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Landmark Papers

Optimal interpolation and isarithmic mapping of soil properties: I The semi-variogram

and punctual kriging

T . M . B u r g e s s & R . W e b s t e r ∗

Department of Agricultural Science, University of Oxford, and Rothamsted Experimental Station, Harpenden, Herts. AL5 2JQ

Summary

Kriging is a means of spatial prediction that can be used for soil properties. It is a form of weighted local averaging.
It is optimal in the sense that it provides estimates of values at unrecorded places without bias and with minimum
and known variance. Isarithmic maps made by kriging are alternatives to conventional soil maps where properties
can be measured at close spacings.
Kriging depends on first computing an accurate semi-variogram, which measures the nature of spatial dependence
for the property. Estimates of semi-variance are then used to determine the weights applied to the data when
computing the averages, and are presented in the kriging equations.
The method is applied to three sets of data from detailed soil surveys in Central Wales and Norfolk. Sodium
content at Plas Gogerddan was shown to vary isotropically with a linear semi-variogram. Ordinary punctual
kriging produced a map with intricate isarithms and fairly large estimation variance, attributed to a large nugget
effect. Stoniness on the same land varied anisotropically with a linear semi-variogram, and again the estimation
error of punctual kriging was fairly large. At Hole Farm, Norfolk, the thickness of cover loam varied isotropically,
but with a spherical semi-variogram. Its parameters were estimated and used to krige point values and produce a
map showing substantial short-range variation.

Introduction

For many years now the standard product from almost any soil
survey has been a map of classes of soil, together with a record of
observations and measurements made from pits or boreholes. The
latter obviously refer specifically to the points at which the pits or
boreholes were sunk, but there is always the hope, expressed or
implied, that all places mapped as any particular class will have
values of soil properties similar to those recorded for that class,
and different from those of at least some of the other classes. The
distribution of a single property may be displayed by assigning to
each parcel on the map the typical value of that property within its
class. Likewise the value at any one place not actually recorded,
and this applies to the vast majority, is predicted. Of course, it is
realized that the actual value there will differ somewhat from the
predicted value.

∗Communications regarding this paper should be addressed to R. Webster,
Rothamsted Experimental Station, Harpenden, Herts. AL5 2JQ

The rationale may be expressed in terms of classical statistics by
assuming that the value of a property, zij, at any place i in class j is
the sum of three terms:

Zij = 𝜇 + 𝛼j + 𝜀ij, (1)

where 𝜇 is the general mean of the property for the whole area, 𝛼j

is the difference between the general mean and the mean of class j,
and 𝜀ij is a random component distributed normally with zero mean
and variance 𝜎2

w. This is the model underlying the sampling studies
by Thornburn & Larsen (1959) and Morse & Thornburn (1961),
and the work on prediction and map evaluation (e.g. Webster and
Beckett, 1968; Beckett & Webster, 1971). The parameters 𝜇, 𝛼j and
𝜎2

w can all be estimated from data as say z, aj and s2
w respectively

by the usual least squares analysis and analysis of variance. The
predicted value for an unrecorded point in class j is z + aj, and
confidence limits are determined from s2

w, the sample within-class
variance. The smaller is 𝜎2

w the more precise will any prediction be,
and the more valuable the map.

Where measured data are sparse, as they often are, this approach
to prediction and mapping is the only feasible one. It obviously
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depends on there being an association between the property of
interest and the classification, even though the classes are recog-
nized independently. In terms of the model, |𝛼j| must on average
be substantially greater than zero, otherwise the classification does
not help to predict the property. However, the procedure takes no
account of the spatial arrangement of the data points and their rela-
tions to predicted points, nor of any gradation in values across
boundaries. These can only be of consequence when data are dense,
specifically when they are spatially dependent, and in that event a
means of prediction and mapping that uses the spatial information
is obviously to be preferred.

In such circumstances interpolation provides an alternative to
classification for predicting values of a property at unvisited points.
Mapping can be achieved by envisaging such values as forming
a continuous statistical surface over the map plane, which can be
represented by isarithms. Isarithmic mapping is often known as
‘contouring’, by analogy with the mapping of topographic height.
But caution is needed. Topographic contours are usually drawn to
join points of equal measured height, whereas soil isarithms join
points of inferred equal value. In practice topographic contours can
be followed continuously, either on the ground or on a pair of air
photographs, and this means that they can be drawn as accurately
as the surveying equipment allows. Soil isarithms on the other hand
must be derived from a finite set of more or less widely spaced
points and are therefore subject to sampling variation. As with
prediction from classifications, there is an error associated with
interpolation.

Several interpolation methods have been proposed, and they
have been incorporated into many programs for automatic con-
touring (Rhind, 1975). The principal ones, reviewed briefly by
Webster (1977), have been: linear interpolation across a triangu-
lation, inverse distance and inverse-square distance weighted aver-
aging, least-square polynomials, and Thieissen polygons. They are
empirical, and their implementations often represent compromises
between the mathematically desirable and the computationally fea-
sible. Though these methods may seem reasonable for many appli-
cations they are theoretically unsatisfactory. They may give biased
interpolation, they provide no estimate of the error of interpolation,
nor do they attempt to minimize that error.

Recently a method known as ‘kriging’ has become available. It is
based on the theory of regionalized variables developed mainly by
Matheron (1963, 1965, 1971) and Krige (1966) for the estimation
of ore reserves in mining, in which it is being used increasingly.
It predicts values without bias and with minimum variance. In this
sense it is optimal, just as the best classification of soil in a region is
that for which the within-class variance is least (Webster & Beckett,
1968; Webster, 1971). Since kriging possesses these properties
it has considerable promise in intensive survey. Also, since the
variance of the estimates can itself be estimated the interpolated
values can be used with known confidence.

The purpose of this paper is to draw the attention of soil scientists
to kriging as a means of spatial prediction, to describe the essential
steps of the procedure, as it applies to soil mapping, and to illustrate
them with results for areas where detailed surveys had been carried

out. Readers who wish to study the procedure in depth should read
the source texts by Matheron, though the recent book by Journel and
Huijbregts (1978) at an intermediate level is highly recommended.
The first stage in kriging is the measurement of spatial variation in
the soil property of interest. This not only provides the quantities
necessary for optimal interpolation, but can guide the scientist
in his choice of technique and sampling strategy. Therefore in
Part I of the paper we deal with this stage at some length before
showing how the measurements are applied to estimate values at
points. In Part II we consider some of the shortcomings of punctual
kriging for soil survey and extend the technique to estimate values
of soil properties over areas (block kriging), and draw general
conclusions.

Spatial Dependence and the Semi-Variogram

Webster (1973) and Webster & Cuanalo (1975) first measured
spatial dependence among soil measurements by applying methods
of time series. They computed correlograms from data along
transects. As it happens regionalized variable theory builds on a
complementary function known as the ‘semi-variogram’, for which
a brief explanation is needed.

Consider a transect along which observations have been made
at regular intervals to give values z(i), i= 1, 2, … , n. Then the
relation between pairs of points h intervals apart, the lag, can be
expressed as the variance of the differences between all such pairs.
The per-observation variance between pairs (Yates, 1948) is half
this value thus:

𝛾 (h) = 1
2

var [z (i) − z (i + h)] (2)

It is called the semi-variance, and is a measure of the similarity,
on average, between points a given distance, h, apart. The more
alike are the points the smaller is 𝛾(h), and vice versa. The quantity
𝛾(h) can be estimated for integer values of h from the data. If the
mean of the observations remains constant over distances d, then
provided h is less than d the semi-variance is half the expected
squared difference between values at that lag:

𝛾 (h) = 1
2

E
[
{z (i) − z (i + h)}2] . (3)

The graph of 𝛾(h) against h is the semi-variogram. It is related to
the correlogram by

𝛾 (h) = 𝜎2 {1 − 𝜌 (h)} , (4)

where 𝜎2 is the variance and 𝜌(h) the autocorrelation at lag h.
Conversely

𝜌 (h) = 1 − 𝛾 (h)
𝜎2

. (5)

The autocorrelation coefficient thus depends on the variance,
which must be finite for the relation in Equation (5) to make
sense. The semi-variance is free of this restriction, and is therefore
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(a) (b)

Figure 1 Theoretical semi-variograms for (a) a linear model and (b) a spherical model, illustrating the range, a, the sill, c0 + c, and the nugget variance, c0.
The tangent to the curve at h+ 0 in (b) meets the horizontal for the total variance at 2

3
a.

preferred. A second advantage of working with the semi-variance
is that it is easier to take account of local trends in the property
of interest. In regionalized variable theory such trend is known as
‘drift’, and we shall deal with this in a later paper (Webster &
Burgess, 1980).

The semi-variogram has certain important characteristics which
(a) reveal the nature of the geographic variation in the property of
interest, and (b) are needed to provide kriged estimates at previously
unrecorded points. These are described with reference to Figure 1.
In most instances it is found that 𝛾(h) increases with increasing
h to a maximum, approximately the variance of the data, at a
moderate value of h, say a. The distance a is known as the range.
If 𝛾(h) approaches the maximum asymptotically then a may be
chosen where 𝛾(h) becomes sufficiently close to the total variance
for practical purposes. Points closer together than the range are
spatially dependent; points further apart bear no relation to one
another, unless there is periodic variation in the soil. Experience
to date suggests that in practical soil survey the range will usually
be a few hundred metres, and exceptionally up to two or three
kilometres. It does, however, depend on the size of area sampled.
When interpolating we shall aim to use only those points closer than
the range to the predicted point.

By definition 𝛾(h)= 0 when h= 0. However, as can be seen from
Figures 2 and 4, any smooth curve that approximates the values
of the semi-variance is unlikely to pass through the origin. Instead
there appears to be a positive finite value to which 𝛾(h) approaches
as h approaches 0. This intercept is the nugget variance, c0 in
Figure 1, and the phenomenon in general is known as the nugget
effect. The terms derive from gold mining in which the inclusion
of a gold nugget in a narrow core sample is a somewhat chance
event. Most semi-variograms of soil properties show distinct nugget
effects (see also the correlograms in Webster & Cuanalo (1975),

Figure 2 Semi-variograms of sodium content in Cae Ruel, Plas Gogerd-
dan, for the four principal directions of the grid, 𝛾 is in units of (meq/10 kg)2.

Figures 6.1 and 6.2 in Webster (1977), and Campbell’s (1978)
semi-variograms). The nugget variance embraces fluctuation in the
soil that occurs over distances much shorter than the sampling
interval, and limits the precision of interpolation, as we shall show
later.

The value at which 𝛾(h) levels out is known as the sill. It
consists of the nugget variance plus a component c (Figure 1)
that represents the range of variance due to spatial dependence in
the data.

There is no general mathematical formula to describe the shape of
soil semi-variograms. A linear model, 𝛾(h)= c0 +mh, is simplest,
and will often describe 𝛾(h) well within the range, i.e. for h= 0
to h= a, Figure 1(a). It would fit several of the correlograms in
Webster & Cuanalo (1975) and Webster (1978). Where there is no

© 2019 British Society of Soil Science, European Journal of Soil Science, 70, 11–19
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Table 1 Slopes of semi-variograms of stone content at Plas Gogerddan
estimated for each direction separately, mi and from pooled semi-variances
after fitting a sinusoidal curve, w(Θi)

Direction 𝜃i mi w(𝜃i)

1 𝜋/2 3.14 3.57
2 0 5.51 5.94
3 𝜋/4 2.13 1.70
4 3𝜋/4 8.23 7.80

clear sill, or even where a sill exists, the distance, d, over which
𝛾(h) is of interest or can actually be computed may be less than
the range. Again for h= 0 to h= d the linear model may be an
adequate description of the graph. This seems to be so for the
semi-variograms in Figure 6, for which values for c0 and m are given
on p. 328, and Table 1, and in Figure 2 up to lag 5.

An alternative proposed by Matheron to account for geological
deposition and found to fit well in mineral prospecting is the
spherical model, see Figure 1(b). It is given by

⎧⎪⎨⎪⎩
𝛾 (h) = c0 + c

{
3

2

h

a
− 1

2

(
h

a

)3
}

for0 < h ⩽ a

𝛾 (h) = c0 + c forh > a
. (6)

Royle & Hosgit (1974) used this model to describe the spatial
variation in gravel deposits near Doncaster, Yorkshire, and we have
found it suitable in a number of instances for soil properties with
a distinct sill and range. Figure 4 is an example, in which the
spherical model has been fitted to the experimental semi-variances.
The values of c0, c and a are given on p. 325.

Punctual kriging

Consider a survey in which some soil property, Z, has been
measured at n points each with location specified by a pair of
coordinates xi, yi, i= 1,2, … , n, and for which we shall use the
vector notation xi, where xi = [xi, yi]. We shall thus have a set of
values z(x1), z(x2), … , z(xn). Suppose now that we wish to estimate
the value z(x0) of Z at a point x0. Let our estimate be ẑ0, where ẑ0 is
a linear sum, or weighted average of the observed values:

ẑ0 = 𝜆1z
(
x1

)
+ 𝜆2z

(
x2

)
+ · · · + 𝜆nz

(
xn

)
, (7)

where the 𝜆i are coefficients or weights associated with the data
points. The concept of such an average is familiar enough whether
in the form of simple moving averages, the more complex averages
with weights proportional to inverse functions of distance as in
the SYMAP contouring algorithm (Shepard, 1968) or even trend
surface interpolation. In kriging, however, the weights are so chosen
that the error associated with the estimate is less than that for any
other linear sum. The weights take account of the known spatial
dependences expressed in the semi-variogram and the geometric
relationships among the observed points. In general, near points

carry more weight than distant points, points that occur in clusters
carry less weight than lone points, and points lying between the
point to be interpolated and more distant points screen the distant
points so that the latter have less weight than they would otherwise.

The model for simple kriging, analogous to Equation (1) for usual
soil survey practice, is

z (x) = 𝜇v + 𝜀 (x) , (8)

where z(x) is the value of the property at x within a neighbourhood
V , 𝜇v is the mean value in that neighbourhood and 𝜀(x) is a spa-
tially dependent random component with zero mean and variation
defined by

var [𝜀 (x) − 𝜀 (x − h)] = E
[
{𝜀 (x) − 𝜀 (x + h)}2] = 2𝛾 (h) (9)

and equals 2𝛾(h) if variation is isotropic. It is assumed that 𝜇v is
constant for the neighbourhood, though different neighbourhoods
may have different means, and that the semi-variogram is the same
over the whole area. The last assumption implies that there are no
sharp boundaries: it is not sensible to interpolate across ‘cliffs’, and
if a sharp boundary is known to exist then interpolation should be
carried out separately on either side of it.

We shall show how the coefficients, 𝜆i, are calculated for ordinary
kriging, i.e. for situations where there is no drift, first to estimate
values at points (punctual kriging), and in Part II to estimate average
values over areas (block kriging).

The first requirement of our interpolation estimate is that it be
unbiased; i.e. we want ẑ0 to be the same as the expectation E[z(x0)].
The weights must therefore sum to 1:

∑n
i=1 𝜆i = 1. The estimation

variance at x0 is then the expected value of the squared difference
between ẑ0 and z(x0). This can be shown to be

E
[{

z
(
x0

)
− ẑ0

}2
]
= −

n∑
i=1

n∑
j=1

𝜆i𝜆j𝛾
(
xi, xj

)
+ 2

n∑
j=1

𝜆j𝛾
(
x0, xj

)
,

(10)
where 𝛾(xi,xj) is the value of the semi-variogram along the line
joining xi and xj at a distance |xi − xj|. When a soil property varies
isotropically 𝛾(xi,xj)= 𝛾(|xi − xj|); i.e. the semi-variance depends
only on the separating distance.

The second requirement is to minimize the error variance with
respect to each 𝜆i, subject to the constraint that

∑n
i=1 𝜆i = 1. This

involves finding the partial derivatives with respect to each 𝜆i

and introduces a Lagrange parameter 𝜇. The minimum variance is
obtained when

n∑
j=1

𝜆j𝛾
(
xi, xj

)
+ 𝜇 = 𝛾

(
xi, x0

)
for i = 1, 2, … , n. (11)

In matrix notation the coefficients 𝜆i are given by

[
𝜆

𝜇

]
= A−1b (12)
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where

A=

⎡⎢⎢⎢⎢⎢⎣

𝛾
(
x1, x1

)
𝛾
(
x2, x1

)
· · · 𝛾

(
xn, x1

)
1

𝛾
(
x1, x2

)
𝛾
(
x2, x2

)
· · · 𝛾

(
xn, x2

)
1

⋮ ⋮ ⋮
𝛾
(
x1, xn

)
𝛾
(
x2, xn

)
· · · 𝛾

(
xn, xn

)
1

1 1 1 0

⎤⎥⎥⎥⎥⎥⎦

b =

⎡⎢⎢⎢⎢⎢⎣

𝛾
(
x1, x0

)
𝛾
(
x2, x0

)
⋮

𝛾
(
xn, x0

)
1

⎤⎥⎥⎥⎥⎥⎦
, and

[
𝜆

𝜇

]
=

⎡⎢⎢⎢⎢⎢⎣

𝜆1

𝜆2

⋮
𝜆n

𝜇

⎤⎥⎥⎥⎥⎥⎦
(13)

The minimum estimation variance is 𝜎2
E given by

𝜎2
E = bT

[
𝜆

𝜇

]
. (14)

Thus the vector of coefficients, 𝜆, and the error of the estimate, 𝜎2
E,

can be obtained from the single matrix inversion of A. Nevertheless,
if n is large this can still be a formidable task, and if inversion has to
be repeated for many points for contouring, it may be prohibitive.
But since 𝜆i decreases as the distance between x0 and xi increases,
and because of the screen effect, most points far from x0 can be
omitted from the calculation without serious consequences. For
irregularly distributed observations Olea (1975) suggests using only
the nearest two points in each octant around x0. For data on a square
grid the nearest 16 or 25 points are usually quite sufficient to give
an accurate estimate.

The accuracy of kriged estimates depends, of course, on the good-
ness of the computed semi-variogram. Unfortunately there is no
efficient way of calculating confidence intervals for semi-variance,
but two precautions can ensure that the values of 𝛾(h) used in the
kriging equations are satisfactory. First, the spatial analysis should
be performed on long runs of data, or numerous shorter runs, so
that the semi-variances at short lags will be computed from many
pairs of comparisons. Second, a sensible model must be chosen
to describe the results, and individual estimates of 𝛾(h) can be
weighted according to the number of comparisons on which they
are based when fitting the model. As above, since only the near-
est few points are likely to be used for kriging the semi-variograms
need be accurate only over the first few lags.

The nature of the kriging equations has important implications
for the design of soil survey. First, there is a big advantage in
making observations on a regular grid for the following reason. The
vector of coefficients, 𝜆, depends on the semi-variogram and the
configuration of the observation points x1, x2, … , xn in relation
to x0, the point to be interpolated. If the semi-variogram has been
computed from a previous sampling then 𝜆 does not depend on the
values z1, z2, … , zn. Suppose the system were shifted by a vector h,
then since 𝛾(x1 + h, x2 +h)= 𝛾(x1, x2) the matrices A and b remain
the same for an equivalent point x0 in any other square, except
near the edges of the grid: the configuration of data points retains
the same relation to the point to be estimated. This means that to

interpolate a fine grid with interval 1/r times that of the original
observation grid, we need solve Equation (12) at most r2 times for
the central part of the map. Computation can also be reduced by
noting that A does not depend on the point x0. So, to interpolate any
other points near to x0 using the same observations at x1,x2, … , xn

only b changes, and we need not invert A again. Further short cuts
can be made when the semi-variogram is isotropic. Near the edges
of the map the configuration will usually be different, and additional
matrix inversions will be necessary.

A second very important feature is that the estimation variance
also depends on the semi-variogram and the configuration of data
points in relation to x0, and not on the observed values of Z. This
means that if the semi-variances are known then the interpolation
errors can be calculated for a particular sampling design before the
survey is made. Thus, a sampling interval can in principle be chosen
to reduce the interpolation error to any desired value. In practice, of
course, it might cost too much.

Thirdly we note that when a point x0 coincides with an observa-
tion point x all the elements of 𝜆 are zero except 𝜆i, which equals 1.
Thus, an interpolation surface passes through the observed values,
and the estimation variance at these points is zero. This property
is particularly desirable when the nugget variance is small and the
observations themselves are made with negligible error. Some other
commonly used interpolation techniques, such as trend-surface
analysis, lack this property. However, if the nugget variance is large
punctual kriging may produce undesirable effects. Delfiner & Del-
homme (1975) have shown that a regionalized variable Z(x), in
one dimension, can be considered mathematically as the sum of
two random terms. These are a term Y(x) with a semi-variogram
equivalent to that of Z(x) without the nugget variance plus an uncor-
related random term 𝜀(x) with zero mean and variance equal to
the nugget variance, c0 in figure 1. When an interpolation point x0

does not coincide with an observation point the best estimate of
Z(x0) depends on the autocorrelated component Y(x0). The quan-
tity 𝜀(x0) does not influence the estimate itself, but only the esti-
mation variance, which will exceed the variance of Y(x0) by the
amount of the nugget variance. In other words it is impossible to
predict random variation that occurs over distances much less than
the sampling interval. This feature can result in a discontinuity in
a kriged line, or surface in two dimensions, at each observation
point. Discontinuity may be avoided by computing kriged aver-
ages of the soil property over small areas, and is considered in
Part II.

Automatic contouring

The mechanism by which an interpolated surface is displayed is
essentially a separate problem from that of interpolation itself,
especially if the display is produced on a graph plotter. We deal
with it briefly. In most automatic contouring systems a fine grid
of values is generated to represent the surface, usually by meth-
ods that are not optimal. The contours are threaded through this
grid using a procedure similar to that described by Dayhoff (1963).
Positions are found where the isarithms intersect the sides of

© 2019 British Society of Soil Science, European Journal of Soil Science, 70, 11–19



16 Landmark Papers

the grid cells by linear interpolation, and these are then joined
across the cells by straight line segments. The procedure can be
refined by prior triangulation, and to prevent the resulting isarithms
appearing rough the intersections can be joined using splines.
Most large scientific computer installations now have library pro-
grams that do this. The examples shown below, were obtained
using the GHOST system (Calderbank & Prior, 1977) run on the
Oxford University ICL 1906A machine from our own interpolation
grid.

The accuracy of this stage in mapping can be increased by
increasing the fineness of the interpolation grid. If it is fine enough
the isarithms will appear as smooth curves even though they consist
of straight segments. However, the capacity of the computer to
store interpolated values is finite and so is the time available for
processing, and some compromise has to be struck betwen use of
resources and accuracy. We have found that in most instances a grid
with nodes at about 2 mm intervals at the scale of the finished maps
is graphically quite acceptable.

Examples of kriging from isotropic data

Sodium content, Plas Gogerddan

A survey had been made of the soil at the Welsh Plant Breeding
Station, Plas Gogerddan. The soil in each field was examined at
50 ft (15.2 m) intervals on a square grid and several soil prop-
erties including sodium and stone content (see later) measured
on bulked samples of 10 cores 2.5 cm diameter and 15 cm deep
chosen randomly within the 50 ft× 50 ft squares around the grid
nodes. Unfortunately for present purposes the grids in different
fields had different origins and orientations, and to minimize the
computing we have restricted this study to a single field, Cae Ruel.
This is nevertheless the largest, and had 440 observation points in
it. Sodium content was determined on an acetic acid extract and
expressed in milli equivalents per 10 kg of soil.

Semi-variograms of sodium content were computed for four
principal directions, namely along the axes of the grid and along
the diagonals, with lag extending to approximately 200 m, Figure 2.
They are all linear up to a range of 4 lag intervals (about 50 m), and
although the semi-variogram for direction 1 is somewhat different
from the other three we have judged them sufficiently alike for
sodium content to be spatially isotropic. The following equation for
the semi-variance was fitted to the pooled results:

𝛾 (h) = 8.7 + 1.69 |h| for |h| ⩽ 4,

where h is in units of 50 ft.
The semi-variances become increasingly erratic after 13 terms at

the right-hand side of figure because there are fewer data points
from which to compute them. It would have been reasonable to fit
a spherical model to the result, but since the simpler linear model
seemed adequate we used it.

Using this model for the semi-variogram we interpolated a grid of
values at 25 ft (7.6 m) intervals by punctual kriging using the nearest
sixteen data points for each interpolation point. These were then

contoured using GHOST to give Figure 3. The estimation variances
for the central portion of the field are as follows:

* • *
0 10.68 0 Key
• • • * observation point
10.68 10.72 10.68 • interpolated point
* • *
0 10.68 0

These are equivalent to a standard error of the estimate of about
3.3 for unobserved points. This is fairly large, bearing in mind that
the sodium content lies mainly in the range 15 to 30. It arises largely
from the nugget variance, which is large despite the bulk sampling
procedure.

Figure 3 is the resulting contour map. It is distinctly ‘spotty’: there
are many small near-circular contours. These represent discontinu-
ities in the surface as a result of the large nugget variance. They can
be smoothed out by average kriging (Figure 1, Part II).

Cover loam, Hole Farm

The distribution of cover loam at Hole Farm in Norfolk has already
been shown to be associated with the patterns of crop establishment
there (Corbett & Tatler, 1974), and Webster (1977) used SYMAP
(Laboratory for Computer Graphics, 1968) to map the thickness of
the cover loam. Data from the same survey have been re-analysed
to produce optimal maps.

Thickness of cover loam (depth to sand and gravel) was mea-
sured by auger boring at 20 m intervals over a field of approximately
18 ha, to give some 450 observations. Semi-variograms were com-
puted for four principal directions assuming no drift. As before

Figure 3 Isarithmic map of sodium content in Cae Ruel, Plas Gogerd-
dan, produced by punctual kriging. Isarithms are at intervals of 5 meq/10 kg.
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Figure 4 Semi-variances of the depth of cover loam at Hole Farm,
Norfolk, with a spherical model fitted.

they were approximately the same as one another: the thickness of
cover loam may be regarded as isotropic, and the spatial dependence
may be represented by a single semi-variogram. Figure 4 shows the
results with a spherical model fitted, equation (6). Its parameters
were estimated as follows:

nugget variance, c0 = 187.0cm2

c = 603.8cm2

range, a = 5.06sampling intervals.

The nugget variance accounts for about a quarter of the total, and
probably arises from deep pockets of loam less than 20 m across
that are scattered over the area.

The thickness of cover loam was then kriged at 6.67 m intervals
to give a fine grid with nine times as many points as the original
observation grid. Twenty-five observations were used to interpolate
each point. The estimation-variances in the central portion of the
map were:

* • • *
0 316.4 316.4 0
• • • • Key
316.4 324.1 324.1 316.4 * observation point
• • • • • interpolated point
316.4 324.1 324.1 316.4
* • • *
0 316.4 316.4 0

The estimation variances at the unobserved points correspond to
standard errors of about 18 cm. This again may be thought fairly
large (loam thickness varies between 0 and 100 cm only), and, as

Figure 5 Isarithm map of cover-loam thickness of Hole Farm produced
by punctual kriging. Isarithms are at 10 cm intervals.

with sodium content at Plas Gogerddan, the nugget variance is the
major contributor.

Figure 5 is a contour map produced from the interpolation grid. As
in Figure 3 there are marked discontinuities around the data points.

Kriging from anisotropic data

Soil does not always vary isotropically, even in small areas. On a
point-bar deposit or river levee one would expect greater spatial
dependence in the direction parallel to the river than at right
angles to it. Likewise where the land surface bevels a sequence of
sedimentary rocks the soil at points along the strike is more likely to
be similar than that at points the same distance away in the direction
of the dip. Anisotropy of this sort will be revealed by computing
semi-variograms for different directions.

The stone content of the soil at Plas Gogerddan varies anisotropi-
cally. Data from the same points in Cae Ruel have been used to com-
pute semi-variances for the four principal directions of the grid up to
10 sampling intervals (152 m). All four semi-variograms (Figure 6)
are approximately linear, and have much the same nugget variance.
But their slopes are very different as a result of the anisotropy. Each
may be approximated by a straight line with slope mi, where i is the
direction and nugget variance of 10.0:

𝛾i (h) ≈ 10.0 + mih for h ≥ 0 (15)

The values of mi are given in Table 1.
Suppose Θ is the angle for the direction then the four separate

semi-variograms can be represented by a single equation:

𝛾 (h) = 10.0 + w (Θ) h (16)

where w(Θi)=mi, when Θi is the angle for the ith direction,
i= 1,2,3,4. Let w(Θ) be given by

w (Θ) = A cos2 (Θ − Φ) + B sin2 (Θ − Φ) (17)
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Figure 6 (a) Semi-variograms of stoniness in Cae Ruel, Plas Gogerd-
dan, for the four principal directions. (b) Diagram with the slopes of
the semi-variograms represented by vectors and a sinusoidal function,
equation (16), fitted.

where Φ is the direction of greatest variation; i.e. the direc-
tion in which the semi-variogram is steepest, A is the slope of
the semi-variogram in this direction, and B is the slope of the
semi-variogram in the direction perpendicular. The quantities of A,
B and Φ can be estimated by fitting a sinusoidal curve w(Θ) to the
four slopes of mi and their known directions Θi. This curve was
fitted by non-linear least squares, taking direction 2 as Θ= 0 (see
Figure 6 for directions), to give the following equation for w(Θ)

w (Θ) = 8.02 cos2 (Θ − 2.54) + 1.48 sin2 (Θ − 2.54) ,

where the angles are in radians. Table 1 lists the slopes estimated
by w(Θ) for semi-variograms in the four principal directions, and
compares them with the values calculated directly for the individual
semi-variograms. The agreement is good.

Using expression (17) for the semi-variogram a grid of values
was kriged at 25 ft (7.6 m) intervals using 16 data points for each
interpolation. The estimation variances for the central portion of the
map were:

* • *
0 13.1 0 Key
• • • * observation point
12.8 12.7 12.8 • interpolated point
* • *
0 13.1 0

The map of stone content produced from the grid is shown
in Figure 7. Notice the orientation of the isarithms reflecting the
anisotropy. The soil also becomes increasingly stony from top
left to bottom right, and it might be thought that removal of this
gradual drift would result in an isotropic semi-variogram. However,
a structural analysis taking account of both linear and quadratic
drifts over small neighbourhoods by the methods of Olea (1975)
showed this not to be so.

Figure 7 Isarithmic map of stone content in Cae Ruel produced by
punctual kriging. Isarithms are at 10 per cent intervals.

Conclusion

The principal steps of kriging are thus seen to be, in order of their
execution:

i. spatial analysis to compute a semi-variogram;
ii. choice and fitting of a suitable model to the semi-variogram;

iii. computation of weights in each local average.

Computation of the estimation variances is an optional extra.
This part of the paper also shows results of applying ordinary

punctual kriging to typical intensive soil surveys, and in particular
how strongly point estimates are influenced by large nugget vari-
ances. In Part II we consider whether point estimates are actually
desired, and where they are not, how to interpolate soil properties
over large blocks of land.
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