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 THE APPLICATION OF THE LOGARITHMIC SERIES TO
 THE FREQUENCY OF OCCURRENCE OF PLANT SPECIES

 IN QUADRATS
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 (With fourteen Figures in the Text)
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 I. INTRODUCTION

 In recent years a number of studies have been made on the relative abundance of different
 species of animals, especially insects, in mixed wild populations (see Fisher, Corbet &
 Williams, 1943; Williams, 1944, 1947 b).

 It has been found that there is a comparatively simple mathematical relation between
 the number of species and the number of individuals in a series of random samples of
 different sizes taken from a single ecological community.

 Further, it has been shown that in any random sample from a wild population the
 number of species each represented by only one individual is higher than the number
 represented by two, and that this in turn is higher than the number represented by three;
 and so on. The series of the numbers of species represented in the sample by one, two,
 three, etc., individuals forms a 'hollow curve', and it can be closely represented by the
 logarithmic series which has the form

 n1x nlx2 n1x3
 nl, 2I Z 4 etc., 2' 3' 4'

 where n1 is the number of species with one individual, and x is a constant (for the sample)
 less than unity.

 It has already been shown (Williams, 1944; Bond, 1947) that some of the general
 principles of this work seem to apply to the number of species of plants found on areas of
 different sizes when selected within a single plant community.

 One of the main differences between the treatment of animal and plant populations
 from this point of view arises from the difficulty of determining, in many species of plants,
 what is an 'individual'. In most animals this difficulty does not occur. On the other hand,
 while in plants it is quite easy to say that a particular plant came from a particular spot,
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 108 Logarithmic series of plant species in quadrats

 even to within a few inches; with mobile and often winged insects it is not possible to tie
 them down to a particular area of origin. They may range in the course of their life over

 many miles, and may be found far away from the ecological community to which they
 belong. As a result of these differences the study of the detailed structure of an animal

 population has tended to be based on 'numbers of individuals', while in the botanical
 world the emphasis has been on 'area'.

 There has thus grown up in botanical ecology a study of the distribution of species in
 'quadrats' or small samples of fixed area (usually 1 sq.m. or less) in which only the presence
 or absence of particular species is recorded and not its numbers. Plant associations have
 been classified according to the 'dominant' species of the vegetation; that is, those which
 occur in a high proportion of quadrats. Much empirical work has been done in the study
 of these results (e.g. Raunkiaer, 1934), but relatively little with a strict mathematical
 background.

 It is the object of the present paper to see how far the results obtained by the application
 of the logarithmic series in animal populations can be applied to the relation between plant
 species and area.

 In the first place it must be realized that a 'quadrat' is-or should be-a small random
 sample of the ecological community under investigation. It contains a possibly unknown

 number of 'plant-units', but, if the qyadrats are large enough in relation to the size of
 the plants themselves, the number of 'plant-units' in a series of quadrats should be pro-
 portional to the number of quadrats. Thus if there are N 'plant-units' on 1 quadrat, we
 may assume that there will be qN 'plant-units' on q quadrats.

 The 'plant-unit' may be considered as that quantity of any species of plant present in
 the quadrat which is behaving, particularly from the point of view of distribution, as if
 it corresponded to one 'individual' in an animal population. In a plant species which
 produces a definite plant from each seed, and which has no tillers, stolons, or other vege-
 tative means of lateral spreading, the 'unit' will correspond to the 'individual'. In species
 which produce compact masses by vegetative growth the unit may consist of a number of
 plants, originally, and perhaps still, in living contact, which behave in such close association
 as to resemble in some aspects an 'individual' in other plants.

 It is important to note that to be a statistically reliable sample a quadrat must contain
 a 'reasonable' number of units. If in an association the plant units are large-e.g. trees
 or large vegetation aggregations-then the quadrats may have to be increased in size.
 This is also necessary for another reason, namely that the presence of one large plant in
 a quadrat of fixed area reduces the possible number of other 'units' on the rest of the
 area. Thus if large plants are present, even in small numbers, the small quadrat of 1 sq.m.,
 or less, may be inadequate in size. 'The error of sampling in such a case may easily obscure
 the real biological differences which we wish to investigate.

 II. THE NUMBER OF SPECIES IN INCREASING NUMBERS OF QUADRATS

 If we have a number of small random samples of fixed area-so-called quadrats-from
 a reasonably uniform plant association, then, on an average, each quadrat will contain the
 same number of species. Two quadrats together will have a chance of containing more
 species than one quadrat; three quadrats rather more than two; and so on. The chance of

 new species, however, gets steadily smaller as the number of quadrats increases. If p, be
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 C. B, WILLIAMS 109

 the number of species found on 1 quadrat, and P2 the increase by adding a second quadrat,

 and p3 the further increase by adding a third quadrat, and so on, then it follows that with

 2 quadrats, there are
 2P2 species found on 1 quadrat only

 and P1-p2 species found on both quadrats.

 With 3 quadrats there are 3p3 species found on 1 quadrat only,

 3 (P2-i3) species found on 2 quadrats,

 and (P1-p2) - (p2--p) species found on all 3 quadrats;
 for q quadrats the distribution of the species is

 Species in 1 quadrat only = qpq,

 Species in 2 quadrats only =(q 2 )(Pq-1 -P)

 Species in 3 quadrats only = q(q 1)(q ) (pq-2Pq-1 + Pq),

 and the number of species in r quadrats out of the q

 = qI[Pq-r+1l ClG1Pq-r+2 + r-2C2Pq-r+3 + * + (_- )r-lp].
 The actual estimation of these values can be simplified by putting the values of the

 number of species in 1, 2, 3,4, etc., quadrats (Si, S2, S3, etc.) in a vertical column as in Table 1;

 the differences between these, Pi P2) p3, etc., in a second vertical column with p, opposite
 Sj; and then again the differences between them in a third column with Pl -P2 opposite P2;
 and so on: then any line read horizontally will give in the successive difference from pn
 onwards the number of species in any one particular quadrat only; the number in any

 two particular quadrats; the number of species in any three particular quadrats; and so on.
 To get the total number of species in all possible single quadrats; in all possible pairs;

 in all possible threes, etc., the column differences must be multiplied by qCQ as shown in
 heavy type numbers in the same table. This is independent of any particular theory of
 the relative abundance of the species.

 Table 1. Method of differences used in calculating the expected number of species
 to be found in 1 quadrat only, in 2 quadrats, in 3 quadrats, and so on

 Above general theory; below numerical example (based on the logarithmic series, where - =10 and N = 100).
 The figures in any one column are the differences between two figures in the previous column.

 First Second
 difference. difference. Third difference. Fourth difference.

 No. of Total no. Species in Species in Species in Species in
 quadrats of species 1 quadrat only 2 quadrats only 3 quadrats only 4 quadrats only

 1 S 1 xpl
 2 S2 2 xp2 PxP2 -

 3 S3 3 xp, 3 x (p2-p.) (PI-P2) -(Pr-Pd)en
 4 S4 4 xp4 6 x (p3-p4) 4 (P2-P3) - (P3-P4) difference
 5 S5 5 xp5 10 x (P-P5) 10 (p3-p1) -(P4-P5) 5 x difference
 6 Se 6 xp6 15 x (P5-P6) 20 (p4-p5) - (ps-pa 15 x difference, etc.
 1 23-98 23-98
 2 30 44 2 x 6-47 17X51
 3 34X34 3 x 3X89 3 x 2-57 14-94
 4 37-14 4x2-80 6x1 10 4x1-47 13-47
 5 39.32 5x 2-18 10x0-61 10x0949 5 x0-99
 6 41-11 6 x 1-79 15 x 0 39 20 x 0-22 15 x 0-26 etc.
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 110 Logarithmic series of plant species in quadrats

 III. THE APPLICATION OF THE LOGARITHMIC SERIES

 The logarithmic series can be written in two forms, either

 n x n1x2 n1x3
 nl, 2'-- , . , etc.,

 c2 c3 c4
 ax2 MX3 MX4

 or OCx, 2 ' 3 4 LX.. etc.
 In each case the first term, n1 or ax, is the number of species represented by one indi-

 vidual; the second term, 2ior 2 , is the number of species with two individuals, and so on.
 2 2

 'x' is a number less than unity which is a constant for each sample, and is dependent

 on the size of the sample when different sized samples are taken from the same population.

 The larger the sample the nearer 'x' approaches to unity.

 'oc' is another constant, which is however independent of the size of the sample, and
 is a property of the population sampled. It is high when the population is much diversified
 into species and low when the population is uniform with few different species. We have
 called this the 'Index of Diversity' and it appears to have considerable interest from an
 ecological point of view.

 Evidence has been brought forward (Williams, 1944) to show that some of the properties

 of the logarithmic series are found to apply to samples taken from plant associations by

 the method of quadrats. For the moment, it is only necessary to point out that if we make

 the assumption that the logarithmic series can be applied to the problems under considera-

 tion, then we can use the mathematical properties of the series to suggest possible effects,
 and then test these against the field observations. If our deductions from the assumption
 fit our observed facts we have some justification for believing that our assumption might
 be correct.

 It must be remembered that in what follows the 'individual' of the animal kingdom

 must be replaced by the somewhat elusive and perhaps fictitious 'plant-unit'.
 One of the properties of the logarithmic series is that if a sample of N units is taken

 from a population with an Index of Diversity a, then the number of groups represented
 in the sample

 For example, if a sample of 100 individuals is taken from a plant population with an
 Index of Specific Diversity of 10, then the number of species represented will be

 10 loge (1 +N-) = 10 log, 11 = 23 98.

 If we suppose this to represent an imaginary quadrat, then 2 quadrats of the same size
 will on an average, contain

 10 loge (1 +?-0) - 10 loge 21= 30 45 species.

 By the same principle 3 quadrats will contain 34-34 species; 4 quadrats 37*14 species,
 and so on. This gives a series of values of S1, S2, S3, and, by difference Pl, P2, P3, from
 which we can calculate the frequency of occurrence of species in quadrats by the method
 of differences discussed above.

 Some values for this particular population are shown in the lower half of Table 1.
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 C. BO WILLIAMS l1l

 It follows from the above that the difference between the number of species in q quadrats
 and in q -1 quadrats

 -ocloge(I+? o)-Cloge(,+[ a ] N)

 If the number of units in the q quadrats is large compared with oc, as it should be for

 a good sample, then we may neglect the '1', in comparison with qN/oc. In this case the
 difference is

 Oc loge,(O)oclge( ) N = oc loge q

 But the value of log, q/(q -1) rapidly approaches l/q as q becomes large. Hence pq, the
 difference between the number of species in q and q -1 quadrats, approaches cx/q as the
 number of quadrats become large.

 If we insert in the general formula for a number of quadrats (p. 109) the value of x/q
 for pq, x/(q -1) for pq_-i etc., we get the following results:

 Number of species in 1 quadrat only = qpq = q(-) = ,

 Number of species in 2 quadrats= q2 )q-1q=2'

 Number of species in 3 quadrats = % ) -2- _1+) = - and so on.

 So that with a large number of quadrats selected at random from a population arranged
 in a logarithmic series with an Index of Diversity oc, the number of species in 1, 2, 3, etc.,
 quadrats approaches to a Hyperbolic (Harmonic) series with the first term (the number
 of species found in one quadrat only) equal to oc.

 This holds for the earlier part of the series only; in the later terms (species in a large
 proportion of the quadrats) the values are above the hyperbola, as will be seen in Figs. 1
 and 2.

 The value of any term derived from the successive differences of oc loge(I +qN

 depends on oc, and on the ratio between N and o. If we express the frequency of occurrence
 of species in quadrats in terms of oc, the form of the distribution of the number of species
 in 1, 2, 3, etc., quadrats is determined only by ratio of N/x.

 In the logarithmic series

 N/o = xl (I -x), Slot =-loge, (I1-x),

 and N x and~~~~~~~ =( (- x)(-lo0ge 1- x)
 So any particular value of N/oc gives.a particular value of x, and this in turn gives a parti-
 cular value of S/oc, and also of N/S.

 Thus when one defines N/lo for a population, or says that quadrats on two different
 associations should have the same N/lo, the same must also be true for S/lo.

 As it is very much easier to count the number of species on a quadrat than the number
 of individuals, the use of S/l is of greater practical value. On the other hand, it must be
 remembered that changes in the size of the quadrat are directly proportional to N, but
 not to S.
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 Table 2. Frequency distribution (in terms of 'o') of species in various numbers of quadrats up to 25
 with different values of the ratio of N/l and S/lt

 Total No. of quadrats
 No. of no. of
 quadratsspecies 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 N/a =2:S/ax=1 10

 1 1-098 1-098 - - - - - - - - - - - - - - - - _ _ _ _ _ _ _ _
 5 2-398 1-003 0.506 0 345 0-273 0-270 - - - - - - - - - - - - - - - - - - _
 10 3-044 1-001 0-501 0335 0-253 0*204 0-173 0-151 0-138 0-133 04155 - - - - - - - - - - - - - - -
 15 3-434 1-000 0501 0*334 0-251 0-202 0*169 0-145 0-128 0-115 0-105 0097 0-092 0-089 0-091 0-114 - - - - - - - - - -
 20 3-714 1*000 0 500 0*334 0-251 0-201 0-168 0-144 0-126 0-113 0-102 0093 0-086 0-080 0 076 0-072 0-069 0068 0-068 0-071 0092 - - - - -
 25 3-932 1.000 0500 0*334 0250 0-200 0-167 0-144 0-126 0-112 0101 0-092 0{085 0079 0{073 04)69 0-065 0062 0*059 0-057 0*055 0*054 0054 0055 0*059 0-078

 N/a=10:S/a=2O40

 1 2-398 2-398 - - - - - - - - - - - - - - - - - - - - - - - -
 5 3-932 1-091 0-613 0 485 0 494 1F248 - - - - - - - - - - - -
 10 4-615 1-043 0*547 .0*385 0-308 0*267 0*246 0-241 0-255 0-318 1-005 - - - - - - -
 15 5-172 1-028 0-529 0-365 0*284 0*236 0*206 0-186 0-173 0*165 0-161 0163 04172 0*195 0259 0*896 - -
 20 5*303 1-021 0-522 0-356 0*274 0-225 0*193 0*171 0*155 0.143 0*134 0128 0-124 0122 0121 0*124 0-130 0*142 0*166 0*227 0-829 - - - -
 25 5.525 1-016 0-517 0-351 0-268 0*219 0186 0-163 0-147 0-134 0-124 0-116 0110 0-105 0102 0099 0-098 0097 0*098 0*100 0.104 0.111 0*124 0*148 0.206 0-782

 N/a=50:S/ac=3 93

 1 3-932 3-932 - - - - - - - - - - - - - - - - - - - - - - - -
 5 5.525 1-111 0-639 0-523 0564 2690 - - - - - - - - - - - - - - - - - - - -
 10 6-217 1-051 0*557 0.396 0-321 0-282 0-265 0265 0*291 0-386 2403 - - - - - - - - - - - - - - -
 15 6*621 1*033 0-536 0*371 0.291 0-244 0*215 0*195 0*183 0*177 0176 0*181 0-196 0*230 0*325 -2267 - - - - - - - - - -
 20 6?909 1-025 0*526 0*361 0*279 0-230 0*198 0*177 0*161 0150 0-142 0136 04133 0-132 0-134 0139 0.148 0-165 0*200 0*292 2.182 - - - - -
 25 7*132 1-020 0-520 0*355 0*272 0-223 0191 0.168 0*151 0*139 0.129 0*121 0*116 0.111 0*108 0.107 0*106 0*106 0*108 0-112 0*119 0.129 0*147 0-181 0.270 2.121
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 C. B. WILLTAMS 113

 The relation between the value of these different expressions for different values of

 N/o is shown below, and the general relation between N/l (on a logarithmic scale) and
 S/ac is shown in Fig. 1:

 N/cc x S/I N/S
 2 0*6666 1*10 1 82
 10 0*9091 2*40 4 17
 50 0 9804 3*93 12.72
 100 0.9901 4*62 21 67
 400 0*9975 5.99 66.73
 1000 0*9990 6*91 144 7

 With these relations in view, Table 2 and Figs. 2 and S nave been prepared showing the

 relative frequency of species in up to 25 quadrats, when N/l = 2, 10 and 50, or S/oc = 11,
 2-4 and 3-93.

 In the figures the vertical scale is in terms of cc, and in the tables the numbers given
 must be multiplied by 'oc' to give the actual number of species.

 Fig. 4 shows the distribution of the species (in terms of cx) in any number of quadrats

 out of 25, with calculated values for S/oc= 11, 2-4, 3-93 and 5 99, and other values by
 interpolation.

 6-0 6-0

 50 _ _ _ __ _ _ __ _ _ _ 5*0

 40 _ _ _ __ _ _ __ _ _ _ 40u

 3.0 _ _ _ __ _ _ __ _ _ __ _ _ _ 3.

 2-0 2-0

 2 3 6 10 20 30 50 100 200 300 S00 1000
 Value of N/a

 Fig. 1. Relation between values of N/cc and S/cx.

 It will be seen from Fig. 4 that once the samples are large (i.e. S/oc = 3 or more), the ratio

 makes little difference to the numbers of species in quadrats up to nearly all of the total;
 but very great differences to the number of species found in all the quadrats, whatever
 the total number may be.

 J. Ecol. 38 8
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 N/c 2 S/s, 1,10

 2 quadrats

 ZZ3

 . 4 5Z64-7 ~~ ~*6 7 8 9
 10 1112 13 14 151617 18 19 201 234 5

 Number of quad rats -:5 16: 2- 21 22 23 2 2

 1 2 3 4 ~~~5 6l78o 10 1 12 13 415 1 7 1 8 19 20 21 j2 23 24 25
 *i quadrat

 N/= 10 S/z-240 .2 quadrats x | 40

 @ / i /4 @ 7 8 @ 1 15 1 17 1 9

 Fig. 2. Theoretical frequency distribution of species (in terms of oc) in 1-25 quadrats for values of N/oc=2 and N/a = 10, or S/ac=l l and 2-4.
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 1 quadrat 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

 3 5m 3X X_. _i______

 . 2 quadrats N/a:-50 S/c%=3 93

 4 4

 2.5cc 7 8 __ _ _ _ _ _ _ _ _ _ _ _5a__ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ 2 c

 10 111 12 13
 1 4 IF15 16

 . *17 I18 *19 20 21 22 23 24 25
 Fig. 3 T

 -Oa~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2c

 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~05r

 * 0~~~~~~~

 I I I I I I I I I I I I 1 I ~~~~~~~~~~~~*- n -
 Fig. 3. Theoretical frequency distribution of specieis (in termis of a), in 1-25 quadrats for value of N/x =50, or S/u = 3-93.
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 S, 1 2 3 4 5 6

 1 quadrat 25
 1 0a - 140a

 l ~ ~ ~ ~ _____ l_l_____ / 36

 <+ 3 6

 O8 ce 1_ _ _ 2__3_4_5 3

 C-, ~ ~ ~ ~ ~ ~ -

 Fig. 4. Diagram6showing th-ume f pcis(n emso ) ondonynmbro2 quadrats 25
 2

 2~~~~~~~~~~~~~~~~~~~~~-&

 0,1, 2 4, 5 7 8 9ad2&uda.cnbeotie yitroain cl o 1-246 araso

 3 quadrats 3

 3~~~~~~~~~~~~~~~~~~~~~

 242
 24

 44

 1020

 7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~LA

 other, they will give different relative frequency distributions of species in 1, 2, 3, etc.,
 quadrats, unless the size of the quadrat, in plant units or in number of species, has been
 chosen in proportion to the Index of Diversity.
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 C. B. WILLIAMS 117

 It will be seen from the tables, that if, for example, in a population with an N/l ratio
 of 10, (S/oc = 24) 5 quadrats are studied, there will be 1F09oc species in 1 quadrat only;
 0-61oc species in 2 quadrats; 0 49oc in three; 0 49oc in four; and 1 25oc in all 5 quadrats.
 If, however, the size of the quadrats had been increased five times (N = 50ac) the number
 of species would be 1lloc, 0 64oc, 0 52oc, 0-56 and 2 70oc respectively. An increase in the
 size of the quadrats greatly increases the relative number of species common to all
 quadrats.

 It is important to note that the numbers of species which occur in x quadrats out of
 a total of y, is not the same as the number which occur in 2x quadrats out of 2y. This
 mistake has been made by several botanists, when they were unable to get the full numbers
 of quadrats that they wished in one particular association.

 IV. THE NUMBER OF SPECIES FOUND IN DIFFERENT PERCENTAGES

 OF QUADRATS

 Certain botanists, and particularly Raunkiaer (1934), have developed a convention of
 dividing up the species found on a number of quadrats into five groups as follows:

 I. Species found on 1-20% of the quadrats; the rarest species.
 II. Species found on 21-40% of the quadrats; not so rare.

 III. Species found on 41-60% of the quadrats.
 IV. Species found on 61-80% of the quadrats.

 V. Species found on 81-100% of the quadrats; these are the common or dominant
 species which are considered as characteristic of the association which is being
 sampled.

 Table 3. Number of species in terms of c, and as percentages of total species, in Raunnkiaer's
 five groups of quadrats (i.e. species in 1-20, 21-40, 41-60, 61-80 and 81-100% of the
 total observed quadrats)

 Group I Group II Group III Group IV Group V
 No. of Total no. ,11 A , , , ,
 quadrats of species No. % No. % No. % No. % No. %

 N/a =2:S/ac=141

 5 2-40m lOOc 42 0-51oc 21 0-35ac 14 0-27ac 11 0-27m 11
 10 3*04 1.50 49 0.59 19 0*38 12 0*29 9 0*29 9
 15 3X43 1X84 53 0X62 18 0*39 11 0X29 9 0X29 9
 20 3*71 2-09 56 0*64 17 0 39 11 0*30 8 0*30 8
 25 3*93 2*28 58 0*65 17 0 40 10 0 30 8 0*30 8

 Nl/ =10:S/cc=2 4
 5 3-93o 1X09 28 0X61 16 0 49 12 0 49 13 1X25 32
 10 4X62 1-59 34 0-69 15 0X51 11 0 50 11 1X32 29
 15 5X02 1*92 38 0 73 14-5 0-52 10 0 50 10 1-35 27
 20 5*30 2*17 41 0*74 14 0*53 10 0*50 9 1*36 26
 25 5-53 2*37 43 0*75 14 0*53 10 0*50 9 1*37 25

 N/xc = 50: S/ac = 393

 5 5 53oc 111 20 0-64 12 0-52 9 0-56 10 2-69 49
 10 6*22 1-61 26 0-72 12 0.55 9 0*56 9 2*79 45
 15 6*62 1-94 29 0*75 11 0X56 8 0 55 8 2*82 43
 20 6*91 2*19 32 0 77 11 0-56 8 0.55 8 2*84 41
 25 7-13 2-39 34 0*78 11 0-56 8 0.55 8 2*84 40

 N/cc =400; S/x = 5-99
 5 7460a 1-12 15 0-64 8 0 53 7 0-58 8 4-73 62
 10 8*29 1-61 19 0-72 9 0*56 7 0 57 7 4*83 58
 15 8-70 1.95 22 0 75 9 0-56 6 0*57 7 4-87 56
 20 8.99 2*20 24 0*77 9 0 57 6 0 57 6 4-89 54
 25 9*21 2*39 26 0-78 9 0 57 6 0 57 6 4*90 53
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 118 Logarithmic series of plant species in quadrats

 It will be interesting to apply the theories developed above to see how,far such divisions
 are reliable criteria of the population; and how far, on the contrary, they depend on

 (a) the size of the quadrat, (b) the number of quadrats, and (c) the total area sampled.

 Fromn the tables already given, the information in Table 3 and Fig. 5 has been extracted

 to show the theoretical number of species expected in the five groups in the case of 5, 10,

 15, 20 and 25 quadrats with different values of N/oc or S/cx. All the numbers are in terms
 of cx.

 Number of quadrats

 5 10 15 20 25
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 Z S ti 4 X ? 0"
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 40

 o- 30
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 I 11 11 V \/ I II lIIII\' V I II IlIVI V\ I II IlIVI V\ I II IIII/V V
 ls'g. . heoetialpercentage of total species which occur in Raunkiaer's five groups of quadrats, according

 tovariations in the size of the quadrat, and to the number of quadrats.

 If we consider first the data for 25 quadrats it will be seen that as the quadrat size

 increases from N = 20c to N-=4000c there is very little alteration in the number of species
 in group I (1-5 quadrats), from 2 280c to 2 390c only; small difference in groups II and III
 (from 0 65oe to 0 780c, and 0 400c to 0O570c); proportionally a larger difference, but actually
 a small difference in group IV (from 0 300c to 0 570c); but a very large increase in the number

 of species in group V (from 0 300c to 4 900c). In fact, of the total increase of 5 280c species,
 due to the increase of quadrat size, 4 600c are added to the species in group V.

 The actual species in group I have probably all changed, as the sample size has been

 increa.sed 200 times, and many if not most of the species originally in the rarer groups
 will have moved up into the dominant group. It is, of course, obvious that if the size of

 the quadrat was very large, say one acre, nearly all the species would be in nearly all the
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 C. B. WILLIAMS 119

 quadrats. So if we increase the size of the quadrats we increase the number and proportion

 of apparently dominant species.

 The effect of altering the number of quadrats without altering their size is also quite

 distinctly seen in both Table 3 and Fig. 5. This effect is the reverse of the above. With

 increase in number of quadrats the number of species in group I, the rare species, is in-

 creased without any noticeable increase in the other four groups. Thus if N = 20c, of the

 1 53cx species added by increasing the number of quadrats from 5 to 25, 1 280c are added
 to group I and only 033a to group V; if N = 400x, of the 1 61ox species added 1*270c are added

 to group I and only 017a to group V.

 It is extremely difficult to calculate, on the assumption of the logarithmic series, the

 distribution of species in a greater number of quadrats than 25. Fig. 6, which has been

 50 __ _ _ __ _ _ _ ..__ __ .___ ___ _ 50_ _
 0.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0

 v 0 t 5-0X

 4A0 i- -F
 0~~~~4

 abon7 25 __ _ by__ 40apoa4

 40

 C

 0.

 0 3

 C

 4)

 5 0 1 0 2 0 4 06 08 9000

 prepa,red from the data for N/x- 110 in Table 3, shows, however, tha,t, there is an almost
 straight line relation between thle percentage of the total species in each of Raunkiaer's
 group and the logarit,hm of the numbnera of quadrats up to 25. The figure has theres 're been
 extended to show by extrapolation the percentage of species in the groups up to 100

 quadirats.
 Foar example, for 100 quadrats, when N/cc --10 (and S/oc-=2.40) the percentage of total
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 120 Logarithmic series of plant species in quadrats

 species in the five groups is approximately 55, 12, 7, 6 and 9. On these 100 quadrats there
 should be 6-90cx species.

 Thus, according to the number of quadrats and their size (in relation to richness), the
 number and proportion of rare or dominant species can be altered within very wide limits.

 * A 2 B 2a

 10 smaller N1 X
 N-Sa 5 larger _ /

 10 smaller 5 larger /
 / S pa s N=1O N & a20c

 1-20?/,, 21-40% 41-60% 61-800% 81-100%

 . ~ ~ ~ ~ ~ ~ I

 OX I | I 1-2a/ 21-040%1 41-10%00616180%0.1-100%

 D

 5 larger- V

 5 larger/

 2a .2a ~~~~~~~~~~~~~~N =50,x """I 2ct
 ~25 smallerI
 N=~10a

 d10 smaller i m

 N 50oc

 a %~~~~~~~~~~~~~~~~~~~~~~

 number of species in the relatively smaller number of quadrats 1, 2, 3, 4, etc., approaches
 very closely to a hyperbola starting with cX species in 1 quadrat and a/2 in 2, etc. The
 number of species in 1-5 quadrats would therefore be ot(l +W+ 1+ I+1)= 228ot species.
 In our calculations for 25 quadrats and Nlx= 10 it will be seen that there should be 2V37(
 species in the first group of 1-5 quadrats. Thus with only 25 quadrats the number of
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 C. B. WILLIAMS 121

 species in 1-5 quadrats has fallen to within 0*090c of the theoretical number for an infinite
 number of quadrats.

 If we had 100 quadrats we would expect the first group (1-20) to contain just over
 3*600c species; and if 200 quadrats the first group (1-40) would contain 4 280c species. If,
 however, we had doubled the size of the 100 quadrats the number of species in group I
 would scarcely have altered.

 If we alter both the number and size of the quadrats, so that one compensates for the
 other and the total area sampled remains the same, we still get inconsistent results as
 shown in Table 4 and Fig. 7.

 Table 4. Same total area divided up into different numbers of quadrats

 Quadrats Group ... I II III IV V
 A 10 N/ = 5 1.57 0*67 0*47 0*43 0 80

 5 N/l = 10 109 0 61 0 49 0 49 125
 B 10 N/ = 10 1*59 069 0.51 0 50 1.32

 5 N/m = 20 1 10 0 63 0.51 0 53 1 84
 C 10 = =0 161 072 0.55 056 2 79

 5 Nlm= 100 1.11 0 64 0*53 0*57 3 36
 D 25 N/ = 10 2.37 0*75 0*53 0.50 1 37

 5 N/lm= 50 111 064 052 056 269

 It will be seen again that the two results are quite different in each example. The larger
 number of smaller quadrats gives more rare species in group I, and the smaller number of
 larger quadrats gives more dominant species in group V.

 So we see that the number and proportion of species in the five groups of quadrats as
 defined by botanists depend entirely on the number and size of the observed quadrats.
 To get comparable results in a number of studies the number of quadrats must be kept
 constant, and within a single association the size of the quadrat must also be defined.
 If different ecological associations are to be compared one with another then the size of
 the quadrat as measured either by the number of individuals or the number of spaces
 must bear a fixed relation to the Index of Diversity of the flora. The quadrats must be
 larger in 'rich' areas and smaller in 'poor' areas, or, in the terms of the present theory and

 notation, N/lc and S/oc must be constant.

 V. POSSIBLE SOURCES OF ERROR IN FIELD OBSERVATIONS

 The above calculations, as has been mentioned, are based on a theoretically perfect
 distribution of units and on a perfect randomization of the quadrat samples.

 Before testing the results against field observations, it is necessary to consider in what
 direction errors are likely to occur in practice and then we can see if the differences between
 observed and calculated results are in the direction expected, and if they are large enough
 to obscure any possibility of seeing the mathematical laws behind the variability.

 We have assumed a perfectly random distribution of the units over the area, and that
 each quadrat is identical ecologically in every way with all the others, all differences between
 quadrats being due to mathematical- chance of distribution of individuals of the plant
 species.

 With regard to the distribution of the units this is liable to be interfered with by aggre-
 gation, which causes a particular number of plants to be found on fewer quadrats. It must
 be recollected, however, that in the conception of 'plant-unit' as opposed to 'individual'
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 122 Logarithmic series of plant species in quadrats

 a certain allowance has been made for aggregation, particularly when a close aggregation

 of plants is behaving from the point of view of distribution as an indivisible block.

 With regard to the sampling by quadrats, it is obvious that in practically all natural
 botanical populations there is a greater difference between any 2 quadrats than would be

 expected by chance distribution of the units. No natural area, however small, is really
 uniform. One quadrat may be a little lower than another; a little more shaded, a little

 better drained, etc. Even the fact that some animal excreta, a cow-pat for example, has
 fallen within a quadrat perhaps a year before, will alter its flora and make it not strictly
 comparable with the others.

 The effect of all such differences will be to reduce the number of species common to
 a large number of quadrats, and particularly those found on all the quadrats; because
 among 10 quadrats or more one or two may differ sufficiently to be unsuited for an other-

 wise generally distributed plant. This effect will be greater with relatively small quadrats.

 We have therefore to expect in natural field samples errors due mainly to lack of uni-
 formity in the distribution of the flora.

 A second error which may occur in field observations is the occasional missing of a rare
 and inconspicuous species which occurs in perhaps only one of a number of quadrats.
 This is likely to reduce slightly the total number of observed species, and also by a greater
 proportion the number observed on a single quadrat.

 A more serious, but avoidable, source of error in field work, from the point of view of
 statistics, is that botanists do not always attempt to 'randomize' their quadrats properly

 over the area to be studied. Small numbers of quadrats are often taken in contact with
 one another, and while these may be excellent representations of the actual area covered,

 they are not fair samples of the whole area of the association.
 I have further been informed that some botanists, if they are taking quadrat samples on

 an 'Erica-Heath' association would not include any quadrat which did not contain an
 Erica plant. Such a selection, or rather elimination, would fail to give any idea of the

 frequency in the area of this dominant Erica species; in fact it is forced to be in 100 % of
 the samples.

 Samples should be taken absolutely at random over the area, with no conscious selection
 or intelligent reasoning used to determine the exact spot. It is sometimes useful to take
 two samples close together at each of a series of randomized spots. It is then possible to
 compare the differences in distribution between quadrats close together and quadrats
 further apart.

 Consciously selected quadrats, will usually increase the number of species in many
 quadrats, and reduce the number in a few, because the tendency will' be to select either
 quadrats close together, or 'typical' areas, which means those which conform with a fixed

 conception of the sampler.

 VI. JACCARD'S OBSERVATIONS IN SWITZERLAND

 To be suitable for comparison with the above theoretical results, information is required
 on the presence or absence of a large number of species of plants on a large number of
 quadrats. I am indebted to Dr WT. B. Turrill for drawing my attention to the work of
 Paul Jaccard, which, although not perfect for this purpose, does give a considerable
 amount of suitable data.
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 C. B. WILLIAMS 123

 In 1908 Jaccard published a paper entitled 'Nouvelles -Recherches sur la Distribution

 Florale', in whiclh he discussed the distribution of 92 species of plants on 52 quadrats of
 1 sq.m. each, in the Alpine valley of the River Grand Eau near Ormont Dessus, in the
 department of Vaud, Switzerland; and at a height of about 4000 ft. (1200 m.). The
 52 quadrats were in nine groups of from 2 to 8 quadrats each, the quadrats in each group
 being in contact with one another on at least one side, and the different groups being
 'about a kilometre apart up the valley'; except for groups IV and V which were 'in the

 same meadow'. In group IV the quadrats were in a line up and down, and in group V
 across the slope; the last group IX was 'about 30 m.' from group VIII.

 He gives a table showing the occurrence of all the species in the different quadrats, and
 uses the information as the basis of a statistical discussion. Unfortunately, he chose for
 much of his discussion characteristics which were dependent on the size of the quadrat and
 not true properties of the ecological plant community (see Williams, 1949), but the data he
 gives are suitable for testing in relation to the logarithmic series.

 Jaccard's table of data, rearranged in order of frequency of occurrence in quadrats,
 is reproduced in Fig. 8, and the list of the 92 species, as named by him, is given separately
 in Table 5.

 It is first necessary to see what evidence exists that the samples obtained by Jaccard
 -conform to the properties of the logarithmic series.

 It has already been pointed out that if N is the number of plant-units in a quadrat
 taken in a log series population then the number of species on q quadrats is given by

 Sq log

 where a is the Index of Diversity of the population.

 If this is the case there should be an approximately straight-line relation between S and
 log q (provided that qN is large compared with a); that is to say between the number of
 species and the logarithm of the number of quadrats.

 Table 6 shows the average number of species on 1 quadrat, on 2, on 4, and on all the
 quadrats for Jaccard's nine groups, and Fig. 9 shows the same data in graphical form
 plotted as number of species, and log number of quadrats.

 It will be seen that (excluding group IX which only consists of 2 quadrats), five
 groups (II, III, IV, VI and VII) show almost a straight-line relation between log area
 and number of species, but the other three groups (I, V and VIII) have a tendency
 to a curved-line relation with the 2 and 4 quadrats having a little too many species,
 or the 1, 7, and 8 quadrats a little too few. TPhe most definitely curved are groups I
 and VIII, but even in these the error fria a straight line is usually less than two
 species.

 This curvature would however, be expected, if species which would normally have
 occurred in most or all of the quadrats, are prevented from occurring on the expected
 number by lack of uniformity in the area sampled.

 So we see that there is some evidence that Jaccard's data conform with this property
 of the log series. As the slope of the line is a measure of the Index of Diversity, it appears
 also that group I has a higher Index, i.e. a 'richer' flora, than group III, and group III is
 richer than group VIII, etc.

 It follows from the log series that, provided the samples are not small, the increase in
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 C. B. WILLIAMS 125

 Table 5. List of species in Jaccard's 52 quadrats, rearranged in order of frequency
 of occurrence in quadrats with number of occurrences in brackets

 1 Trifolium pratense (48) 47 Festuca ovina (9)
 2 Alchemilla pratensis (45) 48 Achillea millefolium (9)
 3 Chrysanthemum leucanthemum (44) 49 Alectorolophus minor (8)
 4 Festuca pratensis (43) 50 Linum catharticum (7)
 5 Leontodon hispidus (42) 51 Campanula rotundifolia (7)
 6 Dactylis glomerata (42) 52 Veronica chamaedrys (7)
 7 Campanula romboidalis (40) 53 Bellis perennis (6)
 8 Taraxacum officinale (37) 54 Equisetum avense (6)
 9 Lathyrus pratensis (35) 55 Galium asperum (6)
 10 Ranunculus acer (35) 56 Anthyllis vulneria (6)
 11 Colichicum autumnalis (33) 57 Ranunculus montanus (6)
 12 Trisetum flavescens (33) 58 Gentiana campestris (6)
 13 Geranium silvaticum (30) 59 Tklymus serphyllum (6)
 14 Brunella vulgaris (28) 60 Polygala vulgaris (5)
 15 Avena pubescens (28) 61 Ranunculus bulbosus (5)
 16 Anthoxanthum odoratum (28) 62 Trifolium badium (5)
 17 Vicia cracca (28) 63 Carex pallescens (5)
 18 Anthriscus sylvestris (27) 64 Potentilla silvestris (5)
 19 Alectorolophus hirsutus (26) 65 Viola tricolor (4)
 20 Cynosurus cristatus (26) 66 Centaurea montana (4)
 21 Poa pratensis (26) 67 Geum urbanum (3)
 22 Carum carvi (26) 68 Ranunculus aconitifolius (3)
 23 Rumex acetosa (25) 69 Ajuga reptans (3)
 24 Trifolium repens (24) 70 Picia excelsa (3)
 25 Polygonium bistorta (23) 71 Phyteuma orbiculaire (3)
 26 Sanguisorba minor (21) 72 Polygonium aviculare (3)
 27 Lotus corniculatus (21) 73 Cirsium oleraceum (2)
 28 Medicago lupulina (20) 74 Crepis paludosa (2)
 29 Plantago media (20)' 75 Luzula silvatica (2)
 30 Crepis taraxifolia (19) 76 Hieraceum pilosella (2)
 31 Briza media (18) 77 Gentiana verna (2)
 a2 Plantago lanceolata (17) 78 Carlina acaulis (2)
 33 Cerastium caespitosum (17) 79 Hipp6crepis comosa (2)
 34 Tragapogon pratense (16) 80 Viola hirta (1)
 35 Phyteuma spicatum (15) 81 Agropyrum repens (1)
 36 Silene inflata (15) 82 Hypericum quadrangulum (1)
 37 Knautia arvensis (14) 83 Aposeris foetida (1)
 38 Melandrum silvestre (13) 84 Trollius europaeus (1)
 39 Bromus erectus (13) 85 Astransia major (1)
 40 Agrostis canina (12) 86 Juncus lamprocarpus (1)
 41 Myosotis silvatica (12) 87 Veronica teucrium (1)
 42 Primula elatior (11) 88 Crepis aurea (1)
 43 Deschampsia caespitosa (11) 89 Listera ovata (1)
 44 Carex sempervivens (10) 90 Veratum album (1)
 45 Vicia sepium (10) 91 Brachypodium pinnatum (1)
 46 Centaurea jacea (9) 92 Biscutella laevigata (1)

 Table 6. Number of species in different numibers of quadrats in Jaccard's seven groups,
 together with calculation of constants on the basis of the logarithmic series

 Jaccard's group nos.
 Average no. , A -
 of species I II III IV V VI VII VIII IX

 In 1 quadrat 28*3 26-0 27-1 24-7 22-2 27-0 20-6 23-9 22-5
 In 2 quadrats 38*4 33.5 34*6 30-8 25-6 32-5 23-3 29-1 25-0
 In 4 quadrats 46*2 403 38-0 33-4
 In all qua Irats 53 44 45 39 29 26 36
 No. of quadrats 8 6 8 6 6 4 5 7 2
 Index of 12*1 10.1 8-7 8-0 3-8 8-0 3-4 6-3 3-6
 Diversity (ac)
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 F'ig. '3. The relation between the number of species andl log area (number of quadrats) in the nine groups into
 which Jaccard's 52 quadrats were divided.
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 the number of species by multiplying the size of the sample by K is approximately oa loge K,
 or increase in number of species

 Oa = loge K
 Applying this to Jaccard's data we find for group I that th.ere is an average of 28-25 species

 in 1 quadrat, and 53 for all 8 quadrats, hence

 53- 28-25 24-75

 loge 8 2 079-12 approx.

 Hence the rate of increase in the number of species in Jaccard's group I can be explained
 by the log series as samples from a population with an Index of Diversity of about 12.
 The calculated values of a for all nine groups are shown in Table 6.

 Table 7 shows the average number of species in each of Jaccard's nine gxoups which
 occur in 1, 2, 3, etc., quadrats, together with the numbers calculated on the theories
 outlined above. The two sets of data are shown graphically in Fig. 10, the observed data
 by vertical columns of dots and the calculated by a light broken line.

 Table 7. The number of species on each of Jaccard's nine groups, which occur in 1, 2, 3, etc.,

 quadrats, together with the numbers calculated on the assumption that the population is
 arraniged in a logarithmic series

 No. of species which occur only in quadrats Total no. of
 Jaccard's species in
 group no. 1 2 3 4 5 6 7 8 all quadrats
 I Obs. 11 4 4 8 6 11 5 4 53

 Cal. 12-6 68 4*9 40 3-7 3.7 4.4 13-0
 II Obs. 11 3 8 5 7 10 - 44

 Cal. 109 6-0 4.5 41 4.5 13-2
 III Obs. 7 4 3 7 2 5 11 6 45

 Cal. 9-2 50 3.6 30 2-8 2-9 3.5 151
 IV Obs. 8 3 7 4 5 12 - 39

 Cal. 8-7 4-8 3.7 3.4 3-8 14-4

 V Obs. 3 1 4 3 4 14 - 29
 Cal. 4-1 2 1 1 8 1 7 2 0 17 1

 VI Obs. 8 8 4 18 - - - 38
 Cal. 9.1 5.5 51 180

 VII Obs. 4 0 3 5 14 - 26
 Cal. 3-8 2-2 1-8 2-0 16-1

 VIII Obs. 4 6 2 3 4 6 11 36
 Cal. 6-8 3.7 3-0 2.3 24 2-9 15-1

 IX Obs. 5 20 - -- 25
 Cal. 56 196 - - -

 It will be seen, particularly from the figure, that in general there is a resemblance
 between the observed and calculated results. The fit is particularly good in groups V-IX,
 when the observed numbers both in one and in all quadrats, are fairly close to the calcu-
 lated. Group IV is fairly close at both ends, but somewhat irregular in the middle. The
 poorest fits are found in groups I and III, and this is particularly so with the species on
 all the quadrats.

 In group I we expect about 12 species in all 8 quadrats and find only 4. In group III
 we expect about 18 and find only 6. But these two groups contain the largest number of
 quadrats and we have already pointed out that with a larger number of quadrats it
 becomes increasingly unlikely that they will represent samples of a really uniform area.
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 128 Logarithmic series of plant species in quadrats

 The low numbers of species found in all quadrats would be expected from a lack of uniformity
 in the area sampled.
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 Fig. 10. The frequency distribution of species among the quadrats in the nine groups of quadrats observed by
 Jaccard. Dots represent Jaccard's observations; broken lines represent calculations on the basis of the
 logarithimic series. Also, below, the distribution of species in all 52 quadrats.

 It should also be noticed that the observed numbers of species in one quadrat only
 is a little below the calculated in seven out of the nine of Jaccard's groups, in one case
 is almost exactly correct, and in only one case is slightly above. Thus the direction of
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 difference again corresponds to the possible error of missing in the field one or two of the
 rarest species.

 The theoretical distribution of the species in Raunkiaer's five groups can be partly
 tested by Jaccard's observations over the whole area. Of the 92 species that he found
 on the 52 quadrats, 49 occurred in 10 quadrats or less, which corresponds to Raunkiaer's
 1-20 % group. The Index of Diversity for the whole 52 quadrats calculated from his data
 is 17. Therefore there were 2-88% species in the first group. On the theory, assuming that
 the first 10 of 50 quadrats will be very close to a hyperbola, we should have found just
 over 2-93% species, which is remarkably close to the observed figure. In the second group,
 11-20 quadrats, Jaccard found 16 species, which is approximately 095oc, and the calculated
 figure from the hyperbola is something over 0X67X. The higher observed figure is to be
 expected because in group II the values would be distinctly above the hyperbola, and also
 because the total area sampled by Jaccard was far from uniform. Close agreement in the
 higher groups would not be expected for this same reason.

 VII. PIDGEON AND AsEmY' S OBSERVATIONS IN NEW SOUTH WALES

 For reasons already discussed, it is usually difficult to obtain field records which show the
 numbers of individual plants for each species in a given area. However, Pidgeon & Ashby
 (1940), studying arid land in New South Wales where the vegetation was sparse, have
 obtained some figures which are considered below.

 The survey was carried out to see the effect of fencing to exdlude rabbits and stock from
 natural vegetation near Broken Hill, where there was trouble from drifting sand. An
 experimental enclosure of 22 acres had -shown a rapid and beneficial increase in grasses
 and shrubs.

 Four areas were studied: (1) West Reserve fenced; (2) West Reserve unfenced; (3) South
 Reserve fenced; and (4) South Reserve unfenced. In addition, there was (5) a permanent
 quadrat of 50 metres square in one of the fenced reserves. The quadrats were of elongate
 shape: 10 m. x 15 cm. with an area of 1-50 sq.m. Fifty contiguous quadrats were studied
 on areas (1) and (2); forty on (3); and thirty-nine on (4).

 Pidgeon & Ashby give three sets of data which are of interest in the present discussion:
 (1) The number of species observed in 1, 5, 10, 50, 100 and 200 sq.m. for areas 1, 2, 3

 and 5 (Table 8).

 Table 8. Number of species of plants on 1-200 sq.m. in different areas at Broken
 Hill, New South Wales

 Permanent

 Area (sq.m.) West fenced West unfenced South fenced quadrat
 1 12 8 5 5
 5 18 16 12 9
 10 19 17 13 10
 50 23 24 17 17
 100 28 26 21 21
 200 31 29 27 24

 12,000 (3 acres) 37
 32,400 (7 acres) 50 47
 a cal. from 1 and 200 m.2 4 0 3 6 4 2 3 6

 (2) The number of individuals in each species on 39-50 quadrats in areas 1-4. They
 unfortunately multiplied these figures to give the number of individuals on 100 sq.m.,
 J. Ecol. 38 9
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 130 Logarithmic series of plant species in quadrads

 but as this is not desirable, I have recalculated back to the original areas sampled
 (Table 9).

 (3) The distribution of the species in different percentages of qgiadrats according to
 Raunkiaer's five groups (Table 10).

 Unfortunately the data in Table 8 do not seem to have been taken from the same sets
 of quadrats as in Tables 9 and 10. In the three areas mentioned in Tables 8 and 9 the

 numbers of species on 60-75 sq.m. in Table 9 are all greater than the numbers on 200 sq.m.
 in Table 8. This makes it very difficult to compare the results.

 Pidgeon & Ashby used an empirical formula to relate the number of species to the size
 .of the area sampled. In the notation of the present paper it can be written.

 Sq-SI= m log10 q.

 They considered that this gives a very close representation of their results, but they do
 not give any calculated values of their constant 'm'.

 It will be seen that this relation is exactly the same as is found in the logarithmic series

 when the sample size is large enough to neglect the i in relation to N/lc in the formula

 Sq0( loge=(1+?7N)

 i.e. when the line showing graphically the relation between the number of species and the
 log of the area sampled has become approximately straight.

 Their 'im' is therefore equal to a. log. 10 or 2 300c, and their formula is identical with that
 of the log series for large samples, but is not correct for small quadrats.

 , , ,., ,I,u , u * u*u ul I * * * 1 l , 1* * lI I I *11 1 *i ti* il

 Sq. metres 1 on log scale 10 1000 10,000

 so so t t --So

 40 __ _ _ _ _ _ _ _ _. ~ -40

 30 _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _30

 20 ________ _________20

 0 ~~~~~~~~~~~~~~~~~~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1

 z-

 Area of plot s 1 so? ,100 200 ? 12.000 3.2.000
 A J_." I a -_ A A II AI I *aapu g InhanI,.aI .1 - ...

 Fig. 11. Numbers of species on different plots obwerved by Pidgeon & Ashby, plotted against log scale of area.

 Fig. 11 shows the data from Table 8 with a logarithmic scale for area of sample. The
 results are somewhat irregular, owing, I think, to there being only a single observation at
 each level. They are however, with the exception of the 3-acre number in West Unfenced,
 seldom more than one species out from the straight line which is expected from the log
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 C. B. WILLIAMS 131

 series, and so lend support to the idea that the population may be arranged in some

 distribution of this nature.

 The information given in Table 9 and graphically in Fig. 12 is more detailed, and shows

 in each case more species with one individual than with two or any larger number, and

 a general resemblance to the hollow curve of the logarithmic series.

 Table 9. Number of species with different numbers of individuals in thefour areas
 sampled

 West fenced West unfenced, South fenced, South unfenced,
 No. of individuals 50 quadrats, 50 quadrats, 40 quadrats, 39 quadrats,

 per species 75 sq.m. 75 sq.m. 60 sq.ii. 58 sq.m.

 1 7 6 9 4
 2 0 3 5 3
 3 6 3 2 2
 4 0 0 0 0
 5 3 (16) 4 (16) 0 (16) 0 (9)
 6 1 0 0 3
 7 0 1 1 1
 8 0 1 1 2
 9 0 1 3 1
 10 1 (2) 0 (3) 0 (5) 1 (8)

 And also at 12, And also at 16, And aloat 12, And also at II,
 17 (2),23,35, 17,45,48,73, 20, 22, 24, 12,13 (3),15,
 38, 44 (2), 48, 98,131,154, 27 (2), 44, 66, 23, 34, 51, 107,
 98,99,118, 279, 224, 758 and 110,131, 234, 274, 337, 366,
 316,335,719 1155 346 and 667 460 and 698
 and 1849

 Total plants (qN) 4147 2784 1797 2503

 Total species S. 35 30 34 32
 Average plants:
 Per species 118 93 51 78
 Per quadrat 83 56 45 64
 Per sq.m. 55 37 30 43

 Index of Diversity 5.3 4-8 6 2 5-2

 a from qN and Sq from 3-6 4-0 4-2
 Table 8
 n1 calculated 5*3 4-8 6-2 5-2
 n1 observed 7 6 9 4
 nj-n,o cal. approx. 15.5 14-1 18 1 15 3
 n-alo observed 18 19 21 17

 It will be seen that the calculated values of the Index of Diversity from these data are

 a little above those from Table 8. This would be expected as, as already mentioned, the
 numbers of species in 60-75 sq.m. in Table 9 are all above those for 200 sq.m. in Table 8
 for the same areas.

 The observed numbers of species with a single plant each are in three cases above the

 calculated, and in the fourth case below.

 Pidgeon & Ashby separate in their original data the perennial from the annual plants;
 and I find that the perennial plants above give a better fit to the log series than either the

 a,nnual plants or the whole lot together. The calculated n1 for the perennials for all plots
 is 2-7 and the observed 2, and the calculated total for all species up to 10 individuals
 (i.e. n1-n10) is 7-9 and the observed is 8.

 This may be a coincidence, but it raises the question whether competition between and
 within the annuals, and between and within the perennials in a plant population may not

 be of a different order from the competition between the two groups.

 9-2

This content downloaded from 149.155.20.39 on Wed, 24 Oct 2018 12:38:45 UTC
All use subject to https://about.jstor.org/terms



 132 Logarithmic series of plant species in quadrats

 , , ~ ~ ~ I , .
 5 S 10o 1 5 20 25 30

 S

 *> .
 _ * West fenced

 _ .

 -- 0 * -9
 *~~~_ _ .0 * . . 0 & a AI ~ t A . ai' h

 5 10o 15 20 25 30

 West control

 . .. .

 . . .

 *.*.. . . ..*.

 ? ... . I. ....... aI a A A I a A * * * A a a 3

 _ g 5 10 15 20 25 30

 _* * South fenced

 *@ *. * * 9

 * 5 10 15 20 25 30

 - * - * * South unfenced
 -**@* * * 0

 _ 5 10 15 20 25 30

 _. 0
 _- *
 v _* * All four plots

 SS * 0

 v . . vT . T . ? 1

 Fig. 12. Frequency distribution of species which occur in 1, 2, 3, etc., quadrats; in Pidgeon & Ashby's observa-
 tions in New South Wales.

 Table 10 gives Pidgeon & Ashby'A results as classified in Raunkiaer's five groups.

 Table 10. Pidgeon & Ashby's results classified in Raunkiaer's groups
 Raunkiaer's groups

 No. of No. of A-
 quadrats species I II III IV V

 West fenced 50 35 19 6 3 2 5
 West uinfenced 51) 30 19 2 4 2 3
 South fenced 40 35 23 6 3 J 3
 South unfenced. 39 32 17 5 4 1 5
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 West fenced West unfenced

 50 quadrats 50 quadrats

 I 5. _ 35 species 30 species

 a=5 N/lc=15 a =46 N/ox=12

 10

 20 South fenced South unfenced

 40 quadrats 39 quadrats
 34 species 32 species

 15 ofa=6 N/l=75 a =5 N/cc=12

 10

 Fig. 13. Pidgeon & Ashby's New South Wales observations classified in Raunkiaer's five groups.

 These results are shown graphically in Fig. 13, on which are marked approximate
 values for groups I and V, calculated by extrapolation from Figs. 4 and 5.

 It will be seen that the observed figures for group I are too high and for group V are
 too low, otherwise there are more rare species than are required by the theory.

 VIII. DIscussIoN

 The botanist, by the use of quadrat samples, is trying to get information about the
 structure of plant associations, and particularly under the following headings:

 (1) The relative frequency of different species in a population.
 (2) The comparison of two or more populations.
 (3) The possibility of separating off certain more abundant species as dominant in,

 and therefore characteristic of, the association.
 We have reason to believe that the relation between the distribution of individuals and

 of species in the original population, and in a series of random samples or quadrats, depends
 on three factors or variables:

 (1) The size of the quadrat, which is measured either by the number of plant-units (N)
 which it includes; or indirectly by the number of species.

 (2) The number of the quadrats (q).
 (3) The Index of Diversity of the population (oc).
 The first two of these are under the control of the observer and can be altered to suit
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 134 Logarithmic series of plant species in quadrats

 the particular problem, or his convenience. The richnes or poorness of the flora, as measured
 by the Index of Diversity, is on the contrary a property of the association studied, and the
 value is fixed by natural causes. Two different asociations may have different Indices, and

 this makes their comparison by quadrats complex.

 The practical problem therefore is to see whether, by altering the size and number of

 the quadrats, it is possible to get comparable results from asociations with different
 Diversity.

 N can be kept constant or altered in proportion to c, q can be varied either independently
 of N, thereby altering the total area sampled, or in inverse ratio to N, so that the total
 number of plant-units sampled (Nq) remains constant.

 In the earlier portion of this paper we have shown that the proportional distribution of

 species in the quadrats depends on q, and the ratio N/la or S/lc, so that if the number of
 quadrats is fixed, and the size of the quadrat (in units) is varied in proportion to a., com-
 parable results can be obtained from different associations, i.e. the same proportion of
 species will occur in the same proportion of groups.

 If the units are grouped among species in a logarithmic series, then there must in any
 population be a perfectly smoothly falling series of values from the species represented
 by a single unit, and those represented by many. There are more species with one unit than
 with two, more with two than with three, more with- three than with four, and so on. At
 no point in the series is there any mathematical break. Each species has a position in the
 series and so can be considered as rarer or commoner than another-but even this position

 may alter from time to time and from place to place in the association.

 There is no mathematical justification for this separation of the species into those above
 or below any particular division as in Raunkiaer's five groups.

 The first step in any analysis should be a rough calculation of the Index of Diversity.
 This can be obtained rapidly by finding the number of species on several areas of different
 sizes, preferably differing geometrically, e.g. each twice the size of the previous one. With
 this knowledge the size and number of quadrats can be chosen to suit the particular
 circumstances. The species of which the sample is made up can then be ranged in order of
 relative frequency of occurrence and quadrats; the more quadrats the finer the grading and
 the more species at the 'rare' end; the larger the quadrats the les the separation at the
 'common' end, and the larger the number of 'dominant' species. It is then for the botanist
 to select any particular point in the series for division, realing however, that all such
 divisions are arbitrary.

 Further field work is obviously the next step in this invesigation. A theoretical
 mathematical basis has been proposed, where before there were only empirical rules; so
 it should be possible to take more criical field observations, with more attention to
 randomization than has been done in the past.

 It seems that the conception of the 'richness' of the flora, as here measured by the
 Index of Diversity, is the esential part of the interpretation of the structure of Plant
 Associations. In fact, if the logarithmic series is the true interpretation of the distribution
 of units into species, when we know the size of the quadrat, either in species or units, and
 the Index of Diversity, we know the whole pattern of the structure of the population: it
 is for the systematic botanist then to determine the species from which the pattern is made.

 Two difficulties, however, remain. First, the logarithmic series, although giving approxi-
 mate agreement, maynot be the true interpretation; other mathematical series may be found
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 to give even closer agreement. Secondly, the allowance made by the conception of 'plant-
 unit', instead of individual, for aggregation and dispersal of individuals in an asociation
 may not be sufficient to allow for the disturbing effects on distribution brought about by
 these factors. Only further research, both in the field and in mathematical analysis, can
 throw light on these points.

 IX. SUMMARY

 The object of the present paper is to show the possible application of certain statistical
 methods, which have already been found useful in the study of the structure of animal
 populations, to the structure of plant populations.

 The main difference between the two problems is that with animals it is easy to define
 an individual, but often difficult to say to which particular area it belongs; whereas with
 the plants it is often difficult to define an individual but easy to say where it is growing.
 To overcome difficulties arising from this a 'plant-unit' is considered which, when not an
 easily defined individual plant, is a quantity of a species which in distribution behaves
 as an individual. It takes into consideration a certain amount of aggregation. The number
 of units in a series of samples from the same association is considered to be proportional
 to the area sampled.

 Section II (p. 108) discusses the increase of the number of species represented as we
 increase the number of quadrats, and a formula is presented, based on the difference
 between the number of species in different sized samples (i.e. different numbers of quadrats),
 and the differences between these differences, from which it is possible to get values for the
 numbers of species found on any 1 particular quadrat only, or on any 2, or 3, etc., particular
 quadraJs. From this it is posible to calculate the frequency distribution of species found
 only in 1 quadrat, in 2 quadrats or in 3 quadrats, and so on, out of any number of quadrats,
 if the total number of species is known for each additional quadrat added.

 In section III it is shown that if the plant units in the population are distributed among
 the species in a logarithmic series, and if the quadrats are true ranidom samples of a popula-
 tion distributed by chance; and further if we knowt: (1) the size of the quadrat as measured
 either by the number of species or the number of units, and (2) the Index of Diversity of
 the population, we can calculate the theoretical frequency distribution of species in any
 number of quadrats out of any total number. The mathematical formulae are given and
 Table 2 shows actual results for up to 25 quadrats, for certain values of the ratio between
 N and a or S and a.

 Section IV is a discusion of the distribution of species in certain percentages of the total
 number of quadrats. Botanists have divided the species in an association into five groups:
 (1) those which occur in 1-20% of the quadrats, (2) in 21-40%, (3) on 41-60%, (4) on
 61-80 %, and (5) the common species which occur in 81-100% of the quadrats. Theoretical
 considerations, based on the assumption of distribution in a logarithmic series, indicate
 that the result of any such classification depends on the number of quadrats, on the size
 of the quadrats, and on the Index of Diversity of the population. Increase in the size of
 the quadrat increases the proportion of species in group V, and particularly those found
 in all of the quadrats. Increase in the number of quadrats increases the proportion of
 species found in a few only (group I) and reduces those in group V. No deductions can be
 made from the distribution of species in these groups unless all three factors are taken into
 consideration.
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 136 Logarithmic series of plant species in quadrats

 In section V there is a discussion of the sources of error in the field that might be expected

 to make observed values differ from the theoretical. The most important of these is lack

 of uniformity in the environment, which will reduce the numbers of species found on

 a very high proportion of quadrats.

 In section VI observations by Jaccard on the distribution of 92 species of plants in

 52 quadrats on an Alpine Valley is analysed, and the results are shown to fit moderately

 well to the calculated figures. The differences found between the two are in the direction

 that would be expected from the known sources of error. The values obtained for the

 Index of Diversity are quite consistent.

 In section VII observations in New South Wales by Pidgeon & Ashby, which include the
 'number of individuals' of each species, are shown to fit moderately well to the distribution
 calculated from the logarithmic series. A point of great interest is that Pidgeon & Ashby

 had developed empirically a formula relating the number of quadrats and the number of
 species, and this formula is identical with that deduced from the logarithmic series provided

 that the number of plant units is large, i.e. the quadrats are large in size or in numbers or
 both.

 Section VIII is a discussion of various problems arising, particularly pointing out how

 it is impossible to avoid the conception of some Index of Diversity as a measure of the
 richness of the Flora, and how many of the difficulties of botanists in the past in the analysis
 of quadrat results have been due to neglecting this property of a population.

 APPENDIX

 A POSSIBLE TREATMENT OF THE ABOVE PROBLEMS WITHOUT ASSUMING THE

 EXISTENCE OF A LOG SERIES DISTRIBUTION

 Some of the deductions made above are dependent on the assumption of the existence of
 a log series distribution in the individual-species frequency of the population. Section II,
 however, is independent of this assumption,

 If one is not prepared to accept the log series as a basis of discussion; let us make only

 the single assumption that over a considerable range there is a straight-line relation
 between log area and number of species.

 This actually follows from the log series, but it could also follow from other possible
 series. It has been accepted as true by Gleason (1922), and by Pidgeon & Ashby (1940),

 and I have given several applications of its occurrence in other botanical quadrat surveys

 (Williams, 1944).

 The lalw cannot possibly be true for very small samples as its strict application to these
 implies that a very few individuals may represent no species or even a negative number.

 Good quadrats, bKowever, should never be as small as this.
 At the upper limit the curve may flatten out, but this will probably be above the area

 that is usually considered in a series of quadrats.
 If we make the assumption that

 the number of species = d x log total area sampled

 then if the area is increased by ten times, the number of species is increased by 'd'.

 Some populations will give a higher value of d, some a lower value. Fig. 14, AB shows

 a possible relation with 5 species on 1 quadrat and 10 on 10, so that d = 5. The line CD

 is d = 10, and EF is d = 20. The number of species on 1 quadrat can of course be varied at
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 will by altering the size of the quadrat; but the slope of the line-i.e. the value of d-is a

 property of the population sampled.

 It is obvious that a population in which there is a rapid increase of species with increase

 of size of sample must (other things being equal) be richer in species than one in which

 there is a slower increase. Thus our factor 'd' is a measure of the diversity of the population.

 - . l TT 1 .F - lT TTT'T

 30 30

 10 1
 0~~/00

 0lven =

 0
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 z

 1 2 3 5 10 20 30 50 100

 Number of quadrats

 Fig. 14. Relation of log area to number of species in three theoretical populations.

 If S, be the number of species on 1 quadrat, then the number on 2, 3, 4, etc., quadrats
 is given by Si=81i,

 S2=S+?d log 2,
 S3=S1+d log 2 +d log 3/2,

 S4=S.+d log 2+dlog 3/2+d log 4/3,
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 138 Logarithmic series of plant species in quadras

 and SSn =S1+d(log 2 +log 3/2 + log 4/3 ... +log n/n-1).

 which of course = SI + d log n. In other words, the rate of increase of species, and hence
 (from section II above) the frequency distribution of species in quadrats, and so in
 Raunkiaer's groups of quadrats, is dependent only on d and S1.

 If, when comparing sets of quadrats from two different associations with different
 values of d, we choose the size of the quadrat so that in each association the number of

 species on 1 quadrat is proportional to the value of d; then S, would be Kd1 in the first
 association and Kd2 in the second.

 Thus the frequency distribution of species in other quadrats would now depend in each
 case on d(K+log 2+3/2 x log 4/3 ...),

 i.e. only on d, since all the others are mathematical constants. This is exactly the same
 result that was reached by assuming the truth of the logarithmic series; namely that the
 frequency distribution of species occurring in different numbers of quadrats, and hence in
 the five Raunkiaer's groups, depends on the number of quadrats, the size of quadrats, and
 a measure of the diversity of the population.

 To get rid of the effect of quadrat size (which is an accidental effect and not a property
 of the population) quadrat size in different associations should be chosen so that the
 number of species on a single quadrat is proportional to the diversity of the population.

 Undoubtedly the main ecological property of the population that is being studied in all
 these distributions is the diversity.
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