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 38 

Abstract 39 

 40 

Targeted protein degradation is an important and pervasive regulatory mechanism in plants, 41 

required for perception and response to the environment as well as developmental signalling. 42 

Despite the significance of this process, relatively few studies have assessed plant protein 43 

turnover in a quantitative fashion. Tandem fluorescent protein timers (tFTs) offer a powerful 44 

approach for the assessment of in vivo protein turnover in distinct subcellular compartments 45 

of single or multiple cells. A tFT is a fusion of two different fluorescent proteins with distinct 46 

fluorophore maturation kinetics, which enable protein age to be estimated from the ratio of 47 

fluorescence intensities of the two fluorescent proteins. Here, we used short-lived auxin 48 

signalling proteins and model N-end rule pathway reporters to demonstrate the utility of tFTs 49 

for studying protein turnover in living plant cells of Arabidopsis thaliana and Nicotiana 50 

benthamiana. We present transient expression of tFTs as an efficient screen for relative 51 

protein lifetime, useful for testing the effects of mutations and different genetic backgrounds 52 

on protein stability. This work demonstrates the potential for using stably expressed tFTs to 53 

study native protein dynamics with high temporal resolution in response to exogenous or 54 

endogenous stimuli. 55 

 56 

 57 

Introduction 58 

 59 

The protein content of cells is not static, but is modified constantly by the combined actions 60 

of protein synthesis and degradation, a process termed proteostasis. In recent years, protein 61 

breakdown has emerged as an important control mechanism that not only underpins the 62 

daily requirements of cellular maintenance but also permits responses to environmental 63 

stimuli and progression through different developmental stages. In eukaryotes, the primary 64 

pathway for targeted protein degradation is the ubiquitin/proteasome system (UPS). Around 65 

6% of the proteins encoded by the Arabidopsis thaliana genome are dedicated to this 66 

process, underlining its importance in plants (Vierstra, 2009). In plants, the UPS has been 67 

shown to target intracellular regulators with central roles in hormone signalling, the regulation 68 

of chromatin structure and transcription, morphogenesis, the circadian clock, responses to 69 

the environment, self-recognition and defence against pathogens (Vierstra, 2009; Miricescu 70 

et al., 2018). Similarly, the broad importance of proteostasis in humans is exemplified by 71 

disease states associated with its dysregulation (Ciechanover, 2013). Proteasome-mediated 72 

protein degradation is complemented by autophagy and compartment-specific AAA+ 73 

proteases (Nelson et al., 2014; Nelson and Millar, 2015). 74 
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 75 

Much effort has been expended on analysing protein synthesis, particularly the role of 76 

transcription, which is readily quantified on a genome-wide scale using microarrays and 77 

RNA-seq. These techniques can also be used to identify RNAs that are actively translated 78 

via isolation of RNA from polysomes (Zanetti et al., 2005). However, it is generally accepted 79 

that the correlation between protein and mRNA abundance is imperfect (Schwanhäusser et 80 

al., 2011). Whereas dramatic improvements to proteomics technology mean it is now feasible 81 

to measure abundance changes in several thousands of proteins in a single experiment 82 

(Bensimon et al., 2012), measuring protein abundance in different genotypes or in response 83 

to a stimulus does not distinguish between protein synthesis and degradation. Therefore, 84 

specific approaches are required to quantify protein degradation.  85 

 86 

Classically, protein turnover has been analysed using pulse-chase metabolic labelling 87 

followed by immunoprecipitation. Protein lifetimes have also been estimated using transgenic 88 

plants expressing luciferase reporter fusions in cycloheximide chase assays (Worley et al., 89 

2000; Dreher et al., 2006). More recently, high accuracy mass spectrometry (MS) has been 90 

combined with metabolic labelling to determine the degradation kinetics of many proteins in 91 

parallel, with Single Reaction Monitoring MS offering improved sensitivity and selectivity for 92 

selected proteins of interest (Claydon and Beynon, 2012; Holman et al., 2016). Protein 93 

turnover can also be analysed systematically using pulsed or dynamic stable isotope 94 

labelling with amino acids in culture (SILAC), although such methods are restricted to cell or 95 

tissue cultures (Doherty et al., 2009; Schwanhäusser et al., 2011; Boisvert et al., 2012; Welle 96 

et al., 2016; Savitski et al., 2018). Although powerful, proteomics approaches lack cellular 97 

and subcellular resolution, are biased towards relatively abundant proteins, and the kinetics 98 

of metabolic labelling dictate a lower limit for the half-lives (t1/2) that can be quantified (Nelson 99 

et al., 2014; Li et al., 2017). This effectively excludes many interesting proteins involved in 100 

signalling such as transcriptional regulators, which are typically of low abundance, may have 101 

high turnover rates and are often restricted to specific cell types. Moreover, a key feature of 102 

signalling pathways that cannot readily be captured in a proteomics workflow or an 103 

immunoprecipitation experiment is the movement of proteins between subcellular 104 

compartments. Intracellular trafficking and turnover of regulatory proteins such as 105 

transcription factors, transporters and E3 ligases play important roles in plant signalling and 106 

development (Friml, 2010; Gallagher et al., 2014; Habets and Offringa, 2014; Podolec and 107 

Ulm, 2018). In plants, intercellular movement of proteins and peptides is also important in 108 

development, for example in root differentiation, where key transcription factors traffic 109 

between different cell types (Lee et al., 2006; Long et al., 2015). 110 

 111 
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Fluorescent proteins (FPs) offer alternative means to study the dynamics of protein turnover 112 

with the additional benefit of spatial resolution and potentially high sensitivity. A number of 113 

approaches are possible. Photo-switchable FPs may be employed in microscopy-based 114 

pulse-chase experiments, whereby a pulse of local light irradiation generates an activated 115 

population of a protein species that can be followed in time and space. Alternatively, in a 116 

bleach-chase experiment, the protein removal rate can be determined after bleaching a 117 

subset of the fluorescently labelled protein population in a given cell (Eden et al., 2011). Both 118 

these types of experiments require a time course and fitting models to signal intensities in 119 

order to yield turnover estimates. In contrast, fluorescent timers change colour as a function 120 

of protein age, due to fluorophore maturation. A tandem fluorescent timer (tFT) is a fusion of 121 

two single-colour FPs that undergo fluorophore maturation with different kinetics, an 122 

arrangement that overcomes many of the disadvantages of early single FP timers 123 

(Khmelinskii and Knop, 2014; Khmelinskii et al., 2016).  The ratio of slow-maturing FP to fast-124 

maturing FP fluorescence intensities provides a measure of protein age through single time 125 

point imaging.  126 

 127 

The tFT technology was originally developed in yeast (Khmelinskii and Knop, 2014; 128 

Khmelinskii et al., 2016) and has been used in animal systems (Dona et al., 2013; Barry et 129 

al., 2016; Alber et al., 2018; Durrieu et al., 2018) but despite its broad applicability, it has not 130 

yet been applied in plants. Studies combining stable isotope labelling with MS indicate that 131 

the degradation rates of plant mitochondrial proteins span more than a 50-fold range (Nelson 132 

et al., 2013) and a 100-fold range was reported for plastid proteins (Nelson et al., 2014), 133 

therefore different approaches will ultimately be required to cover the entire temporal range 134 

of plant protein degradation. The maturation rates of tFT fluorophores can be tuned to be 135 

appropriate for the half-lives of the proteins under investigation (Khmelinskii and Knop, 136 

2014). Here, we focus on short-lived proteins, employing a timer composed of the fast-137 

maturing monomeric green fluorescent protein superfolder GPF (sfGFP) and the slower 138 

maturing monomeric red fluorescent protein mCherry that was pioneered for use in yeast 139 

(Khmelinskii et al., 2016). We demonstrate that mCherry-sfGFP faithfully reports relative 140 

protein lifetime in plants using two exemplars: the N-end rule pathway and auxin signalling 141 

proteins. We show that transient expression of tFTs provides a rapid, straightforward method 142 

to compare the effects of mutations and different genetic backgrounds on protein stability 143 

and that the generation of stable lines expressing tFTs permits analysis of protein stability at 144 

subcellular resolution, in different cell types and in response to exogenous and endogenous 145 

stimuli. 146 

 147 

 148 
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Results 149 

 150 

Proof of concept: establishing the measurement of relative protein lifetime using 151 

model N-end rule reporters  152 

The range of protein ages that can be interrogated with a tFT depends upon the maturation 153 

kinetics of the respective FPs (Khmelinskii et al., 2012). Arabidopsis protein half-lives span a 154 

few minutes [e.g. auxin signalling proteins; (Worley et al., 2000; Ouellet et al., 2001; Dreher 155 

et al., 2006)] to many hours or even days (e.g. histones; Nelson et al., 2013; 2014). Whereas 156 

sfGFP matures with a half-time of ~6 min, mCherry maturation can be described by a two-157 

step process with maturation half-times of ~17 min (first step) and ~30 min (second step) 158 

(Khmelinskii et al., 2012). This makes the mCherry-sfGFP timer suitable to study the 159 

degradation of proteins with half-lives between ~10 min and ~8h (Khmelinskii et al., 2012).  160 

First, we tested the integrity of the mCherry-sfGFP reporter in planta by fusing it to the C-161 

terminus of the cytosolic, hexameric protein, SERINE ACETYLTRANSFERASE5 (SAT5; 162 

Wirtz et al., 2010) and transfecting Nicotiana benthamiana leaf epidermal cells. Free GFP 163 

and fluorescent protein dimers (e.g., mCherry-sfGFP) are well known to translocate into the 164 

nucleus (Seibel et al., 2007); however, SAT5-tFT was localised in the cytosol and clearly 165 

excluded from the nucleus (Fig. 1A). Immunoblotting indicated that the fusion protein was 166 

largely intact (Fig. 1B). Together, these results indicate that neither mCherry nor sfGFP was 167 

released from the fusion protein in vivo and that the tFT fusion faithfully reported the 168 

subcellular localisation of SAT5.  We cannot fully exclude the possibility that an extremely 169 

short-lived sfGFP or mCherry-sfGFP fragment has been released from SAT5-tFT and is 170 

diluted in the nucleus to undetectable levels. However, such a theoretical and highly instable 171 

fragment would not interfere, in practice, with the lifetime measurement in planta.  172 

 173 

We next designed a Gateway-based cloning scheme to generate plant transformation 174 

constructs for expression of proteins of interest fused at the C-terminus to the mCherry-175 

sfGFP tFT, under the control of a promoter of choice. We created protein timers designed to 176 

be targeted for proteasomal turnover according to the Arg/N-end rule pathway for protein 177 

degradation (Fig. 2A). The N-end rule relates the half-life of a protein to its amino (N-) 178 

terminal residue (Bachmair et al., 1986). Substrates for this pathway are generated post-179 

translationally by non-processive endopeptidase cleavage to reveal a new N-terminal amino 180 

acid residue or by a combination of co-translational and post-translational modifications of 181 

the N-terminus (Gibbs et al., 2011; Gibbs et al., 2014). Proteins bearing basic, bulky or 182 

hydrophobic N-terminal residues (classified as destabilising) are recognised by E3 ligases 183 

with different specificities and targeted for degradation by the proteasome (Potuschak et al., 184 

1998; Varshavsky, 2011; Gibbs et al., 2014). In Arabidopsis thaliana, PROTEOLYSIS1 185 
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(PRT1) is an E3 ligase with specificity for aromatic amino acids, whereas PROTEOLYSIS6 186 

(PRT6) targets basic N-terminal residues (Stary et al., 2003; Garzón et al., 2007; Mot et al., 187 

2018). N-end rule substrates can also be created artificially by the ubiquitin fusion technique, 188 

in which a genetically-encoded N-terminal ubiquitin domain is cleaved in vivo by 189 

deubiquitinating enzymes to reveal a destabilising residue at the N-terminus (the so-called N-190 

degron; Varshavsky, 2000; Fig. 2A). Timer constructs thus designed to release Arginine-tFT 191 

(R-tFT) and Phenylalanine-tFT (F-tFT) in planta were transiently introduced into wild type 192 

Arabidopsis (Col-0) and also the prt6-5 and prt1-1 mutants which lack E3 ligases specific for 193 

basic and aromatic N-termini, respectively (Garzón et al., 2007; Graciet et al., 2009). 194 

Methionine-tFT (M-tFT), which is not a substrate for PRT6 or PRT1, was used as a control. 195 

The X-tFT constructs were detected in the nucleus and cytosol (Supplemental Fig. S1). F-tFT 196 

and R-tFT were relatively unstable in wild type cells, with mCherry-sfGFP ratios of 0.35  197 

0.027 and 0.36  0.009 respectively, compared to 0.85  0.027 for M-tFT. In contrast, 198 

stability of the N-end rule reporters was increased significantly in the appropriate E3 ligase 199 

mutant background (Fig. 2B, C). Thus, the mCherry-sfGFP tFT enables quantification of 200 

protein stability in a transient expression system. The results also demonstrate that the 201 

lifetime of a tFT fusion can be dictated by a single amino acid change (in this case, at the N-202 

terminus), indicating that fate of the mCherry-sfGFP component is influenced predominantly 203 

by the degron and not by intrinsic properties of the fluorescent protein fusion itself.  204 

 205 

Transient systems typically afford high, potentially non-physiological protein expression 206 

levels. Therefore, we tested the performance of the X-tFT fusions in transgenic plants. Stable 207 

transgenic lines were established in Arabidopsis N-end rule mutant backgrounds and 208 

crossed to wild type (Col-0) plants to generate control lines harbouring the same transgene 209 

event. Lines were analysed by immunoblotting: signals corresponding to the expected 210 

molecular weight of R-tFT and F-tFT after cleavage of ubiquitin (60.5 kDa) were barely 211 

detectable in Col-0 but their abundance was increased by treatment with the proteasome 212 

inhibitor Bortezomib (Fig. 3A, B). Abundance of the reporter proteins was considerably higher 213 

in the N-end rule mutant backgrounds, prt6-5 and prt1-1, with a modest further stabilisation 214 

by Bortezomib. A second protein species of approximately 45 kDa was detected with the 215 

GFP antibody, but not the mCherry antibody; this likely represents an mCherry cleavage 216 

product known to be formed during cell extract preparation (Gross et al., 2000; Shemiakina 217 

et al., 2012).  Quantification of mCherry and sfGFP signals by confocal microscopy revealed 218 

that F-tFT and R-tFT were less stable than M-tFT in wild type roots, but the mCherry/sfGFP 219 

ratios were increased significantly by application of a second proteasome inhibitor, MG-132 220 

(Fig. 3C, D). F-tFT and R-tFT were stabilised in the N-end rule mutants, prt1-1 and prt6-5, 221 

respectively, relative to the wild type (Fig. 3C, D). Taken together, these data indicate that 222 
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the model N-end rule tFT reporters are turned over by the proteasome in an N-end rule-223 

dependent manner, and that this turnover can be faithfully monitored using ratiometric 224 

fluorescence measurements. 225 

 226 

Benchmarking tFTs with auxin signalling proteins. 227 

 228 

We then validated the tFT technique using endogenous proteins whose lifetimes have been 229 

measured using established methods. Relatively few studies have systematically addressed 230 

protein lifetime measurement in plants, but regulated degradation of Aux/IAA transcriptional 231 

regulators mediated by TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALLING F-232 

BOX proteins (TIR1/AFBs) is well known to play a crucial role in auxin signalling and plant 233 

development (Abel et al., 1994; Worley et al., 2000; Gray et al., 2001; Ouellet et al., 2001; 234 

Dreher et al., 2006). Aux/IAA proteins form part of the early response to auxin and many are 235 

extremely short-lived, which enables silencing of the auxin signal once the primary response 236 

has been initiated (Abel et al., 1994). This protein family is ideal for challenging the tFT 237 

system, since degrons have been identified, different members of the Aux/IAA family vary in 238 

their degradation rates and degradation is influenced by exogenous application of auxin 239 

(Dreher et al., 2006). Domain II of Aux/IAA proteins physically interacts with TIR1/AFB and is 240 

required not only for rapid degradation but also the auxin-mediated acceleration of 241 

degradation (Gray et al., 2001; Ramos et al., 2001; Dharmasiri et al., 2005a; Dharmasiri et 242 

al., 2005b; Kepinski and Leyser, 2005; Dreher et al., 2006).    243 

 244 

To benchmark the mCherry-sfGFP tFT, we tested three Arabidopsis Aux/IAA proteins with 245 

half-lives ranging from a few minutes to hours (Table 1). Initially, we employed transient 246 

expression in N. benthamiana leaf epidermis, a commonly used system for analysing 247 

fluorescent protein fusions, to compare the lifetimes of IAA17, IAA28 and IAA31-tFT fusions. 248 

Comparing the intensity of the mCherry and sfGFP signals in agro-infiltrated N. benthamiana 249 

leaves enabled a straightforward ranking of protein lifetime (indicated by the slopes of the 250 

scatter plots), with the rank order IAA17IAA28<IAA31, consistent with the literature (Fig. 4; 251 

Table 1). Introduction of the P88L mutation which recapitulates a Domain II lesion in the 252 

Arabidopsis axr3-1 auxin signalling mutant (Rouse et al., 1998; Ouellet et al., 2001) 253 

significantly increased the stability of IAA17-tFT (Fig. 4B). This result demonstrates the utility 254 

of transient expression of mutant or truncated proteins in N. benthamiana for the rapid 255 

analysis of degrons and other structural factors that influence turnover. 256 

 257 

To quantify protein stability and test the effect of exogenous auxin, IAA-tFTs were transiently 258 

expressed in Arabidopsis. In agreement with previous studies (Tao et al., 2005; Arase et al., 259 
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2012), IAA17-tFT was localised predominantly in the nucleus, with some signal present in the 260 

cytosol. Apparently, the cytosolic pool of IAA17-tFT was less stable than nuclear-localised 261 

IAA17-tFT (Fig. 5A). Treatment with the synthetic auxin, 2,4-dichlorophenoxy acetic acid 262 

(2,4-D) reduced the mCherry/sfGFP ratio of nuclear IAA17-tFT from 0.819  0.063 to 0.302  263 

0.042 and reduced the cytosolic mCherry signal to below the limit of detection. As in N. 264 

benthamiana, the lifetime of IAA17P88L-tFT was considerably longer than that of IAA17-tFT in 265 

Arabidopsis and was not significantly influenced by auxin treatment (Fig. 5A, B). In 266 

Arabidopsis leaf epidermal cells, the stability of IAA28-tFT was similar to that of IAA17-tFT 267 

whereas IAA31-FT was longer-lived. Auxin treatment reduced the lifetime of both proteins 268 

(Fig. 5A, B) and removal of auxin receptor function in the tir1-1 afb2 mutant (Dharmasiri et 269 

al., 2005b) resulted in stabilisation of IAA28-FT (Fig. 5C, D). This indicates that turnover of 270 

the protein is dependent on canonical auxin signalling. 271 

 272 

IAA-tFT stable lines report auxin dynamics 273 

 274 

IAA17 and IAA28 play important roles in root growth and development, where their 275 

abundance is regulated by auxin (Leyser et al., 1996; Worley et al., 2000; Gray et al., 2001; 276 

Rogg et al., 2001; De Rybel et al., 2010; Sato et al., 2015). To explore the behaviour of IAA-277 

tFT fusions in roots, Arabidopsis stable transgenic lines were established. Seedlings of lines 278 

expressing IAA17-tFT and IAA28-tFT under the control of the strong, semi-constitutive 279 

CaMV35S promoter were morphologically similar to wild type plants. However, IAA17P88L-tFT 280 

roots exhibited an agravitropic phenotype (Supplemental Fig. S2), in agreement with the 281 

report of Swarup et al. (2005) that ectopic expression of IAA17P88L (the axr3-1 gain of 282 

function mutant) in root epidermis blocked gravitropism. Two of the highest expressing 283 

IAA31-tFT lines had significantly fewer lateral roots than the wild type seedlings 284 

(Supplemental Fig. S3) consistent with the phenotype of plants over-expressing the 285 

untagged protein (Sato and Yamamoto, 2008). Collectively, these results demonstrate that 286 

the consequences of IAA-tFT fusion protein expression are similar to those of ectopically 287 

expressing untagged IAA proteins. Immunoblot analysis revealed that the IAA-tFT fusion 288 

proteins were largely intact (Fig. 6), therefore we tested the effect of manipulating auxin 289 

levels on IAA-tFT stability. As judged by immunoblotting, application of 2,4-D to seedlings 290 

reduced the abundance of IAA17-tFT, IAA28-tFT and IAA31-tFT, but not IAA17P88L-tFT (Fig. 291 

6).  292 

 293 

Next, seedlings were examined by confocal microscopy, to assess protein stability in 294 

different regions of the root. It was difficult to detect sfGFP or mCherry signals in IAA17-tFT 295 

lines under control conditions, but IAA17P88L-tFT gave a strong nuclear signal that was 296 
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evident throughout primary root tips and the differentiation zone (Supplemental Fig. S4). 297 

Similarly, IAA28-tFT was difficult to detect in control conditions, although Bortezomib 298 

treatment resulted in stabilisation (Supplemental Fig. S5). In contrast, IAA31-tFT was 299 

detected in the nucleus and cytoplasm of primary root tips (Supplemental Fig. S4A) with the 300 

stability apparently reflecting the prevailing auxin gradient (Supplemental Fig. S4B). IAA31-301 

tFT was also stabilised by Bortezomib treatment (Supplemental Fig. S5). Application of 2,4-D 302 

to roots grown on vertical plates shortened the lifetime of IAA31-tFT (Fig. 7A). During 303 

gravitropism-induced root curvature, auxin accumulates asymmetrically, dependent on the 304 

root zone undergoing curvature. (Ottenschläger et al., 2003; Swarup et al., 2005; Laskowski 305 

et al., 2008; Brunoud et al., 2012). We hypothesised that, in the differentiation zone, the 306 

auxin minimum on the underside of a root undergoing gravitropism would lead to stabilisation 307 

of IAA proteins and the auxin accumulation on the upper side of the root bend would reduce 308 

the lifetime of IAA-tFT (Laskowski et al., 2008). Accordingly, rotation of seedlings to induce 309 

bending resulted in an increase in the mCherry-sfGFP ratio of IAA31-tFT on the inside of the 310 

root bend and a decrease on the outside (Fig. 7B). As expected, the lifetime of the auxin 311 

non-responsive IAA17P88L-tFT did not differ at the site of natural root bends (Supplemental 312 

Fig. S4C). Thus, the IAA-tFT transgenic lines demonstrate that the mCherry-sfGFP fusion 313 

accurately reports the effects of endogenous and exogenous signals on protein turnover in 314 

vivo. 315 

 316 

 317 

Discussion 318 

 319 

The mCherry-sfGFP timer is degraded by the proteasome and reports plant protein 320 

dynamics 321 

 322 

Given the importance of proteostasis in plant physiology, accessible methods to monitor and 323 

quantify protein turnover in time and space are of great utility, particularly for short-lived 324 

proteins involved in signalling. Classical methods for measuring turnover of a specific protein 325 

of interest are technically challenging, in part due to the requirement to treat tissue with the 326 

global protein synthesis inhibitor, cycloheximide, which not only constitutes a severe stress 327 

but is also difficult to apply in conjunction with a given stimulus and may not penetrate 328 

tissues in a uniform manner. tFTs offer an alternative, non-invasive approach to assess 329 

protein turnover in real time, in vivo. In this study, we employed model N-end rule reporters 330 

and endogenous Aux/IAA proteins to test the suitability of FTs for reporting relative protein 331 

lifetime in plants.  332 

 333 
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The synthetic reporters, R-tFT and F-tFT were released from the respective ubiquitin-X-334 

mCherry-sfGFP fusions and as predicted, were subject to N-end rule-mediated proteasomal 335 

degradation in both transient and stable systems. Similarly, the IAA-tFT fusions exhibited a 336 

range of lifetimes and were stabilised by proteasome inhibitors. Both the artificial (X-tFT) and 337 

native (IAA-tFT) fusion proteins were longer-lived in transiently transformed Arabidopsis than 338 

the stable lines, potentially reflecting the higher expression levels typically achieved in 339 

transient expression systems, which may overload the proteasome. However, the relative 340 

stability of the test proteins in different genetic backgrounds was the same for transient and 341 

stable systems. Although strongly influenced by structural features, the half-life of a protein is 342 

not an intrinsically fixed property but depends on the protein’s environment (Nelson et al., 343 

2014; Nelson and Millar, 2015). For example, IAA turnover has been investigated by three 344 

different methods: immunoprecipitation from [35S]-methionine-labelled seedlings, constitutive 345 

expression of luciferase fusions in stable Arabidopsis transgenic plants and a synthetic 346 

degradation assay in yeast (Ouellet et al., 2001; Dreher et al., 2006; Moss et al., 2015; Table 347 

1). The reported half-lives vary 10-fold for IAA17 and ~2-fold for IAA28, suggesting that this 348 

parameter may be influenced by ectopic expression. In this proof-of-concept study, we 349 

employed a strong constitutive promoter, to facilitate the development of imaging 350 

parameters, but in the future, it will be instructive to generate stable lines expressing the 351 

protein-of-interest-tFT fusions under the control of native promoters to analyse protein 352 

degradation in the most relevant physiological context.  353 

 354 

Incomplete proteasomal degradation has been reported for GFP-containing tandem timer 355 

combinations in yeast (Khmelinskii et al., 2016), but this was not observed in stable 356 

Arabidopsis lines expressing ubiquitin-X-tFT fusions or IAA-tFT fusions. This may reflect 357 

differences in proteasome processivity between species (Kraut et al., 2012). A ~45 kDa 358 

cleavage product detected by anti-GFP antibodies in extracts from plants expressing the F-359 

tFT and R-tFT constructs was also observed previously in yeast and has been proposed, 360 

based on structural considerations, to arise from cleavage of mCherry during sample 361 

preparation (Gross et al., 2000; Khmelinskii et al., 2016). Importantly, exclusion of SAT5-tFT 362 

from the nucleus provides strong evidence that GFP is not cleaved from the mCherry-sfGFP 363 

tFT in planta, indicating that this tandem timer combination is a robust tool for assessing 364 

protein lifetime in plants. 365 

 366 

 367 

The N-terminus is a determinant of protein stability in plants 368 

 369 
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Our results provide direct evidence for the relevance of the free N-terminal amino acid 370 

residue for plant protein stability, demonstrating that this feature can be recognised by 371 

distinct E3 ligases (Varshavsky, 2011; Gibbs et al., 2016). Whereas several studies have 372 

shown that the abundance of both artificial and selected endogenous proteins is dictated by 373 

the N-end rule in plants (Potuschak et al., 1998; Garzón et al., 2007; Gibbs et al., 2011; 374 

Licausi et al., 2011), tFTs show directly that protein turnover is influenced by the N-terminus, 375 

complementing lifetime measurements performed using tFT or classical cycloheximide chase 376 

methods in yeast and human systems (Varshavsky, 2011; Khmelinskii et al., 2012). The 377 

potential importance of the N-terminal amino acid for protein stability has also been shown in 378 

context of the acetylation (Ac)/N-end rule branch in yeast and plants for a limited number of 379 

proteins (Hwang et al., 2010; Xu et al., 2015; Linster and Wirtz, 2018), though the pathway is 380 

more nuanced and complex than originally envisaged in yeast (Kats et al., 2018). N-terminal 381 

modification of plant proteins is a dynamic and stress-induced process that, in turn, controls 382 

environmental stress responses via modulation of protein stabilities (Linster et al., 2015; 383 

Vicente et al., 2017). The combination of the ubiquitin fusion technique with the tFT sensor to 384 

release proteins with a defined N-terminus enables testing the importance of selective 385 

translation initiation or N-terminal modifications on turnover of the candidate protein in a fast 386 

and cost-effective manner, and also provides information of the subcellular localisation of the 387 

protein species. Furthermore, commercially available selective affinity matrices for GFP and 388 

RFP can be combined with the tFT tag in a dual affinity pull-down approach to directly link 389 

the relevance of post-translational modifications to an in vivo determined turnover rate for a 390 

candidate protein. 391 

 392 

 393 

IAA-tFT fusions as an exemplar for studying protein lifetime in vivo  394 

 395 

Following the positive results with artificial N-end rule reporters, we tested whether the 396 

stability of endogenous Aux/IAA proteins could also be determined using tFTs. Auxins act as 397 

an adaptor for binding Aux/IAA proteins to the F-box proteins TIR1 and AFB1-AFB5, which 398 

are components of SCFTIR1/AFB ubiquitination E3 complexes (Gray et al., 2001). Formation of 399 

the SCFTIR1/AFB complex leads to polyubiquitination and degradation of Aux/IAA proteins 400 

(Calderón Villalobos et al., 2012). Accordingly, degradation of IAA28-tFT was inhibited in the 401 

tir1-1 afb2 mutant which markedly impairs but does not eliminate the auxin response 402 

(Dharmasiri et al., 2005b). Domain II of the Aux/IAA proteins contains a well-characterised 403 

degron, and the P88L mutation in this motif significantly increased the lifetime of the IAA17-404 

tFT fusion, consistent with pulse-chase studies of 35S-labelled IAA17 and the phenotype of 405 

the iaa17/axr3-1 mutant (Rouse et al., 1998; Ouellet et al., 2001). Of the three IAA family 406 
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members tested, IAA31 was the longest-lived. Interestingly, Domain II is incompletely 407 

conserved in IAA31 (Dreher et al., 2006), containing Asp in place of a conserved Gly, 408 

comparable to Gly to Glu substitutions found in dominant mutants shy2-3/iaa3 and iaa18-1 409 

(Tian and Reed, 1999; Reed, 2001). In agreement with the literature, exogenous application 410 

of auxin to stably transformed lines increased IAA-tFT turnover as did manipulation of 411 

endogenous auxin by induction of root bending, demonstrating that the system is able to 412 

resolve dynamic alterations in protein turnover in vivo. This will offer the possibility to explore 413 

micro-environments with locally altered protein stability in future studies. Also, although tFTs 414 

were developed as a protein age sensor, the success of the Domain II (DII)-Venus auxin 415 

sensor (Brunoud et al., 2012) suggests that fusion of Aux/IAA proteins or their degrons to 416 

mCherry-sfGFP has the potential for the development of second-generation auxin sensors. 417 

Finally, tFTs have been used to great effect in yeast-based high-throughput screens to 418 

understand mechanisms controlling protein turnover (Khmelinskii et al., 2012; Kats et al., 419 

2018). IAA17P88L-tFT provides a proof of concept for extending this approach to plants, for 420 

example by high throughput screening of EMS-mutagenised lines expressing a protein of 421 

interest fused to a fluorescent timer. 422 

 423 

 424 

Conclusions and future perspectives 425 

 426 

We have demonstrated two complementary tandem timer approaches to study plant 427 

proteostasis: a transient expression system for rapid assessment of protein turnover and a 428 

stable expression system for analysis of protein stability in near-native contexts. The 429 

transient system is straightforward and accessible to any lab with a confocal microscope, 430 

requiring only standard filters and laser settings for detection of GFP and RFP. Many 431 

applications can be envisaged, such as analysis of degrons by mutagenesis and deletion 432 

strategies, or using loss of function lines to test candidate substrates for the ~1400 E3 433 

ligases in Arabidopsis, the majority of which have not been characterised (Vierstra, 2009; 434 

Hua and Vierstra, 2011). The transient system also provides a rapid means to screen new 435 

fluorescent protein combinations to extend the lifetime range of the system or to produce 436 

timers with different spectral properties. Stable expression of tFTs offers an even wider range 437 

of potential applications. The tFTs are particularly valuable for measuring processes out of 438 

steady-state, such as signalling events, which are difficult to address using fluorescent 439 

switchers (Knop and Edgar, 2014). In contrast to fluorescent switchers, tFTs do not require a 440 

physical intervention and can be imaged in single snapshots, which allows analysis of 441 

protein-turnover with high temporal resolution in a specimen. Consequently, analysis of 442 

protein turnover in response to a stimulus such as hormone or light treatment is 443 
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straightforward, and future development of quantitative imaging protocols will enable even 444 

more sophisticated approaches, for example, combining stably-expressed t-FTs with time-445 

lapse imaging in tractable systems such as the Arabidopsis root (Larrieu et al., 2014) to 446 

explore and quantify protein turnover events during growth and development. Although 447 

fluorescent timers have generally been used to analyse proteasome-dependent protein 448 

turnover, in principle, they can be adapted to study autophagy or targeted to organelles such 449 

as mitochondria and plastids which have different degradation machineries (Nelson and 450 

Millar, 2015). tFTs have also been developed to study organelle division and partitioning in 451 

yeast (Kumar et al., 2018). 452 

 453 

In summary, tFTs fill an unmet need for a simple, versatile method to quantify dynamic 454 

changes in plant protein stability using live imaging with high spatial and temporal resolution. 455 

tFTs provide the basis for development of a suite of sophisticated tools to study the 456 

fascinating and extensive plasticity of the plant proteome. 457 

 458 

 459 

 460 

Materials and Methods 461 

 462 

SAT5 construct 463 

Full-length SAT5 (AT5G56760) was amplified from Arabidopsis thaliana leaf cDNA using the 464 

SAT5-tFT_For and SAT5-tFT_Rev primers by PCR, and fused with the tFT tag that was 465 

PCR-amplified from pMaM17 (Khemelinski et al., 2012) using the mCherry_For and 466 

sfGFP_Rev primers (Supplemental Table S1). The resulting SAT5-tFT fusion was cloned in 467 

the pBinAR vector to allow expression under control of the CaMV35S promoter. Correct 468 

integration of SAT5-tFT in the pBinAR-SAT5-tFT vector was verified by sequencing. 469 

 470 

N-end rule and IAA reporters 471 

For N-end rule reporters, the Ubi-X-mCherry-sfGFP cassette was amplified from p415-GAL1-472 

Ubi-R-mCherry-sfGFP (pMaM107; Khmelinskii and Knop, 2014) using primers AttB1_ubi-X-473 

tft_For and AttB2_ubi-X-tft_stop and recombined into plasmid pDONR221 to create an entry 474 

cassette. F- and M- variants were constructed by site-directed mutagenesis, using a 475 

QuikChange II XL kit (Agilent Technologies, UK) according to manufacturer’s instructions. 476 

The different entry vectors were then recombined into pB2GW7 (Karimi et al., 2002). For IAA 477 

reporters, the mCherry-sfGFP cassette was amplified using primers AttB2r_mCsfGFP_For 478 

and AttB3_mCsfGFP_stop and recombined into plasmid pDONRP2R-P3 to create an entry 479 

cassette pEN-R2-mCsfGFP-L3. IAA17 (At1g04250), IAA28 (At5g25890) and IAA31 480 
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(At3g17600) were amplified from an Arabidopsis root cDNA library by PCR using the primers 481 

in Supplemental Table S1 and recombined into plasmid pDONR221 to create entry vectors. 482 

IAA17P88L was generated by site-directed mutagenesis, using a QuikChange lightning kit. 483 

Vectors were sequenced to verify the presence of the mutation and to confirm that no 484 

unwanted mutations had been introduced. Each IAA entry vector pEN-L1-IAA-L2 was then 485 

recombined with pEN-L4-2-R1,0 (Karimi et al., 2007) and pEN-R2-mCsfGFP-L3 into 486 

pB7m34GW,0 (Karimi et al., 2005) to create constructs to express IAA-mCherry-sfGFP 487 

under the control of the CaMV35S promoter. Stable Arabidopsis thaliana transgenic lines 488 

were obtained by floral dip (Clough and Bent, 1998). Col-0 was transformed with the IAA-tFT 489 

constructs. prt6-5 (Graciet et al., 2009) and prt1-1 (Potuschak et al., 1998) were transformed 490 

with pHT23 (R-tFT) and pHT25 (F-tFT) respectively. Independent lines were crossed to Col-0 491 

to obtain the same transgene events in the wild type background. 492 

 493 

 494 

Growth of plants and treatments 495 

Arabidopsis thaliana plants were grown for 5 weeks on soil or 7 d on 0.5 x MS containing 1% 496 

(w/v) sucrose and 0.6% (w/v) Phytagel under short day (8 h light) at 22°C during light and 497 

18°C during night. For the application of 2,4-D or MG-132 to stably transformed Arabidopsis 498 

seedlings, the seedlings were grown for 7 d on 0.5 x MS medium solidified with agar and 499 

then transferred to 0.5 x MS medium supplemented with 5 µM 2,4-D or 50 µM MG-132 for 4 500 

h. 2,4-D and MG-132 were dissolved in 0.1% (v/v) ethanol or 0.1 % (v/v) DMSO, 501 

respectively, with solvent only used as controls. For the Bortezomib treatment, 7-d-old 502 

seedlings were transferred to 0.5 x MS medium supplemented with 50 µM Bortezomib or 503 

DMSO for 24 h. Gravity-induced root bending was achieved by 180-degree rotation of the 504 

14-d-old seedlings stably expressing IAA31-tFT grown on 0.5 x MS supplemented with 1% 505 

(w/v) sucrose and 0.6% (w/v) Phytagel.  For treatment of transiently transformed Arabidopsis 506 

plants, the leaves were detached from intact plants at day four after the infiltration with 507 

Agrobacterium harbouring the construct of choice and were fed via the petiole for two hours 508 

with 100 µM 2,4-D dissolved in water. Ethanol dissolved in water served as control for the 509 

petiole feeding. 510 

 511 

 512 

Arabidopsis transformation and confocal microscopy 513 

Agrobacterium tumefaciens-mediated transient transformation of 5-week-old soil-grown 514 

Arabidopsis plants was performed according to Mangano et al. (2014). The transiently 515 

transformed plants were analysed four days after infiltration. Leaves were placed on a water-516 

covered slide and analysed using a Nikon A1 confocal microscope equipped with Gallium 517 
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arsenide phosphide (GaAsP) detectors and solid-state lasers for excitation at 405, 488 and 518 

561 nm. The fluorescence signal was imaged at 525/50 nm after excitation at 488 nm for 519 

sfGFP, and at 595/50 nm after excitation at 561 nm for mCherry. The laser power of 488 nm 520 

and 561 nm lasers were set to a one to three ratio. The spectral properties of mCherry and 521 

sfGFP are shown in Fig. S6. Ratiometric quantification of fluorescence images was 522 

performed after applying a Gaussian blur with a sigma of 1 and background subtraction in 523 

IMAGEJ (v.1.52h; https://imagej.nih.gov/ij). To produce a ratio image on a pixel by pixel 524 

basis, signal intensities of the mCherry channel were divided by the intensities of the GFP 525 

channel using the image calculator function. mCherry to sfGFP ratios were visualised by 526 

changing the grayscale values of the resulting image to false color using the ImageJ lookup 527 

table Fire. Since the ratios are sensitive to microscope settings, only ratios calculated with 528 

identical configuration of the microscope were compared. For visualisation of the nucleus, 529 

nuclear DNA was stained by leaf infiltration of 0.3 µM 4′,6-diamidino-2-phenylindole (DAPI) 530 

for 10 min. The DAPI specific fluorescence was detected at 450 nm after excitation at 405 531 

nm with Nikon A1R confocal microscope. 532 

 533 

Nicotiana benthamiana transfection and confocal microscopy 534 

Growth and agroinfiltration of Nicotiana benthamiana were performed according to Sparkes 535 

et al. (2006) and Li (2011). Images were acquired 2 d after infiltration using a Zeiss LSM 780 536 

confocal microscope with sfGFP excitation at 488 nm and emission at 501–522 nm, and 537 

mCherry excitation at 561 nm and emission at 600–622 nm. Within an experiment, all images 538 

were acquired using identical settings. The mCherry signal was false-coloured magenta for 539 

presentation. Scatter plots of mCherry and sfGFP intensities were acquired using the co-540 

localisation function of ZEN 2010 imaging software (Zeiss). Co-localisation was performed on 541 

a pixel-by-pixel basis.  542 

 543 

Immunoblotting 544 

Protein extraction and immunoblotting were performed as in (Zhang et al., 2018). Primary 545 

antibodies were used at the following dilutions:  anti-mCherry (ab183628, Abcam, 546 

Cambridge, UK), 1:3,000; anti-GFP from mouse IgG1κ (clones 7.1 and 13.1, Roche, Basel, 547 

Switzerland), 1:1,000. The secondary antibodies used were anti-rabbit horseradish 548 

peroxidase conjugate (A0545, Sigma) diluted 1:50,000 for mCherry or m-IgGκ BP-HRP (sc-549 

516102, Santa Cruz Biotechnology, Dallas, USA) diluted 1:5,000 for GFP. Blots were then 550 

washed and developed with ECL reagent SuperSignal West Pico Chemiluminescent 551 

Substrate or SuperSignal™ West Femto Maximum Sensitivity Substrate (ThermoFisher 552 

Scientific, UK), as required. 553 

 554 
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Statistical analysis 555 

Statistical analysis was routinely performed using SigmaPlot 12.5 software (Systat Inc., U. 556 

S.). Different data sets were analysed for statistical significance with the One Way Repeated 557 

Measures Analysis of Variance (one-way RM ANOVA), which uses the Holm-Sidak method 558 

for multiple pairwise comparisons. Normality distribution of data points was tested with the 559 

Shapiro-Wilk method (p to reject was p>0.05). Letters indicate significant difference (p < 560 

0.05) in the figures. 561 

 562 

Accession numbers 563 

Sequence data from this article can be found in the GenBank data library under accession 564 

numbers At5g56760 (SAT5), At3g24800 (PRT1), At5g02310 (PRT6), At1g04250 (IAA17), 565 

At5g25890 (IAA28), At3g17600 (IAA31), At3g62980 (TIR1), and At3g26810 (AFB2). 566 

 567 

 568 

Supplemental Data 569 

Supplemental Figure S1. Nuclear-cytosolic localisation of X-tFT. 570 

Supplemental Figure S2. Phenotype of seedlings expressing IAA-tFT fusions. 571 

Supplemental Figure S3. Phenotype of seedlings expressing IAA31-tFT. 572 

Supplemental Figure S4. IAA-tFT stability in Arabidopsis thaliana roots. 573 

Supplemental Figure S5. Bortezomib stabilises IAA28-tFT and IAA31-tFT. 574 

Supplemental Figure S6. Attributes of fluorescent reporters used in the mCherry-sfGFP 575 

tandem fluorescent protein timer. 576 

Supplemental Table S1. Primers used in this study 577 
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Table 1. Literature values for Aux/IAA half-lives  586 

NLS, nuclear localisation signal; LUC, luciferase; t1/2, half-life 587 

 588 

Protein/construct Treatment 
 

Assay t1/2 Ref 

IAA17  35S-Met labelling, 
cycloheximide chase and 
immunoprecipitation from 
Arabidopsis seedlings 

~80 min Ouellet et 
al. 2001 

IAA17P88L (axr3-1)  ~550 min Ouellet et 
al. 2001     

YFP-IAA17-NLS  Inducible expression and 
time-lapse flow cytometry in 
yeast expressing TIR1 

~22 min Moss et 
al., 2015 

UBQ::IAA17-LUC  Cycloheximide chase and 
LUC imaging in Arabidopsis 
seedlings 
 

11 min Dreher et 
al. 2006 

UBQ::IAA171-111-
LUC-NLS 

 10 min Dreher et 
al. 2006 

UBQ::IAA171-111-
LUC-NLS 

5 µM 2,4-D 4.6 min Dreher et 
al. 2006 

UBQ::IAA28-LUC  ~60-80 
min 

Dreher et 
al. 2006 

UBQ::IAA28-LUC 5 µM 2,4-D ~15 min Dreher et 
al. 2006 

YFP-IAA28-NLS  Inducible expression and 
time-lapse flow cytometry in 
yeast expressing TIR1 

~25 min Moss et 
al., 2015 

35S::IAA31-10xMyc  Cycloheximide chase and 
quantification with -Myc 
antibody 

>20 h Dreher et 
al. 2006 

35S::IAA31-10xMyc 10 µM 2,4-D ~4 h Dreher et 
al. 2006 

 589 

 590 

Figure legends 591 

 592 

Figure 1. C-terminal mCherry-sfGFP demonstrates cytosolic localisation of SAT5 593 

A, Nicotiana benthamiana leaves were transiently transformed with a construct expressing 594 

SAT5-tFT under the control of the CaMV35S promoter. The panels show false-coloured 595 

confocal micrographs of three different cells, counterstained with DAPI to mark nuclei. Bar: 596 

30 µm. B, Immunoblots of different leaves infiltrated with the P19 suppressor of gene 597 

silencing (left) or SAT5-tFT plus P19 (middle and right). Blots (50 mg protein/lane) were 598 

probed with antisera towards GFP or mCherry, as indicated. The lower panels show 599 

Ponceau S staining following transfer and positions of molecular weight markers (kDa) are 600 

indicated to the left. The open arrowhead indicates the position of SAT5-tFT and the black 601 

arrowhead indicates a P19-specific band. 602 

 603 

Figure 2. Transient expression of N-end rule tFT reporters in Arabidopsis thaliana 604 
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A, Generation of N-end rule tFT reporters. Constructs are driven by the constitutive 605 

CaMV35S promoter and encode a fusion of ubiquitin (Ub; grey) to the tandem timer 606 

(magenta and green). De-ubiquitinating enzymes remove Ub co-translationally to reveal a 607 

new N-terminus (a variable residue, indicated by X). A flexible linker (brown box) contains 608 

lysine (K) residues which can be covalently linked to ubiquitin via the sequential activity of 609 

E1, E2 and E3 enzymes. Where X is a destabilising residue (R or F), the respective E3 610 

ligase (PRT6 or PRT1) directs the fusion protein for proteasomal degradation (modified from 611 

Kmelinskii et al., 2012). B, Quantification of relative protein stability (mCherry/sfGFP ratio) of 612 

the N-end rule tFT reporters in epidermal cells of 5-week-old wild-type plants and N-end rule 613 

E3-ligase-deficient mutants (prt1-1 and prt6-5). Different letters indicate statistically 614 

significant differences between groups determined with the one-way RM ANOVA test 615 

(P<0.05, n = 4–13). Values represent means + standard error (SE). C, Representative false-616 

colour images of Arabidopsis leaf epidermal cells expressing N-end rule-tFT reporters for 617 

calculation of mCherry/sfGFP ratios (blue = unstable; white = stable. The heat map indicates 618 

the intensity ratio of mCherry to sfGFP. Bar: 20 µm.  619 

 620 

Figure 3. Stable expression of N-end rule tFT reporters in Arabidopsis thaliana 621 

A and B, Immunoblots of transgenic lines expressing R-tFT (A) and F-tFT (B). Two 622 

independent transgenic lines were selected for each construct and crossed to Col-0 to obtain 623 

a control line harbouring the same transgene event. Proteins were extracted from 5-d-old 624 

seedlings treated with 50 µM Bortezomib or DMSO and subjected to immunoblotting (20 625 

µg/lane) with antisera towards GFP or mCherry. The lower panels show Ponceau S staining 626 

following transfer and positions of molecular weight markers (kDa) are indicated to the left. C, 627 

Quantification of relative protein stability (mCherry/sfGFP ratio) of the N-end rule tFT 628 

reporters in root cells of 7-d-old wild-type plants and N-end rule E3-ligase-deficient mutants 629 

(prt1-1 and prt6-5) treated for 4 h with the proteasome inhibitor MG-132 (50 µM). Different 630 

letters indicate statistically significant differences between groups determined with the one-631 

way RM ANOVA test (P<0.05, n = 4-7). Values represent means + standard error (SE). D, 632 

Representative false-colour images of Arabidopsis root cells expressing N-end rule-tFT 633 

reporters for calculation of mCherry/sfGFP ratios (blue = unstable; while = stable). The heat 634 

map indicates the intensity ratio of mCherry to sfGFP. Bar: 20 µm.  635 

 636 

 637 

Figure 4. Transient expression of IAA-tFT reporters in N. benthamiana epidermis 638 

A-D, Representative confocal micrographs of N. benthamiana leaf epidermal cells 639 

agroinfiltrated with different IAA-tFT constructs. Panels clockwise from top left: sfGFP, 640 

mCherry, merge, bright field. Bar = 50 µm. B, Plots showing relative intensity of mCherry and 641 
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sfGFP signals on a pixel-by-pixel basis. The colour in the plot represents the number of 642 

pixels (absolute frequency) that are plotted in that region. 643 

 644 

Figure 5. Transient expression of IAA-tFT reporters in Arabidopsis thaliana 645 

A, Quantification of relative protein stability (mCherry/sfGFP ratio) of IAA-tFT reporters in 646 

epidermal cells of 5-week-old wild-type plants treated for 2 h with 100 µM 2,4-D or ethanol 647 

(EtOH, n = 4-7). Values represent means + standard error (SE). B, Representative false-648 

colour images of Arabidopsis epidermal cells expressing IAA-tFT reporters for calculation of 649 

mCherry/sfGFP rations shown in A (blue = unstable; white = stable). The heat map indicates 650 

the intensity ratio of mCherry to sfGFP.  Nuclear (nuc) and cytosolic (cyt) data were collected 651 

separately for IAA17.  As a result of significant destabilisation of the cytosolic IAA17-tFT by 652 

2,4-D treatment, the mCherry signal was undetectable. In this case, the signals for sfGFP 653 

and mCherry of the IAA17-tFT were shown in separate images (red frame). Bar: 15 µm. C, 654 

mCherry/sfGFP ratios of IAA28-tFT transiently transformed in wild type and the tir1-1 afb2 655 

double mutant lacking the auxin-activated degradation system (n=8). D, Representative 656 

false-colour images of Arabidopsis epidermal cells expressing IAA-tFT reporters for 657 

calculation of mCherry/sfGFP rations shown in C (blue = unstable; white = stable bar: 15 µm. 658 

The heat map indicates the intensity ratio of mCherry to sfGFP. Different letters indicate 659 

statistically significant differences between groups determined with the one-way RM ANOVA 660 

test (P<0.05). Values represent means + standard error (SE). 661 

 662 

Figure 6. Stable expression of IAA-tFT reporters in Arabidopsis thaliana 663 

Immunoblots of stable Arabidopsis transgenic lines expressing different IAA genes fused to 664 

tFT. Five-d-old seedlings were treated with 5 µM 2,4-D or ethanol (EtOH) for 4 h. Blots (40 665 

µg/lane) were probed with anti-GFP or anti-mCherry antibodies (black arrowheads indicate a 666 

non-specific band recognised by the mCherry antibody; white arrowheads indicate the IAA-667 

tFT proteins). The lower panels show Ponceau S staining following transfer and positions of 668 

molecular weight markers (kDa) are indicated to the left.  669 

 670 

 671 

Figure 7. Auxin destabilises IAA31-tFT in planta 672 

A, Confocal micrographs of primary roots of 6-d-old IAA31-tFT seedlings, treated with 5 µM 673 

2,4-D or ethanol (cont.) for 4 h. B, Confocal micrographs of 14-d-old IAA31-tFT roots turned 674 

by 180° for 16 h to induce root bending. Bar: 50 µm.  675 

 676 

 677 

 678 
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sfGFP mCherry DAPI merge

Figure 1. C-terminal mCherry-sfGFP demonstrates cytosolic localisation of SAT5
A, Nicotiana benthamiana leaves were transiently transformed with a construct expressing SAT5-tFT under 
the control of the CaMV35S promoter. The panels show confocal micrographs of three different cells, 
counterstained with DAPI to mark nuclei. Bar: 30 µm B, Immunoblots of different leaves infiltrated with the 
P19 suppressor of gene silencing (left) or SAT5-tFT plus P19 (middle and right). Blots (50 µg protein/lane) 
were probed with antisera towards GFP or mCherry, as indicated. The lower panels show Ponceau S 
staining following transfer and positions of molecular weight markers (kDa) are indicated to the left. 
The open arrowhead indicates the position of SAT5-tFT and the black arrowhead indicates a P19-specific band.
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Figure 2. Transient expression of N-end rule tFT reporters in Arabidopsis thaliana
A, Generation of N-end rule tFT reporters. Constructs are driven by the constitutive CaMV35S promoter and encode 
a fusion of ubiquitin (Ub; grey) to the tandem timer (magenta and green). De-ubiquitinating enzymes remove Ub co-
translationally to reveal a new N-terminus (a variable residue, indicated by X). A flexible linker (brown box) contains 
lysine (K) residues which can be covalently linked to ubiquitin via the sequential activity of E1, E2 and E3 enzymes. 
Where X is a destabilising residue (R or F), the respective E3 ligase (PRT6 or PRT1) directs the fusion protein for 
proteasomal degradation (modified from Kmelinskii et al., 2012). B, Quantification of relative protein stability 
(mCherry/sfGFP ratio) of the N-end rule tFT reporters in epidermal cells of 5-week old wild-type plants and N-end rule 
E3-ligase-deficient mutants (prt1-1 and prt6-5). Different letters indicate statistically significant differences between 
groups determined with the one-way RM ANOVA test (P<0.05, n = 4-13). Values represent means +/- standard error 
(SE). C, Representative false-colour images of Arabidopsis leaf epidermal cells expressing N-end rule-tFT reporters 
for calculation of mCherry/sfGFP ratios (blue = unstable, white = stable). The heat map indicates the intensity ratio of 
mCherry to sfGFP. Bar: 20 µm in all panels. 
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Figure 3 Stable expression of N-end rule tFT reporters in Arabidopsis thaliana
A, and B, Immunoblots of transgenic lines expressing R-tFT (A) and F-tFT (B). Two independent transgenic lines 
were selected for each construct and crossed to Col-0 to obtain a control line harbouring the same transgene 
event. Proteins were extracted from 5 d old seedlings treated with 50 µM Bortezomib or DMSO and subjected to 
immunoblotting (20 µg/lane) with antisera towards GFP or mCherry. The lower panels show Ponceau S staining 
following transfer and positions of molecular weight markers (kDa) are indicated to the left. C, Quantification of 
relative protein stability (mCherry/sfGFP ratio) of the N-end rule tFT reporters in root cells of 7 d-old wild-type 
plants and N-end rule E3-ligase-deficient mutants (prt1-1 and prt6-5) treated for 4 h with the proteasome inhibitor 
MG-132 (50 µM). Different letters indicate statistically significant differences between groups determined with the 
one-way RM ANOVA test (P<0.05, n = 4-7). Values represent means + standard error (SE). D, Representative 
false-colour images of Arabidopsis root cells expressing N-end rule-tFT reporters for calculation of mCherry/sfGFP 
ratios (blue = unstable, white = stable). The heat map indicates the intensity ratio of mCherry to sfGFP Bar: 20 µm 
for all panels. 
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Figure 4. Transient expression of IAA-tFT reporters in N. benthamiana epidermis
A, Representative confocal micrographs of N. benthamiana leaf epidermal cells agroinfiltrated with different 
IAA-tFT constructs. Panels clockwise from top left: sfGFP, mCherry, merge, bright field. Bar = 50 µm. B, 
Plots showing relative intensity of mCherry and sfGFP signals on a pixel-by-pixel basis. The colours in the 
plot represent the number of pixels (absolute frequency) that are plotted in that region).
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Figure 5. Transient expression of IAA-tFT reporters in Arabidopsis thaliana
A, Quantification of relative protein stability (mCherry/sfGFP ratio) of IAA-tFT reporters in epidermal cells of 5 week 
old wild-type plants treated for 2 h with 100 µM 2,4-D or ethanol (EtOH, n = 4-7). Values represent means +/- 
standard error (SE). B, Representative false-colour images of Arabidopsis epidermal cells expressing IAA-tFT 
reporters for calculation of mCherry/sfGFP ratios shown in A (blue = unstable, white = stable). The heat map 
indicates the intensity ratio of mCherry to sfGFP.  Nuclear (nuc) and cytosolic (cyt) data were collected separately 
for IAA17.  As a result of significant destabilisation of the cytosolic IAA17-tFT by 2,4-D treatment, the mCherry signal 
was undetectable. In this case, the signals for sfGFP and mCherry of the IAA17-tFT were shown in separate images 
(red frame). Bar: 15 µm for all panels. C, mCherry/sfGFP ratios of IAA28-tFT transiently transformed in wild type 
and the tir1-1 afb2 double mutant lacking the auxin-activated degradation system (n=8). D, Representative 
false-colour images of Arabidopsis epidermal cells expressing IAA-tFT reporters for calculation of mCherry/sfGFP 
ratios shown in C (blue = unstable, white = stable); bar: 15 µm. The heat map indicates the intensity ratio of mCherry 
to sfGFP. Different letters indicate statistically significant differences between groups determined with the one-way 
RM ANOVA test (P<0.05). Values represent means +/- standard error (SE).
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Figure 6 Stable expression of IAA-tFT reporters in Arabidopsis thaliana

Immunoblots of stable Arabidopsis transgenic lines expressing different IAA genes
fused to tFT. Five d old seedlings were treated with 5 mM 2,4-D or ethanol (EtOH) for
4 h. Blots (40 g/lane) were probed with anti-GFP or anti-mCherry antibodies (black
arrowheads indicate a non-specific band recognised by the mCherry antibody; white
arrowheads indicate the IAA-tFT proteins). The lower panels show Ponceau S
staining following transfer and positions of molecular weight markers (kDa) are
indicated to the left.
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Figure 7 Auxin destabilises IAA31-tFT in planta
A, Confocal micrographs of primary roots of 6 d-old IAA31-tFT seedlings, treated with 5 µM 2,4-D or ethanol (cont.) 
for 4 h. B, Confocal micrographs of 14 d-old IAA31-tFT roots turned for 16 h by 180° to induce root bending. Bar: 50 µm. 
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