

the crust was removed during the slurry sampling in all tanks

(at the beginning of each experimental phase), it re-

established within a few days if no aeration was conducted.

Fig. 4 e Example of the effect of short term aeration on NH3 emission at the start of phase 2 (18th June, upper) and at the end

of phase 2 (9th July, centre). On the left, the daily variation in emissions in one of the aerated tanks (solid line) and the

average emission for all control tanks (dashed line) are plotted. On the right, the detail across one aeration event is provided.

The effect of aeration on CH4 emissions is also plotted for 1 day at the end of phase 2 (9th July, lower, please note the

logarithmic scale).
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Since crust formation has been identified as a potential NH3

mitigation strategy (Misselbrook et al., 2005; Wood, Gordon,

Wagner-Riddle, Dunfield, & Madani, 2012), the effect of crust

removal could also have contributed to higher emissions in

the aerated tanks.

Longer aeration times have been reported to increase

slurry temperature as a consequence of the aerobic degrada-

tion of organic matter (Burton, 1992; Heinonen-Tanski, Nis-

kanen, Salmela, & Lanki, 1998). However, no reports are

available on the effect of very short aeration times such as

those used in this study. The temperature changes detected

due to the aeration lead to no clear interpretation, because

both increases and decreases of temperature were detected.

The effect of aeration on temperature tended to be higher

during the first days of aeration. This may indicate the effect

of aerobic degradation processes, as more easily degradable

organic matter may be expected to be present in the slurry at

the beginning of the aeration phase. In contrast, temperature

decreaseswere also detected, and this could be a consequence

of enhanced water evaporation and sensible heat transfer

during the aeration process. However, the energy removal by

water vapour evaporation during the short time of aeration

(only 2 min) was roughly estimated from measured values of

temperature and relative humidity. These calculations (data

not shown) indicate that the heat removed from water due to

evaporation would decrease the slurry temperature by no

more than 0.05 �C. The decrease in slurry temperature was

double-checked with different temperature probes, so in-

strument malfunction was not considered to be a reason, and

there may have been other influencing factors not considered

in this analysis. In any case, temperature changes were of low

magnitude (typically less than 0.5 �C), and therefore this effect

was expected to be low compared to the more evident effects

of pH changes in the medium term.

As expected, low frequency aeration of slurry decreased

CH4. However, high amounts of CH4 were released during

aeration events, leading to even higher emissions during the

first days of treatment. As reported in the literature (Amon,

Kryvoruchko, Amon, & Zechmeister-Boltenstern, 2006;

Blanes-Vidal et al., 2012; Dai & Blanes-Vidal, 2013), the sol-

ubility of CH4 in water is very low, and therefore the CH4

produced in the slurry is kept in small bubbles before

escaping to the atmosphere. During the first days of aera-

tion, CH4 is still produced because easily degradable organic

matter is still available, and low frequency aeration probably

did not completely preclude the necessary anaerobic con-

ditions. However, following low frequency aeration for

several days, readily available organic matter such as vola-

tile fatty acids tend to be aerobically degraded (Burton, 1992;

Zhang & Zhu, 2006), thus reducing the potential for CH4

generation. On the contrary, aeration in this case was not

related with increased N2O emissions. It seems that oxygen

supply was not enough to enhance nitrification processes,

which are required to emit relevant amounts of this gas.

This is evidenced by the low content in oxidised species

(nitrites and nitrates) in both control and aerated

treatments.

It must be considered that this was pilot study conducted

under specific conditions. Extrapolation of these results to real

farm conditions must take into account differences in slurry

volume (and surface area to volume ratio), slurry manage-

ment strategies and ambient conditions. Changes in the scale,

from pilot to farm slurry tanks, have been described for aer-

obic treatments (Sneath, Burton, & Williams, 1992) and these
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would be of relevance to our study because of differences in

the volume and homogeneity of aeration and their derived

effects (oxygenation and mixing). Although similar effects on

slurry pH and emissions may be expected from tanks

managed in a similar way as in this study, this could be

confirmed with on-farm slurry tank measurements. On the

contrary, differences may be expected for different slurry

management strategies. This study mimics an external slurry

store without addition of fresh slurry. This study is almost

certainly not representative of under-slat slurry storage,

where fresh urine and faeces are continuously added from

animal excretions.

The behaviour of external slurry storages with frequent

addition of fresh slurry may also be different because of the

continuous incorporation of untreated slurry, for example in

continuous reactors (Loyon, Guiziou, Beline, & Peu, 2007).

Also, longer slurry storage times than in this study occur

under farm conditions. Our results suggest that pH differences

remain as long as the aeration phase continues, but pHmay be

reduced gradually after aeration finishes. Specific research

would confirm the effects of aeration at longer times, but a

very relevant decrease in NH3 emissions would be needed to

counteract the initial increased emissions. Finally, changes in

the ambient conditions (particularly the temperature) would

probably affect these results. According to the literature,

temperature affects directly the emissions of CH4

(Haeussermann, Hartung, Gallmann, & Jungbluth, 2006) and

NH3 (Misselbrook et al., 2016). Therefore, it may be expected

that the effects of low frequency aerationwould increase with

temperature. However, this must be confirmed with specific

research.

In conclusion, short frequency aeration of stored slurry as

tested in this study cannot be considered an option to miti-

gate NH3 emissions. Slurry mixing reduced the pH gradient in

the slurry surface but this effect did not compensate the pH

increase in the slurry, and therefore NH3 emissions

increased. CH4 emissions decreased by approximately 40% in

spite of the short duration of aeration. No N2O emissions

were detected and therefore, this treatment reduced green-

house gas emissions. The applicability of these results at

different conditions to those in this study must be evaluated

in practice.
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