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 1. INTRODUCTION

 In the course of biological investigations of a numerical character the observer frequently

 obtains values which can be arranged in a discontinuous series of the type known as
 a 'frequency series'.

 For example, there may be a random collection of a number of insects which have been

 classified into species. In this case the number of species with one individual, with two,
 with three individuals, and so on, would form a frequency series.

 Alternatively, a collection might be made of a number of rats and on each the number
 of fleas counted. Then the number of rats with one flea, with two fleas, with three and so on,
 would again form a frequency series. Many other examples could be given, but most can

 be put under the general type of units classified into groups, or groups divided into units,

 which form a series of the numbers of groups with one, two or three, etc., units.

 It is with one of the possible mathematical interpretations of such data-the logarithmic

 series-that we are concerned here. It was first suggested for biological problems by
 R. A. Fisher in 1943 (1), and a certain amount of information has already been published
 during the war; but owing to paper restrictions only a few reprints were obtained and the
 supply of them is already exhausted.

 Dr R. A. Fisher has generously allowed me to quote freely from his contribution, so
 that all the relevant information can be collected together here.

 Before discussing the mathematical properties of the series it must be pointed out that
 the data under consideration must be a randomized sample with no selection that would

 affect the size of the groups, or the number of groups of any one size. For example,
 a museum collection of butterflies in which every effort had been made to obtain many
 specimens of the 'rare' species, would not be suitable for consideration.

 It is also important to understand that the original randomization of the sample may
 occur in two different ways, (1) by units and (2) by groups, as shown by the two examples
 given above.

 J. Ecol. 34 17
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 254 The logarithmic series and its application to biological problens

 In a randomized collection of individual insects (as, for example, a number of moths

 caught in a light trap) which are later classified into species, the catch is randomized on

 the individuals, and an addition to or an increase in the size of the sample will bring in
 new individuals to species already represented, i.e. new units in old groups.

 If, on the other hand, collections of rats are made, and the number of fleas on each rat

 counted, then an increase in the number of rats examined will not add any fleas to the

 rats already counted, i.e. all the new units will be in new groups. In this case the sample
 is randomized by groups.

 It will be shown below that samples taken from a population by these two different
 methods require different mathematical treatment.

 2. THE LOGARITHMIC SERIES* AND ITS PROPERTIES

 In most elementary text-books of algebra there will be found the proof that

 x2 x3 x'
 loge (1 + x) = x - x + -- - x, ..., etc., 234

 and the latter expansion is known as the 'logarithmic series'.
 As negative terms have little or no meaning in biology, for our purpose it is better to

 write the equation X2 X3 X4
 x+ 2 + 3 + 4 + . ........ =-log,, (I1- x), .......(1) 234

 or as a more general frequency series it can be written

 n,x n1x2 n1x3
 n, 2 ' 3 ' 4

 where n1 is the number of groups with 1 unit, and the successive terms those with 2, 3, 4,
 etc., units.

 The series is of course discontinuous and has an infinite number of terms.

 The total number of groups

 The sum of all terms to infinity, which is the total number of groups, is given by

 S= n(-log 1-x). (2)

 This is finite if x is less than unity; that is to say the series is then convergent.

 The series therefore has two constants or parameters: 'nl' which is the number of
 groups with one unit, and 'x' which is a number less than one.

 The r + Ith term is obtained from the rth by multiplying by rx/r + 1, so the second term
 of the series is less than half the first, and the third term less than one-third of the first,
 and so on.

 Two series of this form are shown in Table 1 and graphically in Fig. 1, A, and it will be
 seen from the figure that they form hollow curves of the same general appearance as
 a hyperbola. The nearer x approaches to unity the closer does the resemblance become;
 and in the limiting case when x = 1 the curve is identical with a harmonic series (hyperbola):
 the series is then divergent and the sum of its terms is infinite.

 * For the relation of the logarithmic series to the negative binomial see Fisher et al. (1943).
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 Fig. 1. Two examples of the logarithmic series from Table 1, plotted with number
 and with logarithmic co-ordinates.
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 256 The logarithmic series and its application to biological problems

 The total number of units

 Since the successive terms of the series are the number of groups containing 1, 2, 3, etc.,
 units, it follows that the number of units in each successive term is

 lnl 2 n2, 3 1x 2 4 1x3 etc.,
 in, 2' 3' 4et,

 which equals n1, n1x, n1x2, n1x3, etc.

 Table 1. Two examples of the logarithmic series
 1 2 3

 Harmonic series*
 15,575 units in 200 units in (hyperbola)

 Term 240 groups 79 groups for comparison

 1 40-14 40*0 40 0
 2 20-03 16-0 20-0
 3 13.32 8-53 13-33
 4 9.96 5-12 10.00
 5 7.95 3.278 8-00
 6 6-66 2*125 6-67
 7 5*65 1*498 5-71
 8 4.93 1*049 5;00
 9 4.37 0-7460 4.44
 10 3*92 0*537 4(00
 20 1-92 0*02884 2-00
 50 0.71 0*00001429 0*80

 x=0-99742 0*80

 * =40 24 50-0

 * Number of groups and of units both infinite.

 This is a geometric series, and its sum to infinity (i.e. the total number of units of the

 sample)* is N= n1 (3)
 1-x1

 This is also finite if x is less than unity.
 From (2) and (3) it follows that the average number of units per group equals

 N_ x

 S (1-x) (-loge 1-x)

 Thus for any average number of units per group there is only one possible value of x.

 When this has been calculated n, can be obtained by multiplying N by (1 -x).
 The relation between x and N/S is shown in Table 2 and graphically in Fig. 2.
 Thus for any series of units classified into groups in the form of-a logarithmic series,

 if the total number of units and the total number of groups are both known, it is possible

 to calculate x and nl, and so the whole series. In other words, for any definite number of
 units and of groups only one logarithmic series is possible.

 * This is the same as the statistical expression 'first moment', which is the sum of the numbers of groups
 in each term multiplied by the number of units per group in that term.

 The 'second moment', which is sometimes useful, is the sum of the number of groups in each term multiplied
 by the square of the number of units per group in that term, i.e. it equals

 12n1+22 2 +32 3 +42 ! t etc.,
 2 3 4= ,etc

 and this = 1-N or n
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 corresponding value of x to be used on the abscissa is indicated by figures written immediately along and

 below the actual curve.
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 258 The logarithmic series and its application to biological problems

 Table 2. Values of x with corresponding values of NIS, and n1/S
 x N/S n1/S x N/S n1/S

 0*50 1*443 0*7215 0*992 25*68 0*2054
 0-60 1*637 0-6548 0*993 28*58 02001
 0*70 1*938 0*5814 0*994 32-38 0*1940
 0*80 2-483 0-4966 0.995 37*48 0-1874
 0*85 2-987 0*4480 0*996 45*11 0-1804
 0*90 3*909 0-3909 0-997 57*21 01716
 0.91 4*198 0*3778 0*998 80-33 0*1607
 0*92 4*551 0*3641 0-9990 144*6 0*1446
 0-93 4-995 0-3496 0-9992 175*1 0*1400
 0*94 5-567 0*3340 0*9994 224*5 01347
 0-95 6-340 0-3170 0-9996 319-4 0Q1278
 0-96 7*458 0*2983 0-9998 586-9 0*1174
 0*97 9-214 0*2764 0.99990 1,086-0 0*1086
 0*980 12-53 0-2506 0-99995 2,020 0*1010
 0*985 15*63 0*2345 0-999990 8,696 0*0870
 0-990 21*47 0*2147 0-999995 16,390 0*0820
 0.991 23-38 0-2104 0-9999990 71,430 0-0714

 Transformation to logarithmic co-ordinates

 If a hyperbolic (harmonic) series of the form nl, n1/2, nj/3, etc., is transformed graphically
 to logarithmic co-ordinates, both of numbers- of groups and of numbers of units per group,

 it gives a straight-line relationship (Fig. 1, B). If a logarithmic series is so transformed

 (same figure) it gives a series of points on a line starting very near the hyperbola trans-

 formation but gradually departing from it more and more rapidly in a downward direction,

 i.e. giving fewer groups containing a large number of units than would be expected from

 the hyperbolic series. The nearer x is to unity, the longer the transformed series follows
 closely to the line of the hyperbola. This gives a rapid graphical method of testing if any

 set of figures is likely or not to represent a logarithmic series.

 Different samples from the same population

 If several samples of different sizes are taken by the same method from the same

 population, and if (see Introduction, pp. 253-4) the samples are randomized on units, then

 as the size of the sample increases the average number of units per group will also increase
 and hence x will increase.

 As the size of the sample increases so also will nl, the number of groups with one unit,
 increase; at first '(with very small samples) rapidly, but more and more slowly as it
 approaches a limiting value.

 The index of diversity

 But for all samples taken from the same population by the same method the ratio of
 n1/x is a constant, oc. That is,

 -= oc or n, = ocx. (5) x

 Since with increasing size of sample x gets nearer to unity but cannot exceed the value,
 it follows that the number of groups with one unit increases up to the limit of a, but
 cannot exceed this, however large the sample may be.
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 C. B. WILLIAMS 259

 The logarithmic series can therefore be written

 x2 X3 X4

 2' 3' 4'

 which is sometimes a more convenient form.

 In this case the total number of groups (e.g. species) is

 S=oc (-log, 1 -x), (7)
 and the total number of units (e.g. individuals) is

 x

 N =oc i~. (8) 1-x*(8

 Both n1 and x therefore vary with the size of the sample, but oc is constant for all samples
 (ox summations of samples) from the same population taken by the same method of
 sampling. It is thus a property of the population sampled. It is high in populations
 which have a large number of groups relative to the number of individuals and low in
 populations which have a small number of groups relative to the number of units. We have
 called it the 'Index of Diversity', as it is a measure of the extent to which the units are
 associated into groups.

 It follows from the above that

 = or o=N (1) (9)
 N+oc ~~x

 Thus if the total number of units and of groups is known in one sample from a given
 population, the index of diversity can be calculated; and from this it is possible to find the
 number of groups (and hence the frequency distribution) in any other sample, larger or
 smaller, from the same population.

 The relation between the number of groups (S), the number of units (N), and the
 index of diversity is given by the formula

 S=oc1og( (+ N (10)

 Thus if oc is known for any population from any one sample it is only necessary to insert
 the new N for a second sample of a different number of units, in the above formula, to
 find the new S or number of groups.

 For example, 15,575 mnoths were captured in a light trap at Harpenden and were found
 to belong to 240 species. This gives (see below) o=40-25 approximately. From this we
 can calculate that had the sample contained only 1000 moths there would have been only
 about 130 species represented; if, on the other hand, one million moths could have been
 caught by the same method in the same time, about 405 species could have been expected.
 Fig. 3 shows graphically the relation between the values of a and the number of groups

 and units (e.g. species and individuals) in small samples up to 90 groups and 150 units.
 Fig. 4 (p. 265) shows larger samples up to 340 groups and 10,000 units. The units are
 plotted on a logarithmic scale. The relation between log N and S is approximately linear
 for each value of a for all large samples.

 Fig. 5 (p. 268) shows a similar diagram for still larger samples up to S =900 and
 N = 10,000,000.

 Table 3 shows some of the basic data from which these tables were prepared.
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 Fig. 3. The relation between 8, og N and a for values of N up to 150, and of S up to 90.
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 C. B. WILLIAMS 261

 Of some biological interest are: (1) the average number of units per group (e.g. indi-
 viduals per species); (2) the ratio of groups with one unit to the total groups (e.g. the
 proportion or percentage of monotypic genera); and (3) the proportion of the units which
 are found in groups of one unit only.

 Table 3. Values of Sfor different combinations of N and oc
 (From J. Anim. Ecol. 12, 53.)

 N=10 20 50 100 200 500 1,000 2,000 5,000 10,000 100,000

 C=1 2 4 3 0 3 9 4 6 5 3 6 2 6 9 7 6 8 4 9*2
 2 3 6 4 8 6 5 7 9 9 2 11.1 12 4 13 8 15 7 17*0 -
 3 4 4 6 1 8*6 10 6 12 6 15 4 17 4 19 5 22 3 24 3
 4 5 0 7*2 10 4 13-0 15*7 19 3 22 1 24 9 28 5 31 3 -
 5 5 5 8 0 12 0 15.0 18 6 23 1 26 5 30 0 34 5 38 0 49*6
 6 5 9 8 8 13 4 17*2 21 2 26 6 30 7 34 9 40 4 445 _
 7 6 2 9 5 14 7 1941 23 7 30-0 34 8 39 6 46 0 50 9
 8 6.5 10 0 15 9 20 8 26 1 33 1 38-8 44 2 51 5 57*1
 9 6 7 10.5 16 9 22 5 28-3 36 3 42*5 48 7 56 9 63*1
 10 6 9 11 0 17 9 24 0 30 5 39 3 46 2 53 0 62 2 69 1 92 1
 12 7 3 11 8 19 7 26 8 34 5 45 0 53 2 61 5 72 4 80G7
 14 7 6 12.6 21 3 29 4 38 2 50 4 60 0 69 6 82 3 92 0
 15 7 7 12 7 22 0 30 4 39 9 53 0 63 2 73 5 87 2 97 6
 16 7 8 13 0 22 7 31 7 41 7 55 6 66 2 77 4 92 0 103 0
 18 8 0 13 6 23 9 33 8 44 9 60 5 72 6 84 8 101 4 1138 -
 20 8 1 13.9 25*2 35 8 48 0 65 2 78 6 92 3 110.5 124 3 170 4
 25 8 4 14 7 27-5 40 3 54 9 76 1 92 9 109.9 132 6 149 9
 30 8-6 15 3 29 4 44 0 60 8 86 2 106 1 126 5 153 7 174 4
 35 8*8 15 8 31 1 47 3 66 6 95 5 118 6 142 2 173 0 198 1
 40 8 9 16 2 32-4 50.1 71 7 104*1 130 3 157 3 193 4 221 0
 45 9 0 16 5 33.6 52 7 76 2 112 2 141 5 172 7 212 4 243 4
 50 9.1 16 9 34 7 55.0 80 5 119.9 152 3 185 7 230 8 265 2 380-1
 60 9 3 17 2 36-4 58 9 88 0 134 0 172 3 212 1 266-0 307 3
 70 9 4 17 6 37 7 62 2 94 5 146 8 191 0 237 1 299 8 347 8
 80 9 4 17 8 38 8 64-9 100 2 158 5 208 2 260 6 330 8 386 9 _
 90 9 5 18 1 39 8 67.2 105 3 169 2 224-5 283 1 363 2 424 7
 100 9 5 18 2 40 6 69 3 109.9 179 2 239 8 304 5 392 2 461 5 690 9
 150 - 219 9 304 2 399.3 530 3 632 3
 200 9 8 19.1 44.6 81 1 138 6 250 6 358-1 651 6 479 6 786 4

 The average number of units per group

 This is given by the formula

 N eSIa-~1 x

 S = eslx - or = __ S eSa. (1x) -log, 1- x)
 So for all samples with the same value of cc (i.e. from the same population) the average
 number of units per group is dependent on the size of S, or of x; that is, on the size of the
 sample. It is larger with large samples and smaller with small samples (see Table 2 and
 Table 4, column 3, for examples).

 The proportion of groups with one unit

 This is n1/S (or lOOnl/S if expressed as a percentage), and is given by the formula

 nl x

 S -log, (I-x)

 It is thus dependent on x, which is in turn dependent on the size of the sample for
 different samples from the same population (i.e. with the same cc). It is large in small
 samples and small in large samples (see Table 2 and Table 4, column 6).
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 262 The logarithmic series and its application to biological problems

 The proportion of units in single groups to the total units

 This is n1/N (or 100nI/N if expressed as a percentage), and is given by the formula

 nl=1x n I-X.

 This also varies with x and is large in small samples and very small in large samples
 from the same population. Examples of the different values of these ratios in different-

 sized samples from the same population are given in Table 4.

 Table 4. Numbers of species and other properties in different-sized samples
 from a population with an index-of diversity = 100

 N S N/S. x ni lOOnS 1Onj1/N
 100,000 691 144-7 0*99902 98 14*2 0*098
 10,000 461 21*7 0*9903 97 21-0 0*97
 1,000 239 4.18 0*905 95 39.7 9.5
 100 69 1*45 0*40 50 72*5 50
 10 9*5 1*05 0*05 9.5 99.7 95

 The number and percentage of units in series of groups

 The number of units in the successive terms has been shown to be a geometric series

 n1, n1X n1x2, etc.,

 and the sum to infinity N=n1/(1 -x). The r + Ith term is n1xr, and the sum of all the
 units from that term on to infinity is n1xr/(l -x). So the total number of units in the

 first r terms inclusive is n1 n1 X 1 (1n- xr).
 1-x 1-x 1-x

 The proportion of the total units that are in groups 1 to r is therefore

 (1-xr) or 100(1-xr)%.

 For example, in a series with x =0 9, one-tenth of the units are in groups with one unit
 each, and 65 2 % are in groups with 10 or less units per group.

 If x = 099, one-hundredth of the total number of units are in groups with one unit each,
 aud 9-64% in groups with 10 or less.

 Fifty per cent of the units are found in groups containing up to r units, where

 _ log 0 5

 log x

 Thus if x = 09, 50 % of the units are in groups with' up to 6-6 units, i.e. up to between the
 sixth and seventh terms of the series.

 If x= 0 99, 50% of the units are in groups with 68 units or less.
 Since for samples from the same population the value of x depends on the size of the

 sample, it follows that all the above proportions are dependent on the size of the sample.
 But the proportions of units in groups of particular sizes is the same for all samples

 with the same x, and that is in all samples with the same average number of units per group.

 It is not possible to get a simple expression for the proportion of groups in any series
 of terms of the logarithmic series.
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 C. B. WILLIAMS 263

 Sampling from a log series by units

 If a sample, randomized by units, is taken from a population arranged in a log series,

 the sample forms a new log series with the same a, but with a different x. If the new
 sample contains a proportion p (i.e. lOOp%) of the number of units in the population

 sampled, then the new x px *

 1- (1-p) x

 For example, if one-third of the original population is taken in the sample the new x

 0 33x

 1 -0 67xx

 Since a sample of a population which is in a log series gives a log series in the sample,
 we are justified in assuming that, when we find a log series in a sample, the population
 sampled is itself in a log series.

 Sampling a log series by randomization of groups

 If successive samples of a population are based on randomization of groups (see Intro-
 duction, pp. 253-4) a different result is obtained. The successive samples have not, as above,
 the same oc and different values of x, but they have the same x and different values of oc.

 For example, if a random sample of a rat population is taken and 50 rats are found
 infected with fleas, and on these are found 500 fleas, there will be an average of 10 fleas
 per rat with fleas. This gives x = 09732 (approximately from Fig. 2) and oc = 14 (approxi-
 mately from Fig. 3). If now a second sample of similar size is taken, one would expect
 this also to have 50 rats and approximately 500 fleas. The two samples together (i.e. one
 larger sample) would thus have 100 rats and 1000 fleas, with x as before 0-9732, but
 Oc = 28 approximately.

 The error in estimate of a

 Fisher has shown ((1), p. 56) that the standard error of oc is the square root of

 3 (N+oC)2 loge (2N+cc/N+cc)- aN
 (SN +Soc-NcNm)2

 This is complicated to work out, but in Figs. 3 and 4 I have superimposed on the, diagram
 lines of equal percentage error of oc. It will be seen that in general the error is high with
 small numbers of N and S. It is also high if S is large compared with N (a high value
 of a), or if N is very large compared with S (a low value of oc).

 Thus the error of estimation of oc is about 10% if N is 10,000 and S=9; or if N is

 about 250 and S from 50 to 100. The error is 30 % with 30 individuals in 10 groups.
 With N = 10,000 and S = 170, the error of oc is only about 3 %.

 Table 5 shows the standard error of oc for several different values of N and oc.

 Table 5. Error of cc for different values of N and oc
 (From J. Anim. Ecol. 12, 53.)

 N=10 100 1000 10,000 100,000
 OC=1 0 504 0 288 04141 0 091 -
 5 2-785 0*860 0-430 0 282 0 209
 10 6*46 1*60 0 719 0 445 0 321
 20 15 82 3 19 1*52 0 712 0*495
 50 49j-87 8*79 2-67 1-359 0*891
 100 153-7 20*42 5 04 2*27 1*41

 * I am indebted to Mr M. H. Quenouille for this formula.
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 264 The logarithmic series and its application to biological problems

 The index of diversity and Yule's 'characteristic'

 I have shown (Williams (8)) that the index of diversity is proportional to the reciprocal

 of the 'Characteristic' defined by Yule in his Statistical Study of a Literary Vocabulary

 (Cambridge, 1944), which he used as a property of the population he was sampling. In
 his case this was the number of different nouns available for use in the mind of a writer.

 Yule's characteristic= 10,000 (S2-S1)/S2, where S1 and 82 are the first and second
 moments of the series. The index of diversity for the log series =- 2/(_2-S1); but values
 calculated by this method are much more variable from sample to sample from the same

 population than values calculated by the methods given below.

 3. METHODS OF FITTING A LOGARITHMIC SERIES TO KNOWN DATA

 Two rapid preliminary steps may be taken to see if a logarithmic series is a likely explana-
 tion for any set of frequencies.

 First by inspection of the numbers it should be checked that the second term should

 be less than half the first (within limits of error); the third term should be less than one-third

 of the first, etc.-and there should be a more or less steady fall.

 A second rapid test is to plot the successive terms on a logarithmic scale (or on double

 log paper) and see if they approximate to the transformation shown in Fig. 1, at first near

 the straight line of the hyperbola and then falling away steadily and more rapidly.
 If the total number of units and the total number of groups is known, the logarithmic

 series can be calculated by several methods varying in accuracy.

 Approximate method

 Calculate the average number of units per group (N/S), and find x by inspection from
 Fig. 2, which shows the corresponding values of x for all values of N/S from 1 to 70,000.

 Example. 15,575 moths caught in a light trap at Rothamsted were found to belong to
 240 species. What is the corresponding logarithmic series?

 The average number of individuals per species is 64-9. By inspection (Fig. 2), x = 0 9974
 approximately.

 Hence n = (1 -x) N-=0-0026 x 15,575 = 40 5.
 The series is therefore

 40*5 4015 2 405' 2 x 09974, x 0.99742, etc.
 2 '3

 (For calculating the successive terms see below, p. 267.)

 Another approximate methodA

 If N and S are known an approximate value of oc can be read off from Figs. 3, 4 or 5.

 Example. With the same data as above an inspection of Fig. 4 gives oc = approximately 40.

 Then N 15,575
 N+= 15575+4 =0-9974. Then ~~~~~N + cx 15,575 + 40

 A more accurate method is based on Table 6 (first published by R. A. Fisher in J. Anim.
 Ecol. 12, 55). The value of log N/S is calculated, and the corresponding value of log N/ac
 is found by interpolation in Table 5. Since N is known, cx can then be calculated.
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 266 The logarithmic series and its application to biological problems

 Example. Data as above, N=15,575, S=240:

 log N = 4-19243, log S = 2-38021.

 Therefore log N/S= 1V81222.

 From Table 6 it will be seen that:

 If log N/S = 1F82, then log N/ox = 2-59684.

 If log N/S= 181, then log N/lx=258484. (a)
 Therefore the difference in log N/oc for 0 01 difference in log N/S-= 001200. Since the

 relation over short distances is approximately linear the difference in log N/ox for 0-00222

 in iog N/S is 000266.

 Adding this to (a) we get:

 If log N/S = 1F81222, then log N/ox = 2-58750,

 but log N=4419243,

 therefore log x = 1F60492,

 or x = 40-2644.

 N
 Hence x= N + = 0-9974214 and n, = 4041617.

 Table 6. Values of log N/oc for different values of log N/S for solving equation

 S=ox loge (1 - N/o), given S and N

 (From J. Anim. Ecol. 12, 55.)

 logl N/S 0 1 2 3 4 5 6 7 8 9
 0 4 0-61121 63084 65023 66939 68832 70701 72551 74382 76195 77990
 0*5 0*79766 81526 83271 85002 86717 88417 90105 91779 93442 95092
 0*6 0*96730 98356 99973 1-01579 03174 04759 06335 07902 09460 11010
 0 7 1*12550 14220 15813 17331 18772 20136 21631 23120 24602 26077
 0*8 1*27546 29008 30465 31916 33361 34801 36234 37663 39087 40506
 0*9 1-41920 43329 44733 46133 47528 48919 50305 51688 53066 54440
 1.0 1-55810 57177 58539 59898 61254 62605 63954 65299 66640 67979
 1.1 1-69314 70646 71975 73301 74623 75943 77261 78575 79886 81195
 1*2 1*82501 83805 85106 86404 87700 88994 90285 91574 92860 94144
 1-3 1-95426 96706 97984 99259 2-00532 01804 03073 04340 05605 06869
 1-4 2-08130 09389 10647 11902 13156 14409 15659 16908 18155 19400
 1-5 2-20644 21886 23126 24365 25602 26838 28072 29305 30536 31766
 1-6 2-32994 34221 35446 36670 37893 39114 40334 41553 42770 43986
 1-7 2-45201 46414 47627 48838 50048 51256 52464 53670 54875 56079
 1*8 2-57282 58484 59684 60884 62083 63280 64476 65672 66866 68059
 1-9 2-69252 70443 71633 72822 74011 75198 76385 77570 78755 79939
 2-0 2-81121 82303 83484 84664 85843 87022 88199 89376 90552 91727
 2-1 2-92901 94075 95247 96419 97590 98760 99930 3-01099 02267 03434
 2-2 3*04600 05766 06931 08095 09259 10422 11584 12745 13906 15066
 2*3 3-16225 17384 18542 19699 20856 22012 23168 24323 25477 26630
 2-4 3-27783 28936 30087 31238 32389 33539 34688 35837 36985 38133
 2-5 3-39280 40426 41572 42717 43862 45006 46150 47293 48436 49578
 2-6 3-50719 51860 53001 54141 55280 56419 57558 58696 59833 60970
 2*7 3-62106 63242 64378 65513 66648 67782 68915 70048 71181 72313
 2-8 3.73445 74577 75707 76838 77968 79097 80227 81355 82484 83611
 2-9 3-84739 85866 86992 88119 89244 90370 91495 92619 93743 94867
 3 0 3-95991 97114 98236 99358 4*00480 01602 02723 03843 04964 06084
 3*J 4-07203 08322 09441 10560 11678 12795 13913 15030 16147 17263
 3-2 4-18379 19494 20610 21725 22839 23954 25068 26181 27295 28408
 3-3 4-29520 30632 31744 32856 33967 35079 36189 37300 38410 39520
 3-4 4-40629 41738 42847 43956 45064 46172 47280 48387 49494 50601
 3-5 4-51707 52814 53920 55025 56131 57236 58340 59445 60549 61653

 An accurate method by trial and error is as follows. In this successive approximations
 are made to the value of X, and the result tested against the data.
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 C. B. WILLIAMS 267

 Example. Data as above, N = 15,575, S = 240. We know that

 N = X (-log, 1-x). Nx

 If we use logs to the base 10 we get

 1-x 1 N
 - (-log 1-x) = 230258 x = (in this case) 0-0066922.

 We require to find a value of x that will fit this equation. Starting with a first approxi-
 mation (from Fig. 2) of x_0*9974, we proceed as follows:

 -then then 1 -x then
 If x 1-x -log(1-x) --(-logl-x)
 equals equals equals X equals Conclusion

 First approximation

 0*9974 0*0026 -3*4150 0*006738 Too large; so
 = 2-5850 make x larger

 Second approximation

 0-99742 0*00258 -3*4116 0X006695 Slightly too
 = 2-5884 large

 Third approximation

 0*997421 0*002579 -3*4114 0-0066932 Very slightly

 = 2-5886 too large

 and so on until the required accuracy is reached. The final value taken for x was 0-9974214.

 Hence ni = 15,575 x 0*0025786 = 40*1617,

 and oc=N 1 = 40-2644.
 x

 To calculate the series, or any one term

 This may be done by direct calculation on a calculating machine, but without this the
 simplest method is to use logs, and in this case the logs of reciprocals, given in most

 mathematical tables, are helpful.

 The log of the rth term = log n1 + (r -1) log x + log l/r. Since log x is negative its value
 is subtracted from log n1 in successive repetitions, and the log of the reciprocal added for
 each term.

 Example. Data as above:

 n,=40-2644, x= 09974214;
 log nl=1.604917, log x= 1998787=-0-001213;

 Term log n1 + (r -1) log x log l/r Total log Number
 1 1'604917 - 40*2644

 2 1*603704 + f 6990 = 1*3027 20-08
 3 1*602491 + * 5229 = 1*1254 13-35

 4 1*601278 + * 3797 = 0*9800 9 550
 5 1*600065 + I*3010 = 0*9011 7-963

 and so on. For the 50th term

 50 1F604917 log 1/50 -

 - (49 x 0.001213) =
 = 1-54448 2*3010 T*8455 0*7005
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 C. B. WILLIAMS 269

 Alternate approximate method of finding the index of diversity

 from two samples of different sizes

 An approximate value of the index of diversity may be calculated for a given population,
 if two or more samples can be obtained of different sizes, neither small.

 This method is particularly useful for botanical purposes, as, if the ratio between the
 different sample sizes is known, the actual number of individuals in each need not be
 counted. This makes it possible to find a from the number of species of plants on two

 areas of different size, provided that we can assume, without serious error, that the
 number of individuals is proportional to the area of the samples. The actual numbers of

 individuals, however, must be large.
 The method is based on the relation

 ( x)

 When N is very large compared with x we can neglect the 1 in comparison with N/az
 and say that S is proportional to (loge N/tx).

 Hence, if two samples from the same population contain N and pN units,

 S.VN SN -(l0ge XN - log, N = CX log, P.

 Thus if a sample size is multiplied by p, the number of groups (e.g. species) is increased

 by c log p.
 If the size of a sample is doubled the number of species added is z loge 2= 0693oC. If the

 size is multiplied by e (=2.718) the number of species added equals M. This latter fact
 could be easily applied to botanical surveys by using two quadrats whose diameters were

 in the ratio of 100 to 165 (=V2 718). Then the average increase of species between samples
 of the two sizes would be a direct measure of the index of diversity. The samples must,

 however, be large enough to be representative even of the larger plants (see Jones &

 Williams (3)).
 Example. Blackman (Ann. Bot., Lond., 49, 760) states that the number of species of

 plants found on quadrats of various sizes in a grassland area in England was as follows:

 Increase in no.
 of species on

 Average no. doubling size
 Area in sq.in. of species of sample

 16 11*1 2-5
 32 13-6 2*5
 64 16*1 2*5
 128 18*2 2*1

 Average 2-37

 Therefore o = 2-37 . loge 2 = 237 +. 0693 = 3-42 approximately.
 This is probably an underestimate as the samples are small, but as z is also small the

 error will be relatively less.

 Calculation of the number of groups common to two samples

 An extension of the above method gives a means of finding the number of groups

 common to two large samples from the same population on the assumption that it conforms
 to the logarithmic series (for example, the number of species common to two areas of an

 ecological association). The samples, or areas must, however, be of different sizes.

 J. Ecol. 34 18
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 270 The logarithmic series and its application to biological problems

 Let the two areas be of size A and B, and the number of species in each a and b. If they

 are from the same population they will have the same oc, and if the samples are large

 we can neglect the 1 in comparison with N/oc in the equation S = oc loge (1 + N/c).

 Let T be the total number of species in the two samples, then the increase in species

 by adding B to A A+B

 =T-a=C loge A

 The increase in species by adding A to B

 =T-b=cx log, B

 From these two equations T (and oc) can be found and the number of species expected to
 be common to both = a + b-T.

 Example. The island of Guernsey has 804 species of flowering plants on 24 sq. miles.
 The island of Alderney has 519 species of flowering plants on 3 sq. miles.

 On the assumption of identity of origin,

 T-804=oclog,1 125, T-519=alog,900.
 Hence T= 820 and the number common to the two would be 503. The actual number
 observed was 480 which shows a high degree of relationship. For fuller discussion, see

 Williams ((6), p. 42), and Williams (9).

 4. SUMMARY OF BIOLOGICAL APPLICATIONS OF THE LOGARITHMIC SERIES

 The series has so far given reasonably good calculated fits to observed data in the following
 biological problems. The references are to the bibliography on p. 271.

 A. Individuals classified into species:

 (1) Lepidoptera caught in a light trap at Harpenden, England ((1), pp. 44-8).
 (2) Capsidae caught in a light trap at Harpenden, England ((1), p. 49).
 (3) A collection of butterflies made in Malaya by A. S. Corbet ((1), p. 42 and (6), p. 15).
 (4) Butterflies from Mentawi Island, and from Karakorum ((1), p. 43).
 (5) Butterflies from Tioman Island, Malaya ((1), p. 43).
 (6) Elmidae (Coleoptera) from Mexico ((1), p. 43).
 (7) General population of British nesting birds ((6), p. 13).
 (8) Lepidoptera in light traps in U.S.A. (7).
 (9) Mosquitoes in light traps in U.S.A. ((6), p. 14).

 (10) Aphis caught on sticky traps in Derbyshire (Broadbent, data in Proc. R. Ent. Soc.

 ((21), pp. 41-6).
 (11) Spiders caught in nets (data Freeman, J. Anim. Ecol. 15, 70).

 B. Species and area (especially with plants):

 (1) Grass land in Britain ((6), p. 3).
 (2) Aspen association in Michigan, U.S.A. ((6), p. 5).
 (3) Ground vegetation in Tectona forest, Java ((6), p. 9).
 (4) Species of plants common to related small areas, e.g. Channel Islands ((6), p. 42),

 Sao Tome and neighbouring islands (9).
 (5) General discussion on area and number of species of plants (4).
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 C. B. WILLIAMS 271

 C. Parasites and host:

 (1) Lice on heads of human beings ((6), p. 11).
 (2) Fleas on rats (unpublished data from J. L. Harrison).

 D. Species classified into genera:
 (1) Orthoptera of world. Mantidae and Acridiidae ((6), p. 17).
 (2) Dermaptera of world ((6), p. 18).

 (3) Coccidae of world ((6), p. 18).

 (4) British Coleoptera ((6), p. 24).
 (5) British Lepidoptera ((6), p. 24).
 (6) British Cicadina ((6), p. 28).
 (7) British birds ((6), p. 29).
 (8) Flowering plants of the world ((6), p. 38).

 (9) British flowerihg plants ((6), p. 32).
 (10) British Capsidae (Miridae) (data from China, Ent. Soc. London. Generic names,

 Brit. Inst. Pt. 8).

 (11) Animals and plants in Ecological Communities (10).

 F. Miscellaneous applications:
 (1) Number of publications by biologists (5).
 (2) Number of insects caught in nets at sea (unpublished data from A. C. Hardy).
 (3) Species of insects infesting food dumps (2).
 (4) Number of bacteria in colonies (unpublished data from Jones and Quenouille at

 Rothamsted).

 (5) Larvae of a gall midge in grains of wheat (unpublished data from H. F. Barnes).

 REFERENCES
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 APPENDIX

 Stummary of formulae connected with the logarithmic 8eries

 N = total number of units.

 S =total number of groups.

 n,= number of groups with one unit.
 a=the 'Index of Diversity', a constant for all samples from the same population, if randomized on

 units.

 x =a constant for one sample, always less than unity.
 N/S= the average number of units per group.
 n1/S=the proportion of groups with one unit.

 18-2
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 272 The logarithmic series and its application to biological problems
 n1x n1x2 n1x3

 The logarithmic series is nl, nlx -j-, -i-, etc.,

 2 x3 4
 or Ocx, oc-, -, Oc-, etc.,

 2 3 ~4

 nl nl I. (nl, oc and x): a= x, = ax, c=-.

 II. (S, a and x): S = oc (-log, 1-x).

 x ~~~~~n III. (S, n, and x): S = !1 (-log, 1 - )? S=_ -

 IV. (Sl, n, and oc): S=OC(-log. I _ ).

 N N oax N(1-x) V. (N, oc and x): N+aN' N-a N' 1 x

 VI. (N, n, and x): nj=N(1-x), N=1 , X= Nfn1 N-1 X. (1- X)' N I N

 VII. (N, n1and oc): N-= noc oc - Nn1 Noc oc-n' N-nl' Y N+OC
 N N X

 VIII. (N, S and x): S=N(I -) (-logI 1x =

 IX. (N, S and oc): S=oc log"ji+N , N=a (eNs-1), N-el/ 1.

 X. (N, S and nl): N-nl n

 X1. (N, S, n, and x): n - N(I )

 XII. The increase in number of groups obtained by multiplying the size of sample byp when the sample

 is large (i.e. when N is large compared with cz) approximates to ac log, p. Doubling the size of the
 sample therefore adds oc log. 2 groups. Multiplying the size of the sample by e (=2.718) adds
 oc groups.

 XIII. The variance of oc is C3 (N_ -)2 log, (2N+ c/N + )-ocN
 (SN+SOC-Noc)2

 The stondard error of a is the square root of this.

 XIV. When x=0633, i.e. when the average number of units per group is 172, S=OC.

 XV. If S. and S2 are the first and second moments of the series:

 N n1 (X o 12=

 XVI. The percentage of units in groups containing r+ 1 or more units is lOOxt. The percentage in groups
 containing r or less units is 100 (1 -xr).
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