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Early molecular signatures of responses of wheat to
Zymoseptoria tritici in compatible and incompatible
interactions

E. S. Ortona, J. J.Ruddb and J. K. M. Browna*
aJohn Innes Centre, Norwich Research Park, Norwich NR4 7UH; and bRothamsted Research, Harpenden AL5 2JQ, UK

Zymoseptoria tritici, the causal agent of septoria tritici blotch, a serious foliar disease of wheat, is a necrotrophic patho-

gen that undergoes a long latent period. Emergence of insensitivity to fungicides, and pesticide reduction policies, mean

there is a pressing need to understand septoria and control it through greater varietal resistance. Stb6 and Stb15, the most

common qualitative resistance genes in modern wheat cultivars, determine specific resistance to avirulent fungal genotypes

following a gene-for-gene relationship. This study investigated compatible and incompatible interactions of wheat with Z.

tritici using eight combinations of cultivars and isolates, with the aim of identifying molecular responses that could be

used as markers for disease resistance during the early, symptomless phase of colonization. The accumulation of TaMPK3

was estimated using western blotting, and the expression of genes implicated in gene-for-gene interactions of plants with

a wide range of other pathogens was measured by qRT-PCR during the presymptomatic stages of infection. Production

of TaMPK3 and expression of most of the genes responded to inoculation with Z. tritici but varied considerably between

experimental replicates. However, there was no significant difference between compatible and incompatible interactions in

any of the responses tested. These results demonstrate that the molecular biology of the gene-for-gene interaction between

wheat and Zymoseptoria is unlike that in many other plant diseases, indicate that environmental conditions may strongly

influence early responses of wheat to infection by Z. tritici, and emphasize the importance of including both compatible

and incompatible interactions when investigating the biology of this complex pathosystem.
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Introduction

Zymoseptoria tritici (syn. Mycosphaerella graminicola,
Septoria tritici) is the causal agent of septoria tritici blotch,
a serious foliar disease of wheat, especially in mild humid
temperate regions. Control of Zymoseptoria has been
based on a combination of fungicide applications and
breeding resistant cultivars (Orton et al., 2011; Torriani
et al., 2015). Increasing levels of insensitivity to systemic
fungicides, and the adoption of pesticide reduction policies
under European legislation (Jess et al., 2014), means that
there is now greater need than ever to understand and
exploit host resistance to the pathogen. Host defences
against this pathogen are still not well understood. There
are currently 21 qualitative Stb resistance genes known
(reviewed by Brown et al., 2015) that have a phenotype
indicative of a gene-for-gene relationship (Brading et al.,
2002). The mechanism of action of these resistance genes
is unknown and, as yet, none of them have been cloned.

Zymoseptoria tritici is an unusual fungal pathogen in
several respects, as it remains extracellular for its entire
life cycle and has a long latent period between infection
and symptom development. The fungus appears to
remain endophytic during the latent period of 10–
14 days before entering a necrotrophic phase during
which symptom development occurs (reviewed by Orton
et al. (2011) and Steinberg (2015)). The necrotrophic
phase is suppressed during an incompatible interaction
(Keon et al., 2007; reviewed by Orton et al., 2011).
Gene-for-gene resistance is presumed to involve recogni-
tion of the pathogen by the host but the biological basis
of the interaction between specific Stb genes and aviru-
lent Z. tritici strains is not understood at all. Conse-
quently, there is currently no method of classifying
interactions between Z. tritici and wheat as compatible
or incompatible at an early stage of infection, in contrast
to the powdery mildew (Blumeria graminis) or rust (Puc-
cinia spp.) diseases of cereals caused by biotrophic fungi,
in which incompatible interactions are characterized by
the hypersensitive response (HR) (Boyd et al., 1995; Jag-
ger et al., 2011). Genotype-specific resistances in wheat
cultivars and avirulences in Z. tritici isolates are cur-
rently identified by complicated statistical analysis of
quantitative data on necrotic symptoms scored 2–
4 weeks after infection (e.g. Arraiano & Brown, 2006).
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Expression of plant defence-related and other genes
during interactions between biotrophic pathogens and
cereal hosts has been extensively studied (Boyd et al.,
1994a; Coram et al., 2008; Bozkurt et al., 2010). In
powdery mildew, for example, defence gene expression
increases in response to the pathogen in both compatible
and incompatible interactions, but during an incompati-
ble interaction the response increases over time, whereas
in compatible interactions it weakens (Boyd et al.,
1994b; Moscou et al., 2011). Few studies have compared
transcriptional responses of cereal hosts during incom-
patible or compatible interactions with hemibiotrophic
or necrotropic pathogens. During interactions between
wheat and either Magnaporthe oryzae (adapted) or Mag-
naporthe grisea (non-adapted) isolates, studied using a
microarray, a subset of genes was up-regulated in all
interactions. Some defence genes were up-regulated ear-
lier in the incompatible interaction but later and more
strongly in the compatible interactions (Tufan et al.,
2009), in contrast to what usually occurs in biotrophic
interactions. Defence genes were more strongly up-regu-
lated in compatible than incompatible interactions of
wheat with Pyrenophora tritici-repentis (Adhikari et al.,
2009). The transcriptional changes during ToxA- and
ToxB-induced cell death, leading to tan spot disease
symptoms, were consistent with responses usually associ-
ated with defence against biotrophs (Pandelova et al.,
2012).
There is some evidence that the switch to necrotrophy

and the activation of leaf cell death during successful
infection by Z. tritici activates similar signalling path-
ways to those triggered during an HR to biotrophs
(Hammond-Kosack & Rudd, 2008; Deller et al., 2011;
Yang et al., 2013; Rudd et al., 2015). The wheat mito-
gen-activated protein kinase 3 (TaMPK3) transcript and
protein accumulated in wheat leaves after infection by a
compatible Z. tritici isolate immediately preceding symp-
tom development (Rudd et al., 2008, 2015; Yang et al.,
2013), whereas orthologues of TaMPK3 accumulated in
incompatible interactions in tobacco in response to infec-
tion by Tobacco mosaic virus and in tomato in response
to Pseudomonas syringae pv. tomato (reviewed in Meng
& Zhang, 2013). However, it was not established if such
molecular responses also occur earlier in infection, when
leaf tissue exhibits no macroscopic symptoms, or if such
responses could be used as indicators of compatibility or
incompatibility.
The aim of the experiments reported here was to

investigate the molecular basis of early compatible and
incompatible interactions of wheat with Z. tritici, devel-
oping the approach of Ray et al. (2003) and Adhikari
et al. (2007), and thus to find potential early, presymp-
tomatic, markers for resistance or susceptibility. The cul-
tivars studied have resistances conferred by Stb6 or
Stb15, the two most common genes for resistance to
Zymoseptoria in northern European wheat (Arraiano &
Brown, 2006). Resistance to Zymoseptoria is a quantita-
tive trait, although compatible and incompatible interac-
tions are usually distinct in the cases of Stb6 (Brading

et al., 2002) and Stb15 (Arraiano et al., 2007). The
accumulation of TaMPK3 protein was analysed in the
early stages of both compatible and incompatible combi-
nations of cultivars and isolates, extending the work of
Rudd et al. (2008), which previously identified increases
in transcript, protein and its activity coincident only with
the onset of necrotrophic tissue collapse in the later
stages of compatible interactions.
The expression of genes that are normally up-regulated

in resistant responses to biotrophic pathogens was stud-
ied to test if they are up-regulated during a susceptible
response to Z. tritici (Deller et al., 2011). Comparisons
were also made using genes assessed in previous studies
(Ray et al., 2003; Adhikari et al., 2007; Shetty et al.,
2009). The genes included in this study were selected to
represent a wide range of features of defence responses
that are differentially regulated in host–pathogen interac-
tions, including gene-for-gene relationships: PR-1 and
lipoxygenase (Ray et al., 2003); b-1,3-glucanase (Shetty
et al., 2009); chitinase (Bolton et al., 2008); peroxidase
and PAL (phenylalanine ammonia lyase; Adhikari et al.,
2007). Chlorophyll a/b binding precursor (Rudd et al.,
2015) was selected as a marker of the initiation of leaf
senescence. The cysteine protease gene, homologous to
Arabidopsis thaliana Sag12 (Lohman et al., 1994) was
selected as another marker for senescence. Mlo is
required for susceptibility to the biotrophic pathogen B.
graminis but reduces susceptibility to non-biotrophic fun-
gal pathogens (reviewed by Brown & Rant, 2013).
TaMPK3 protein accumulates preceding symptom devel-
opment (Rudd et al., 2008). A protein disulphide iso-
merase (PDI) was selected as it was up-regulated in two
resistant wheat cultivars inoculated with Z. tritici in pre-
vious studies (Ray et al., 2003).

Materials and methods

Fungal isolates

The Z. tritici isolates used throughout the experiments were

IPO323 and IPO88004. The isolates were stored at �80 °C.
Spores for plant inoculation were grown on YPD+ agar plates

(2% Bacto agar, 2% peptone, 1% yeast extract, 2% glucose at

pH 5.8) for 4–7 days at 18 °C with near-UV light at 350 nm.

Spore concentration was estimated using a modified Fuchs
Rosenthal counting chamber (Hawksley).

Plant material

In these experiments, four cultivars possess Stb6: Arina, Flame,

Poros and Cadenza; Arina and Flame express resistance to the

avirulent isolate, IPO323, more strongly than Poros and
Cadenza (Arraiano & Brown, 2006). Cultivars Longbow and

Avalon are susceptible to IPO323. Longbow and Courtot were

used to test the interaction with IPO88004; Longbow possesses
Stb15 and is resistant to this isolate, whereas Courtot is suscep-

tible. Plants used in gene expression experiments with IPO323

were grown in glasshouses set at 18 °C for 16 h (light) and

12 °C for 8 h (dark) with additional lighting for the 16 h per-
iod, although external weather conditions caused temperature
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fluctuations. Plants used in gene expression experiments with

IPO88004 and in all experiments for TaMPK3 accumulation
were grown in a growth room with temperatures set to 18 °C
for 16 h (light) and 12 °C for 8 h (dark). For plant inoculation,

the second leaves of 17-day-old seedlings were attached, adaxial

side up, to Perspex sheets using double-sided tape (Keon et al.,
2007). The leaves were inoculated evenly with a fungal spore

solution at a density of 107 spores per mL of water containing

0.1% (v/v) Tween 20 (Sigma-Aldrich) using a swab stick with a
cotton sterile tip (Fisher Scientific). Plants inoculated with Z.
tritici were placed in trays with plastic lids and under black

plastic sheeting, to achieve dark conditions with high relative

humidity, for 48 h. After this time, the plants were moved into
the light but remained in high humidity conditions.

Experimental design

In all experiments the cultivars Longbow, Flame, Avalon,

Cadenza, Arina and Poros were inoculated with the isolate
IPO323. The cultivars Longbow and Courtot were inoculated

with isolate IPO88004. Control leaves were mock inoculated

with water containing 0.1% Tween 20. In all experiments, some

plants were kept for up to 21 days to check for pycnidium for-
mation in compatible interactions. If pycnidia did not develop

by 21 days on susceptible cultivars the replicate was not used

for further analysis.

Quantification of TaMPK3 protein

Analysis of the amount of TaMPK3 protein that accumulates in
each cultivar tested was carried out using western blots. For

each of two replicates, samples were collected at 1, 3, 7, 10, 11,

14, 15, 16 and 17 days after inoculation (dai) and mock-inocu-
lated samples taken at 1, 10 and 17 dai as controls. At each

time point three leaves were collected and pooled as one sample

for each cultivar/isolate/time point combination. This experi-

ment was carried out independently of the experiment to quan-
tify gene transcription.

Leaves were collected directly into liquid nitrogen from each

cultivar/isolate combination and stored at �80 °C before protein

extraction was carried out. Protein was extracted by grinding
frozen cells in extraction buffer (37.5 mM Tris-HCl pH 7.4,

112.5 mM NaCl, 22.5 mM EGTA, 0.15% v/v Tween 20,

1.5 mM NaF, 0.75 mM sodium molybdate, 1.5 mM DTT,
0.75 mM PMSF, 15 lg mL�1 leupeptin, 15 lg mL�1 aprotinin,

22.5 mM b-glycerophosphate) followed by centrifugation at

23 000 g for 20 min at 4 °C (Rudd et al., 2008).
A Bradford assay was performed to quantify the concentra-

tion of protein in each sample using Bradford protein assay

reagent (Bio-Rad) and comparing with a bovine serum albumin

standard of 2 mg mL�1 (Sigma-Aldrich). Readings were taken

using a BioPhotometer (Eppendorf) at 595 nm, the wavelength
at which the bound form of the reagent is absorbed. Samples

were mixed with a loading dye consisting of 5% v/v 2-mercap-

toethanol, 250 mM Tris-HCl pH 6.8, 10% w/v SDS, 30% v/v
glycerol, and bromophenol blue, so that all samples contained

an equal amount of protein. Samples were stored at �20 °C.
Samples were heated to 90 °C for at least 5 min to solubilize

the protein and then centrifuged for 5 min at 16 100 g before
being loaded onto the gel.

Approximately 120 lg of protein was separated on 10% SDS-

PAGE gels and tank blotted onto Hybond ECL nitrocellulose

membrane (GE Healthcare Life Sciences) using the Mini Trans-
Blot cell (Bio-Rad) following the manufacturer’s protocol.

Membranes were blocked overnight at 4 °C in Tris-buffered sal-

ine (TBS)-Tween (20 mM Tris-HCl pH 7.3, 137 mM NaCl,
0.1%

v/v Tween 20) with 5% skimmed milk powder. The MAPK-spe-

cific antibody TaMPK3-N (affinity purified; Rudd et al., 2008)
at 1:500 dilution in TBS-Tween with 5% milk powder was incu-
bated with the membranes at room temperature for 90 min.

After the membranes were washed five times with TBS-Tween,

chemiluminescent detection using Amersham ECL Plus Western
Blotting Detection Reagents was carried out in accordance with

the manufacturer’s instructions (GE Healthcare Life Sciences).

Quantification of gene transcription

Transcription of 11 genes of interest (Table 1) was analysed in

all the above cultivar/isolate combinations using quantitative
reverse transcription PCR (qRT-PCR). The experiment was

replicated three times. In each replicate, three leaves from each

cultivar/isolate combination were collected and pooled as one
sample for each interaction at 0.5, 1, 3, 7, 10 and 14 dai.

Mock-inoculated leaves were also sampled at each time point as

controls.

Leaves were cut off the plants, placed immediately in liquid
nitrogen then stored at �80 °C before further processing. Total

RNA was isolated from frozen leaf tissue using either the Tri-

reagent procedure (Sigma-Aldrich), following the manufacturer’s

protocol and using the additional step suggested for polysaccha-
ride-containing tissues (for experiments using isolate IPO323),

or the RNeasy Plant Mini kit (QIAGEN; for experiments using

isolate IPO88004), following the manufacturer’s instructions.

A DNase treatment was carried out on the extracted RNA
using the TURBO DNA-free kit (Ambion), following the manu-

facturer’s ‘rigorous’ procedure, which is designed to remove

DNA from samples containing >2 lg DNA per 50 lL RNA. To
test if all genomic DNA had been removed from the RNA sam-

ple, each sample was subjected to qRT-PCR analysis for 40

cycles using a set of primers designed for cDNA (Table 1, refer-

ence primers). The total quantity of RNA was quantified using a
Picodrop100 spectrophotometer (Picodrop Ltd). One microgram

of total RNA was converted to cDNA using Superscript III

reverse transcriptase (Invitrogen) using random hexamers, fol-

lowing the manufacturer’s protocol.
Each cDNA sample was diluted 1:20 in nuclease-free water.

qRT-PCR was performed using a CFX96 detection system (Bio-

Rad), in plates with optically clear seals (both Thermo Scien-
tific). Each reaction contained 5 lL diluted cDNA and 12.5 lL
Brilliant II SYBR Green master mix (Agilent Technologies), with

500 nM each of the left and right primers in a total volume of

25 lL. All PCRs were carried out using the following cycle:
95 °C for 10 min; then 40 cycles of denaturation at 95 °C for

30 s, annealing at 56 °C for 30 s and extension at 72 °C for

30 s. Immediately after this, a melt curve analysis was carried

out by ramping from 65 to 90 °C. All samples had two techni-
cal repetitions. Primer efficiencies for the genes of interest were

tested for each primer pair using a dilution series from 1:10 to

1:10 000 made from a mixture of cDNA samples. Amplification

values ranged from 1.89 to 2.15.

Gene transcription data analysis

Quantification cycle (Cq) values of three reference genes

(Table 1) were checked for stability using GENORM software

(Vandesompele et al., 2002; https://genorm.cmgg.be/). The refer-
ence genes in all experiments were found to be stable. �Cq is
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directly proportional to the logarithm of the amount of cDNA

in the sample, hence calculations on Cq are equivalent to those

on log[cDNA]; in particular, the arithmetic mean of �Cq is

equivalent to the geometric mean of [cDNA]. Cq of the reference
genes was standardized to avoid large but uninteresting differ-

ences between the mean level of transcription of each reference

gene. The three reference genes were treated as replicates. Cq of

each reference gene was standardized to the grand mean of all
reference genes to give Cq,std. A general linear model (GLM) was

fitted to the Cq,std data including the factors Isolate, Cultivar,

Compatibility, Time, Treatment, Gene and Replicate and combi-
nations of those factors (some of these factors are partially con-

founded so interactions between them could not be fitted). After

successive elimination of terms that were not statistically signifi-

cant (P > 0.05), the final model was (Isolate + Compatibil-
ity + Cultivar)*(Time*Treatment + Gene) + Isolate∣Replicate
+ (Time�Gene)∣(Isolate+Cultivar) + (Treatment�Gene)∣(Time*
Replicate), where * is the crossing operator (the sum of rele-

vant main effects plus interactions), ∣ is the nesting operator
(main effect of the factor on the left plus interactions with

factors on the right) and � is the interaction operator. The

Replicate term refers to the six inoculations done as biologi-
cal replicates in the series of experiments (Replicates 1–3
involved IPO323 and 4–6 involved IPO88004). Treatment

was either inoculation with Z. tritici or mock-inoculation.

The Gene factor classified genes studied either as one of the
set of reference genes or, individually, a gene of interest.

Compatibility was the compatible or incompatible response

of the cultivar/isolate combination.

Effects involving the term Treament�Gene are relevant to bio-
logical interpretation of the Cq,std data in terms of differences in

the expression of test and reference genes in inoculated and

mock-inoculated leaves. Predicted means were calculated for

each combination of Treatment with Cultivar and Gene at each

Time.
The effect of infection by Z. tritici on gene transciption was

calculated from predicted mean Cq,std values. For each gene,

Cq,std is proportional to the logarithm of the quantity of cDNA

in the sample to the base of the amplification value. First, Cq for
the target gene in an inoculated sample (Cq,ti) was standardized

by comparing it to the mean Cq for the reference genes in that

sample (Cq,ri). Likewise, Cq for the target (Cq,tm) and reference
(Cq,rm) genes were calculated for the relevant mock-inoculated

sample. The four Cq values were estimated separately and the

logarithm of the fold increase in gene expression was propor-

tional to (Cq,ti � Cq,tm) � (Cq,ri + Cq,rm) = DCq. The standard
error of DCq was calculated from the variance–covariance
matrix of the predicted means as the square root of the sum of

the squared standard errors of the four Cq estimates. Calculation

of DCq by the method described here is based on the assumption
that all genes have the same amplification values. This is

approximately correct because the amplification values for the

11 genes varied within a narrow range from 1.89 to 2.05. While
comparisons between treatments of DCq for the same target

gene are exact, comparisons involving different target genes are

approximate.

Results

The time points at which the samples were taken were
chosen to cover the period from inoculation to the onset

Table 1 List of the genes of interest (GoI) and reference (Ref) genes

Gene Gene name GenBank accession no. Primer (50–30) Reference

GoI b-1,3-glucanase (b-glu) Y18212.1 L AACGACCAGCTCTCCAACAT Shetty et al. (2009)

R GTATGGCCGGACATTGTTCT

GoI Chitinase 2 (Chit) CD490414 L GAGCAGCCTCACTTGCTAGG Bolton et al. (2008)

R ATACGCATGCCGAACGTTTA

GoI Chlorophyll a/b binding precursor U73218.1 L CCTTGGTGAGGCCCGAGTCACTAT J. J. Rudd (unpublished)

R TTGGCAAAGGTCTCGGGGTC

GoI Cysteine protease (Sag12) CA680100 L GTTCTCGGACCTCACCAGCGAA J. J. Rudd (unpublished)

R ACGCCCACCAACAACCGCAT

GoI Lipoxygenase (Lox) AY253443 L GGGCACCAAGGAGTACAAGGA Ray et al. (2003)

R CGATCACCGACACTCCAATG

GoI Mlo CA745732 L CCTACCACTATACGCCGTCGTCTCC J. J. Rudd (unpublished)

R CACCGACGAGTTTGCCCGTGTAT

GoI TaMPK3 AF079318.1 L TACATGAGGCACCTGCCGCAGT Rudd et al. (2008)

R GGTTCAACTCCAGGGCTTCGTTG

GoI Peroxidase (Perox) X85229 L CCAGCACGACACGTGAATG Adhikari et al. (2007)

R CATGATTTGCTGCTGCTCGTA

GoI Phenylalanine ammonia lyase (PAL) AY005474 L GTGTCTCCATGGACAACACCCG Adhikari et al. (2007)

R TCAATGGCCTGGCACAGAGC

GoI PR-1 AY258615.1 L ACGTACGCCAACCAGAGGATCA Ray et al. (2003)

R GCATGCGATTAGGGACGAAAGAC

GoI Protein disulphide isomerase (PDI) AF262980 L TTATGACTTTGGCCACACCG Ray et al. (2003)

R CGAGCTCATCAAATGGCTTG

Ref Ta Elongation factor M90077.1 L TGGTGTCATCAAGCCTGGTATGGT Coram et al. (2008)

R ACTCATGGTGCATCTCAACGGACT

Ref Hv GapDH M36650 L CCTTCCGTGTTCCCACTGTTG McGrann et al. (2009)

R ATGCCCTTGAGGTTTCCCTC

Ref Ta Ubiquitin M60175 L CCTTCACTTGGTTCTCCGTCT Rostoks et al. (2003)

R AACGACCAGGACGACAGACACA
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of necrosis, to focus on the early processes that deter-
mine whether or not the host–parasite interaction
between wheat and Z. tritici is compatible. Figure 1
shows symptoms when the final samples were collected
on day 14 after inoculation. No symptoms were visible
at earlier time points. The cultivars Arina, Cadenza,
Flame and Poros, which were resistant to IPO323,
remained green throughout the course of the experiment.
Longbow was resistant to IPO88004 although it showed
some necrosis at 14 dai, but never any pycnidium devel-
opment.
Western blots indicated that TaMPK3 accumulated to

some extent in all cultivars in both compatible and
incompatible interactions at all time points (Figs 2 &
S1). In most cases at 3 and 10 dai, TaMPK3 levels were
similar in mock-inoculated samples as in the correspond-
ing samples inoculated with Z. tritici. In all treatments,
levels of TaMPK3 remained fairly constant up to 10 dai
but from 11 dai onwards, TaMPK3 levels in samples
inoculated with Z. tritici varied, but not in a way that
was clearly consistent with the compatibility of the culti-
var/isolate combination. Crucially, at 16 dai TaMPK3
accumulated to higher levels in inoculated than mock-
inoculated samples in compatible interactions (Longbow
and Avalon with IPO323 and Courtot with IPO88004)
whereas TaMPK3 levels were generally similar in incom-
patible interactions as in the mock treatment.

Gene transcription

Expression of genes involved in plant defence, cell death
and senescence were studied in compatible and incompati-
ble interactions of wheat cultivars with Z. tritici isolates
by qRT-PCR. The level of mRNA in wheat leaves was
measured in terms of quantification cycles (Cq) and the

variate analysed was Cq,std; each reference gene was stan-
dardized by setting its mean Cq over all treatments to be
equal to the grand mean of all three reference genes, to
give the variate Cq,std. This prevented comparisons involv-
ing the reference genes from being dominated by system-
atic variation between them, which is irrelevant to the aim
of the experiments reported here. A GLM of Cq data was
used to investigate factors that affected gene expression in
plants inoculated with Z. tritici. Four measurements of
gene expression are relevant here: Cq of a gene of interest
in inoculated (Cq,gene,inoc) and mock-inoculated leaves
(Cq,gene,mock), and the average Cq of a set of reference
genes in both types of leaf (Cq,ref,inoc, Cq,ref,mock). The
expression (Cq,gene,inoc � Cq,gene,mock) � (Cq,ref,inoc �
Cq,ref,mock) compares the expression of the gene of interest
to that of reference genes in inoculated leaves in relation

Figure 1 Phenotypes of compatible and incompatible interactions

between wheat and Zymoseptoria tritici used in this study. The eight

cultivar–isolate combinations were used throughout the experiments.

Avalon and Longbow were susceptible to isolate IPO323 and showed

necrotic symptoms at 14 days after inoculation (dai). Courtot was

susceptible to isolate IPO88004 and showed necrotic flecks at 14 dai.

Pycnidia were produced subsequently in these interactions. Arina,

Cadenza, Flame and Poros carry the Stb6 resistance gene and are

resistant to isolate IPO323, Longbow has the resistance gene Stb15

and is resistant to IPO88004; although it showed some necrotic

flecking, pycnidia did not develop.

Figure 2 Accumulation of TaMPK3 during compatible and

incompatible interactions between wheat and Zymoseptoria tritici.

Changes in TaMPK3 levels over a 17 day period after inoculation with

Z. tritici are shown by western blots probed with a TaMPK3-specific

antibody for eight different cultivar/isolate combinations: the

interactions Longbow–IPO323, Avalon–IPO323 and Courtot–IPO88004

were compatible, the other combinations were incompatible. The time

course is shown over two blots. Note the comparisons between mock-

inoculated and Z. tritici-inoculated samples at 3, 10 and 16 days after

inoculation (dai). Protein loading levels are shown for each blot in the

60-kD region using amido black staining. TaMPK3 accumulated in all

cultivars inoculated with Z. tritici, independent of compatibility; some

TaMPK3 also accumulated in the mock-inoculated controls at 10 and

16 dai. Gels from a replicate experiment with the samples in a different

order are shown in Figure S1.
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to mock-inoculated leaves. The relevant term in the GLM
is the Treatment�Gene interaction. Only terms containing
this interaction are discussed here.
The main effect of Treatment�Gene was much more sig-

nificant than any interaction involving Treatment�Gene
(Table 2), regardless of whether the interaction was com-
patible or incompatible. This implies that the genes stud-
ied here were expressed or repressed in response to Z.
tritici infection as such, and that modulation of their
expression by their interaction with the host in the first
2 weeks after inoculation was comparatively minor. The
genes with the highest overall differential expression com-
pared to the reference genes were PR1 and peroxidase,
followed by b-1,3-glucanase. Chitinase, Mlo and PAL
were also significantly up-regulated over time. Overall,
chlorophyll a/b binding precursor and lipoxygenase were
weakly down-regulated and cysteine protease (Sag12)
showed little differential expression. MPK3 and PDI
showed no significant alteration in expression compared
to mock-inoculated samples (Fig. 3).
The Cultivar, Isolate and Compatibility terms had no

significant interaction with the Treatment�Gene effect.
This implies that there were no significant differences
between cultivars’ responses to inoculation and that
overall the expression of the genes of interest in resistant
cultivars was similar to susceptible cultivars. It also
implies that the isolates used did not have a significant
differential effect on gene expression and there was no
significant evidence for a distinct response in either a
compatible or an incompatible interaction.
There was relatively minor, but statistically significant,

variation in the expression of genes of interest over the
course of the infection (comparing the size of the
Time�Treatment�Gene effect to the Treatment�Gene

interaction in Table 2). There was no significant varia-
tion between different variety/isolate combinations over
the time course. For the majority of genes, there was a
trend for expression to peak at 7 dai, followed by a
reduction then a further increase at 14 dai (Fig. 4). At
7 dai, the expression levels of b-1,3-glucanase, chitinase,
PR1, peroxidase and Mlo were significantly greater than
in the mock-inoculated plants (P < 0.001). PR1 and per-
oxidase were also strongly up-regulated at 10 and 14 dai
(P < 0.001), peroxidase at 0.5 and 1 dai (P < 0.001),
and b-1,3-glucanase at 10 dai (P < 0.05) and 14 dai
(P < 0.001). Sag12 and Mlo were significantly but
weakly up-regulated at 14 dai (P < 0.05 and P < 0.01
respectively; Figs 4 & S4).
Analysis of gene expression across the replicates

showed there was minor, but statistically significant,
variation in gene expression between replicates (compare
the Replicate�Treatment�Gene effect to Treatment�Gene
in Table 2). PR1, peroxidase and b-1,3-glucanase
showed the greatest variation across replicates, with the
greatest up-regulation seen in replicate 2 (Fig. S2). The
former two genes also had the highest relative expression
of all those tested. Chitinase and Mlo were also signifi-
cantly more up-regulated in replicate 2 than average, but
not in any other replicates. The expression of chlorophyll
a/b binding precursor was slightly but significantly lower
in replicate 5 than in the other replicates.
In addition to variation between replicates for many of

the genes of interest, there was also variation in the
expression levels of genes at each time point between the
biological replicates (Replicate�Time�Treatment�Gene
term in Table 2, P < 0.001; Fig. S3). The most consistent
feature was the up-regulation of five genes, b-1,3-gluca-
nase, chitinase, Mlo, PR1 and peroxidase, in all six repli-
cates at 7 dai. This was closely followed by the up-
regulation of four genes (chitinase, Mlo, PR1 and peroxi-
dase) at 14 dai.

Table 2 Reduced ANOVA table showing significant terms (nonsignificant

terms with P > 0.05 have been removed)

d.f. MS VR F pr.

Treatment�Gene 11 147.0 37.4 <0.001

Time�Treatment�Gene 55 8.3 2.1 <0.001

Replicate�Treatment�Gene 103 16.3 4.1 <0.001

Replicate�Time�Treatment�Gene 535 6.8 1.7 <0.001

Residual 2661 3.9

Total 3992 133.3

d.f., degrees of freedom; MS, mean squared deviations (variance); VR,

variance ratio. Residual term: replicate leaves given exactly the same

combination of factors.

The final model fitted was (Isolate + Compatibility + Cultivar)*

(Time*Treatment + Gene) + Isolate∣Replicate + (Time�Gene)|(Isolate+

Cultivar) + (Treatment�Gene)∣(Time*Replicate). Only effects involving

the Treatment�Gene interaction are shown, indicating a difference

between inoculated and mock-inoculated plants in the expression of the

genes of interest relative to a set of reference genes. The analysis is from

qRT-PCR data of gene expression of 11 wheat genes of interest on eight

cultivar/Zymoseptoria tritici isolate combinations over six time points:

0.5, 1, 3, 7, 10 and 14 days after inoculation, prior to onset of pycnidial

development. The variate analysed is Cq,std, which is each reference

gene standardized to the grand mean of all reference genes.
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Figure 3 Expression of the genes of interest during the interaction

between wheat and Zymoseptoria tritici. The relative expression of

genes of interest is shown in comparison to the mock-inoculated

controls as obtained by qRT-PCR. Data for all cultivar/isolate

combinations and for all time points tested has been combined. b-1,3-

glucanase, chitinase, Mlo, PAL, PR1 and peroxidase were very

significantly up-regulated (***P < 0.001) and lipoxygenase was

significantly down-regulated (*0.05 > P > 0.01) where P is the

significance of differences of relative expression from 1.
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Discussion

Expression of most of the genes reported here and accu-
mulation of TaMPK3 protein responded to infection by
Z. tritici in its early, presymptomatic stages. Inoculating
the plants with Z. tritici, irrespective of the host and
pathogen genotypes, caused differential regulation of 7
of the 11 genes tested compared to mock-inoculated con-
trol plants. The genes investigated were representative of
a wide range of processes involved in plant defence
against parasites and responses to abiotic stress. Early
responses of wheat to infection by Z. tritici therefore
involve similar pathways to those triggered by many
other pathogens but the pattern of effects reported here
leads to three broad conclusions relevant to research on
septoria tritici blotch.
In all the processes reported here, whether expression

of defence-related and stress-related genes, or TaMPK3
protein accumulation, there was no significant difference
between isolates, cultivars, and compatible or incompati-
ble interactions in the presymptomatic period of infec-
tion by Z. tritici. The first conclusion, therefore, is that
there is no evidence that the defences induced by qualita-
tive septoria-resistance genes are the same as those in

other diseases in which there are gene-for-gene relation-
ships. The lack of variation between compatible or
incompatible interactions is particularly striking because
the experimental design was capable of detecting statisti-
cally significant variation in gene expression over time or
in different biological replicates. In other plant diseases,
there are distinct molecular responses of the host to
infection by virulent or avirulent pathogen genotypes,
including expression of several of the genes reported here
in diseases caused by biotrophic (Boyd et al., 1994a,b;
Bolton et al., 2008; Coram et al., 2008; Bozkurt et al.,
2010) and non-biotrophic pathogens (M. oryzae: Tufan
et al., 2009; P. tritici-repentis: Adhikari et al., 2009).
The absence of such variation here is consistent with the
view that Z. tritici has a mode of infection that differs
markedly from that of other well-studied pathogens
(Hammond-Kosack & Rudd, 2008) and indicates that
mechanisms of gene-for-gene resistance to Zymoseptoria
differ from those in other diseases.
TaMPK3 protein accumulated very early in the infec-

tion process, within 1 dai in almost all samples, in all
the interactions tested irrespective of the cultivar or iso-
late, but did not discriminate incompatible and compati-
ble interactions in early, presymptomatic infection up to
10 dai. At 3 and 10 dai, TaMPK3 accumulated in the
mock-inoculated samples to a similar level as in corre-
sponding samples inoculated with Z. tritici, implying
that at these earlier time points TaMPK3 production
may have been a response to the inoculation procedure
or the environmental conditions rather than a response
to the fungus or to a specific type of interaction between
wheat and Z. tritici. The authors are not aware of evi-
dence that genotypes of wheat or any other plant vary in
levels of MPK3 before exposure to stress. The results are
consistent with MPK3 being induced in response to
wounding or during leaf senescence. MPK3 is implicated
in the onset of lesion formation during compatible inter-
actions with non-biotrophic pathogens (Xiong & Yang,
2003), the development of an HR in response to bio-
trophic pathogens and in responses to stress and bio-
trophic pathogens (Meng & Zhang, 2013). The function
of MPK3 in plant defence appears to involve a complex
signalling network that can be modulated through inter-
play of network components affecting both SA- and JA-
responsive genes (Meng & Zhang, 2013). Rudd et al.
(2008) found accumulation of TaMPK3 just before and
during the onset of necrotic symptoms in compatible
interactions, which is consistent with greater production
of TaMPK3 in compatible interactions compared to
mock-inoculated plants at 16 dai (Figs 2 & S1). This, as
well as the lack of additional accumulation of TaMPK3
in incompatible interactions in most samples compared
to the mock treatment, is consistent with MPK3 being
associated with necrotic lesions in non-biotrophic dis-
eases, particularly septoria tritici blotch.
The genes with the strongest difference in expression

between inoculated and mock-inoculated plants, b-1,3-
glucanase, chitinase, PR1, Lox, Mlo, PAL and peroxi-
dase, were differentially expressed across the time course

0.5 1 3 7 10 14

0.1
Time after inoculation (days)

1

10

104

103

102

PR1

Per

Sag12

B-glu

Chit

Chlr ab

LOX

Mlo

MPK3

PAL

PDI

R
el

at
iv

e 
ex

pr
es

si
on

Figure 4 Expression of the genes of interest during the interaction

between wheat and Zymoseptoria tritici between 0.5 and 14 days after

inoculation (dai). Expression of b-1,3-glucanase, chitinase, chlorophyll

a/b binding precursor, cysteine protease (Sag12), lipoxygenase, Mlo,
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0.01 > P > 0.001; small circles 0.05 > P > 0.01).
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of infection. All except Lox were up-regulated in both
compatible and incompatible interactions with Z. tritici
so these are likely to be involved in general responses to
the presence of the fungus, rather than a virulent isolate
specifically. Lox was the only gene consistently down-
regulated; again, there was no distinction between com-
patible and incompatible interactions. TaMPK3 was not
significantly altered in expression during these experi-
ments, nor were PDI, previously reported as being
induced in a resistant variety in response to Z. tritici
(Ray et al., 2003), chlorophyll a/b binding precursor, a
stress-induced gene, and SAG12, despite the latter two
genes being induced during foliar senescence (Lohman
et al., 1994).
The distinct peak in expression of several genes at

7 dai suggests that, at this time, the fungus triggers a
general defence response by the host, despite the lack of
evidence for differentiation in the development of Z. trit-
ici on resistant and susceptible hosts at this time (Shetty
et al., 2003). Rudd et al. (2015) measured responses at
9 dai of a susceptible host during the onset of lesion
development and also found strong up-regulation of
PR1, peroxidase and b-1,3-glucanase. The smaller peak
at 14 dai might correspond to the switch to the necro-
trophic phase. The lack of differentiation between
responses of resistant and susceptible cultivars demon-
strates that, up to 14 dai, plant defences are not specific
to an incompatible isolate.
Some genes tested here have previously been reported

to be differentially regulated between compatible and
incompatible responses to Z. tritici (PAL and LOX:
Adhikari et al., 2007; PDI: Ray et al., 2003; TaMPK3:
Rudd et al., 2008) but were not differentially regulated
here. Levels of chitinase expression have varied between
studies; the results of the current study are consistent
with Shetty et al. (2009) but differ from Adhikari et al.
(2007) who found that very little transcript accumulated
during compatible interactions. PR1 also has different
patterns of expression between studies; in the current
experiments, both susceptible and resistant cultivars
accumulated PR1. Ray et al. (2003) also found that PR1
was up-regulated strongly in both compatible and incom-
patible interactions with Z. tritici at 12 hai (their study
did not include later time points at the start of macro-
scopic symptom development). In contrast, Rudd et al.
(2015) found early down-regulation and late accumula-
tion of PR1 amongst a large number of other defence-
associated genes in a compatible interaction using RNA-
seq technology. Adhikari et al. (2007) demonstrated
strong induction of PR1 in incompatible interactions but
little PR1 expression in susceptible cultivars. The second
broad conclusion, therefore, is that expression of
defence-related and stress-related genes in wheat in
response to Z. tritici may depend not only on the host
and parasite genotypes but also on environmental condi-
tions such as the methods of growing and infecting
wheat plants.
In addition to the differences between studies, there

has also been high variability in gene expression within

studies. The large differences between replicate tests in
the experiments presented here are comparable to results
of other experiments (Ray et al., 2003; Adhikari et al.,
2007). The replicates of experiments presented here were
carried out at different times and therefore will have
been subject to differing environmental conditions that
could have influenced the expression of host defences.
Environmental conditions could also explain differences
seen between replicates in other studies and between dif-
ferent studies.
High variability in defence gene expression may be

inherent in this pathosystem. There is a long latent per-
iod in which there is little accumulation of fungal bio-
mass within the leaf (Keon et al., 2007) so pathogen
development may not happen synchronously throughout
a leaf. Gene expression may therefore be less uniform
than in diseases in which there is synchronous pathogen
development, such as barley powdery mildew (Boyd
et al., 1994b). Furthermore, the high inoculum density
used in this and other studies may affect the penetration
ability of the fungus or its ability to spread within the
apoplast (Fones et al., 2015) and thus the expression of
host defences.
A further factor that has not been considered either in

these experiments or in previous work on Z. tritici or
most other pathogens is that expression of defence-related
genes may be in part due to responses to microflora that
are able to use the infection progress of Z. tritici to their
own advantage and it may be the microbe-associated
molecular patterns (MAMPs) associated with these that
trigger a defence response. Boyd et al. (1994b) demon-
strated that, in response to wounding, defence-related
genes were either less up-regulated or not expressed at all
in barley grown in sterile conditions, compared to plants
that had been grown and either wounded or inoculated
with B. graminis in normal conditions. This implied that
in the latter situation gene expression was induced by
microbes present on the plant, not by B. graminis itself.
It is possible that infection by Z. tritici may render the
plant susceptible to saprophytes, endophytes or oppor-
tunistic microbes to which the plant then responds with
characteristic defences. It is also possible that the micro-
bial complement of the wheat host could alter responses
to Z. tritici and thus affect the outcome of infection.
Either process would result in a similar response in both
compatible and incompatible interactions and might
explain why different laboratories have reported differing
results on the same pathosystem.
The genes and protein described here have well-known

roles in defence and senescence and are involved in
responses to many other pathogens and abiotic stresses.
Nevertheless, their expression during early phases of
infection was not correlated with the compatibility or
incompatibility of the interaction between wheat and Z.
tritici genotypes, implying that other mechanisms or
pathways, not necessarily involved in responses to better-
studied pathogens, must control genotype-specific host
responses to Z. tritici. A third conclusion, therefore, is
that it is essential to investigate both compatible and
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incompatible interactions to understand the biology of
host–parasite interaction in this complex pathosystem.
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Figure S1. Accumulation of TaMPK3 during compatible and incompat-

ible interactions between wheat and Zymoseptoria tritici. Replicate gels

showing changes in TaMPK levels over a 17 day period after inoculation

with Z. tritici are shown by western blots probed with a TaMPK3-speci-

fic antibody for eight different cultivar/isolate combinations: the interac-

tions Longbow/IPO323, Avalon/IPO323 and Courtot/IPO88004 were

compatible, the other combinations were incompatible. Protein loading

levels are shown for each blot in the 60-kD region using amido black

staining. TaMPK3 accumulated in all cultivars inoculated with Z. tritici,

independent of compatibility, some TaMPK3 also accumulated in the

mock-inoculated controls after 10 and 16 days.

Figure S2. Expression of six genes of interest where the replicates dif-

fered. Replicates 1–3 were inoculated with Zymoseptoria tritici isolate

IPO323 and replicates 4–6 were inoculated with IPO88004. Relative

expression of genes of interest was determined by qRT-PCR compared

with mock-inoculated controls. All cultivar/isolate/time combinations

have been combined for each replicate. Levels of expression of PR1, per-

oxidase, b-1,3-glucanase, chlorophyll a/b binding precursor, chitinase and

Mlo differed between replicates. Significance of differences of the relative

expression from 1 for each replicate: *** 0.001 > P; ** 0.01 >

P > 0.001; * 0.05 > P > 0.01.

Figure S3. Consistency of differential regulation between replicates.

Expression of the genes of interest was determined by qRT-PCR. With

all cultivars combined for each gene, at each time point, the graph indi-

cates whether the gene was up- or down-regulated or no change was

detected in each of six replicates (y-axis).

Figure S4. Expression of the genes of interest during the interaction

between wheat and Zymoseptoria between 0.5 and 14 days after inocula-

tion. Expression of b-1,3-glucanase chitinase, chlorophyll a/b binding

precursor, cysteine protease (Sag12), lipoxygenase, Mlo, MPK3, PAL,

PR1, peroxidase and PDI was compared to mock-inoculated controls at

0.5, 1, 3, 7, 10 and 14 days after inoculation by qRT-PCR on eight culti-

var/isolate combinations.
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