
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Fox, R., Harrower, C.A., Bell, J. R., Shortall, C. R., Middlebrook, I. and 

Wilson, R.J. 2018. Insect population trends and the IUCN Red List 

process. Journal of Insect Conservation. pp. 1-10. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1007/s10841-018-0117-1

• https://link.springer.com/article/10.1007/s10841-018-0117-1

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8w881.

© 19 December 2018. Licensed under the Creative Commons CC BY.

10/04/2019 13:46 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1007/s10841-018-0117-1
https://link.springer.com/article/10.1007/s10841-018-0117-1
https://repository.rothamsted.ac.uk/item/8w881
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


Vol.:(0123456789)1 3

Journal of Insect Conservation 
https://doi.org/10.1007/s10841-018-0117-1

ORIGINAL PAPER

Insect population trends and the IUCN Red List process

Richard Fox1,2   · Colin A. Harrower3   · James R. Bell4   · Chris R. Shortall4   · Ian Middlebrook1   · 
Robert J. Wilson2,5 

Received: 2 October 2018 / Accepted: 10 December 2018 
© The Author(s) 2018

Abstract
Reliable assessment of extinction risk is a key factor in the preparation of Red Lists and in prioritizing biodiversity conserva-
tion. Temporal population trends can provide important evidence for such assessments, but imperfect sampling (observation 
errors) and short-term stochastic variation in population levels caused by environmental variability (process errors) can 
reduce the reliability of trends and lead to incorrect quantification of extinction risk. The assessment of insect taxa is likely 
to be particularly prone to these problems, due to the highly dynamic nature of many insect populations, driven by short 
life-cycles and sensitivity to environmental factors such as the weather. Using long-term United Kingdom monitoring data 
for 54 butterfly and 431 macro-moth species, we demonstrate the impact of insect population variability on the assessment of 
extinction risk using the International Union for Conservation of Nature (IUCN) Red List Criterion A (reduction in population 
size over the last 10 years). For both taxa, varying the start year of the 10-year population trend had a substantial effect on 
whether particular species met Red List thresholds and on the overall number of species assessed as threatened. We conclude 
that for these insect taxa strict application of the 10-year rule produces Red List classifications that are unacceptably biased 
by the start year. Use of long-term trends with adjustment based on species performance over the last decade may offer a 
pragmatic solution to this problem. We call for further IUCN guidance for practitioners undertaking Red List assessments 
of taxa with populations that have high temporal variability.

Keywords  Extinction risk · Threatened species · Biodiversity conservation · Monitoring · Butterflies · Moths

Introduction

Biodiversity conservation practitioners rely on robust assess-
ments of extinction risk (at global, regional, national and 
even local scales) to prioritise the use of limited resources. 
The Red List process developed by the International Union 
for Conservation of Nature (IUCN) plays an important role 
both as the global standard for extinction risk assessment 
(Miller et al. 2007; Mace et al. 2008) and, indirectly, in cata-
lysing conservation activity. The Red List process itself is 
solely an objective, quantitative assessment of threat across 
taxa. Nevertheless, by providing a key input into prioritisa-
tion decisions made by practitioners and as a consequence 
of increased public and political support stemming from 
the credibility and reputation of the process, Red Lists are 
frequently a starting point for the development of conserva-
tion initiatives (Rodrigues et al. 2006; Hoffmann et al. 2008; 
Azam et al. 2016).

The IUCN process utilises criteria with quantitative 
thresholds based on population and distribution size and 
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rate of decline in order to classify taxa into Red List threat 
categories (IUCN 2001). The development, application and 
misuse of these criteria have been documented (Akçakaya 
et al. 2006; Mace et al. 2008; Collen et al. 2016), as have 
the wider problems of applying them to insects and other 
invertebrates due to data constraints (e.g. Cardoso et al. 
2011; van Swaay et al. 2011; Azam et al. 2016). Criterion A 
“Reduction in population size” depends solely on measures 
of population decline over a (potentially short) time-period 
of the most recent 10 years or three generations, whichever 
is longer, hereafter referred to as the “10-year rule” for sim-
plicity. Thus widespread and common species, with large 
population sizes and ranges, can qualify as being threatened 
with extinction on Red Lists if they are undergoing rapid 
decline. Criterion A is justified because even large popula-
tions would eventually be driven to extinction by continuing 
decline (Mace et al. 2008), especially as other negative feed-
back loops may come into play at low population densities 
(e.g. Allee effects, genetic inbreeding), but also because the 
reduction in abundance of common and widespread species 
may be of particular significance to ecosystem structure and 
functioning (Gaston and Fuller 2008; Winfree et al. 2015).

However, the reliable measurement of species popula-
tion trends that indicate extinction risk (and are being driven 
by anthropogenic processes such as habitat loss or climate 
change) for use in Red List Criterion A is made difficult 
by imperfect sampling (observation errors) and short-term 
stochastic variation in population levels caused by environ-
mental variability (process errors) (Connors et al. 2014). 
Inaccurate detection of underlying species population trends 
can result in incorrect Red List classification (false posi-
tives i.e. incorrectly classifying a species as threatened and 
false negatives i.e. failing to classify a species that should 
be listed as threatened).

Investigations, using both empirical and simulated data, 
show that as process errors (and observation errors) increase, 
the reliable detection of population declines decreases across 
a range of different statistical techniques (Wilson et al. 2011; 
McCain et al. 2016). Trends assessed over short time peri-
ods, such as those required under the IUCN 10-year rule, 
are particularly sensitive to process errors, resulting in high 
levels of false positive and false negative species assess-
ments (Connors et al. 2014; d’Eon-Eggertson et al. 2015). 
Concern has also been raised over the fundamental assump-
tion that short-term declines are reliable predictors of ongo-
ing decline (and, therefore, extinction risk) and authors have 
regularly advocated the use of long-term population data, 
where available, to improve the accuracy of extinction risk 
assessment (Dunn 2002; Porszt et al. 2012; Keith et al. 2015; 
White 2018). These findings undermine confidence in the 
classification of extinction risk using Criterion A in its cur-
rent form (White 2018). However, these studies are based 
almost exclusively on vertebrate examples, where biological 

traits (e.g. generation times, population growth rates) and 
specific environmental drivers (e.g. human exploitation) 
may differ markedly from those of insects. Indeed, Connors 
et al. (2014) predict that the lowest rates of false-positive 
and false-negative classification errors under IUCN Red List 
Criterion A will occur for large-bodied, long-lived animal 
species.

These findings do not bode well for the application of 
Criterion A to insects. Most insect species have very short 
generation times (≤ 1 year), meaning that the 10-year rule 
is applied as a 10-year population trend over the most recent 
10 years. By comparison, the same rule applied to long-
lived vertebrates would see trends measured over longer 
time periods equating to three generations of the species 
concerned. In addition, the poikilothermic and ectothermic 
physiology of many insects results in climatic sensitivity that 
can drive large fluctuations in population size from genera-
tion to generation, particularly near altitudinal or latitudinal 
range margins (Oliver et al. 2014). Short-term climatic vari-
ation is a principal driver of inter-annual population change 
in UK butterflies and moths (Roy et al. 2001; Oliver et al. 
2015; Palmer et al. 2017), alongside density dependence 
(Mills et al. 2017).

Due to anticipated high levels of process error (as well 
as potential observation error), 10-year population trends of 
insects may not be sufficiently reliable to enable the accurate 
classification of extinction risk in the Red List process, but 
rather reflect spurious responses to short-term environmental 
stochasticity. Thus, Red List classifications based on such 
trends are likely to be strongly affected by the start date of 
the 10-year trend, determined typically by factors such as 
policy development or funding availability that are unrelated 
to the population dynamics of the taxa being assessed.

The difficulty of detecting underlying declines from natu-
ral population fluctuations in short-term butterfly trends has 
been recognised previously (e.g. van Strien et al. 1997). Fur-
thermore, the impact of temporal scale of trend measurement 
has been noted in comparisons of Red Lists produced using 
long-term versus 10-year trends (de Iongh and Bal 2007; 
van Swaay et al. 2011), and authors have recommended or 
developed adjustments to assessments under IUCN Criterion 
A to take long-term trends into consideration (Maes et al. 
2012). In response, current IUCN guidance acknowledges 
this issue and sanctions optional use of data over a longer 
period to model population decline, especially for species 
with highly variable population levels, while still requiring 
trends to be measured over the most recent 10 years (IUCN 
2017). Nevertheless, the 10-year rule remains fundamental 
to IUCN Criterion A and practitioners can continue to assess 
the threat levels of short-lived species based on just a decade 
of population data.

The purpose of this study is to highlight, from a prac-
titioner’s perspective, problems with the application of 
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10-year population trends in the Red Listing of insects and 
to seek further advice from IUCN. Specifically, we quantify, 
for the first time, the direct implications of high levels of 
inter-annual population variation (process errors) on Red 
List classification under IUCN Criterion A. Our assessment 
of two United Kingdom (UK) insect taxa for which standard-
ised population monitoring data are available, butterflies and 
macro-moths, is then used to consider whether the 10-year 
rule is appropriate for such taxa.

Methods and results

We consider two case studies using UK insect population 
data for butterflies and macro-moths derived from long-term 
(40 + years) monitoring schemes to assess the impact of spe-
cies’ population variability on Red Listing using IUCN Cri-
terion A. Although butterflies and moths are closely related 
taxa in the Order Lepidoptera, considering them as separate 
case studies is appropriate and informative as the monitoring 
schemes and datasets for each are independent and utilise 
different methodologies (fixed-width line counts for butter-
flies and point counts using light-traps for macro-moths) to 
sample diurnal and nocturnal insect communities respec-
tively. In addition, long-running time series of standardised 
abundance for insect taxa are rare in the UK and globally; 
the only other insect taxon for which data are available over 
a comparable duration in the UK are aphids (Order Hemip-
tera, Superfamily Aphidoidea), although the geographical 
coverage is much less extensive (Thomas 2005).

We also varied two aspects of the assessment method 
in each case study: standardisation of time periods across 
species and the use of population trends with or without 
statistical significance. First, in the butterfly case study, the 
10-year periods being compared were standardised (i.e. 
they started in the same year for each species), whereas in 
the macro-moth case study, the 10-year time periods var-
ied between species according to data availability. Second, 
butterfly population trends were assessed against the IUCN 
threat category thresholds irrespective of whether the trends 
were statistically significant, while in the macro-moth study 
only statistically significant population trends were used in 
the assessment. These alternatives were used to represent 
the range of different approaches likely to be employed by 
practitioners undertaking Red List assessment depending on 
the form and availability of data.

It should be noted that the case studies do not represent 
the application of a complete Red List process, but are indic-
ative assessments of the potential impact of one IUCN crite-
rion on the outcome. A full Red List procedure would utilise 
other criteria based on geographical range and population 
size (depending on data availability) and also, when carried 
out at a regional level, an important additional consideration 

is the potential for the extinction risk of a taxon to be influ-
enced by movement of individuals into or out of the region 
being assessed (IUCN 2012). However, our consideration of 
Criterion A in isolation is relevant because threatened Red 
List status is conferred under the precautionary principle—
as long as a taxon meets the threshold for a single criterion 
then it can be classified as threatened. Thus, false positive 
assessments under Criterion A (or any criterion) could exert 
substantial influence over completed Red Lists.

Case study 1: UK butterflies

We considered the impact of arbitrary start date on the Red 
List outcomes for UK butterflies based on published 10-year 
population trends derived by linear regression from the UK 
Butterfly Monitoring Scheme (UKBMS) over 6 consecutive 
years (http://www.ukbms​.org; Pollard and Yates 1993; Roy 
et al. 2015). The standardised, annual monitoring of butter-
fly abundance by the UKBMS at over 1000 sites generates 
robust population data used by the Government to assess 
biodiversity trends (Brereton et al. 2011; Eaton et al. 2015). 
Despite low observation error, 10-year UKBMS population 
trends for many species fluctuate considerably from year to 
year, reflecting stochastic environmental variation (process 
error) (Online Resource 1). The 10-year population trends 
for each species were assessed against the IUCN Criterion 
A2 thresholds (A2 being for population trends where the 
reduction or its causes may not have ceased or may not be 
understood or may not be reversible) and species allocated 
to threat categories accordingly. Trend values were utilised 
in the assessment irrespective of their statistical signifi-
cance (in contrast to the macro-moth case study). Thus, six 
classifications were produced using population trends for 
six 10-year periods, each starting 1 year after the previous 
one (i.e. 2001–2010, 2002–2011, 2003–2012, 2004–2013, 
2005–2014 and 2006–2015). In addition, the median, lower 
and upper quartile population trends were calculated for each 
species from the six 10-year trend values and these were also 
assessed against IUCN Criterion A2.

Fifty-four species (of the 59 resident or common migrant 
butterfly species present in the UK) had UKBMS 10-year 
population trends for all six periods considered. There was 
considerable variation in the total number of species qualify-
ing for Red List categories between classifications and for 
individual species across classifications. An average of 18.5 
species met the IUCN Criterion A2 thresholds for threat-
ened status (i.e. Critically Endangered ≥ 80% population 
decrease, Endangered ≥ 50% decrease or Vulnerable ≥ 30% 
decrease) per period, but the number of species qualifying 
ranged from 13 (24% of species) to 29 (54% of species) 
(Table 1). Twenty species (37% of the total) were consist-
ently classified across the six different time periods (i.e. they 
either always (3 species) or never (17 species) qualified as 

http://www.ukbms.org
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threatened), but 34 species (63%) qualified as threatened in 
some periods and not others (Table 2). Removing the three 
common migratory species from the sample had no qualita-
tive effect on the overall pattern.

Using the median population change value over the six 
10-year periods for the Red List assessment produced 18 
threatened species, the lower quartile trend value led to 25 
threatened species and the upper quartile trend just 8 spe-
cies (Table 1). The threat category assigned to a particular 
species frequently differed between the median, lower and 
upper quartile values (Table 2).

Case study 2: UK macro‑moths

A second case study, using population data for 431 UK 
macro-moths (hereafter “moths”), was undertaken to assess 
the wider applicability of the results for butterflies.

Monitoring of adult moth numbers has been carried out 
across the UK since 1968, as part of the Rothamsted Insect 
Survey (RIS) run by Rothamsted Research (http://www.rotha​
msted​.ac.uk/insec​t-surve​y). Standardised light-traps operate 
at approximately 80–100 sites annually, on every night of 
the year and all moths attracted into the traps are retained 
for identification by professional staff or expert volunteers 
(Conrad et al. 2004). The data have been used to assess long-
term change in moth biodiversity, including as part of offi-
cial Government indicators (Conrad et al. 2006; Eaton et al. 
2015; Burns et al. 2018).

For this case study, we present a preliminary analysis 
of RIS abundance data using the Generalized Abundance 
Index (GAI) approach (Dennis et al. 2016). RIS count data 
were extracted for UK resident moth species in the families 
Hepialidae, Cossidae, Sesiidae, Limacodidae, Zygaenidae, 
Drepanidae, Lasiocampidae, Endromidae, Saturniidae, Sph-
ingidae, Geometridae, Notodontidae, Erebidae, Noctuidae 
and Nolidae (Agassiz et al. 2013). Species that occur in 
the UK only as immigrants were excluded. Daily species 
count data for the full RIS time series (1960–2015) were 
analysed using the GAI method and trends assessed using 
linear regression. The data were not filtered prior to analysis, 
but post hoc tests on the GAI for the entire time series of 

data for each species were used to identify statistically unre-
liable models. Species were excluded from the case study 
where the results contained indices for less than 10 years 
and/or where the number of years with missing indices was 
greater than 30% of the total series. In addition, the annual 
index values and their standard errors were assessed and 
species exhibiting extreme indices (indices < 0 or > 4) or 
exceptionally large standard errors (standard error > 1) were 
also excluded from the case study.

Having excluded species that did not meet the minimum 
statistical requirements, a series of five, overlapping 10-year 
population trends were calculated for the remaining species. 
First, in keeping with the IUCN 10-year rule, GAI values 
for the most recent 10 years available for each moth spe-
cies were used to derive a population trend by fitting lin-
ear regressions. The key parameters (e.g. slope, intercept, 
statistical significance) of each of these linear models were 
stored, and measures of annual growth rate and proportional 
change over the 10-year time period were calculated from 
these parameters. For the majority of species the most recent 
10-year period was 2006–2015. However, as data availability 
varied from species to species, e.g. because rapidly declining 
species become so scarce that they are no longer caught at 
all in the RIS monitoring network, the start/end year of this 
most recent 10-year period was not the same for all species.

Next, this process was repeated four times for every moth 
species, on each occasion starting the 10-year period one 
year earlier. Only the GAI values for each 10-year period 
were used to calculate the population trend in each instance. 
This resulted in five 10-year population trends per species, 
each trend lagged by 1 year: t (the most recent 10 years), t-1, 
t-2, t-3 and t-4. For the majority of species, the five trends 
covered the periods 2006–2015, 2005–2014, 2004–2013, 
2003–2012 and 2002–2011, but some extended back into 
the 1990s and, in one case, the 1980s. For each time period, 
10-year species population trends that were statistically sig-
nificant at p < 0.05 were then assessed against IUCN Cri-
terion A2 thresholds to provide a threat (extinction risk) 
classification.

Population trends for a total of 431 moth species, which 
had statistically reliable long-term GAI models, were 

Table 1   Number of UK butterfly species (of 54 species assessed) 
meeting Red List threat thresholds under IUCN Criterion A2 (reduc-
tion in population size) on basis of 10-year UKBMS population 

trends over different year ranges and the median, lower and upper 
quartile trend values across the periods

CR critically endangered (decrease ≥ 80%), EN endangered (decrease ≥ 50%), VU vulnerable (decrease ≥ 30%). These classifications do not rep-
resent the final outcomes of a full Red List process

2001–2010 2002–2011 2003–2012 2004–2013 2005–2014 2006–2015 Median Lower Qrt Upper Qrt

CR 2 4 5 5 2 2 2 6 1
EN 10 8 14 11 7 4 11 12 4
VU 6 3 10 4 7 7 5 7 3
Total 18 15 29 20 16 13 18 25 8

http://www.rothamsted.ac.uk/insect-survey
http://www.rothamsted.ac.uk/insect-survey
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assessed across five overlapping 10-year time periods 
(Online Resource 2). 109 species (25% of the total) had 
statistically significant 10-year population trends that met 
IUCN Criterion A2 thresholds for Red List threat catego-
ries (i.e. Critically Endangered ≥ 80% population decrease, 
Endangered ≥ 50% decrease or Vulnerable ≥ 30% decrease) 
in at least one of the five time periods. The remaining 322 
species (75% of the total) did not meet these conditions in 
any of the five 10-year periods. However, of the 109 species 
that qualified as threatened, only five (4.6%) did so in all five 
of the time periods; the remaining 104 moth species were 
variable, qualifying for the Red List in some time periods 
but not in others, despite the fact that the five time periods 
were offset by only one year in each case.

The number of moths qualifying under Criterion A2 var-
ied considerably between the time periods (Table 3). Most 
dramatically, the difference of a single year between period 
t-3 and t-4 reduced the number of qualifying species from 
62 (14% of the total number of species assessed) to just 20 
(5%).

While appropriate for use in this case study and for dem-
onstrating the variation in trend magnitude from year to year, 
it should be noted that this is a preliminary analysis of RIS 
data and the proportional change values over time for indi-
vidual species may differ when a more detailed analysis is 
carried out.

Discussion

The case studies using UK butterfly and macro-moth popu-
lation time series revealed large discrepancies between Cri-
terion A Red List classifications produced using trends that 
differed by just a single year. For individual species, the 
temporal patterns of Red List qualification might reflect gen-
uinely improving or deteriorating levels of extinction risk. 
On the other hand, and as indicated by the dynamic nature 
of many species population trends between years (Online 
Resources 1 and 2), patterns may be artefacts of process 

errors driven by environmental (particularly climatic) vari-
ability. Whatever the specific cause of the intra-species vari-
ation, the application of the 10-year rule, and specifically the 
requirement for the population trend to be measured over the 
most recent 10 years, leads, in our opinion, to a scientifically 
unacceptable dependency of the Red List classification out-
come on the year in which the process is undertaken.

The use and misuse of IUCN Red List criteria has been 
considered frequently in the literature (Eaton et al. 2005; 
Akçakaya et al. 2006; Collen et al. 2016), but the specific 
issue concerning the use of short-term (the most recent 
10 years or three generations) population trends to classify 
insect taxa under Criterion A has not been addressed. Many 
insect species naturally undergo highly variable and erratic 
population dynamics, due to environmental variation (Wil-
liams 1961) or density-dependence effects (Hanski 1990), 
and, as illustrated in the case studies using UK butterflies 
and moths, this may impact significantly on the Red List 
classifications.

Studies using vertebrate population data have concluded 
that longer time series can improve the assessment of extinc-
tion risk under Criterion A, and practitioners undertaking 
Red Listing of butterflies have highlighted the same issue 
(van Swaay et al. 2011; Maes et al. 2012). Indeed the current 
IUCN guidelines reflect this, suggesting that using data from 
a longer time period to fit a statistical model of population 
decline may be preferable for species that have widely fluc-
tuating or oscillating population dynamics (in Sect. 4.5.1, 
IUCN 2017). Nevertheless, the IUCN guidelines go on to 
stress that having fitted the model, the proportional decline 
should still be calculated over the most recent 10 years or 
three generations, as per the 10-year rule. In light of our 
results, we do not consider this guidance to be sufficient. It 
is optional, dependent on the availability of long-term data 
and relies on practitioners being familiar with the detailed 
IUCN guidance. Even if applied, the requirement to cal-
culate change over the most recent 10 years is unlikely to 
ameliorate the problem illustrated by our case studies, as 
high levels of inter-annual population variability within the 
10-year period are still likely to strongly skew trends and 
therefore Red List assessments. More fundamentally, the 
10-year rule remains the basis of IUCN Criterion A and can 
be used to determine the extinction risk of species without 
use of longer-term data. Our results, quantifying the impacts 
of 10-year trend start year on the number and identity of spe-
cies meeting Red List thresholds, suggest that this is inap-
propriate for UK butterflies and macro-moths and potentially 
for many other insect and invertebrate taxa around the world.

An obvious solution to the problem is to measure popula-
tion trends over a longer period of time rather than the last 
10 years. Linear trends over the 40 + year time series avail-
able for both UK butterflies and moths dampen the effects 
of annual variation, providing a more robust assessment of 

Table 3   Number of UK macro-moth species (of 431 species 
assessed) meeting Red List threat thresholds under IUCN Criterion 
A2 (reduction in population size) on the basis of preliminary 10-year 
RIS population trends representing the most recent 10-year period (t) 
and preceding 10-year periods each starting one year earlier than the 
previous (t-1, t-2, t-3, t-4). These classifications do not represent the 
final outcomes of a full Red List process

t t-1 t-2 t-3 t-4

Critically endangered 14 17 13 13 4
Endangered 27 24 35 37 11
Vulnerable 5 5 9 12 5
Total 46 46 57 62 20
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population change. From such long-term population trends, 
annual rates of change can be used to calculate a 10-year 
trend for each species that can be assessed against the IUCN 
Criterion A thresholds. The important distinction is that this 
is a population change measured over an average 10-year 
period of a longer time interval, rather than being measured 
over the most recent 10 years.

This approach brings other benefits too. IUCN guid-
ance explicitly warns against interpreting the downward 
phase of population cycles as a reduction under Criterion 
A (Sect. 4.5, IUCN 2017). While there are well-established 
cases of population periodicity in moths (e.g. Berryman 
1996; Johnson et al. 2006; Bell et al. 2012), for most spe-
cies it is unclear whether populations are truly cyclical or 
simply erratic, making it difficult to apply the IUCN guid-
ance. Trends derived from a long-term time series will be 
less prone to misinterpretation and misclassification caused 
by unrecognised population cyclicity. In addition, if prac-
titioners determine that only statistically significant popu-
lation trends should be used to assign species to Red List 
threat categories, trends calculated over just the most recent 
10 years are unlikely to attain significance, when populations 
are naturally variable, even if reductions (or increases) are 
very large, as a result of the small number of data points.

Despite all of these benefits, the key problem with adopt-
ing such an approach for Red Listing is that the IUCN guide-
lines are clear that Criterion A should represent the recent 
population trend of a taxon and not take account of histori-
cal declines. Indeed the 10-year rule is specifically there to 
ensure that species that have undergone major declines in the 
past, but are currently stable or recovering, are not classi-
fied as threatened under the IUCN Red List process (unless 
there is sufficient evidence of future threats to support a pro-
jected decline that meets threshold levels) (Sects. 5.4 and 
5.5, IUCN 2017).

As a compromise, which avoids the spurious variabil-
ity of the 10-year rule yet embraces the spirit of reflecting 
recent population decline, we propose a two-step process to 
the implementation of IUCN Criterion A with insect popula-
tion trends. First, long-term data are used to derive an aver-
age 10-year trend over the full time series, which is then 
assessed against the IUCN quantitative thresholds to produce 
a provisional threat classification for each species. Second, a 
population trend derived just from the last 10 years of data is 
calculated for each species and used to adjust the provisional 
threat classification using expert judgement. Thus, the threat 
status of species with a long-term population decline but 
recent stability or recovery would be downgraded, while that 
of species with both long-term and recent declines would be 
maintained, or even be increased if the recent trend shows an 
increasing rate of population reduction. As with all elements 
of the Red Listing process, it would be essential to document 

the basis for upgrading or downgrading the threat category 
of each species to ensure transparency.

An alternative approach to adjusting the classification 
produced by Criterion A was implemented by Maes et al. 
(2012) when applying the IUCN criteria to butterflies in 
Flanders (Belgium). They calculated 10-year rates of change 
(from occurrence rather than abundance data) and applied 
the IUCN Criterion A thresholds to produce an initial clas-
sification for each species. They then upgraded species by 
one Red List category if they had shown > 50% historical 
distribution decline over a longer time period (c.30 years).

The IUCN Red List process is an important force in bio-
diversity conservation and has been successfully applied at 
global, regional and national levels to a wide range of taxa, 
including insects and other invertebrates (Collen et al. 2012). 
This has been aided in recent years by the development of 
new statistical techniques to extract reliable trends from spe-
cies occurrence data (Isaac et al. 2014; Maes et al. 2015; 
Dennis et al. 2017). Long- and short-term temporal trends 
can now be derived from annual indices generated by occu-
pancy modelling (Burns et al. 2018) and could be used with 
Criterion A to facilitate Red List assessment of many more 
invertebrate taxa in many more countries and regions. To 
our knowledge, the sensitivity of occupancy trends to inter-
annual variability has not been examined and this should 
be a focus of further research prior to the use of such trends 
under the 10-year rule in Red List assessment for insects.

Robust population monitoring remains the gold standard, 
however, for measuring biodiversity change (Roy et al. 2007; 
Morecroft et al. 2009) and the geographical and taxonomic 
extent of such schemes for insects continues to expand (van 
Swaay et al. 2008; Carvell et al. 2018; Matechou et al. 2018). 
Where available, population monitoring data should be uti-
lised in Red List assessments, yet the natural variability 
of insect populations presents a dilemma for conservation 
practitioners in applying the Red List ‘10-year rule’. Given 
the variability illustrated here with case studies on UK but-
terfly and macro-moth populations, practitioners should be 
extremely wary of assigning extinction risk to insects based 
on only the last 10 years of population data as per IUCN 
Criterion A. Our examples suggest that longer time series of 
data are required to produce a robust assessment, but trends 
measured over a long time period are likely to be less indica-
tive of the current extinction risk of a species. While we 
have proposed one possible compromise solution to ame-
liorate this issue, and other practitioners may adopt other 
approaches, further consideration and advice from IUCN on 
the application of Criterion A for species with high process 
errors would be very welcome.
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