
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Asseng, S., Martre, P., Maiorano, A., Rotter, R. P., O'Leary, G. J., 

Fitzgerald, G. J., Girousse, C., Motzo, R., Giunta, F., Babar, M. A., 

Reynolds, M. P., Kheir, A. M. S., Thorburn, P. J., Ruane, A. C., Waha, K, 

Aggarwal, P. K., Ahmed, M., Balkovic, J., Basso, B., Biernath, C., Bindi, 

M., Cammarano, D., Challinor, A. J., De Sanctis, D., Dumont, B., Eyshi 

Rezaei, E., Fereres, E., Ferrise, R., Garcia-Vila, M., Gayler, S., Gao, Y., 

Horan, H., Hoggenboom, G., Izaurralde, R. C., Jabloun, M., Jones, C., 

Kassie, B. T., Kersebaum, K-C., Klein, C., Koehler, A-K., Liu, B., Minoli, 

S., San Martin, M. M., Muller, C., Kumar, S. N., Nendel, C., Olesen, J. E., 

Palosuo, T., Porter, J., Priesack, E., Ripoche, D., Semenov, M. A., 

Stöckle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Van der Velde, 

M., Wallach, D., Wang, E., Webber, H., Wolf, J., Xiao, L., Zhang, Z., 

Zhao, Z., Zhu, Y. and Ewert, F. 2019. Climate change impact and 

adaptation for wheat protein. Global Change Biology. 25 (1), pp. 155-173. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1111/gcb.14481

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8w888.

© 22 November 2018, Wiley.

10/04/2019 13:49 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1111/gcb.14481
https://repository.rothamsted.ac.uk/item/8w888
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


P R IMA R Y R E S E A R CH A R T I C L E

Climate change impact and adaptation for wheat protein

Senthold Asseng1 | Pierre Martre2 | Andrea Maiorano2,3 | Reimund P. Rötter4,5 |

Garry J. O’Leary6 | Glenn J. Fitzgerald7,8 | Christine Girousse9 | Rosella Motzo10 |

Francesco Giunta10 | M. Ali Babar11 | Matthew P. Reynolds12 | Ahmed M. S. Kheir13 |

Peter J. Thorburn14 | Katharina Waha14 | Alex C. Ruane15,* | Pramod K. Aggarwal16 |

Mukhtar Ahmed17,18 | Juraj Balkovič19,20 | Bruno Basso21,22 | Christian Biernath23 |

Marco Bindi24 | Davide Cammarano25 | Andrew J. Challinor26,27 |

Giacomo De Sanctis28,† | Benjamin Dumont29 | Ehsan Eyshi Rezaei30,31 |

Elias Fereres32 | Roberto Ferrise24 | Margarita Garcia‐Vila32 | Sebastian Gayler33 |

Yujing Gao1 | Heidi Horan14 | Gerrit Hoogenboom1,34 | R. César Izaurralde35,36 |

Mohamed Jabloun37 | Curtis D. Jones35 | Belay T. Kassie1 | Kurt-Christian

Kersebaum38 | Christian Klein39 | Ann‐Kristin Koehler26 | Bing Liu40,1 | Sara Minoli41 |

Manuel Montesino San Martin42 | Christoph Müller41 | Soora Naresh Kumar43 |

Claas Nendel38 | Jørgen Eivind Olesen37 | Taru Palosuo44 | John R. Porter42,45,46 |

Eckart Priesack39 | Dominique Ripoche47 | Mikhail A. Semenov48 | Claudio Stöckle17 |

Pierre Stratonovitch48 | Thilo Streck33 | Iwan Supit49 | Fulu Tao50,44 |

Marijn Van der Velde51 | Daniel Wallach52 | Enli Wang53 | Heidi Webber30,38 |

Joost Wolf54 | Liujun Xiao40 | Zhao Zhang55 | Zhigan Zhao56,53 | Yan Zhu40 |

Frank Ewert30,38

1Agricultural & Biological Engineering Department, University of Florida, Gainesville, Florida
2LEPSE, Université Montpellier INRA, Montpellier SupAgro, Montpellier, France
3Current Address: European Food Safety Authority, Parma, Italy
4Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany
5Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
6Department of Economic Development Jobs, Transport and Resources, Grains Innovation Park, Agriculture Victoria Research, Horsham, Victoria, Australia
7Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, Horsham, Victoria, Australia
8Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
9UMR GDEC, INRA, Université Clermont Auvergne, Clermont‐Ferrand, France
10Department of Agricultural Sciences, University of Sassari, Sassari, Italy
11World Food Crops Breeding, Department of Agronomy, IFAS, University of Florida, Gainesville, Florida
12CIMMYT Int, Mexico D.F, Mexico
13Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
14CSIRO Agriculture and Food, Brisbane, Queensland, Australia
15NASA Goddard Institute for Space Studies, New York, New York

*Authors from P.K.A. to Y.Z. are listed in alphabetical order.
†The views expressed in this paper are the views of the author and do not necessarily represent the views of the organization or institution to which he is currently affiliated.

Received: 9 April 2018 | Accepted: 6 September 2018

DOI: 10.1111/gcb.14481

Glob Change Biol. 2019;25:155–173. wileyonlinelibrary.com/journal/gcb © 2018 John Wiley & Sons Ltd | 155

https://orcid.org/0000-0002-7583-3811
https://orcid.org/0000-0002-7583-3811
https://orcid.org/0000-0002-7583-3811
https://orcid.org/0000-0002-8631-8639
https://orcid.org/0000-0002-8631-8639
https://orcid.org/0000-0002-8631-8639
https://orcid.org/0000-0003-2955-4931
https://orcid.org/0000-0003-2955-4931
https://orcid.org/0000-0003-2955-4931
https://orcid.org/0000-0003-2090-4616
https://orcid.org/0000-0003-2090-4616
https://orcid.org/0000-0003-2090-4616
https://orcid.org/0000-0003-0918-550X
https://orcid.org/0000-0003-0918-550X
https://orcid.org/0000-0003-0918-550X
https://orcid.org/0000-0002-3527-8091
https://orcid.org/0000-0002-3527-8091
https://orcid.org/0000-0002-3527-8091
https://orcid.org/0000-0002-4008-5964
https://orcid.org/0000-0002-4008-5964
https://orcid.org/0000-0002-4008-5964
https://orcid.org/0000-0001-8342-077X
https://orcid.org/0000-0001-8342-077X
https://orcid.org/0000-0001-8342-077X
https://orcid.org/0000-0001-8301-5424
https://orcid.org/0000-0001-8301-5424
https://orcid.org/0000-0001-8301-5424
https://orcid.org/0000-0002-1884-2404
https://orcid.org/0000-0002-1884-2404
https://orcid.org/0000-0002-1884-2404
http://www.wileyonlinelibrary.com/journal/GCB


16CGIAR Research Program on Climate Change, Agriculture and Food Security, BISA‐CIMMYT, New Delhi, India
17Biological Systems Engineering, Washington State University, Pullman, Washington
18Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
19International Institute for Applied Systems Analysis, Ecosystem Services and Management Program, Laxenburg, Austria
20Department of Soil Science, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
21Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan
22W.K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan
23Institute of Biochemical Plant Pathology, Helmholtz Zentrum München‐German Research Center for Environmental Health, Neuherberg, Germany
24Department of Agri‐food Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
25James Hutton Institute, Dundee, Scotland, UK
26Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
27Collaborative Research Program from CGIAR and Future Earth on Climate Change, Agriculture and Food Security (CCAFS), International Centre for Tropical

Agriculture (CIAT), Cali, Colombia
28GMO Unit, European Food Safety Authority, Parma, Italy
29Department Terra & AgroBioChem, Gembloux Agro‐Bio Tech, University of Liege, Gembloux, Belgium
30Institute of Crop Science and Resource Conservation INRES, University of Bonn, Bonn, Germany
31Department of Crop Sciences, University of Göttingen, Göttingen, Germany
32IAS‐CSIC, University of Cordoba, Cordoba, Spain
33Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
34Institute for Sustainable Food Systems, University of Florida, Gainesville, Florida
35Department of Geographical Sciences, University of Maryland, College Park, Maryland
36Texas A&M AgriLife Research and Extension Center, Texas A&M University, Temple, Texas
37Department of Agroecology, Aarhus University, Tjele, Denmark
38Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
39Institute of Biochemical Plant Pathology, Helmholtz Zentrum München‐German Research Center for Environmental Health, Neuherberg, Germany
40National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of

Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural

University, Nanjing, China
41Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
42Plant & Environment Sciences, University Copenhagen, Taastrup, Denmark
43Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, IARI PUSA, New Delhi, India
44Natural Resources Institute Finland (Luke), Helsinki, Finland
45Lincoln University, Lincoln, New Zealand
46Montpellier SupAgro, INRA, CIHEAM–IAMM, CIRAD, University Montpellier, Montpellier, France
47US AgroClim, INRA, Paris, France
48Rothamsted Research, Harpenden, UK
49Water & Food and Water Systems & Global Change Group, Wageningen University, Wageningen, The Netherlands
50Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China
51Joint Research Centre, European Commission, Ispra, Italy
52INRA UMR AGIR, Castanet‐Tolosan, France
53CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
54Plant Production Systems, Wageningen University, Wageningen, The Netherlands
55State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
56Department of Agronomy and Biotechnology, China Agricultural University, Beijing, China

Correspondence

Senthold Asseng, Agricultural & Biological

Engineering Department, University of

Florida, Gainesville, FL.

Email: sasseng@ufl.edu

Funding information

National Research Foundation for the

Doctoral Program of Higher Education of

China, Grant/Award Number:

20120097110042; International Food Policy

Abstract

Wheat grain protein concentration is an important determinant of wheat quality for

human nutrition that is often overlooked in efforts to improve crop production. We

tested and applied a 32‐multi‐model ensemble to simulate global wheat yield and

quality in a changing climate. Potential benefits of elevated atmospheric CO2 con-

centration by 2050 on global wheat grain and protein yield are likely to be negated

by impacts from rising temperature and changes in rainfall, but with considerable
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disparities between regions. Grain and protein yields are expected to be lower and

more variable in most low‐rainfall regions, with nitrogen availability limiting growth

stimulus from elevated CO2. Introducing genotypes adapted to warmer tempera-

tures (and also considering changes in CO2 and rainfall) could boost global wheat

yield by 7% and protein yield by 2%, but grain protein concentration would be

reduced by −1.1 percentage points, representing a relative change of −8.6%. Cli-

mate change adaptations that benefit grain yield are not always positive for grain

quality, putting additional pressure on global wheat production.

K E YWORD S

climate change adaptation, climate change impact, food security, grain protein, wheat

1 | INTRODUCTION

If current trends in human population growth and food consump-

tion continue (Bajželj et al., 2014), crop production must be

increased by 60% by mid‐century to meet food demands and

reduce hunger (Godfray et al., 2010), but climate change will make

this task more difficult (Olesen et al., 2011; Porter et al., 2014;

Waha et al., 2013; Wheeler & Von Braun, 2013). Crop models are

used to simulate crop growth and development from local up to

global scales to assist in climate change impact assessments (Chenu

et al., 2017) and to evaluate agricultural adaptation options (Ruiz‐
Ramos et al., 2017), for example, to investigate potential effects of

altering crop management, like sowing crops earlier or later in the

season (Porter et al., 2014) or growing cultivars with different crop

traits (Semenov & Stratonovitch, 2015; Tao, Rotter, et al., 2017). A

growing number of studies describe climate change impacts on

crop yield, but the impacts on the nutritional value of the crops

have received much less attention even though this is a critical

aspect of food security (Haddad et al., 2016). Grain protein concen-

tration, the ratio of grain protein amount to grain yield, is an

important characteristic affecting the nutritional quality but also the

end‐use value and baking properties of wheat flour (Shewry & Hal-

ford, 2002). Globally, wheat provides 20% of protein for humans

(Tilman, Balzer, Hill, & Befort, 2011). Grain protein concentration,

like yield, depends on a combination of factors such as the crop

genotype, soil, crop management, atmospheric CO2 concentration

and weather conditions (Triboi, Martre, Girousse, Ravel, & Triboi‐
Blondel, 2006; Wieser, Manderscheid, Erbs, & Weigel, 2008). Ele-

vated CO2 concentration alone can increase the total amount of

protein in grain (Broberg, Högy, & Pleijel, 2017), but reduces its

concentration (Broberg et al., 2017; Myers et al., 2014). Grain pro-

tein concentration increases with drought stress and higher temper-

atures as a result of reduced starch accumulation (Triboi et al.,

2006).

We aimed to systematically study the combined effects of

CO2, water, nitrogen (N) and temperature on wheat grain protein

concentration in a changing climate for the world's main wheat

producing regions as part of the Agricultural Model Intercompar-

ison and Improvement Project (AgMIP) (Rosenzweig et al., 2013).

This is the most comprehensive study ever done of the effect of

climate change on yield and the nutritional quality of one of the

three major sources of human food security and nutrition (the

others being rice and maize). We previously demonstrated that

large ensembles of wheat models accurately simulate wheat yield

under different environmental conditions, and especially under high

temperatures (Asseng et al., 2015). Here, we used a crop model

ensemble to estimate the impact of climate change and a poten-

tial adaptation to such changes on global grain protein. To see if

crop models can simulate the impact of climate change
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adequately, we first tested whether an ensemble of 32 different

wheat models could reproduce the effects of increased tempera-

ture, heat shocks, elevated atmospheric CO2 concentration, water

deficit and the combination of these factors on yield and particu-

larly on grain protein. As there have been many climate change

impact studies without adaptation and studies testing the sensitiv-

ity of hypothetical traits, here, we included a trait adaptation

option based on realistic traits from a wide range of field observa-

tions that justify the existence of unique heat stress tolerance

traits in wheat.

2 | MATERIALS AND METHODS

2.1 | Crop models

Thirty‐two wheat crop models (Supporting Information Table S1)

were compared within the Agricultural Model Intercomparison and

Improvement Project (AgMIP; www.agmip.org), using two data sets

from quality‐assessed field experiments (sentinel site data) and then

applied at representative locations across the world. 18 of these

models simulated grain protein. All model simulations were executed

by the individual modeling groups.

2.2 | Field experiments for model testing

Two field/chamber experiments (INRA, FACE Australia) were used

for model testing.

2.2.1 | INRA temperature experiment

The response of the winter wheat cultivar Récital to heat shocks

(i.e., 2–4 consecutive days with maximum air temperature of 38°C)

during the grain filling period was studied during three winter grow-

ing seasons at INRA Clermont‐Ferrand, France (45.8°N, 3.2°E, 329 m

elevation) (Majoul‐Haddad, Bancel, Martre, Triboi, & Branlard, 2013;

Triboi & Triboi‐Blondel, 2002). For details see Supporting Informa-

tion Data S1.

2.2.2 | FACE Australia experiment (CO2 ×
temperature ×water)

FACE data were obtained from selected treatments from a designed

experiment from Horsham, Australia (36.8°S, 142.1°E, 128 m eleva-

tion) (Supporting Information Table S3). Details presenting the exper-

imental design (Mollah, Rm, & Huzzey, 2009), the experimental data

(Fitzgerald et al., 2016), and modeling analyses (O'Leary et al., 2015)

have previously been published. Data were collated from one culti-

var (cv. Yitpi) under two water regimes (rain‐fed and supplemental

irrigation), two nitrogen fertilization regimes (53 or 138 kg N ha−1),

and two sowing dates to create two growing season temperature

environments for both daytime ambient (365 ppm) and elevated

(550 ppm) atmospheric CO2 concentrations. For details see Support-

ing Information Data S1.

2.3 | Field experiments for adaptation

Asseng et al. (2015) recently suggested a combination of delayed

anthesis with an increased grain filling rate as possible adaptation for

wheat to increased temperature. Such trait combination has never

been shown yet to exist in the current available genetic material.

Therefore, here we first explored a wide range of existing field

experiments. We selected field experiments where a number of culti-

vars were grown across different temperature environments to

search for the existence of such trait combination and if such culti-

vars are indeed better adapted to a warming climate, that is, these

cultivars yield higher than other cultivars under warmer conditions.

In these data sets, we looked for pairs of cultivars where one or

more had a delayed anthesis in a warmer environment combined

with an increased grain filling rate, and yielded higher in the warmer

environment than a control cultivar (without these traits). Only the

cultivar pairs which fulfilled these conditions are mentioned here.

Four field experiments were considered and included experiments

from Egypt, Italy, USA and CIMMYT. In each experiment, cultivars

were compared under growing environments with increasing temper-

atures (through delayed sowing or growing at warmer locations). The

Egypt experiment included three cultivars grown over 3 years under

full irrigation (and sufficient N) across four temperature environ-

ments along the River Nile with two sowing dates. The Italy experi-

ment included two cultivars grown over 2 years under full irrigation

(and sufficient N) at one location with two sowing dates. In the Italy

experiment, the same experiment was repeated with N limitations.

The USA experiment included four cultivars (three cultivars were

used as a control) grown for 1 year under full irrigation (and suffi-

cient N) across 11 temperature environments along a transect in the

south‐east US with one sowing date. The CIMMYT experiment

included data from the International Heat Stress Genotype Experi-

ment (IHSGE) (Reynolds, Balota, Delgado, Amani, & Fischer, 1994),

with two cultivars grown over 2 years under full irrigation (and suffi-

cient N) across six temperature environments (experiments in differ-

ent countries) with two sowing dates. For details see Supporting

Information Data S1.

2.4 | Global impact assessment

The two main scaling methods most commonly used in climate

change impact assessment studies are sampling and aggregation

(Ewert et al., 2011, 2015). In sampling, the simulated points are

assumed to represent an area (van Bussel et al., 2016, 2015), while

in aggregation, an area is simulated with grid cells (Porwollik et al.,

2017) or polygons assuming a grid cell (or polygon) is equal to a

point. Each method differs in uncertainties with respect to input

information (high in gridded simulation (Anderson, You, Wood,

Wood‐Sichra, & WU WB, 2015), less in sampling as true point data

are used) and representation of heterogeneity (high in gridded simu-

lation, less in sampling which however depends on the sampling

strategy (Zhao et al., 2016). We have chosen stratified sampling, a

guided sampling method which improves the scaling quality (van
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Bussel et al., 2016), with several points per wheat mega region

(Gbegbelegbe et al., 2017). During the upscaling, a simulation result

of a location was weighted by the production a location represents

(Asseng et al., 2015). Liu et al. (2016) recently showed that stratified

sampling and weighted by the production with thirty locations across

wheat mega regions resulted at country and global scale in similar

temperature impact and uncertainty as aggregation of simulated grid

cells. The uncertainty due to sampling decreases with increasing

number of sampling points (Zhao et al., 2016). We therefore doubled

the thirty locations from Asseng et al. (2015) to sixty locations (Fig-

ure 1; Supporting Information Table S4) covering contrasting condi-

tions across all wheat mega regions. All models provided simulations

for thirty high‐rainfall or irrigated wheat‐growing locations (Locations

1–30, simulated with no water or nitrogen limitations), representing

about 68% of current global wheat production and thirty low‐rainfall
wheat‐growing locations with wheat yields below 4 t DM ha‐1 (Loca-

tions 31–60), representing about 32% of current global wheat pro-

duction (Reynolds & Braun, 2013). Each location represents an

important wheat‐growing area worldwide (Figure 1).

Additional details about the locations 1–30 can be found in

(Asseng et al., 2015). In contrast to the high‐rainfall locations 1–30,
soil types and N management vary among the low‐rainfall locations
31–60 (Supporting Information Figures S1–4). For details see Sup-

porting Information Data S1.

2.5 | Climate scenarios

There were two steps in global impact simulations. In step 1, six sce-

narios were simulated for the sixty global locations and 30 years of

climate. The six climate scenarios had a baseline climate (1981–
2010) or baseline climate with main daily temperature increased by

2 or 4°C, crossed with two atmospheric CO2 concentrations, 360

and 550 ppm (Table 1).

The baseline (1980–2010) climate data are from the AgMERRA

climate dataset (Ruane, Goldberg, & Chryssanthacopoulos, 2015),

which combines observations, data assimilation models, and satellite

data products to provide daily maximum and minimum temperatures,

solar radiation, precipitation, wind speed, vapor pressure, dew point

temperatures, and relative humidity corresponding to the maximum

temperature time of day for each location. These data correspond to

carbon dioxide concentration ([CO2]) of 360 ppm. The Baseline

+2°C and Baseline +4°C scenarios were created by adjusting each

day's maximum and minimum temperatures upward by that amount

and then adjusting vapor pressure and related parameters to main-

tain the original relative humidity at the maximum temperature time

of day. Observations and projections of climate change indicate that

relative humidity is relatively stable even as this implies increases in

specific humidity as temperatures increase (commensurate with the

Clausius‐Clapeyron equation; [Allen & Ingram, 2002]).

In a second step, wheat production in the sixty global locations

was simulated under a climate change scenario corresponding to rel-

atively high emissions for the middle of the 21st century (RCP8.5 for

2040–2069, using 571 ppm [CO2] at 2055 from RCP8.5). Projections

were taken from five global climate models (GCMs) (HadGEM2‐ES,
MIROC5, MPI‐ESM‐MR, GFDL‐CM3, GISS‐E2‐R), with historical con-

ditions modified to reflect projected changes in mean temperatures

and precipitation along with shifts in the standard deviation of daily

temperatures and the number of rainy days (Supporting Information

Figures S7–8). These scenarios were created using the “Enhanced

Delta Method” (Ruane, Winter, Mcdermid, & Hudson, 2015), and

GCMs were selected to include models with relatively large and rela-

tively small global sensitivity to the greenhouse gases that drive

F IGURE 1 The thirty locations representing high‐rainfall and irrigated wheat regions (blue) and thirty locations representing low‐rainfall/
low‐input regions (red) of the world used in this study. Wheat area from (Monfreda, Ramankutty, & Foley, 2008)
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climate changes to account for the uncertainty of the fifth coupled

model intercomparison project (CMIP5) GCMs ensemble (Ruane &

McDermid, 2017).

Each scenario was examined with current management as well as

under one possible trait adaptation, a cultivar combining delayed

anthesis and an increased potential grain filling rate. Therefore, there

were 11 treatments and each was simulated for 30 years at each of

the sixty locations.

To consider the diversity of model approaches of the 32 participat-

ing wheat models and allow all modelers to incorporate their models, we

proposed a simple but still physiological‐based trait combination. The

proposed traits were simulated in full combination only, to quantify the

impact of such a trait combination. The aim of this study was not to ana-

lyze the contribution of various individual traits, nor to explore the full

range of traits that could possibly assist in an adaptation strategy.

The proposed simple trait combination to minimize the impact of

future increased temperatures on global yield production included

(Supporting Information Table S6):

1. Delay anthesis by about 2 weeks under the Baseline scenario via

increased temperature sum requirement, photoperiod sensitivity,

or vernalization requirement. No change in the temperature

requirement for grain filling duration was considered.

2. Increase in rate (in amount per day) of potential grain filling by

20% (escape strategy).

2.5.1 | Testing the climate change response of
models without N dynamics

Simulation results from all 32 models were used in the grain yield

impact analysis. When analyzing the impacts on grain protein yield

and protein concentration, only 18 crop models were used that had

routines to simulate crop N dynamics leading to grain protein and

had been previously tested with field measurements. The yield distri-

butions and yield impacts simulated with the 32 models and the 18

models used in protein analysis were similar (Supporting Information

Figures S10–11).
We also applied the Kolmogorov–Smirnov two‐sample test to

test the differences in the distributions of simulated yield impacts

from the 18 models (used in the protein analysis) and the 32 models.

The distributions of climate change impacts on grain yields were dif-

ferent for the two multi‐model ensembles for the climate change

scenarios with genetic adaptation, but not without the genetic adap-

tion and for the trait effect (Supporting Information Table S7).

2.5.2 | Aggregation of local climate change to
global wheat production impacts

Before aggregating local impacts at sixty locations to global impacts

(Figure 1), we determined the actual production represented by each

location. The total wheat production for each country came from

FAO country wheat production statistics for 2014 (www.fao.org). For

each country, wheat production was classified into three categories

(i.e., high rainfall, irrigated, and low rainfall). The ration for each cate-

gory was quantified based on the Spatial Production Allocation

Model (SPAM) dataset (https://harvestchoice.org/products/data). For

some countries where no data were available through the SPAM

dataset, we estimated the ratio for each category based on the coun-

try‐level yield from FAO country wheat production statistics. The

high‐rainfall production and irrigated production in each country

were represented by the nearest high‐rainfall and irrigated locations

(Location 1–30). Low‐rainfall production in each country was repre-

sented by the nearest low‐rainfall locations (Location 31–60).
The global wheat grain and protein production impact was calcu-

lated using the following steps:

1. Calculate the relative simulated mean yield (or protein yield)

impact for climate change scenarios for 30 years (1981–2010)
per single model at each location.

2. Calculate the median across 32 models (or 18 in case of protein

simulations) and five GCMs per location (multi‐model [CMs and

GCMs] ensemble median). Note that CMs and GCMs simulation

results were kept separate only for calculating the separate CM

and GCM uncertainties (expressed as range between 25th and

75th percentiles).

3. Calculate the absolute regional production loss by multiplying the

relative yield (or protein yield) loss from the multi‐model ensem-

ble median with the production represented at each location (us-

ing FAO country wheat production statistics of 2014 from

www.fao.org, the latest reported yield statistics available at the

time of the study). Calculate separately for high‐rainfall/irrigated
and low‐input rainfed production. This assumes that the selected

simulated location is representative of the entire wheat‐growing

region surrounding this location.

TABLE 1 Outline of the baseline and climate change scenarios
simulated in this study

Period Scenario/GCM CO2 (ppm) Adaptation

1981–2010 Baseline 360 None

1981–2010 Baseline 360 2‐traits combination

1981–2010 Baseline +2°C 360 None

1981–2010 Baseline +4°C 360 None

1981–2010 Baseline 550 None

1981–2010 Baseline +2°C 550 None

1981–2010 Baseline +4°C 550 None

2040–2069 HadGEM2‐ES 571 None

2040–2069 MIROC5 571 None

2040–2069 MPI‐ESM‐MR 571 None

2040–2069 GFDL‐CM3 571 None

2040–2069 GISS‐E2‐R 571 None

2040–2069 HadGEM2‐ES 571 2‐traits combination

2040–2069 MIROC5 571 2‐traits combination

2040–2069 MPI‐ESM‐MR 571 2‐traits combination

2040–2069 GFDL‐CM3 571 2‐traits combination

2040–2069 GISS‐E2‐R 571 2‐traits combination
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4. Add all regional production losses to the total global loss.

5. Calculate the relative change in global production (i.e., global pro-

duction loss divided by current global production).

6. Repeat the above steps for the 25th and 75th percentile relative

global yield (or protein yield) impact from the 32 (or 18 in case

of protein simulations) model ensemble.

The 18‐model ensemble used for protein simulations simulated

similar yield impacts compared to the 32‐model ensemble (Support-

ing Information Table S7), but small yield differences between the

two ensembles made it necessary to normalize the simulated impacts

from the two ensembles for the calculation of impacts on grain pro-

tein concentration. The reported impacts on grain protein concentra-

tion are therefore the normalized numbers. The 32‐model ensemble

yield impacts and the simulated 18‐model ensemble relative grain

protein yield impacts are directly reported (i.e., without this normaliz-

ing). The calculation of changes in grain protein concentration is

shown with equations below.

Yield change (yc), due to climate change or the introduction of a

trait, was calculated as:?A3B2 tptxt=+-2pt?>

yC ¼ ~yð32Þfuture=~y
ð32Þ
baseline (1)

where ~yð32Þfuture and ~yð32Þbaseline are respectively future (with or without

adaptation) and Baseline yield as simulated by the median of 32

models. Grain protein yield change (pc) is calculated as:

pC ¼ ~pð18Þfuture=~p
ð18Þ
baseline (2)

where ~pð18Þfuture and ~pð18Þbaselines are respectively future (with or without

adaptation) and baseline protein yield as simulated by the median of

18 models.

Impact on grain protein concentration uses global mean grain

yield in 2014 as a baseline, reported as 3.31 t DM ha−1 (FAO, ) and

a mean grain protein percentage of 13% (based on dry matter grain

weight), which is a weighted average of the simulated results. While

there are no global statistics on grain protein, the simulated global

grain protein concentration appears reasonable, considering the pro-

tein content in the USDA World Wheat Collection has been

reported to range from 7% to 22% of the dry weight (Vogel, John-

son, & Mattern, 1976), but generally varies from about 10%–15% of

the dry weight for wheat cultivars grown under field conditions

(Shewry & Hey, 2015). Observed grain protein content in temperate

regions, like the Netherlands has been reported to range from 10%

to 15% (Asseng, Keulen, & Stol, 2000)). An average of 13.2% (rang-

ing from 10.5% to 16.3%) grain protein concentration has been

reported across 330 wheat varieties from China grown during 2010–
2011 (Yang, Wu, Zhu, Ren, & Liu, 2014) and an average of 13.4%

was reported across wheat fields in Finland during 1988–2012 (Pel-

tonen‐Sainio, Salo, Jauhiainen, Lehtonen, & Sievilainen, 2015).

In the simulated weighted average, the mean of the high‐rainfall/
irrigated locations 1–30 has a weight of about 2/3, and the mean of

the low‐rainfall/low‐input locations 31–60 has a weight of about 1/3,

according to their contribution to global production. The impact on

grain protein concentration (ΔGP%) was calculated as follows:

ΔGP% ¼ pC � 3:31� 0:13
yC � 3:31

� 3:31� 0:13
3:31

¼ 0:13
pC
yC

� 1

� �
(3)

This results in a change in grain protein concentration of −0.59

percentage point when using the changes in grain yield from 32 crop

models as used in the analysis. Alternatively, using the changes in

yield from the 18 crop models would result in a change in grain pro-

tein concentration of −0.36 percentage point (not used here).

3 | RESULTS

3.1 | Model testing

Results of crop model simulatiosns were compared to observations

from outdoor chamber and free‐air CO2 enrichment (FACE) experi-

ments with increased temperature, heat shocks, and elevated CO2

combined with increased temperature and drought stress. A statisti-

cal analysis on model ensemble performance for grain yield, grain

protein yield and grain protein content is given in Table S4, showing

RMSE for yield from 0.4 to 1.9 t/ha, with reasonable skill (EF) to sim-

ulate the variability for observed yield. RMSE for protein concentra-

tion ranged from 0.8% to 3.2% with poor skill due to the low

variability in the observed protein concentration data (Table S4).

Median predictions from this multi‐model ensemble reproduced

observed grain yields well including those affected by heat shock,

high temperature or elevated CO2 concentration (Figure 2a‐c). Con-
tinuous high temperature conditions during the grain filling period

(the period when the grain grows) reduced observed and simulated

biomass growth and yield more than a 4‐day heat shock, applied at

different times during the same growth period, but elevated CO2

increased biomass growth and yield in the observations and simula-

tions. In addition, changes in grain protein yield and protein concen-

trations were captured well (i.e., similar response in simulations and

observations) even under conditions where effects of temperature

interacted with effects of CO2 concentration and water (Figure 2d‐i).
The multi‐model ensemble median and at least 50% of the simula-

tion results for growth dynamics, final grain and protein yield, and

protein concentration were generally within the uncertainty intervals

of the measurements (Figure 2).

3.2 | Observed adaptation traits for climate change

Using datasets from observed field experiments (not simulations) at

different locations in the world (in USA, Mexico, Egypt, Sudan and

Italy), we found in these observations that existing genotypes with a

trait of an extended growing period to delay anthesis (also called

flowering), combined with a trait with a higher rate of grain filling

(i.e., potential grain filling rate which is met when assimilates are

available from photosynthesis and/or remobilization), are effective in

countering some of the yield declines occurring in non‐adapted culti-

vars when grown in warmer locations or during a warmer part of a

season (Figure 3a). Other cultivars which had a delayed anthesis but

not an increase grain filling rate (not shown here), did not yield
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higher than the non‐adapted cultivars. For some locations, where

observed grain protein data were available, the combination of

delayed anthesis and higher rate of grain filling traits also increased

grain protein yield in one cultivar compared to another cultivar (but

for several cultivar pairs) when grown under warmer growing

conditions, although these traits were not fully expressed under

cooler conditions (Figure 3b).

Observed grain and protein yield increased with this trait combi-

nation in warmer climates, but not when N supply was limited

(Figure 4).

F IGURE 2 Measurements and multi‐model simulations of total aboveground wheat biomass, grain yield, grain protein yield and grain
protein concentration for wheat treated with heat shocks, higher temperature, elevated atmospheric CO2 concentration, and different sowing
times or irrigation. (a, b and c) Total aboveground biomass (circles, continuous lines) and grain yields (triangles, dashed lines) for wheat for
three different experiments grown in control conditions or with (a) heat shocks of 38°C for 4 hr on 4 consecutive days during grain filling; (b)
continuous +10°C/+5°C (day/night) temperature increase during endosperm cell division/early grain filling; and (c) elevated CO2 (550 ppm).
Multi‐model ensemble medians (lines) and 25th to 75th percentile intervals (shaded areas) based on 32 simulation models are shown. Symbols
indicate medians and error bars the 25th to 75th percentile intervals of measurements. (d to i) Percent changes in grain yield (d and g) and
protein yields (e and h) and absolute changes in grain protein concentration (f and i) in response to chronic high temperature or heat shocks at
different developmental stages (d, e and f) and different combinations of atmospheric CO2 concentration, drought and sowing dates (g, h and
i). Data are medians of measured or simulated changes and error bars show 25th to 75th percentile intervals. In all panels, simulations are the
median of the 32 (grain yield) or 18 (grain protein) wheat model ensembles
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However, the relative change in observed grain yield was posi-

tively correlated with the change in grain protein concentration,

even under limited nitrogen supply (Figure 5).

3.3 | Global climate change impact

Availing of a robust predictor with a multi‐model ensemble (Fig-

ure 2) and evidence from field experiments for the existence for

traits to counteract detrimental effects from raising temperature

on crops (Figures 3–5), we assessed with crop models what

impact climate change would have on overall wheat grain and

protein yield and on protein concentration at other locations

and globally (Figure 1). The 32 tested crop models were applied

with five bias‐corrected global climate models (GCMs) for the

representative concentration pathway 8.5 (RCP8.5) for the

2050 s. The multi‐model median (crop models plus GCMs) impact

of climate change and the variation across crop models and

GCMs is shown for sixty locations around the globe representing

major wheat producing regions and climate zones (Figure 6). In

general, low‐ and mid‐latitude locations show negative yield

impacts from climate change, while high‐latitude locations show

some positive yield impacts. Negative impacts on protein yields

were predicted at many locations, including high‐latitude loca-

tions (Figure 6a).

F IGURE 3 Comparison of the relative
performance of measured wheat
genotypes with or without both delayed
anthesis and accelerated grain filling traits
grown under field conditions at different
temperatures. Changes in measured grain
yield (a and b), grain protein yield (c and d),
and grain protein concentration (e and f)
vs. changes in traits. Symbol colors indicate
mean temperatures during the growing
season (from sowing to maturity) at each
location in increasing order from deep
blue, light blue, to red. The advanced
wheat lines VA12W‐72 and GA06493–
13LE6 were compared to the standard
cultivars AGS2000, Jamestown, and
USG3120 in experiments at 10 locations in
the United States. Mean values for
AGS2000, Jamestown and USG3120 were
used as the control to calculate changes in
yield and protein. The modern cultivar
Bacanora 88 and the standard cultivar
Debeira were grown at one location in
Mexico over two consecutive seasons, and
at one location in Egypt and one in Sudan
both for one season. The cultivars Creso
and Claudio were grown at one location in
Italy for two consecutive growing seasons.
The modern elite cultivars Misr1 and Misr2
and the standard cultivar Sakha93 were
grown at four locations in Egypt. Grain
protein data were available for Italy and
Egypt experiments only. Solid lines are
standardized major axis regressions (all
p < 0.001)
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3.4 | Effect of adaptation

The field‐identified trait combination of delayed anthesis and

increased grain filling rate was introduced into the crop models (Sup-

porting Information Table S6). Simulated yields did not improve in

many of the low‐rainfall/low‐input locations due to a combination of

terminal drought and N limitation (Figure 4). Protein yields that

increased with the introduced trait combination were negatively

affected by climate change for many locations, including those at

high latitudes (Figure 6). But grain yields were improved in most

locations with the trait combination of delayed anthesis and

increased grain filling rate (Figure 6b).

The impact of climate change on grain protein concentration,

which varies with both grain yield and protein yield, was more

variable. Grain protein concentration varied between growing sea-

sons and locations as did the response to climate change and the

impact of the adapted trait combination (Figure 7). While the

combined impact of increased temperature, elevated CO2 concen-

tration, and change in rainfall for RCP8.5 indicates that grain yield

would increase for many seasons and locations, protein yield

increase would not keep pace. This would result in a reduction in

grain protein concentration for many situations (Figure 7). How-

ever, climate change and the adapted trait combination could lead

to an increase in grain protein concentration for low‐rainfall loca-
tions, particularly for those locations where yield is projected to

decline (Figure 7).

We scaled the simulated impacts up from fields to globe by

weighting each location with reported country wheat production

data. Despite the stimulating effect of elevated CO2 on crop growth,

global wheat production would only increase by 2.8% (−7.4 to

+14.0%, 25th to 75th percentile range combining crop model and

GCM uncertainty) by 2050 under RCP8.5. Most of the gains from

elevated CO2 on crop growth will be lost due to increasing

temperature. Simultaneously introducing the trait combination of

delayed anthesis and increased grain filling rate could increase global

yield to 9.6% (−7.8% to 27.0%) by 2050, with the impact from traits

being 6.8%.

The growth stimulus from a 100‐ppm increase in atmospheric

CO2 concentration is lost with an increase of about 2°C (increase of

1.0 to 4.2°C, 25th to 75th percentile range of crop model uncer-

tainty) according to the simulated multi‐model ensemble median (Fig-

ure 8).

However, when N limited growth, as is common for low‐rainfall
environments with low‐fertilizer inputs, the growth stimulus was

reduced. The multi‐model ensemble median, averaged over 30 years,

shows a CO2 effect of 8.4% global yield increase (5.7% to 12.8% for

50% of crop models, weighted by production) per 100 ppm increase

in CO2 (Figure 8). Protein yields were estimated to change by −1.9%

(−9.6% to +5.5% change, 25th to 75th percentile range combining

crop model and GCM uncertainty) at the global scale with climate

change, with many regions expected to be affected. Crop models

account for a dilution of crop N and grain protein concentration at

elevated CO2 concentration (Figure 9). When the trait combination

of delayed anthesis and increased grain filling was introduced, simu-

lated global protein yield changed to −0.2% (−12.1% to +12.0%

change) by 2050, with the impact from traits being 1.7%. Similarly,

while extremely variable between locations and seasons (Figure 7),

protein concentration is estimated to change by −0.6 percentage

points, representing a relative change of −4.6% (−0.3% to −1.0%

points, representing a relative change of −2.4% to −7.5%) by 2050

at the global scale. Greater losses in protein concentration would

occur in many regions and seasons, amounting to −1.1 percentage

points, representing a relative change of −8.6% (−0.6% to −1.5%

points, representing a relative change of −4.7% to −11.8%), with the

impact from traits being −0.5% points, representing a relative change

of −4.1%.

(a) (b)

(c) (d) F IGURE 4 Comparison of cultivars with
delayed anthesis and accelerated grain
filling rate to standard cultivars in different
temperature environments in Italy with
limited nitrogen (60 kg N ha‐1).
Relationship of observed (a and b) grain
yield and (c and d) protein yield to (a and
c) anthesis and (b and d) to grain filling
rate. Green (<13°C), dark red (13 to 15°C)
and red (> 15°C)
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3.5 | Impact uncertainty

For the simulated impact estimates, the share of uncertainty from

crop models was often larger than from the five bias‐corrected
GCMs (Supporting Information Figure S12). Uncertainties tended to

increase with adaptation and were larger for impact estimates for

protein yield than for grain yield. The largest crop model uncertain-

ties were for low‐ and mid‐latitude areas (Supporting Information

Figure S12).

4 | DISCUSSION

4.1 | Model testing

Median predictions from this multi‐model ensemble reproduced

observed grain yields well, consistent with other multi‐model

ensemble studies (Asseng et al., 2013; Bassu et al., 2014; Li et al.,

2015; Martre et al., 2015), but here including those affected by

heat shock, high temperature and elevated CO2 concentration, a

critical pre‐request for simulating climate change impacts. Heat

shock and high temperature interaction with elevated CO2 con-

centration have never been tested with any impact model before.

Multi‐model ensemble simulations were recently compared with

historical yields and showed that simulated yield impacts from

temperature increase were similar to statistical temperature yield

impact trends based on historical sub‐country, country, and global

yield records (Liu et al., 2016). This result suggests that interac-

tions between climate and crop models can be insensitive to the

methods chosen; thus, further supporting the use of the state‐of‐
the‐art multi‐model ensembles such as the one used for this

study.

Grain protein concentration is suggested by the simulation to

decline globally by −1.1% points, representing a relative change of

−8.6%, due to the simulated yield increase (for most locations) from

elevated atmospheric CO2 and the yield‐improving trait adaptation.

Attributing changes in observed protein trends is often hindered by

many confounding factors in the field. For example, a study across

fields in Finland from 1988 to 2012 showed a decline in grain pro-

tein concentration over this period of up to −0.7 grain protein %

during the last third of this period (Peltonen‐Sainio et al., 2015).

Some of this declined has been attributed to plant breeding for

higher yields and a declining response over time of grain protein

concentration to N fertilizer (Peltonen‐Sainio et al., 2015). In con-

trast, despite yield increases (by 51%) with variety releases since

1968 in North Dakota, USA, grain protein concentration has not

changed during this time (Underdahl, Mergoum, Schatz, & Ransom,

2008).

Depending on the target market, required protein concentrations

vary from 8% for pastries to >14% for pasta and bread, farmers

grow specific wheat categories for specific markets. In addition,

farmers might also attempt to manage N applications toward protein

outcomes, but their effectiveness is often hampered by in‐season
variability in growing conditions (Asseng & Milroy, 2006). Recent

trends in N fertilizer application (total amount of N fertilizer applied

in agriculture) in the 20 major wheat producing countries, including

China, India, Russia, USA and several European countries have

leveled off or even declined like in France and Germany (FAO, 2018)

and might further reduce wheat grain protein concentrations in the

future.

F IGURE 5 Comparison of wheat genotypes with delayed
anthesis and accelerated grain filling rate compared to standard
genotypes grown in the field in different temperature environments.
Relative change in measured grain protein yield (a) and absolute
change in grain protein concentration (b) against the relative change
in grain yield. Symbol colors refer to mean temperature during
growing season (planting to maturity) in increasing order from deep
blue, light blue, to red for average temperatures at each location.
The cv. Creso and the cv. Claudio were grown at one location in
Italy for two consecutive growing seasons, and the modern elite
cultivars Misr1 and Misr2 and the standard cultivar Sakha93 were
grown at four locations in Egypt. Dashed line is 1:1 and solid lines
are standardized major axis regressions
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4.2 | Adaptation traits for climate change

Rising temperatures are the main driver of projected negative cli-

mate change impacts on wheat yields (Porter et al., 2014). The

shortening of the growing period (the time from sowing to matu-

rity) with increasing temperatures has been identified as the main

yield‐reducing factor in another study, but not implemented

(Asseng et al., 2015). In a warmer climate, the growing period is

shorter so there is less time to intercept light for photosynthesis

resulting in less biomass accumulation and lower yields. To adapt

crops to a warmer climate, the growing period could be extended

by delaying anthesis. However, grain filling generally occurs during

the relatively hot period of the season in most wheat‐growing

regions (Asseng, Foster, & Turner, 2011), so yield might be reduced

due to the negative effect of even higher temperatures on the sen-

sitive processes of grain set (time when the number of grains is

F IGURE 6 Simulated multi‐model ensemble projection under climate change of global wheat grain yield (left half) and protein yield (right
half), (a) without genotypic adaptation and (b) with genotypic adaptation. Relative climate change impacts for 2036–2065 under RCP8.5
compared with the 1981–2010 baseline. Impacts were calculated using the medians across 32 models (or 18 for protein yield estimates) and
five GCMs (circle color) and the average over 30 years of yields using region‐specific soils, cultivars, and crop management
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set) and grain filling. Therefore, combining traits for delayed anthe-

sis and higher rate of grain filling, as shown in our study, is an

effective adaptation strategy for yield. While grain and protein yield

increased with the newly introduced trait combination in warmer

climates, grain protein concentration still declined in some cases

when other growth restricting factors such as limited N supply also

suppressed expression of these traits in a warmer climate. Applying

additional N fertilizer application might not be a simple solution for

climate change adaptation as major wheat‐producing countries,

such as France have been reducing N fertilizer application rates

since the late 1980 s (Brisson et al., 2010).

A key message from our study is that, our results suggest that

the combination of two simple traits through breeding can be used

to overcome the antagonism between grain yield and grain protein

concentration. That antagonism has continuously reduced the nutri-

tional and end‐use value of wheat since the “green revolution” in the

1960 s with strongly increasing grain yields through the introduction

of semidwarf genotypes combined with irrigation and fertilizers (Tri-

boi et al., 2006). The field‐observed positive correlation in field

experiments between grain yield and protein concentration could be

due to an increase in crop N accumulation at anthesis related to the

extended duration of the vegetative phase and a more efficient

translocation to grains during grain filling. But, it could also be due

to a higher nitrogen remobilization rate and earlier leaf senescence.

Hence, there is a need to improve the understanding of the physio-

logical basis for the field‐based observed positive correlation

F IGURE 7 Multi‐model impact of climate change with and without cultivar adaptation on the relationship between grain yield and protein
concentration. Projections of annual wheat grain yield and grain protein concentration are shown for baseline period 1981–2010 (black) for
RCP8.5 climate change impact in 2036–2065 with current cultivars (orange) or with genetic adaptation, that is, combined delayed anthesis
with increased rate of grain filling (cyan) for 30 individual years across sixty locations using region‐specific soils, cultivars and crop
management. (a) Grain yield vs. grain protein concentration for individual years and locations. Medians across GCMs and 18 crop models are
plotted. The ellipses capture 95% confidence levels of data in each treatment. Distributions of values for grain protein concentration (b) and
grain yield (c) for thirty low‐rainfall locations (dashed lines) and thirty high‐rainfall or irrigated locations (solid lines). (d) Absolute changes in
crop model ensemble medians for grain yield vs. grain protein concentration
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between grain yield and protein concentration through new targeted

field experiments.

4.3 | Global climate change impact

While field experiments are critical for developing and testing

hypotheses, these are limited to just a few sites and seasons. The

application of a multi‐model ensemble, combined with evidence from

field experiments for the existence for traits to counteract detrimen-

tal effects from raising temperature on crops, enabled us to assess

what impact climate change would have on overall wheat grain and

protein yield and on protein concentration at other locations and

globally. By applying the 32 tested crop models with five bias‐cor-
rected global climate models (GCMs), we covered a wide range of

available GCM outputs (McSweeney & Jones, 2016). The chosen

representative concentration pathway 8.5 (RCP8.5) for the 2050 s is

a high greenhouse gas concentration scenario with emissions con-

tinue to increase at current rates. Low‐ and mid‐latitude locations

show mostly negative yield impacts from climate change, while high‐
latitude locations show some positive yield impacts, consistent with

other global studies and other crops (Rosenzweig et al., 2014), but

F IGURE 8 Simulated impacts of increasing temperature on global
wheat grain production with 100 ppm increase in atmospheric CO2

concentration. Relative grain yield impacts were calculated from
simulated impacts of 550 ppm vs. 360 ppm CO2 (linearly
interpolated) and weighted by production. Center line shows crop
model ensemble median of 32 crop models and mean of 30 years
using region‐specific soils, cultivars, and crop management. The
shaded area indicates the 25th percentile and 75th percentile across
crop models. Dashed lines are linear extensions to +5°C beyond
simulated temperature range impacts. Equations show linear
regression for before and after cross‐point at 2°C

F IGURE 9 Simulated response to elevated CO2. In (a) relative
crop N response vs. relative crop biomass response to elevated CO2.
In (b) relative protein yield response vs. relative grain yield response
to elevated CO2. In (c) relative grain protein concentration response
vs. relative grain yield response to elevated CO2. Data are multi‐
model (18 models) ensemble median for 30 individual years during
baseline period (1981–2010) across sixty global locations with
360 ppm (baseline) and 550 ppm (elevated) CO2
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negative impacts on protein yields were predicted at many locations,

including high‐latitude locations.

4.4 | Effect of adaptation

The combined impact of increased temperature, elevated CO2 con-

centration, and change in rainfall for RCP8.5 indicates that grain

yield would increase for many seasons and locations, but protein

yield increase would not keep pace and would result in a reduction

in grain protein concentration for many situations. However, climate

change and the adapted trait combination could lead to an increase

in grain protein concentration for low‐rainfall locations, particularly
for those locations where yield is projected to decline.

Most of the gains from elevated CO2 on crop growth will be lost

due to increasing temperature consistent with other simulation and

field experimental studies (Asseng et al., 2015; Wheeler, Batts, Ellis,

Hadley, & Morison, 1996). Simultaneously introducing the trait com-

bination of delayed anthesis and increased grain filling rate could

increase global yield. About a third of the impact on grain yields

(2.1%) from this trait combination could be achieved globally by

introducing the adaptation in the baseline climate, although yield

would be reduced for many of the rainfed locations subject to termi-

nal drought.

A simulated growth stimulus from a 100‐ppm increase in atmo-

spheric CO2 concentration is suggested by our study to be lost with

an increase of about 2°C according to the simulated multi‐model

ensemble median and is consistent with field experiments (Wheeler

et al., 1996). Higher yield responses to elevated CO2 have been

reported in field experiments for wheat subject to drought stress

compared to well‐watered controls (Kimball, 2016; O'Leary et al.,

2015). This did not hold true, however, when N limited growth (Kim-

ball, 2016), as is common for low‐rainfall environments with low‐fer-
tilizer inputs. The multi‐model ensemble median here, averaged over

30 years, shows a CO2 effect of 8.4% global yield increase per

100 ppm increase in CO2. By comparison, observations from open

top chamber and FACE field studies have shown 10%–20% increases

in wheat yield per 100 ppm elevated CO2 (Ainsworth & Long, 2005;

Kimball, 2016; O'Leary et al., 2015), but less or even nil yield change

when N is limiting (Kimball, 2016). Additional N supply for crop

uptake could therefore become more important in the future. How-

ever, acceleration of soil organic matter turnover by higher tempera-

ture depletes soil carbon and N stocks, a process captured by some

models. Crop models also account for the dilution of crop N and

grain protein concentration at elevated CO2 concentration, giving

results similar to experimental wheat data (Pleijel & Uddling, 2012),

but do not consider that nitrate assimilation in crops could be inhib-

ited (Bloom, Burger, Rubio‐Asensio, & Cousins, 2010), so likely

underestimate the reduction in grain protein with climate change.

Other processes, like a possible effects of elevated CO2 via

stomata closure on canopy temperature (Kimball, Lamorte, & Pinter,

1999), not considered in the current models might also add to

under‐ or overestimation of simulated impacts. The same applies to

the poor understanding of genotype and CO2 interactions that are

hence not included in the models (Myers et al., 2014). Other factors

not included might also become important for future crop perfor-

mance, such as rising ground‐level ozone exposures, for example, in

southern and eastern Asia (Tao, Feng, Tang, Chen, & Kobayashi,

2017) and diming of light for photosynthesis in areas with high aero-

sol pollution.

Our analysis of the multi‐location field trials suggests that

crops with traits of delayed anthesis time and increased grain fill-

ing rate could be combined in wheat genotypes to combat the

negative effects of increasing temperature on yield. The genetics

of wheat anthesis time is determined by known genes so adapta-

tions can be made through breeding or cultivar choice (Griffiths

et al., 2009; Le Gouis et al., 2012). Although grain filling results

from interactions between multiple physiological processes, some

relevant major quantitative trait loci have been identified, and

grain filling rate can be increased efficiently through breeding

(Charmet et al., 2005; Wang et al., 2009). Some studies also

showed that the rates of dry mass and N accumulation have com-

mon genetic determinisms (Charmet et al., 2005), so breeding for

a higher rate of grain filling could improve both grain yield and

protein concentration. Importantly, anthesis time and grain filling

rate are mostly controlled by different loci (Wang et al., 2009)

suggesting that these two traits can be improved concomitantly.

The impact on yield and protein from this potential adaptation

depends on the availability of nitrogen during the post‐anthesis
period (Bogard et al., 2011) and might require additional nitrogen

remobilization into the grains (Avni et al., 2014; Uauy, Distelfeld,

Fahima, Blechl, & Dubcovsky, 2006).

4.5 | Impact uncertainty

The share of uncertainty from crop models was often larger than

from the five bias‐corrected GCMs, suggesting a need for more

research investments into impact models to reduce climate change

impact uncertainty estimates, although the chosen GCMs only repre-

sent part of the overall available GCM uncertainties (McSweeney &

Jones, 2016). The crop model uncertainty varied across locations,

while the GCM uncertainty showed less spatial variation. Uncertain-

ties tended to increase with adaptation and were larger for impact

estimates for protein yield than for grain yield, partly because fewer

crop models were available for the former. The largest crop model

uncertainties were for low‐ and mid‐latitude areas.

4.6 | Conclusions

Our simulation results demonstrate that climate change adaptations

that benefit grain yield are not necessarily positive for all aspects of

grain quality for human nutrition (Myers et al., 2014), particularly in

rainfed and low‐input cropping regions. Many of the regions likely to

be negatively affected are low‐ and mid‐latitude regions that are less

resilient to climate change, where populations are growing (Roser &

Ortiz‐Ospina, 2017) and food demand is increasing rapidly (Godfray

et al., 2010).
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