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Summary 
This paper extends consideration of semantics to identify the sources of semantic variation in 

modelling, using a case study on soil conductivity in the Loess Plateau, China through spatial 

regression as the model. Given a simple case of y = f(x), noting that y will only ever be a predicted, 

y*, the paper examines the impacts on semantics of Measurement of x (the ‘x’ issue), the Choice of x 

(the ‘m’ issue) and the Support of x (the ‘v’ issue). These affect the semantics of y* through model 

inputs, specification and granularity, and although some of these factors are known, they have not 

been considered in this context together before. 

 

KEYWORDS: sample measurement; model specification, sample support, spatial regression. 

 

1. Introduction  

 

The three key areas that Geography contributes to the wider scientific community are representation, 

scale and uncertainty. How we represent a process is critical. And whilst consideration of spatial data 

semantics is well developed – the way that real-world features are conceptualized and represented in 

our databases – very little work has examined the semantics of the way we analysis processes in our 

statistical models – what we do with our spatial data. Specifically, the semantics associated with how 

we model spatial processes is an under-researched area. This paper explores the semantics associated 

with constructing statistical models of spatial processes and identifies the sources of semantic 

variation in modelling.  

 

Taking the simplest case of y as a function of x: 

 

y = f(x) (1) 

 

and noting that y will only ever be an approximation, y*, this paper examines the semantic impacts on 

statistical models of y arising from decisions over:   

 

- Measurement of x: the ‘x’ issue in which different measures of ‘x’ influence the model of y*; 

- Choice of x: the ‘m’ issue of what and how many predictors to include in the specification of 

the model itself which has a semantic effect on y*; 

- Support of x: the ‘v’ issue in which support effects are induced through the choice of 

measurements scales and granularity. 

-  

The first two (the ‘x’ and ‘m’ issues) are reasonably well-known within the statistics and modelling 

communities and many tests exist to determine which measures of x to use and which predictors to 

select. However, the Support (the ‘v’ issue) is less frequently considered and yet has profound effects 

on the resulting model semantics (i.e., how y* is specified). This includes the geographic space on 

which predictors are defined with different resulting integrals of supports for y*. Support effects are 
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induced through the choice of model, particularly for spatial models. The impacts of these issues are 

illustrated by modelling soil conductivity in the Loess Plateau, China. 

 

2. Case study, data and models 

 

For this study, soil conductivity (y) was hypothesised as being described by bulk density, field 

capacity, soil saturated water content, elevation, slope, aspect, stream flow, topographic position, 

ruggedness and land surface roughness. Other predictor variables are frequently included as described 

in Liu et al (2008). Field data were collected at 224 locations in the Loess Plateau, China (Figure 1). 

The data are described in Zhao et al (2016). For each sample, several soil properties were measured 

(soil conductivity, soil bulk density and soil saturated water content) at different depths of 0 to 10 cm, 

10 to 20 cm and 20 to 40 cm. The different measurements of these x variables (taken as the ‘x’ issue) 

have different values at the same sites and different distributions (Figure 2). 

 

 

Figure 1 The field sites and the Loess Plateau 

study area. 

 

Figure 2 Variation in the different measurements 

of x from field data.  

 

In addition, a 30 m DEM was resampled to 90 m and 180 m. Terrain variables were generated 

(aspect, stream flow direction, slope, Topographic Position Index (TPI), Terrain Ruggedness Index 

(TRI) and surface roughness). Spatial intersection was used to extract the terrain variables for each of 

the sample sites. These terrain predictor variables have different distributions at different resolutions 

(Figure 3) indicating variation in the support of x (the ‘v’ issue) from data collected at different 

resolutions, scales and granularity. 

 

The final source of variation in y* is the predictors that are used as inputs to construct the model. This 

is the ‘m’ issue in which the specification of the model itself has a semantic effect on y*. In the 

general case, this includes what and how many predictors (x) to include in the model and how to deal 

with the error term. The simplest model is a global regression as follows: 
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where, for observations indexed by ni ,,1  ,  𝑦𝑖 is the response variable, 𝑥𝑖𝑗  is the value of the 𝑗𝑡ℎ 

predictor variable, 𝑚 is the number of predictor variables, 𝛽0 is the intercept term, 𝛽𝑗 is the regression 

coefficient for the 𝑗𝑡ℎ predictor variable and 𝜖𝑖 is the random error term. As a spatial regression 

model, geographically weighted regression (GWR) is chosen, which is similar to the global case but 

calculates a series of local linear regressions with locations associated with the coefficient terms: 
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where  ii vu ,  is the spatial location of the 
thi observation and  iij vu ,  is a realization of the 

continuous function  vuj ,  at point i . The geographical weighting results in data nearer to the 

kernel centre making a greater contribution to the estimation of local regression coefficients at each 

local regression calibration point 𝑘. For this study, the weights were generated using a bi-square 

kernel, which for the bandwidth parameter kr  is defined by: 

 

  221 kikik rdw   if kik rd     0ikw    otherwise (4) 

 

where the bandwidth can be specified as a fixed (constant) distance value, or in an adaptive, varying 

distance way, where the number of nearest neighbours is fixed (constant). In this case, adaptive 

bandwidths were chosen. 

 

 

Figure 1 Variation in the support of x from the terrain analysis at different resolutions. 

 

3. Results 

 

A general model of soil conductivity was hypothesised as being described by the following 

predictors: bulk density, field capacity, soil saturated water content, elevation, slope, aspect, stream 

flow, topographic position, ruggedness and land surface roughness. Nine global regression models 

were fitted to model soil conductivity at three different depths, using field data predictors measured at 

those depths (the ‘x’ issue) plus the terrain predictors created from DEM data at different resolutions 

(the ‘v’ issue). Each of these models was then subjected to a step-wise AIC model selection 

procedure (the ‘m’ issue), resulting in parsimonious models with a reduced set of (selected) 

predictors (Table 1). 

 

The 18 regressions were compared using an analysis of variance (ANOVA). The reductions in the 

residual sum of squares (RSS) between each of the models is shown in Table 2. There are some broad 

patterns. While no significant differences were found between models 1 to 9, significant differences 

were found between models 4 to 9 and selected models, for example: 

 



• 40 cm depth 90 m DEM (model 8) and the selected 10 cm depth 30 m DEM (model 1ms), 

with reductions in the RSS of 18.93 

• 10 cm depth 90 m DEM (model 2) and the selected 40 cm depth 30 m DEM (model 7ms) with 

reductions in the RSS of 19.00 

• 40 cm depth 180 m DEM (model 9) and the selected 20 cm depth 90 m DEM (model 5ms ) 

with reductions in the RSS of 3.96 

 

A GWR analysis of the 6 highlighted global models above, generated alternative predicted measures 

of y, y* which are compared with observed y in Figure 4. Here the impacts of the different model 

semantics begin to be evident: they are each generating predictions of y* that have different spatial, 

measurement and model selection characteristics.  

 

Table 1 Selected predictors for each model. 

Model ID Model  Model ID Selected predictors 

1 10 cm depth 30 m DEM  1ms SSWC.0.10cm. 

2 10 cm depth 90 m DEM  2ms SSWC.0.10cm. 

3 10 cm depth 180 m DEM  3ms SSWC.0.10cm. roughness slope 

4 20 cm depth 30 m DEM  4ms SSWC.10.20cm. slope elev. 

5 20 cm depth 90 m DEM  5ms SSWC.10.20cm. roughness elev. 

6 20 cm depth 180 m DEM  6ms SSWC.10.20cm. elev. 

7 40 cm depth 30 m DEM  7ms BD.20.40cm. roughness slope 

8 40 cm depth 90 m DEM  8ms BD.20.40cm. FC.20.40cm. elev. 

9 40 cm depth 180 m DEM  9ms BD.20.40cm. FC.20.40cm. elev. 

 

 

Figure 4 Observed (y-axis) against Predicted (x-axis) soil conductivity from 6 selected models. 

 

The impacts of model semantic variation are further exemplified when the predictions from GWR are 

mapped over a 10km grid covering the study area as in Figure 5. Here, the ratios of predicted to 

observed soil conductivity are mapped to show how and where disagreement varies spatially, with the 

size of the adaptive bandwidth giving an indication of spatial heterogeneity and the degree with which 

the semantics of modelled soil conductivity vary within the models as well as between them.  

 



 

 

Figure 5 GWR surfaces of the ratios of predicted to observed soil conductivity for 6 selected models. 

 

4. Discussion  

 

Statistical models are fitted to describe, understand and predict various processes. In Geography our 

models may be spatial, and spatial data are frequently used as model inputs. Model semantics are 

defined by x, v and m issues. The impact of x and m are well known within statistical communities. 

However, their interaction with the v issue is less well understood and frankly under considered. 

Consider the GWR results in Figures 4 and 5: these show how well predicted matches observed soil 

conductivity. Each of the models has different choices of x, (x-issue), the ‘ms’ models have different 

selections of x (m-issue) and different spatial supports for x (v-issue). Each of these fundamentally 

affects the meaning and semantics of predicted / modelled y in global (fixed coefficient) models. The 

potential for such semantic differences is further enhanced when spatial regression models, such as 

GWR, are used as the coefficient estimates themselves, also vary across space. The result is that the 

local regression model predicting soil conductivity is different in different places, adding an 

additional layer to the semantic variation inherent in global regressions. 
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Table 2 Reductions in the residual sum of squares between each of the models (significant differences are in bold) 

Model 1 2 3 4 5 6 7 8 9 1MS 2MS 3MS 4MS 5MS 6MS 7MS 8MS 9MS 

1 0.00 
                 

2 0.40 0.00 
                

3 -0.40 -0.80 0.00 
               

4 -14.44 -14.85 -14.05 0.00 
              

5 -14.28 -14.69 -13.89 0.16 0.00 
             

6 -14.24 -14.65 -13.85 0.20 0.04 0.00 
            

7 -18.56 -18.96 -18.16 -4.11 -4.27 -4.31 0.00 
           

8 -18.12 -18.52 -17.72 -3.67 -3.83 -3.87 0.44 0.00 
          

9 -18.21 -18.62 -17.81 -3.77 -3.93 -3.97 0.34 -0.09 0.00 
         

1MS 0.81 0.41 1.21 15.26 15.10 15.06 19.37 18.93 19.03 0.00 
        

2MS 0.81 0.41 1.21 15.26 15.10 15.06 19.37 18.93 19.03 0.00 0.00 
       

3MS 0.04 -0.37 0.44 14.48 14.32 14.28 18.59 18.16 18.25 -0.78 -0.78 0.00 
      

4MS -14.26 -14.66 -13.86 0.19 0.03 -0.01 4.30 3.86 3.96 -15.07 -15.07 -14.29 0.00 
     

5MS -14.25 -14.65 -13.85 0.19 0.03 -0.01 4.31 3.87 3.96 -15.06 -15.06 -14.29 0.01 0.00 
    

6MS -14.09 -14.49 -13.69 0.35 0.20 0.15 4.47 4.03 4.12 -14.90 -14.90 -14.13 0.17 0.16 0.00 
   

7MS -18.18 -18.59 -17.78 -3.74 -3.90 -3.94 0.37 -0.07 0.03 -19.00 -19.00 -18.22 -3.93 -3.93 -4.09 0.00 
  

8MS -17.91 -18.31 -17.51 -3.47 -3.63 -3.67 0.65 0.21 0.30 -18.72 -18.72 -17.95 -3.65 -3.66 -3.82 0.27 0.00 
 

9MS -17.91 -18.31 -17.51 -3.47 -3.63 -3.67 0.65 0.21 0.30 -18.72 -18.72 -17.95 -3.66 -3.66 -3.82 0.27 0.00 0.00 



 


