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Analysis of variance in soil research: let the analysis fit the
design

R . W e b s t e r a & R . M . L a r k b∗

aRothamsted Research, Harpenden AL5 2JQ, UK, and bBritish Geological Survey, Keyworth, Nottingham NG12 5GG, UK

Summary

Sound design for experiments on soil is based on two fundamental principles: replication and randomization.
Replication enables investigators to detect and measure contrasts between treatments against the backdrop of
natural variation. Random allocation of experimental treatments to units enables effects to be estimated without
bias and hypotheses to be tested. For inferential tests of effects to be valid an analysis of variance (anova) of
the experimental data must match exactly the experimental design. Completely randomized designs are usually
inefficient. Blocking will usually increase precision, and its role must be recognized as a unique entry in an
anova table. Factorial designs enable questions on two or more factors and their interactions to be answered
simultaneously, and split-plot designs may enable investigators to combine factors that require disparate amounts
of land for each treatment. Each such design has its unique correct anova; no other anova will do. One outcome
of an anova is a test of significance. If it turns out to be positive then the investigator may examine the contrasts
between treatments to discover which themselves are significant. Those contrasts should have been ones in which
the investigator was interested at the outset and which the experiment was designed to test. Post-hoc testing of
all possible contrasts is deprecated as unsound, although the procedures may guide an investigator to further
experimentation. Examples of the designs with simulated data and programs in GenStat and R for the analyses
of variance are provided as File S1.

Highlights

• Replication and randomization are essential for sound experimentation on variable soil.
• Analyses of variance of data from experiments must match the experimental designs.
• Experiments should be designed to answer preplanned questions and test hypotheses.
• Efficiency can be gained by blocking and factorial combinations of treatments.

A little history

In 1843 John Lawes, the then owner of the Rothamsted estate in
Hertfordshire, England, and his newly appointed scientist, Henry
Gilbert, planned their experiment on Broadbalkfield to test and
compare the responses of winter wheat to various combinations of
fertilizers. The experimental treatments were applied to long narrow
strips of land running the length of the field, which were divided in
a perpendicular direction into sections. Lawes and Gilbert weighed
the yields, and they sampled both the crop and the soil in every plot
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in every section so as to measure the off-take of nutrients and the
nutrient status of the soil. A few years later they laid down similar
experiments on spring barley (Hoosfield, in 1852) and a meadow
(Park Grass, in 1856), both of which are still running. They also
meticulously recorded the weather. Rothamsted Research (2006)
has summarized the history and main findings of these long-term
experiments in its guide.

By the end of the First World War, during which Rothamsted
began to receive money from the British government for its
research, a huge body of data had accrued from these long-term
experiments, and in 1919 R.A. Fisher was appointed to analyse the
data and make sense of them.

Fisher soon realized that without replication, which was the
situation on Park Grass, he could not discover how variable was the
response to any one treatment. The treatments on Broadbalk were
replicated, but because the different plots for each treatment lay in a
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single strip he could not separate the effects of the treatments from
the soil’s natural variation as expressed in differences between the
strips. This natural variation and the treatment effects are said to be
confounded. The treatments on the spring barley experiment were
replicated on plots that were separated from one another but in a way
that might be confounded with the natural variation in the field. So,
again, it was not possible to estimate the effects of the fertilizers
alone.

Having recognized the serious shortcomings of those old trials,
Fisher formalized and systematized what had, hitherto, been incon-
sistently and erratically applied elements of experimental design.
One was replication, present in some of the experiments but not all,
and necessary to provide information on the variation in responses.
The other was randomization, necessary to avoid the bias that could
arise if treatment effects are confounded with sources of variation
that are uncontrolled and might be unknown. Fisher devised the
analysis of variance (anova) to separate the sources of variation in
data from such experiments, to estimate quantitatively the effects of
different treatments and to provide inferential tests to judge whether
the observed differences could have arisen by chance rather than as
results of the imposed treatments. Fisher also introduced blocking
to remove effects such as trends across experiments. Trends of this
kind do not introduce bias if the experimental design is randomized,
but blocking improves the sensitivity of the experiment to detect
treatment effects against the background variation represented by
the trends.

Fisher’s principles of experimental design and the concomitant
analysis of variance are as valid today as they were 90 years ago.
They have been the foundation of agronomic practice ever since,
and statisticians collaborate with agronomists to ensure that designs
will produce data that can be analysed to answer the questions put at
the outset. Numerous text books are available to guide practitioners;
two that we can recommend unreservedly are that by Snedecor &
Cochran (1989) and the more recent book by Mead et al. (2003).
Cochran & Cox (1957) remains a standard text. You might like also
to see the Statistical Checklists prepared by Jeffers (1978).

Sadly, many of today’s soil scientists are working without the
guidance or collaboration of statisticians. One consequence is that
they often plan experiments and surveys that cannot or are unlikely
to answer their questions; or having designed the experiments
soundly they vitiate the potential of the experiments to answer
the questions by improper sampling. Or they see opportunities to
answer new questions that were not envisaged when the original
experiments were planned, either by themselves or by other scien-
tists, yet fail to appreciate the limitations inherent in the designs.
A further consequence is that despite having designed their experi-
ments and surveys well they analyse the data from them incorrectly.
All too often they load their data into a statistical package, press a
few buttons on a menu without understanding, and copy the output
into their scripts.

We write in this critical vein from our experiences as advisors to
the journal’s editors in the last few years, and from the experience
of the journal’s statistical advisory panel. It is no exaggeration to
state that most of the papers on which the editors have sought

advice have embodied one or more of the above failings. In the
first set of circumstances we have felt obliged to judge the results
of little worth and to advise the editors to reject the papers. To
paraphrase one of R.A. Fisher’s remarks, it has been like conducting
post-mortems, only to say what the experiments died of. In some
instances we have asked for further sampling. In the second set we
have seen that redemption is often possible by fresh and correct
analysis of the data.

In one short article we cannot describe all that investigators should
do. Instead, we focus on the specific matter, namely analyses of
variance that follow from the designs, and in particular on the most
frequent mismatches between design and analysis. At the best such
mismatches lead to loss of information and so to waste of the effort
required to do the experiment. At worst, the inferences made from
the analysis are unsafe and lead to bad decisions. We have already
remarked on this in an editorial (Webster et al., 2016). In the comic
opera The Mikado by W.S. Gilbert and Arthur Sullivan the Mikado
himself demands that the punishment fit the crime. Here we demand
that the analysis fit the design.

Designs

We describe in detail below the commonest and most straightfor-
ward designs, starting with the simplest, completely randomized
schemes, introducing blocking, and progressing to factorial and
then split-plot designs. We have provided examples of these designs
with simulated data, together with programs in GenStat and R for
the correct analyses of variance and the output from those analyses
in the File S1.

Completely randomized (CR) design

We begin with the simplest design. Suppose that investigators
wish to compare the effects of several manure treatments on some
property of the soil, say the microbial biomass, which we shall
denote z. They replicate their treatments and assign them to the
experimental plots in a completely randomized and independent
way. Let there be n1 treatments, each replicated n2 times, so that
there are N = n1 × n2 plots, or units, of the design. Treatments are
allocated to plots independently and at random. This means that
the probability that the first plot in the experiment is allocated to
the jth treatment is n2/N, equivalently 1/n1. Subsequently when nj

replicates of the jth treatment remain to be assigned, the probability
that any one of the Nu plots that have still to be assigned a treatment
will ultimately receive treatment j is nj/Nu. Figure 1 shows one
outcome of such assignment in which n1 = 4 and n2 = 5.

The files exp1.* in the File S1 contain data with this design and
the programs for analysing them.

The analysis of variance for this design appears in Table 1. Note
that this presentation of the analysis of variance, and that for subse-
quent designs, holds for the balanced case in which the numbers of
replicates of the treatments are equal. The texts to which we have
referred provide further information on analysis in the unbalanced
case, but the topic is beyond the scope of the paper. The total mean
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Figure 1 An example layout of a completely randomized bal-
anced experimental design in which five replicates of each of four
manure treatments, M1, M2, M3 and M4, are independently and
randomly allocated to plots.

Table 1 Analysis of variance for n1 treatments replicated n2 times in a
completely randomized (CR) design

Source
Degrees of
freedom

Mean
squares

Parameters
estimated F ratio

Between treatments n1 –1 B 𝜎
2
W + n2𝜎

2
B B/W

Within treatments (residual) n1(n2 –1) W 𝜎
2
W

Total n1n2 –1 T

square is T:

T = 1
n1n2 − 1

n1∑
j=1

n2∑
i=1

(
zi,j − z

)2
, (1)

where zi, j is the measured response of the ith replicate of the jth
treatment and z is the mean response over all n1n2 plots. One can
see that this quantity is a variance, the variance of the plot responses.
The divisor of the sum of squares, n1n2 –1, is called the degrees of
freedom in Table 1. It can be regarded as the number of independent
pieces of information about the variation of the plot responses
provided by the data. There are n1n2 –1 degrees of freedom rather
than n1n2 because each plot response is compared wiith the overall
mean estimated from all the data. Because

n1∑
j=1

n2∑
i=1

(
zi,j − z

)
= 0,

it follows that, when we know the values of n1n2 –1 differences
in the summation, the last one is fixed and so provides no new
information.

The within-treatment mean square, W, is computed as

W = 1

n1

(
n2 − 1

) n1∑
j=1

n2∑
i=1

(
zi,j − zj

)2
, (2)

wherezj is the average response of all plots in the jth treatment.
The value estimated by W is the variance of plot responses within
the treatments (i.e. the variance about the treatment means). This
quantity is 𝜎2

W in Table 1. It has n1(n2 –1) degrees of freedom in this
simple balanced case because each of the n1 treatments contributes
n2 –1 degrees of freedom from the independent variations about
the mean of its n2 replicates, from which the treatment mean is
estimated.

The between-treatment mean square, called B in Table 1, is
computed for this simple balanced case as

B = 1
n1 − 1

n1∑
j=1

n2

(
zj − z

)2
. (3)

This is equivalent to the sum, over all plots, of the squared
difference between the corresponding treatment mean and the
overall mean, divided by the number of independent variations
among the treatment means.

The residual mean square in an analysis of variance is a direct
estimate of a variance component. In general, however, mean
squares estimate combinations of more than one variance compo-
nent. Table 1 shows that B estimates 𝜎

2
W + n2𝜎

2
B . The quantity 𝜎

2
B

is the variance among the treatment means. If there were no differ-
ences between the treatments then this quantity would be zero, and,
as can be seen in the table, B and W would both estimate 𝜎

2
W, and
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Figure 2 An example layout of a randomized blocked experi-
mental design in which the plots are grouped in blocks of four
(separated by the dotted lines) and one replicate of each of four
manure treatments, M1, M2, M3 and M4, is independently and
randomly allocated to a plot within each block. There are five
blocks in total, separated by dotted lines in the Figure.

the ratio F=B/W in the table would have an expected value of 1.
We use the standard notation of the Roman letter s for an estimate
of the underlying quantity 𝜎, so by s2

W we denote the estimate of 𝜎2
W

provided by W in Table 1.
Apart from separating the sources of variation in the experiment

and providing quantitative values of the variances attributed to those
sources, the analysis enables us to draw inferences. If the responses
in z to the treatments differ from one another then we should expect
the ratio B/W to exceed 1. But B/W could exceed 1 purely through
random variation; so how can we tell that we have a real effect of
the treatments? We do so by putting forward the ‘null hypothesis’,
often designated H0 in statistics textbooks. It is the hypothesis that
there are no differences, and we consider the strength of evidence
against it. That evidence is the magnitude of B/W in relation to the
distribution of F if the null hypothesis were true. We can tell we
have a real effect because, as a result of our design, B and W would
be independent estimates of 𝜎2

W if the null hypothesis were true. It
follows from the independent random allocation of treatments to
plots, and it appears in the anova table in the way that the n1n2 –1
total degrees of freedom are partitioned into the between-treatment
and within-treatment (residual) degrees of freedom.

In these circumstances the variance ratio has the F distribution
under the null hypothesis and the shape of the distribution that
depends on the degrees of freedom for the numerator and denom-
inator of the ratio. One can therefore compute the probability that
an F ratio as large or larger than the value observed in the table
would arise under the null hypothesis through random variation.
The smaller is this probability, or P-value, the stronger is the exper-
imental evidence that we should reject the null hypothesis and say
that the treatments have produced different responses. It is now a

short step to the common notion of statistical significance. It is
conventional to take P= 0.05 as a threshold. If P exceeds 0.05,
investigators accept the null hypothesis. Otherwise, with P≤ 0.05
they declare that the observed differences are ‘significant’, and they
decorate their tables of means with stars, which again we deprecate!
One may choose some other value of P depending largely on how
serious it would be to come to a false conclusion.

Inference from the analysis of an experiment like that above is
based on assumptions about the distribution of random quantities
under the null hypothesis that are justified by that design, the way
it was laid out in the field, glasshouse or laboratory, and on the
numbers of the degrees of freedom for the variance ratio. In this
sense the analysis (and anova table) matches the design.

Randomized complete block (RCB) design

Where investigators know of or suspect trends in fertility, drainage
or pollutants that might affect their results they typically replicate
their treatments in blocks. In the simplest case each treatment is
replicated once and only once in each block. The allocation of
treatments within the blocks is carried out independently and at
random. Figure 2 shows one realization of an RCB design for
four treatments and five blocks, and so the same total number
of replicates as the completely randomized case in Figure 1. The
blocks are separated by the dotted lines; notice that in each block
there is one plot for each of the n1 treatments. The blocks in this
figure are laid out as rows across the experimental layout and
so would be suitable if a trend in soil properties was known or
suspected to occur from the top to the bottom of the site.

© 2018 British Society of Soil Science, European Journal of Soil Science, 69, 126–139
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Table 2 Analysis of variance for n1 treatments replicated n2 times in a
randomized complete block (RCB) design

Source
Degrees of
freedom

Mean
squares

Parameters
estimated F ratio

Blocks n2 –1 A 𝜎
2
W + n2𝜎

2
A A/W

Between treatments n1 –1 B 𝜎
2
W + n2𝜎

2
B B/W

Within treatments
(residual)

(n1 –1)× (n2 –1) W 𝜎
2
W

Total n1n2 –1 T

The files exp2.* in the File S1 contain data with this design and
the programs for analysing them.

The analysis of variance for this design, still with n1 treatments
each replicated once in each of n2 blocks, appears in Table 2. Here
𝜎

2
W and 𝜎

2
B are the underlying variances for plots and treatments as

before. There is an additional line in the table for the between-block
mean square with n2 –1 degrees of freedom; 𝜎

2
A is the variance

between blocks. The total degrees of freedom and the treatment
degrees of freedom are unchanged from Table 1, but there are
n2 –1 fewer residual degrees of freedom. This follows from simple
arithmetic, but it also indicates that the random allocation of
treatments to plots is more constrained in the RCB design than in
the CR design (once one plot in block k has been assigned to the jth
treatment we know that no other plot in the block will receive it).
For this reason there is somewhat less information in the residual
mean square than in the CR design with the same number of plots
and treatments.

Where does the between-block variance come from? It is nat-
ural variation in the experimental environment that appears as
between-block rather than within-block variation. If blocking were
not undertaken then this variation would be part of the residual vari-
ance, 𝜎2

W. This means that, if the between-block variance is large,
then we reduce the residual variance and so should increase the vari-
ance ratio B/W, making the experiment and analysis more sensitive
for comparing the differences between the treatments. This is why
blocking, appropriately planned, should be advantageous. Snedecor
& Cochran (1989) provide formulae for calculating the efficiency of
blocking. At its simplest they calculate it as the ratio of the residual
variances:

Efficiency = s2
CR∕s2

RB , (4)

wheres2
CR is the residual variance on the assumption that the design

was completely randomized (CR), whereas s2
RB is the residual

variance of the RCB design. You can find further details of the
calculation on pages 263 and 264 of Snedecor & Cochran (1989).

An efficient blocking design is evidently one in which the
differences between the blocks are larger than the variation within
the blocks. In practice one might achieve this by keeping the blocks
compact, although in a field where there is a strong trend in the soil
or environment in one direction rectangular blocks with the long
side perpendicular to the direction of the trend would be preferred. It
is important to pay attention to the structure of the blocks, because,

as above, there is a small penalty for blocking from the reduced
residual degrees of freedom, and this will be worth paying only if
there are real differences between the blocks.

The variance ratio A/W appears in Table 2, and one could use
it to test the null hypothesis that the between-block variance, 𝜎2

A,
is zero. That would be of interest only in that it shows whether
the blocking is better than random assignment of plots to blocks.
Sometimes, however, the scientist, having found that the evidence
for a difference among the blocks is weak, ignores the blocking
and reports an analysis of variance appropriate for a CR design.
Such an analysis does not fit the design. The scientist might try
to justify that analysis because the blocks have been shown not to
differ, but that misses the point. What the correct analysis shows us,
and shows explicitly in the anova table, is how the actual allocation
of treatments to plots was undertaken; it shows that in the RCB
case we have (n1 –1)× (n2 –1) degrees of freedom, not n1(n2 –1).
In short, the correct analysis reports the reduction, albeit small,
in information about the residual variance that follows from the
constraints of blocking. The extra n2 residual degrees of freedom
in the analysis as if the design were completely randomized means
that, other things being equal, a given variance ratio appears to offer
stronger evidence against the null hypothesis. This inference would
be unsafe, however, because the quoted degrees of freedom would
not describe the actual randomization. In practice this would mean
that the variance ratio for a treatment effect would be compared with
the wrong distribution of the F statistic. The analysis would not fit
the design.

The Austrian philosopher Ludwig Wittgenstein was once
impressed by an account of a trial that took place following a car
accident in Paris. During the trial, models were used to represent
the positions of the vehicles involved at the time of the collision
(Kenny, 2005). Inspired by this, he developed his picture theory, by
which a logical proposition is equivalent to a picture of a state of
affairs in the world. Such a proposition may take different forms.
It may, for example, be spoken, written or drawn. Let us apply the
idea in the present context to the design of field experiments.

Consider an experiment that has been performed according to
an RCB design. The design could be illustrated with a diagram
such as Figure 2. More often in scientific papers the designs are
described in words in Methods sections. The equivalent to Figure 2
would be ‘The n1 treatments were allocated independently and at
random within each of n2 blocks’. Our contention is that the correct
analysis of variance table for the experiment, as shown in Table 2,
is one more way in which we may express the same proposition.
The partition of the sum of squares between rows of the table
represents the sources of variation that the experimental design
uniquely induces, and the numbers of degrees of freedom show how
many blocks and replicates were used as surely as does Figure 2 or
the verbal statement.

That is one reason why this journal asks its authors to provide
full anova tables. The request is sometimes misinterpreted as a
request for a table of only a set of variance ratios and corresponding
P-values, but that is not what is required. The journal requires a
table like Tables 1 or 2 shown here, because such a table represents
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Analysis of variance in soil research 131

the design definitively. When assessing an experiment both the
reviewers and, ultimately, readers must be able to see that the
experiment as described in the methods section accords with the
anova reported in the results.

Factorial designs

When an investigator is interested in the effects of several factors it
is much more efficient to include them in a single experiment than
in a series of separate experiments, one for each factor. This was
recognized by Fisher (1926) who wrote:

No aphorism is more frequently repeated in connection with field
trials, than that we must ask Nature few questions, or, ideally, one
question, at a time. The writer is convinced that this view is wholly
mistaken. Nature, he suggests, will best respond to a logical and
carefully thought out questionnaire; indeed, if we ask her a single
question, she will often refuse to answer until some other topic has
been discussed.

Yates (1937) set out the principles of factorial designs in
his Technical Communication 35, which became the guid-
ing text for fertilizer trials for many years. More recently,
Carmer & Walker (1982) have urged investigators to take this
course.

To illustrate the principles of the design and correspond-
ing analysis we take a simple example with three factors, the
major plant nutrients, nitrogen (N), phosphorus (P) and potas-
sium (K). Factors are each applied at two or more ‘levels’; in
this example we assume that the nutrient is either applied or
not (two levels). There are therefore 23 = 8 combinations of
factor levels; these are our treatments. The treatments must
be replicated between units (plots in this case) according to a
suitable design, and analysed in accordance with that design.
One might use CR or RCB designs, as in the examples already
discussed.

Let us assume that there are, as before, n2 replicates arranged
in a CR design. We could analyse the data as set out in Table 1
with 8–1= 7 degrees of freedom for the treatments. This analysis
would be quite correct, but it would not be very informative. If
we found that the treatments were significantly different then how
should we interpret this finding in terms of all our three factors?
The factorial design allows us to do this. We can partition the sum
of squares due to differences among the treatments into what are
called main effects and interactions. There are three main effects in
our example, the differences between treatments with contrasting
levels of N is one such, and the other main effects are due to P
and K. If these effects simply add to one another then all of the
treatment sum of squares will be accounted for by the sums of
squares for the three main effects. If, in contrast, the difference
between plots that receive N and those that receive none is not the
same on plots that receive K and those that receive no K then the
factors K and N are said to interact. One can see that there are three
such interactions in our example: N·P, N·K and P·K. To complicate
matters further, if the N·K interaction differs between plots that
receive P and those that receive none, then there is a three-way

Table 3 Three-way analysis of variance for three factors, N, P and K, each
at two levels replicated n2 times in a completely randomized (CR) design

Source
Degrees of
freedom

Parameters estimated
by mean squares F ratio

Between treatments 7 𝜎
2
W + n2𝜎

2
B

N 1 𝜎
2
W + n2𝜎

2
N

P 1 𝜎
2
W + n2𝜎

2
P

K 1 𝜎
2
W + n2𝜎

2
K

N • P 1 𝜎
2
W + n2𝜎

2
NP

N • K 1 𝜎
2
W + n2𝜎

2
NK

P • K 1 𝜎
2
W + n2𝜎

2
PK

N • P • K 1 𝜎
2
W + n2𝜎

2
NPK

Within treatments (residual) 8× (n2 –1) 𝜎
2
W

Total 8× n2 –1 𝜎
2
T

interaction N • K • P. Note that we could express the same three-way
interaction in terms of an effect of, for example, the level of N
on the P·K interactions, so there is just one three-way interaction
in a factorial experiment with three factors. We use this ‘dot’
convention to indicate interactions as established by Wilkinson &
Rogers (1973).

Table 3 sets out the anova for our example. Note that each main
effect has a single degree of freedom; this is because there are
two levels of each factor, and so the main effect consists of just
the difference between the responses to these levels. In general, a
factor with U1 levels has U1 –1 degrees of freedom for its main
effect. Similarly, the two-way interactions each have one degree
of freedom; in general, two factors with U1 and U2 levels have an
interaction with (U1 –1)× (U2 –1) degrees of freedom. Equally the
three-way interaction has 1 degree of freedom in our example. In
the general case where the third factor has U3 levels, the three-way
interaction has (U1 –1)× (U2 –1)× (U3 –1) degrees of freedom. The
reader will note that in our example the sum of the degrees of
freedom for the main effects and interactions is 7, the same as the
treatment degrees of freedom. The treatment degrees of freedom are
partitioned between main effects and interactions, as is the treatment
sum of squares.

The quantity 𝜎
2
W in Table 3 is the underlying variance among

the plots receiving the same combination of treatments, and 𝜎
2
N,

𝜎
2
P, ..., 𝜎2

NPK are the variances attributed to the nutrients and their
combinations. The F ratio for any one entry is:

F =
mean square for the treatments

residual mean square
. (5)

The standard error of any of the treatment means is:

SEtreatment =
√

residual mean square∕n2 . (6)

Where the investigator goes from there depends very much on the
outcome of the analysis. If it turns out that the interactions, espe-
cially the threefold interaction of N, P and K, are non-significant
and only the main effects of the three nutrients are significant, the
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Figure 3 An example layout of a split plot design with blocks.
Three main plots are in each block, and one replicate of each of
three levels of an irrigation factor, I1, I2 and I3, is independently
and randomly allocated to a main plot within each block. The
three levels of the irrigation factor are distinguished in this figure
by dark grey, light grey or white shading. Within each main
plot are four subplots and one replicate of each of four manure
treatments, M1, M2, M3 and M4, is independently and randomly
allocated to a subplot within each main plot.

investigator may choose to focus on the main effects, i.e. on the
means of plots receiving each of the N, P and K averaged over all
combinations that include them. Their standard error is

SEmain effect =
√

residual mean square∕4n2 . (7)

The quantity 4 appears in the denominator because, in the example,
n2 replicates of four treatments contribute to the estimate of the
mean response for each level of one of the factors.

We cannot consider here all the possible outcomes and their con-
sequences; rather we must leave readers to pursue them elsewhere.
Again, we recommend Snedecor & Cochran (1989).

We include this account of factorial designs and analysis because
all too often in papers submitted to the journal the analysis does
not match the design. Some authors, having undertaken an exper-
iment according to a factorial design, proceed to analyse it in
a series of one-way analyses for each of the main effects. This
is bad practice for two reasons. If all the data from the experi-
ment are analysed in this way then the influence of those main
effects not considered in a particular analysis will inflate its resid-
ual mean square. Further, when there is a substantial interac-
tion between factors the main effect may be small or negligible,
even though the factor is an important one. This is our interpre-
tation of what Fisher means by saying that nature ‘may refuse to
answer’ a particular question ‘until some other topic has been dis-
cussed’. If the design is factorial then the analysis should be so
as well, otherwise it is very likely that substantial information will
be lost.

Split plots

Split-plot designs are common in agricultural experimentation.
There are two general circumstances in which they are used. The
first is a factorial experiment in which one of the factors can be
replicated only between fairly large plots for logistical reasons.
A typical example is where one of the factors is an irrigation or
drainage treatment. Large plots are needed for these, but it would
not be feasible to replicate such plots in factorial combination with
several fertilizer treatments as above. The experiment would require
too large an area to manage. The solution is to replicate the irrigation
factor between appropriate large plots (main plots in the jargon), and
then to divide each main plot into subplots, one subplot for each
level or combination of levels of the remaining factors, which are
allocated to subplots at random.

Let us suppose that the four manure treatments of Figure 1
(M1, M2, M3, M4) are to be combined in an experiment in
which there are three irrigation treatments (I1, I2, I3), say no
irrigation, irrigation when the soil has dried to half its available
water capacity and irrigation at regular intervals regardless of the
water deficit. Figure 3 shows a possible layout on the ground with
the irrigation treatment replicated between main plots in the blocks,
and the manure treatments replicated between subplots within each
main plot.

How would the data from this experiment be analysed? There
are 12 treatments (combinations of the four levels of the manure
factor and the three levels of the irrigation factor). The treatments
are replicated in four blocks. One might think that Table 4 would
partition the degrees of freedom for the anova; the design is after
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Table 4 Incorrect partial analysis of variance table for the factorial experi-
ment with manure and irrigation factors illustrated in Figure 3

Source Degrees of freedom

Between blocks 3
Between treatments 11
Manure 3
Irrigation 2
Manure • irrigation 6
Residual 33
Total 47

Table 5 Analysis of variance for the split plot experiment with three levels
of the irrigation factor replicated between main plots within blocks, and four
levels of the manure factor replicated between subplots within each main
plot

Source
Degrees of
freedom

Mean
squares F ratio

Main plots
Block 3 BB BB/WMP

Irrigation 2 BI BI/WMP

Main plot error 6 WMP

Subplots
Manures 3 BM BM/WSP

Irrigation • manures 6 BIM BIM/WSP

Subplot error 27 WSP

Total 47 T

The subscripts are B for block, I for irrigation, M for manures, MP for main
plot, SP for subplot, and MPE and SPE denote the main-plot and subplot
errors.

all a factorial one. However, an analysis with that structure would
be wrong; the table does not match the design. To see this, reflect on
the basic units of the experiments, the subplots; there are 12 of them
in each block. The anova structure in Table 4 implies that there are
no constraints on the randomization of the 12 treatments between
subplots within each block, but that is not the case. If we are told
that a plot in the top left corner of a block has treatment I3-M4 we
can know, first, that all plots in the same main plot receive level I3 of
the irrigation factor, and second, that no other subplot in the main
plot receives level M4 of the manure treatment. In short, Table 4
fails to show that the levels of the irrigation factor were allocated to
the main plots while the levels of the manure factor were allocated
to subplots within the main plots.

Table 5 sets out the correct analysis for this experiment with the
three levels of the irrigation factor randomly allocated between main
plots in each of four blocks, and the four levels of the manure factor
randomly allocated to the subplots within each main plot.

The files exp3.* in the File S1 contain data with this design and
the programs for analysing them.

Notice how the F ratios are calculated in Table 5. The denomi-
nator for the irrigation F ratio is the main-plot error mean square.
That for the manures and the interaction between the irrigation and

manures is the subplot error mean square. In such a design the
subplot error variance is smaller than the main-plot error variance.
These variances follow through to different standard errors for the
means. In this example the manure treatments are compared more
sensitively than the irrigation treatments. If the data from this exper-
iment were mistakenly analysed as in Table 4 then one would under-
estimate the main-plot error variance and overestimate the subplot
variance.

In an experiment like the one above, the treatments, say manure
and irrigation, are laid out in split-plot designs from the start.
Although such experiments are not always correctly analysed in
papers submitted to the journal, problems more often arise when
split-plots are introduced into experiments later on. Consider an
original RCB experiment with four treatments like that above. Let
us suppose that the treatments are four different kinds of manure
and that the investigator planned to compare rates of respiration
in the soil between these treatments. Having seen the results, he
or she then introduces a second factor, the soil water potential.
Two soil cores are taken from each plot of the original experiment
and equilibrated at one of two soil water potentials, and then the
respiration rate of each is measured. The plots in such an experiment
are not physically split, and authors are sometimes puzzled when we
tell them that they have split-plot designs. They need to recognize
that in such a situation the experiment has a split-plot design with
manures replicated between main plots and the cores extracted from
each main plot serve as subplots between which the levels of the
water-potential factor are randomized. This should be reflected in
an anova table like Table 5. Too often we receive papers in which
such experiments are analysed as if they had simple RCB factorial
designs.

Sampling within experimental plots

One can rarely measure soil properties of whole plots; almost
always the most one can do is to sample the soil and measure the
properties of interest on the samples. If one were to take one sample,
whether as a single core or a bulked sample from several cores, one
would analyse the measurements as above according to the design
(i.e. completely randomized or blocked).

However, one might well measure the property on each of sev-
eral cores from each plot. This would provide information on the
variation within the plots, and one could elaborate the analysis of
variance accordingly. Suppose that one takes n3 cores of soil from
each and every plot, as illustrated in Figure 4 in which there are
n1 = 4 treatments replicated n2 = 5 times in a completely random-
ized arrangement, and n3 = 3 cores per plot. The correct analysis
of variance for this design is set out in Table 6. The quantities 𝜎2

W

and 𝜎2
B are the underlying variances between plots within treatments

and between treatment means, respectively, and 𝜎
2
C is the variance

among cores within plots. This table is comparable to one for a
split-plot design with cores as the subplots. The difference is that
no factor is replicated randomly at the core level. The replication
is simply to improve estimates of the plot means. Nonetheless, the
between-treatment mean square must be compared with the correct
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Table 6 Analysis of variance for n1 treatments replicated n2 times on plots
in a complete randomized block design with n3 measurements per plot

Source
Degrees of
freedom

Mean
squares

Parameters
estimated F ratio

Between
treatments

n1 –1 B 𝜎
2
C + n3𝜎

2
W + n2n3𝜎

2
B B/W

Between plots
within
treatments

n1(n2 –1) W 𝜎
2
C + n3𝜎

2
W

Between cores
within plots

n1n2(n3 –1) C 𝜎
2
C

Total n1n2n3 –1 T

residual, the between-plots within-treatments mean square, because
the treatments are randomized at the plot level.

The standard error of a plot mean is SEplot =
√

C∕n3, where
C is the variance between cores within plots. If we denote the
estimated variance between plots within treatments by s2

W we obtain
the standard error per treatment mean as

SEtreatment =

√
C

n3n2

+
s2

W

n2

. (8)

If the replicates were arranged in blocks then there would be a
corresponding additional entry for blocks in the analysis.

Pseudo replication

In the previous example, with the anova as in Table 6, the exper-
imenter recognizes that treatments are replicated and randomized
at the plot level, even though measurements are made on n3 cores
in each plot. If, incorrectly, the experimenter treated this design as
one with n3 × n2 independent replicates of each treatment, it would
be a case of what statisticians call ‘pseudo replication’. We intro-
duce the topic of pseudo replication here because many authors of
the papers we see commit it either inadvertently or knowingly with-
out appreciating its inferential consequences. We distinguish three
situations.

1. The investigator misguidedly regards all n2 × n3 observations on
each treatment as the units of the design and for a CR design
analyses the data as in Table 1. He or she then tests the treatment
mean against a residual mean square with n1 × n2 × n3 − n1

degrees of freedom. This comprises a form of pseudo replication
because the replicates within plots are not true replicates of
the experimental treatments. Fortunately, no serious damage is
done; once alerted to the mistake the investigator can re-analyse
the data correctly according to Table 6.

2. A similar situation arises when a scientist takes either a single
core from each plot or bulks multiple cores from each and
then splits them into several subsamples for measurement in
the laboratory. These replicate measurements cannot be regarded
as independent units in the design. They are pseudo replicates.

They may be averaged and analysed as in Table 1, or they may
be analysed as individual values as in Table 6. In the latter
case the variance 𝜎2

C represents the variance due to subsampling
of a single core or composite sample, rather than within-plot
variance.

3. Most serious of all is when an investigator takes multiple
cores of soil from an experiment that itself has few replicates,
perhaps only one, and believes that treating the numerous cores
as units will compensate for lack of replication of the main
plots and analyses the data according to Table 1. The correct
analysis is that exemplified in Table 6. With few true replicates
of the treatments, however, the experiment is unlikely to be
sufficiently sensitive to reveal any but the biggest and most
obvious differences. Here the shortcoming is in the design; the
experiment should have been planned with more replication in
the field and more resources allocated to its execution.
The situation arises more often in surveys where investiga-
tors want to know how the soil differs from one cultural prac-
tice or environment to another. The main difficulty here is in
finding sufficient replicates of each kind of practice or envi-
ronment, especially if access to and travel between them are
time-consuming and expensive. What usually happens is that the
investigator replicates observations at the few sites that can be
reached, often only one of each kind.
Mean values for the sites actually sampled might be estimated
precisely, but differences between practices or environments
would not be. If the latter are not replicated, perhaps because
replication was impossible, then the investigator can say at the
end only by how much the sites themselves differ from one
another; any inference about the populations they represent
cannot be based on the statistics.

Repeated measurements

The last couple of decades have seen increasing interest in the
behaviour of soil over time. Soil scientists have monitored the soil
and planned experiments with installations such as static cham-
bers in which to collect gaseous emissions (see, for example,
González-Méndez et al. (2015) and their repeated measurements
of the associated redox potentials from electrodes buried in the
soil (González-Méndez et al., 2017)), lysimeters in which to moni-
tor leachates passing through the soil, laboratory reactors in which
organic matter is mineralized (e.g. Coban et al., 2016) and micro-
cosms in which to measure the responses of bacteria to imposed
treatments over time. The scientists quite properly design their
experiments by assigning their treatments to the units, whether
chambers, electrodes, lysimeters, reactors or microcosms, with
replication and randomization. Then at intervals they make their
measurements on every unit. This is especially easy when the mea-
surement is non-invasive, for example by spectrometers. It is also
feasible to do so by repeated subsampling of soil from microcosms
or field plots. (The soil in long-term experimental plots at Rotham-
sted has been sampled at intervals over the years since they were
first established.)
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Figure 4 An example layout of the same completely randomized
balanced experimental design exemplified in Figure 1 with sites
for collection of three soil cores (black discs) independently and
randomly located within each plot.

If measurements are made on only two occasions then an
appropriate analysis of the data depends on the specific objectives of
the experiment. If the variable of interest is the difference between
the two observations (e.g. the change in a soil property between the
start of a growing season and the end) then the difference may be
computed directly for each experimental unit and, being replicated
at the level of these units, may be analysed in a straightforward way.
If the two observations on each unit are to be analysed together
then we have a split-plot design with the chambers, electrodes,
lysimeters or microcosms as replicated main plots and the two
occasions as subplots within the main plots. One can analyse the
data quite correctly as set out in Table 5.

In situations when observations are repeated on the same units,
and they are made on more than two occasions, one must take
into account possible correlations between the repeated measure-
ments on any one unit. These correlations might depend on the time
interval between the observations, which the simple split-plot anal-
ysis cannot accommodate. The successive measurements on any
one installation cannot be regarded as independent. For the pur-
pose of the statistical analysis the chambers, electrodes, lysimeters
or microcosms are the units. The data comprise repeated measure-
ments on those units, and special techniques that take into account
the possible correlations are required to analyse them. The tech-
niques often go under the name of ‘longitudinal analysis’.

There is no single correct way of analysing repeated measure-
ments, and we cannot delve into the detail of any of them. Webster
& Payne (2002), in this journal, reviewed several options. They
described in detail one in which the order of correlations was esti-
mated first by an antedependence analysis, as devised by Kenward

(1987), and the results of this were then incorporated into an anal-
ysis of differences between treatments by residual maximum like-
lihood (reml). Other options in which the variations in time are
modelled as autoregressive processes are available, see again Coban
et al. (2016).

In whatever way data of repeated measurements are analysed, that
way must honour the design. If you wish to investigate processes in
the soil over time with fixed installations such as static chambers
or lysimeters or in the laboratory with microcosms, then plan your
experiments in consultation with a professional statistician and
know in advance how you will analyse the data. Of course, you
should always know how you will analyse data from any experiment
you plan, and for the more straightforward cases you can find
recipes in textbooks.

Inferences and comparisons

Orthogonal contrasts

Obtaining a statistically significant result from an anova, say one
for which P< 0.05, is never the end of an investigation. On its own it
is of limited interest. Far more important are the differences between
the means: which of the differences contributed to the result? And
are they the ones about which the investigator wanted to know when
the experiment was designed?

Consider an experiment in which a scientist wants to compare the
effects of organic additions to the soil on the respiration rate. The
materials to be added are barley straw, wheat straw, cattle slurry
and pig slurry. In addition to these four treatments there is a fifth
treatment, a control where nothing is added. When this experiment
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is complete the anova table will include a treatment mean square
with four degrees of freedom. This mean square may be compared
with the residual mean square to test the null hypothesis that there
are no differences in response to the different treatments. Let us
suppose that the P-value is so small that the null hypothesis is
rejected. Now, which differences contributed to the result? Did
the respiration caused by the addition of straw differ from that
caused by the addition of slurry? Did the kind of straw affect the
result? How did the additions of these organic materials affect the
respiration rate in relation to the control? These are the preplanned
questions that the scientist might reasonably have had in mind when
the experiment was designed, and the design should have been such
as to answer those questions and test the hypotheses underlying
them by the appropriate analysis.

Why preplanned questions? With five different treatments there
are 10 different comparisons that can be made between pairs of
treatments, and there are more comparisons between combinations
of treatments. One might test a comparison between the means of
two treatments with a t-test. The standard error for the difference
between two treatment means is

√
2W∕n2, so the test is easy to

do. Indeed, for the simple balanced case with n2 replicates per
treatment one may compute the least significant difference for
comparison between any pair: LSD = t

√
2W∕n2. With so many

possible comparisons it is likely that some will appear ‘significant’
purely through random variation, and with the human eye and
brain well adapted to pick out large differences in tables of means,
any inference out of these multiple comparisons is unlikely to be
safe. Lark (2017) and Webster (2007) have discussed this matter
in greater depth. The meaning of the P-value for a null hypothesis
holds when the comparison is planned at the outset; it does not hold
for examination of differences after one has inspected a table of
means and noted ones that look interesting.

Preplanned questions can be expressed conveniently as a set
of orthogonal contrasts. A contrast is a comparison between two
treatments, or two groups of treatments. In the example above
one contrast might be between soils receiving cattle manure and
those receiving pig manure. If we consider the treatments in order
control, pig manure, cattle manure, barley straw, wheat straw, then
the contrast mentioned can be expressed by a vector of coefficients:

c1 = [0,−1, 1, 0, 0] .

This contrast is a comparison between the two manures. There are
zero entries that correspond to treatments not in the contrast, and
the difference in sign expresses the fact that we are interested in the
difference between the two manure treatments.

Another contrast one could consider is between the control and all
the treatments with additions to the soil. This would be expressed
by the coefficients:

c2 = [4,−1,−1,−1,−1] .

Note that the mean for the control has a coefficient of 4, balancing
the −1 entry for each of the treatments with an organic amendment,

and the coefficients therefore sum to zero, as in the previous
example.

We have yet to explain what we mean by an orthogonal contrast.
Consider the two examples given. Neither of these contrasts
contributes in any way to the other. That is because the second
contrast is between the control and all the treatments with an
amendment, whereas the first is a contrast between two treatments
in the latter group. If we know that the first contrast is large it tells
us nothing about the second. Mathematically this is expressed by
the fact that the inner product of the two contrast vectors, the sum
of the products of their corresponding elements, is zero:

c1 •c2 = 0,

as can easily be verified.
We can specify two more contrasts, c3 and c4, such that the full

set is mutually orthogonal. These are

c3 = [0, 0, 0,−1, 1] ,

and
c4 = [0,−1,−1, 1, 1] .

The contrast c3 is between wheat straw and barley straw, and the
contrast c4 is between straw and manure. The reader can check that
any pair of contrasts drawn from the set {c1, c2, c3, c4} is orthogonal.

Note that there are four orthogonal contrasts in this set, which is
complete: no additional contrast could be found that is orthogonal
to all in this set of four. The number of orthogonal contrasts among
a set of treatments is equal to the treatment degrees of freedom.
In fact, the orthogonal contrasts can be put into the anova table,
one line each, in place of the treatment effects. The treatment sum
of squares is partitioned between the contrasts exactly, and each has
one degree of freedom. Each contrast can be tested by the ratio of its
mean square to the appropriate residual mean square in the design.
Note also that orthogonal contrasts can be used in the analysis of
a factorial experiment, in which case contrasts can be examined
between groups of levels of each factor, and the interaction sum
of squares may also be partitioned into corresponding components,
each with one degree of freedom.

The use of orthogonal contrasts is much to be commended. It
requires experimenters to think in advance about their hypotheses,
to express them in terms of contrasts and so to embed them in
the experimental design. By prespecifying the orthogonal sets of
contrasts experimenters ensure that the P-values they use to test
their hypotheses can be interpreted validly.

Often investigators notice, at the end of an experiment, contrasts
of interest that they had not expected and for which their design
did not cater. Should they apply tests for them? The short answer
is ‘no’; the only safe way to test the hypothesis implied by such a
contrast is to design a new experiment for the purpose.

Several methods have been proposed to test all comparisons post
hoc. They include Scheffés critical difference, the Newman–Keuls
test, Tukey’s ‘honest significant difference’ and Duncan’s multiple
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range test. The idea underlying them is that by setting the critical
limit of P according to the total number of possible comparisons,
one can identify which specific contrasts can be regarded as
significant. Numerous papers submitted to the journal contain
results of these methods to test all comparisons between treatment
means, and authors then express the results by littering bar charts
or tables of treatment means with letters such that all means
with the letter ‘a’ appended cannot be regarded as significantly
different, and so on. This is poor practice. It is of the essence
of experimental science to advance hypotheses and to test them;
that is the scientist’s responsibility. It cannot be delegated to an
algorithm. Furthermore, the practice wastes the statistical power of
a well-designed experiment, which is only fully exploited by the
proper analysis of a set of orthogonal preplanned contrasts. That
is why, with the backing of two of the most experienced statistical
analysts of the last century, Nelder (1971) and Finney (1988), and
the allegorical exposition by Carmer & Walker (1982), this journal
eschews routine multiple comparisons from tests.

Nevertheless, these tests can have merit if they are used in what
we might call the ‘wash-up’ phase of the experimental analysis
after the primary hypotheses have been tested. They may be
used legitimately to ‘screen’ differences and help investigators to
decide whether further research is warranted and to design new
experiments accordingly.

In summary, good scientific practice identifies a set of hypotheses
that can be expressed as particular preplanned contrasts between
the mean responses of treatments or groups of treatments. This is
part of the experimental design. The analysis fits the design when
the anova table includes the specific orthogonal contrasts as single
lines, with one degree of freedom for each mean square, to be
tested against the correct residual mean square given constraints on
randomization of the treatments between units. If other contrasts
catch the experimenter’s eye then some of the ‘post-hoc’ tests listed
above might be invoked to screen them.

Some thoughts on sampling

In this paper we have focused on the designs of experiments and the
analyses of variance for inference from data obtained according to
those designs. Similar considerations apply to sampling to estimate,
for example, the mean values of soil properties within regions of
interest. We have described suitable designs elsewhere (Webster &
Lark, 2013), and we cannot go into detail here. Readers can find the
general principles in the classic text by Cochran (1977) and their
application to spatial sampling in De Gruijter et al. (2006).

In sampling, as with experiments, the principle that the analysis
should fit the design still holds good. In the context of sampling our
objective is estimation, and an estimate should be accompanied by
a confidence interval to indicate its precision. There are standard
methods to compute such confidence intervals, but the method that
is used must accord with the sampling design if it is to be safe.
For example, most soil scientists would recognize the procedure of
computing the sample variance, s2, from a set of N observations and

then calculating the standard error of the sample mean as

s√
N

. (9)

One can compute the confidence interval for the sample mean by
multiplying the standard error by the value of Student’s t for which
the distribution function with n− 1 degrees of freedom takes an
appropriate value (e.g. 0.975 for the 95% confidence interval). This
simple analysis is appropriate, however, only when the N samples
have been collected independently and completely at random (also
known as simple random sampling). Without the independence,
which independent random sampling ensures, the computation of
the standard error in Equation (9) is wrong.

Too often the journal receives papers in which the analysis
of sample data does not fit the design. Most commonly that is
because the authors use Equation (9) to compute the standard error
of a sample mean based on N samples that were not collected
independently and at random, either because the sampling was
not randomized (sample sites may have been selected purposively
to cover a range of soil variation) or because the samples were
collected according to a systematic design (a grid or transect). In
the latter, once the positions of one or two sampling sites have been
chosen the positions of all the others in the designs are determined
by the interval of the grid or transect. One may compute a correct
standard error for an estimated mean where sampling has been done
systematically on several transects provided the starting points of
the transects are chosen at random (De Gruijter et al., 2006) and the
analysis fits the design appropriately. Alternatively, model-based
estimation may be used (Lark & Cullis, 2004).

Other sampling designs may be appropriate. Stratified random
sampling is directly analogous to the RCB experimental design
discussed above. The domain of interest is divided into strata, which
one hopes are less variable internally than the domain as a whole.
The estimates are likely to be more precise than those from simple
random sampling because the estimation variances are based on the
variances within the strata rather than on those of the whole domain.
Each stratum is sampled independently and at random, the stratum
sample means are combined to obtain an estimate of the domain
mean, and the stratum variances are similarly combined to obtain a
variance of the estimated mean. If stratification has been used in the
sampling design then it must be accounted for in the analysis.

Departures from assumptions

We have stressed throughout that the correct analysis of variance
fits the design; no other will do. The conclusions that you may
draw from such analyses, however, are based on the assumption
that the effects of the various factors (treatments and blocks and
their combinations) are additive, that the residuals are normally and
independently distributed, and that the variances are homogeneous.
Small departures from these ideal conditions are unlikely to affect
your conclusions: the analysis of variance is robust in this respect.
Large ones, on the other hand, might. Testing for serious departures
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and the transformations required to make data conform to the
assumptions are substantial subjects in their own right, and we
cannot deal with them here. Instead we refer you to Chapter 15,
pages 273–296, in Snedecor & Cochran (1989), and Chapter 8,
pages 159–181, in Mead et al. (2003).

Epilogue

This paper is not a comprehensive account of the design and
analysis of experiments; it was never our intention that it should
be. Rather, we have wanted to stress the importance of sound
experimental designs, of doing experiments according to those
designs and then subsequently analysing the data that accrue.
Readers can find details of the designs we mention in the texts we
have cited; those texts should cover their requirements.

Sound inferences about the effects of treatments on the soil
demand that treatments are replicated and assigned to experimental
units at random. The natural variability of the soil is substantial,
and many replicates might be needed to reveal the effects of the
treatments against this backdrop of natural variation. One can often
reduce the amount of replication, and increase the efficiency of
an investigation, by blocking. Whether a completely randomized
design is used, or a randomized complete block design, the design
must be accounted for in the analysis, and it should be made explicit
by the full anova table. If your paper does not contain such a table
then readers cannot be sure that you have analysed your data in a
way that fits the design and is therefore valid.

More complex experimental designs might be needed for practical
reasons. We have given the example of split plots, but others
include designs with incomplete blocks and designs in which
certain interactions are deliberately confounded and so cannot
be estimated. In all cases the experimental design constrains the
analysis, and the degrees of freedom in the anova table, and
the residual mean square against which an effect is tested, must
accord with the design as described. The same holds for repeated
measures on the same experimental units, and for experiments when
replicated samples from within the basic experimental units are
analysed separately.

Finally, we have stressed that scientists have the responsibility
to propose hypotheses and to design experiments accordingly. By
preplanning particular comparisons scientists embed their hypothe-
ses in those designs. Their analyses partition the treatment sums of
squares into components corresponding to the orthogonal contrasts.

Soil scientists nowadays use some of the most advanced tech-
niques from nuclear magnetic resonance to shallow geophysics, and
we like to think that they take advice from specialists beforehand.
They should do the same when they apply statistical methods. Mod-
ern software provides a wide range of readily available tools for
statistical analysis. But when misused by investigators who lack
proper understanding they lead to flawed inferences, and those can
have damaging consequences if they lead in turn to bad decisions by
farmers, environmental managers, statutory authorities and agen-
cies responsible for public health.

We encourage soil scientists to think hard about how they design
their experiments and then analyse the data. We encourage educa-
tors in soil science to ensure that statistics, taught by specialists, has
an essential place in curricula at both the undergraduate and post-
graduate level. Finally, we urge soil scientists to consult statisticians
when they plan their experiments, and not go along to them at the
end and ask them how to analyse their data. Neither you nor we
want Fisher to look down and pronounce yet another post-mortem
on your experiment.

Supporting Information

The following supporting information is available in the online
version of this article:
File S1. As mentioned above, we have provided examples of
completely randomized (CR), randomized complete block (RCB)
and split-plot designs with simulated data, together with pro-
grams in GenStat and R for the correct analyses of variance and
the output from those analyses. This supporting information in
files exp1.csv, exp1.gen, exp1.R, exp1.outGS.txt, exp1.outR.txt,
exp2.csv, exp2.gen, exp2.R, exp2.outGS.txt, exp2.outR.txt,
exp3.csv, exp3.gen, exp3.R, exp3.outGS.txt, exp3.outR.txt and
readme.txt, is available in the on-line version of this article and
also from us as the file Supplementary material.zip.
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