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Abstract 

Fusarium Ear Blight (FEB) is a globally important floral disease of cereal crops such 

as wheat, maize and barley. The predominant causal agents of FEB disease of 

wheat in the UK are Fusarium culmorum and F. graminearum. Wheat infecting 

isolates of both of these fungal species infect the floral and silique tissues of the 

model plant Arabidopsis thaliana, providing a tractable model for analysis of factors 

determining plant susceptibility or resistance to Fusarium infection.  

The effect of F. culmorum infection on the metabolic composition (metabolome) of 

Arabidopsis pedicel tissue following silique inoculation was investigated in a 

collection of mutants with altered defence responses to F. culmorum and/or other 

plant pathogens, using a 1H-NMR/ESI-MS (+/-) triple fingerprinting approach. These 

mutants showed differing metabolomic fingerprints in the absence of F. culmorum 

infection, as well as differences in accumulation or depletion of metabolites in 

response to F. culmorum colonisation. A number of metabolites were also identified 

which were induced by F. culmorum infection irrespective of plant genotype. 

Quantitative differences in compound accumulation were also observed between 

genotypes in the Columbia and Landsberg erecta accessions following F. culmorum 

infection. 

One of the genotypes investigated was eds11, which has enhanced susceptibility to 

F. culmorum floral infection. Mapping of the mutation responsible for the eds11 

phenotype was initiated using an isogenic mapping by sequencing approach. This 

resulted in a list of potential candidates for the EDS11 gene.  

Additional Arabidopsis mutants were investigated for altered defence responses to F. 

culmorum floral infection. Multiple mutant alleles of the Arabidopsis homoserine 



4 
 

kinase gene DMR1 were found to have enhanced resistance to F. culmorum silique 

infection and rosette leaf colonisation, associated with accumulation of homoserine 

in siliques and delayed leaf senescence. Exogenous homoserine application 

enhanced resistance in wild type and dmr1 plants. 

Collectively, these findings form a novel contribution to current knowledge of the 

Fusarium-Arabidopsis interaction. This may have applications for improvement of 

FEB resistance in cereals. 
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LC liquid chromatography 

Ler-0 Landsberg erecta - 0 

LSD  least significant difference 

MAMP  microbe associated molecular pattern 

MAPK Mitogen Activated Protein Kinase 

Mb Mega base 

ml millilitre 

MS  Mass spectroscopy 
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PAMP pathogen associated molecular pattern 

PCA principal component analysis 

PCD programmed cell death 
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PRR  pattern recognition receptor 

pv. pathovar 

QTL Quantitative trait locus 

R gene  Resistance gene 

RNA ribonucleic acid 

ROS  reactive oxygen species 
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SA  salicylic acid 
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SED  standard error of the difference 

siRNA small interfering RNA 

SLAT Sainsbury Laboratory Arabidopsis thaliana 

SNP  single nucleotide polymorphism 

spp. species 

TCA tricarboxylic acid cycle 
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1 Introduction 

1.1 The Threat of Pathogens to Global Food Security 

Pathogens of crop plants pose a major threat to global food security, and to our 

ability to meet the challenge of sustainably feeding 9 billion people by the year 2050 

(FAO, 2009). Not only does more food need to be grown on existing agricultural 

land, but this needs to be done with less energy-intensive inputs such as chemical 

fertilisers and pest and disease control agents, in the face of additional challenges 

posed by factors such as climate change (Godfray et al., 2010).  

Climate change, along with international travel and trade, is contributing to the global 

spread of pathogens of both plants and animals, especially fungal pathogens (Fisher 

et al., 2012, Bebber et al., 2014, Bebber et al., 2013). Furthermore, climate change 

associated environmental perturbations such as temperature changes and altered 

rainfall patterns will likely alter the outcome of interactions between plants and 

microbes which already co-exist in agricultural systems (Chakraborty and Newton, 

2011, Francl, 2001). 

Existing methods to control plant diseases rely heavily on the use of chemical inputs, 

such as the use of pesticides to control insect pests and manage their activity as 

virus vectors, and fungicides to control diseases caused by fungal pathogens. The 

sustainability of these control measures is in question for a number of reasons, such 

as the potential environmental damage they cause, the energy required to produce 

them, inherent and emerging pathogen and pest resistance to existing chemistries, 

and the lack of development of novel chemistries (Fraaije et al., 2007, Deising et al., 

2008, Fan et al., 2013, Phillips McDougall, 2013, Government Office for Science, 

2011). Use of these chemistries may also be limited by bans such as that currently 

imposed in the EU on neonicotinoid pesticides, and new legislation such as the EU 
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plant protection products directive (2009/128/EC). It is therefore imperative to find 

new, durable ways of controlling crop diseases while sustainably intensifying 

agricultural practices. 

1.2 Pathogens of wheat 

Cereals account for the majority of crops grown and consumed worldwide, with 

wheat being the most widely grown crop in the world and comprising a fifth of the 

global calorific intake (Curtis, 2002). Bread wheat (Triticum aestivum) is the 

predominant crop grown in the Northern hemisphere, with approximately 1.8 million 

hectares grown each year in the UK. Wheat is consumed directly by humans, and 

also used as livestock feed. Pathogens affecting wheat yield and grain quality 

therefore have a significant impact on global food production. It is estimated that 

without crop protection measures, wheat yields would be reduced by up to 50% by 

crop pests and pathogens. Even with the use of crop protection strategies these 

losses are estimated to amount to 29% of the potential yield (Oerke, 2006). 

While cereal crops are susceptible to a small number of diseases caused by viral 

and bacterial pathogens, the majority of significant pathogens of wheat and other 

small grain cereals are fungi (Strange and Scott, 2005, Attwood, 1985, Curtis, 2002, 

HGCA, 2014). This is particularly true in regions of high productivity and 

intensification (Oerke, 2006). 

Every part of the wheat plant is potentially susceptible to infection by fungal 

pathogens (Figure 1.1). The roots are susceptible to diseases such as take-all 

caused by Gaeumannomyces graminis var. tritici, (Figure 1.1a) and root rot by 

Cochliobolus sativus, while Oculimacula spp. and Puccinia graminis cause eyespot 

disease and black rust, respectively, on stems. Leaf diseases include brown and 
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yellow rusts caused by Puccinia triticina and P. striiformis respectively (Figure 1.1b), 

powdery mildew caused by Blumeria graminis, and Septoria Tritici Blotch (STB) 

caused by Zymoseptoria tritici (Figure 1.1c - formerly Mycosphaerella graminicola 

sexual stage, Septoria tritici asexual stage). STB is arguably the most important 

disease of winter wheat in the UK. 

Floral (ear) diseases of wheat include glume blotch caused by Parastagonospora 

nodorum, and Fusarium Ear Blight (FEB), caused by several species of the genus 

Fusarium (Figure 1.1d). Bunt (Tilletia spp.), while currently well controlled by 

chemical seed treatments, is another potential threat to cereal ears (HGCA, 2014, 

Curtis, 2002). 

While some fungal wheat pathogens, such as the powdery mildews and the rusts, 

can only survive on living plant tissue, many are soil borne or can grow and survive 

on crop debris, meaning they can persist for large periods of time in the environment. 

This is true of the main causal agents of Fusarium Ear Blight (FEB), which are the 

focus of this thesis. While species of the genus Fusarium infect a diverse range of 

hosts and tissues, Fusarium in the context of this thesis refers to the causal agents 

of FEB, unless otherwise stated. 
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a 

b 

c 

d 

Figure 1.1: Fungal diseases of wheat. a) Take-all patches caused by root infection, b) yellow rust on 

leaves, c) Septoria tritici blotch on leaves, d) Fusarium Ear Blight (FEB) caused by infection of floral tissue, 
resulting in shrivelled, contaminated grain (inset). Photographs courtesy of the Rothamsted Image database 
and Wheat Pathogenomics team. 
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1.3 Fusarium Ear Blight 

Fusarium Ear Blight (FEB) / Head Scab is a globally important fungal disease of 

wheat and other cereal crops such as maize and barley. Disease outbreak occurs 

sporadically, being highly dependent on environmental conditions, but an epidemic 

can cause 50-70% yield loss. In addition to reducing grain weight and grain quality, 

the causal species of FEB also produce various mycotoxins, which are harmful to 

human and animal health (Parry et al., 1995, Doohan et al., 2003, Pestka, 2010, 

Rocha et al., 2005) 

1.3.1 Key species 

Seventeen causal agents of FEB have been identified, the most abundant being 

Fusarium graminearum (teleomorph Gibberella zeae), F. culmorum, F. poae, F. 

avenaceum and Microdochium nivale (formerly Fusarium nivale). These species also 

cause seedling blight and foot rot when plants are grown from untreated infected 

seed. F. graminearum is the main causal agent of disease in the USA, China and 

central Europe, being adapted to warmer conditions, while F. culmorum, F. 

avenaceum, F. poae and M. nivale are more common in the cooler maritime regions 

of Europe (Parry et al., 1995).  

F. culmorum has historically been considered the primary causal agent of FEB in the 

UK. However, incidence of FEB caused by F. graminearum is increasing in the UK 

(Xu and Nicholson, 2009) (www.cropmonitor.co.uk). This is thought to be due in part 

to the rise of maize as an important UK crop for animal feed. F. graminearum is, 

incidentally, the most pathogenic of FEB agents, owing to rapid infection and high 

levels of DON mycotoxin production (Osborne and Stein, 2007, Panthi et al., 2014). 
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1.3.2 Disease symptoms and development 

Infection of susceptible wheat plants occurs via the floral tissue at anthesis. Hyphal 

growth proceeds throughout the floral tissue of the infected spikelet and into the 

rachis, allowing the spread of infection to neighbouring spikelets. Research into the 

infection biology of F. graminearum by Brown et al. (2010)  has revealed that initial 

colonisation occurs via the intercellular spaces, during an extensive symptomless 

phase.  Intracellular growth and associated plant cell death are only observed during 

the later stages of infection. It is therefore predicted that F. graminearum has both a 

biotrophic and necrotrophic infection stage (Dean et al., 2012), with important 

implications for plant defence strategies (see section1.4.2). Macroscopically, 

infection symptoms begin with discoloration and the appearance of brown spreading 

lesions at the base of the glume, with subsequent bleaching of all or part of the ear. 

Pink fungal growth is visible as hyphae emerge from the host tissue producing new 

conidia (Parry et al., 1995, Osborne and Stein, 2007) (Figure 1.1d). 

1.3.3 Host and tissue specificity 

Fusarium Ear Blight is restricted to cereal species, namely wheat, barley and maize. 

However, FEB causing species of Fusaria have also been isolated from non-cereal 

crops such as sugar beet and potato (Scherm et al., 2013, Burlakoti et al., 2007, 

Estrada Jr et al., 2010). In addition, cereal infecting Fusarium spp. have been shown 

experimentally to infect the floral tissue of other plants including Arabidopsis, 

tobacco and tomato (Urban et al., 2002). Importantly, infection is limited, for the most 

part, to the spikes of cereals, and the flower and silique tissue of Arabidopsis. 

Fusarium does cause infections of root/stem tissue such as crown rot and seedling 

blight, but only during senescence is the fungus able to colonise leaf tissue. This 

tissue specificity, and therefore the division of different plant organs into host and 
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non-host, may be important for identifying the genetic and molecular mechanisms of 

successful fungal colonisation and the basal plant defence mechanisms which inhibit 

infection.   

1.3.4 Environmental conditions favouring infection and sources of inoculum 

FEB infection is favoured by a warm and humid environment at plant anthesis. A 

minimum of 15°C and 24h rainfall may be required for infection, but the longer the 

rainfall period, the lower the required temperature (Parry et al., 1995, Doohan et al., 

2003). Individual Fusarium species have distinct optimum temperatures for 

colonisation, with F. graminearum and F. culmorum infection most successful at 

25°C and 20°C, respectively. Betaine and choline present in pollen are considered to 

be an important nutrient source during initial colonisation (Strange et al., 1974, Li 

and Wu, 1994). 

Fusarium spp. can grow saprophytically on dead plant material, and can therefore 

overwinter on crop debris. Low tillage systems increase the likelihood of infection as 

inoculum is allowed to build up on the soil surface and sexual sporulation can occur 

on the exposed crop debris. Repeated drilling of the same cereal species also 

increases the likelihood of infection, as does growing maize crops within the wheat 

rotation (Dill-Macky, 2008, Dill-Macky and Jones, 2000, Landschoot et al., 2013). It is 

thought that the primary mode of short distance Fusarium dispersal and translocation 

to wheat ears is via rain splash from soil and leaf surfaces onto ears, which is why 

epidemics favour wet weather at anthesis (Osborne and Stein, 2007). However, 

movement by wind is likely to be important for long distance spore dispersal (Prussin 

et al., 2013). 
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1.3.5 Mycotoxin production 

Fusarium is damaging to crops not only in terms of reduced grain quality and yield 

but also due to the production of mycotoxins, which are required for successful 

colonisation. These include zealarenone (ZEA), fumonisins, trichothecenes and 

moniliformin. Both F. culmorum and F. graminearum produce the class B 

trichothecene deoxynivalenol (DON) and its acetylated derivatives 15-A-DON and 3-

A-DON. Mycotoxins pose a severe health threat to both humans and animals 

(Doohan et al., 2003, Bai and Shaner, 2004, Rocha et al., 2005, Audenaert et al., 

2014). There are therefore strict limits on acceptable levels of DON mycotoxin in 

grain. The current EU limits are 750µg/kg (ppb) for pasta and cereals, with a stricter 

limit of 200ug/kg for baby foods. In 2008, 10% of the UK wheat crop was rejected 

due to exceeding legal mycotoxin limits. Even in non-epidemic years, testing for 

mycotoxins adds to production costs. 

1.3.6 Control of FEB 

Reactive treatment of FEB with fungicides is at present not effective enough to lower 

mycotoxin concentration to an acceptable level for consumption.  Since the disease 

has an early symptomless infection stage, treatment must occur before symptoms 

have been observed in the field to successfully prevent colonisation. This requires 

either prophylactic treatment, which may be costly and unnecessary, or advanced 

forecasting systems, which are not always accurate (Shah et al., 2013). 

Furthermore, F. graminearum is inherently resistant to azole fungicides due to 

triplication of the target site (Fan et al., 2013), and exposure to some azoles may in 

fact lead to increases in DON mycotoxin production (Audenaert et al., 2010). 

Cultural control methods include removal of crop debris after harvest, and rotation of 

crops to prevent inoculum build up.  Although reduced tillage increases Fusarium 
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prevalence, it is an important agricultural practice offering economic benefits 

including prevention of soil erosion and retention of soil moisture. Therefore 

increased tillage, while reducing FEB incidence, would have negative impacts 

elsewhere (Dill-Macky, 2008). 

1.3.7 Plant resistance to FEB  

Control efforts now focus heavily on marker-assisted breeding for resistance. In 

wheat, the genotype providing the greatest known resistance is the Chinese cultivar 

Sumai 3. Resistance to Fusarium in this cultivar is quantitative trait loci (QTL) based, 

with well-known QTLs located on chromosome 3BS, 6B and 5A and another on 7A 

(Zhou et al., 2010, Jayatilake et al., 2011, Buerstmayr et al., 2009). In addition, a 

QTL contributing to resistance in the CIMMYT spring wheat cultivar Catbird has been 

identified on chromosome 7DS (Cativelli et al., 2013). So far the molecular identity of 

the genes underlying any of the resistance QTLs has not been reported although 

efforts are ongoing in several laboratories for over two decades.   

Natural resistance in wheat to FEB has so far been grouped into two main types and 

several other types: Type I confers resistance to the plant by preventing initial 

infection by the fungus.   Type II confers resistance to subsequent internal 

colonisation throughout the rachis and the infection of additional spikelets. This form 

of resistance, while important if Fusarium incidence is low, is less useful if inoculum 

levels are high enough to allow discrete infection of several spikelets per ear. 

 Additional resistance types identified in a few wheat germplasms include prevention 

of high DON accumulation. Reduced DON accumulation may, however, simply be a 

direct result of Type I or Type II resistance. Furthermore, highly susceptible varieties 

may contain less DON in harvested kernels (grains), as the infected kernels fail to 
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develop and are therefore not harvested. These additional  types of resistance are 

therefore difficult to formally assess (Bai and Shaner, 2004).  

The search for genetic material which confers resistance to FEB included landraces 

and crop wild relatives. Landraces with increased FEB resistance often come with 

undesirable agronomic traits such as low yields and small heads, as seen in Sumai-

3. These traits may or may not be genetically linked to increased resistance, and 

may therefore be difficult to separate during breeding programmes. The multigenic 

nature of resistance, combined with polyploidy in modern wheat varieties, also 

impedes conventional breeding efforts. 

In summary, management of FEB disease on wheat presents a global challenge, as 

the epidemiology and infection biology of the causal agents make it hard to control 

by chemical and cultural methods. Existing sources of host resistance are complex 

and poorly understood, leading to a requirement for further research into finding and 

/ or developing additional sources of resistance. 

1.4 The molecular basis of plant-pathogen interactions 

The interaction between plant pathogens and their hosts and the determinants of 

disease development have been widely studied, especially using the model plant 

organism Arabidopsis thaliana. Pathogens of Arabidopsis used in these systems 

range from the biotrophic bacteria Pseudomonas syringae and Xanthomonas 

campestris  and the biotrophic oomycete Hyaloperonospora arabidopsidis through to 

the necrotrophic ascomycete fungal pathogens Botrytis cinerea and Alternaria 

brassicicola. Key aspects of pathogen recognition and defence activation by plants, 

and evasion of detection or defence by pathogens, are discussed below. 
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1.4.1 Pathogen recognition 

Plants, as sessile organisms which interact closely with their environment, are 

exposed to a huge number of microbial organisms. However, few of these plant-

microbe interactions result in disease. This is because plants possess a number of 

both passive and inducible defence mechanisms which prevent invasion by would-be 

pathogens. While some plant defences are preformed, others are triggered by the 

recognition of conserved microbial molecules, known as Microbe / Pathogen 

Associated Molecular Patterns (MAMPS/PAMPS), by pattern recognition receptors 

(PRRs) in the plant cell membrane (Schwessinger and Zipfel, 2008). PAMP triggered 

immunity (PTI) is achieved when a plant is able to recognise these molecules and 

activate defence mechanisms which block invasion (Boller and Felix, 2009, Zipfel, 

2014). Examples of PAMPS include bacterial flagellin, which is recognised by the 

plant PRR FLS2 (Gomez-Gomez and Boller, 2000), and the fungal cell wall 

component chitin, which is recognised by CERK1 (Miya et al., 2007, Wang et al., 

2008). Successful pathogens must therefore overcome PTI, by blocking recognition 

of PAMPS and/or manipulating induction of subsequent defence responses. This is 

broadly understood to be achieved via the secretion of small molecules known as 

effectors (Giraldo and Valent, 2013, Wang et al., 2014a). For example, some fungal 

pathogens possess effectors containing LysM domains which bind chitin, blocking its 

recognition by CERK1 and therefore evading detection (Lee et al., 2013, de Jonge et 

al., 2010, Marshall et al., 2011). Plant susceptibility mediated by effectors is known 

as Effector Triggered Susceptibility (ETS). 

However, some plants possess the capacity to recognise specific effector molecules 

via proteins encoded by Resistance (R) genes, and this recognition triggers a 

defence response known as Effector Triggered Immunity (ETI) (Rafiqi et al., 2009, 
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Hammond-Kosack and Jones, 1997). R proteins often contain a nucleotide binding 

(NB) domain and leucine rich repeats (LRR), and they are therefore referred to as 

NB-LRR proteins. Resistance gene mediated immunity was originally described as a 

‘gene-for-gene’ interaction as specific R genes were understood to recognise 

specific effectors (Flor, 1971), however, it is now understood that some R genes are 

involved in recognition of more than one effector, and that recognition of a single 

effector may sometimes rely on more than one R gene (Narusaka et al., 2009, 

Cesari et al., 2013). Effectors which are recognised by specific plant genotypes and 

trigger ETI are sometimes referred to as avirulence (avr) factors. 

The mechanistic and evolutionary aspects of this  ‘hide and seek’ interplay between 

plants and pathogens, particularly those with biotrophic lifestyles (see below), are 

often summarised as the ‘zig-zag-zig’ model as first described by Jones and Dangl 

(2006). 

1.4.2 Defence activation and signalling 

Successful recognition of a plant pathogen leads to activation of defence responses. 

There is understood to be substantial overlap in the responses induced by 

recognition of PAMPs and effectors (Tsuda et al., 2008, Navarro et al., 2004, Tao et 

al., 2003). These responses include influx of calcium ions into the cell, accumulation 

of Reactive Oxygen Species (ROS) such as hydrogen peroxide (H2O2), induction of 

Mitogen Activated Protein Kinase (MAPK) and Calcium Dependent Protein Kinase 

(CDPK) cascades (Wu et al., 2014), deposition of callose, and induction of hormone 

signalling pathways mediated by plant hormones including Salicylic acid (SA), 

Jasmonic acid (JA) and its derivatives, and Ethylene (ET).  The specific roles of ROS 

in plant pathogen interactions are discussed further in Chapter 7.  
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Contrasting responses to biotrophs and necrotrophs 

The type of response which will be successful against a pathogen is to some extent 

dependent on the lifestyle of the pathogen; plant pathogens have traditionally been 

divided by their infection lifestyle into biotrophs, which derive their nutrients from 

living host cells, and necrotrophs, which induce host cell death in order to scavenge 

nutrients. In addition, some pathogens, including F. graminearum, are described as 

having a hemi-biotrophic or ‘switching lifestyle’, with asymptomatic colonisation of 

living plant tissue preceding necrotrophy. Plants are thought to deploy different 

defence strategies against these contrasting infection processes. It is broadly 

understood that defence against biotrophs is mediated by SA, while defence against 

necrotrophs is mediated by JA/ET, and that these two signalling pathways are partly 

antagonistic, as reviewed by Glazebrook (2005), Koornneef and Pieterse (2008), 

Beckers and Spoel (2006), and Hammond-Kosack and Parker (2003).  

The role of SA in plant immunity has been widely studied and is the focus of many 

review articles (An and Mou, 2011, Vlot et al., 2009, Loake and Grant, 2007, Yan 

and Dong, 2014). The following provides a brief summary of key aspects of SA 

mediated defence. SA is understood to act both directly as an antimicrobial 

compound and also as a signalling molecule. SA signalling is associated with 

induction of localised programmed cell death (PCD) at the site of infection, known as 

the hypersensitive response (HR), blocking nutrient uptake and further development 

of infection, particularly by biotrophic pathogens. SA induced defence is also 

characterised by the expression of several pathogenesis related (PR) genes, some 

of which are known to have antimicrobial properties (van Loon et al., 2006).  Salicylic 

acid is also involved in the induction systemic acquired resistance (SAR), which 
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increases resistance in the distal healthy tissues following initially local infection 

(Durrant and Dong, 2004). 

While HR and SA mediated defence helps to block colonisation by biotrophic 

pathogens, it may in some cases aid infection by necrotrophic pathogens (Govrin 

and Levine, 2000, Govrin et al., 2006, El Oirdi and Bouarab, 2007). Plants have 

therefore evolved other methods of limiting infection by necrotrophic fungi, as 

reviewed by Mengiste (2012). Many of these defences are mediated by JA and ET 

signalling (Glazebrook, 2005, Spoel and Dong, 2008, Thomma et al., 1998). JA/ET 

signalling results in the production of antimicrobial compounds such as defensins, 

coumarins and thionins which limit pathogen growth (Penninckx et al., 1998, Epple et 

al., 1995, Sun et al., 2014, Thomma et al., 2002).  

While plant defence signalling pathways against biotrophs and necrotrophs are 

typically reported as distinct and antagonistic, there are many examples of 

synergism which challenge this. For example, it has been shown that SAR and other 

forms of induced resistance are dependent on both SA and JA, and that both JA and 

ET are involved in defence against biotrophs (Leon-Reyes et al., 2009, Thaler et al., 

2004, Truman et al., 2007). The relationship between infection lifestyle and type of 

defence response activated is therefore likely to be less clear cut than previously 

described. 

1.4.3 Key genes involved in plant defence signalling 

Many genes involved in plant defence signalling and regulation of cross-talk between 

distinct signalling pathways have been identified both in Arabidopsis and other plant 

species. Some of those which are pertinent to this thesis and related studies include: 
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NPR1 (Non-expresser of PR genes 1) is a central regulator of SA signalling during 

plant defence.  Mutants in this gene show decreased expression of PR 

(Pathogenesis Related) genes and increased susceptibility to a range of pathogens 

including Pseudomonas syringae (Cao et al., 1994, 1997).  The gene is constitutively 

expressed but only activated upon induction of SA signalling, when it is reduced from 

an oligomeric to a monomeric form and translocated to the nucleus, where it induces 

expression of PR genes via activation of WRKY domain containing and TGA(CG) 

binding transcription factors (Kinkema et al., 2000, Mou et al., 2003, Tada et al., 

2008, Dong, 2004). NPR1 also acts as a negative regulator of JA signalling (Beckers 

and Spoel, 2006). Mutants lacking functional NPR1 show increased levels of JA and 

expression of JA responsive genes such as PDF1.2. NPR1 is believed to down-

regulate JA signalling through a cytosolic function which is unrelated to its SA 

signalling function in the nucleus (Spoel et al., 2003). Two NPR1-like proteins, NPR3 

and NPR4, have recently identified as SA receptors which modulate NPR1 activity 

(Fu et al., 2012, Yan and Dong, 2014). 

PAD4 (phytoalexin deficient 4) and EDS1 (enhanced disease susceptibility 1) both 

encode intracellularly located lipase like proteins and are thought to be involved in 

both basal and R gene mediated defence responses. EDS1 is required for PAD4 

expression, and is also involved in inducing HR. EDS1 is therefore thought to act 

early in SA mediated defence signalling, while PAD4 is induced later during the 

signal transduction cascade (Feys et al., 2001).  

EDS5 is required for SA accumulation following infection, and is also up-regulated by 

SA treatment, indicating a positive feedback loop (Glazebrook et al., 2003, Nawrath 

et al., 2002). EDS5 has recently been found to encode a transporter protein 
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responsible for the  movement of SA from the chloroplast to the cytosol (Serrano et 

al., 2013). 

RAR1 and SGT1 and HSP90 have an integrated role in activation of both R gene 

mediated and basal defence responses to biotrophic pathogens (Kadota et al., 2010, 

Tor et al., 2002, Azevedo et al., 2006, Azevedo et al., 2002). However, silencing of 

this system in the tobacco plant Nicotiana benthamiana  has been shown to increase 

resistance to the necrotrophic fungal pathogen Botrytis cinerea (El Oirdi and 

Bouarab, 2007). 

Genes required for JA mediated defence signalling include JAR1 (jasmonate 

resistant 1) and COI1 (coronatine insensitive 1) (Loreti et al., 2008). The ethylene 

receptors ETR1 (EIN1) and EIN2 are required for response to ET and subsequent 

defence activation (Alonso et al., 1999, Cancel and Larsen, 2002). The transcription 

factor ERF1 (ethylene response factor 1) acts as a convergence point for ET and JA 

signalling, requiring activation of both hormones for transcriptional activation and 

subsequent expression of defence related genes (Lorenzo et al., 2003). 

1.4.4 The role of other plant hormones in defence 

Other phyto-hormones with a role in defence include Absiscic Acid (ABA), auxin, and 

Giberellic Acid (GA) (Robert-Seilaniantz et al., 2011). ABA, which is known for its 

involvement in abiotic stress responses, has been found to both positively and 

negatively regulate plant defence, depending on the pathogen type and the stage at 

which a defence response is mounted (Ton et al., 2009). As reviewed by Kazan and 

Manners (2009), auxin is thought to affect plant defence via antagonism of SA 

signalling and synergism with JA signalling, thus having a negative impact on 

defence against biotrophs while aiding immunity to necrotrophs. GA may also have 
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either a positive or negative role on plant defence, mediated by its down-regulation 

of DELLAS – plant growth suppressors which increase resistance to infection by 

necrotrophs by promoting JA signalling, while increasing susceptibility to biotrophs 

(Navarro et al., 2008). 

1.4.5 Exploitation of host defence responses by pathogens 

Successful defence against pathogens with different lifestyles requires careful and 

timely regulation of distinct defence signalling pathways, with some pathways being 

up-regulated while others are down-regulated. Some pathogens exploit or perturb 

plant defence signalling in order to promote colonisation. For example, the bacterial 

pathogen Pseudomonas syringae pv. tomato (Pst) produces coronatine, a jasmonate 

mimicking toxin which reduces SA mediated defence. This mimicry is blocked in 

coronatine insensitive (coi1) mutants, which show enhanced resistance to Pst 

associated with increased SA dependent defence responses. However, coi1 mutants 

have enhanced susceptibility to the necrotrophic pathogen Alternaria brassicicola 

(Xie et al., 1998, Kloek et al., 2001, Penninckx et al., 1998). Thus, Pst hijacks the 

plant defence response to necrotrophic pathogens in order to facilitate its own 

infection.  

The necrotrophic fungal pathogen B. cinerea elicits HR ahead of infection and 

subsequently colonises the dead tissue (Govrin et al., 2006, Govrin and Levine, 

2000). Another necrotrophic pathogen, Sclerotinia sclerotiorum, secretes oxalic acid 

which promotes ROS production and PCD in the host at high concentrations (Kim et 

al., 2008) . Interestingly, low concentrations of oxalic acid secreted during initial 

colonisation act to suppress PCD, allowing establishment of infection (Williams et al., 

2011). 
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In addition to toxins active against a broad range of host plants, some necrotrophic 

pathogens also appear to induce disease on specific hosts by secreting host specific 

toxins (HSTs) which aid disease progression in the presence of a single plant 

susceptibility (S) gene (Friesen et al., 2008). This is analogous to the gene-for-gene 

interaction whereby effectors from biotrophs are recognised by plant R genes.  

For example, the HST ToxA produced by the wheat pathogens P. nodorum and 

Pyrenophora tritici repentis induces PCD in the host, mediated by the wheat 

susceptibility gene Tsn1. Tsn1 encodes an NB-LRR protein reminiscent of an R 

gene product (Faris et al., 2010, Oliver and Solomon, 2010, Vleeshouwers and 

Oliver, 2014, Friesen et al., 2006). Similarly, Cochliobolus victoriae produces victorin, 

which induces PCD in both oats and Arabidopsis, aiding infection. In Arabidopsis this 

is dependent on LOV1, an NB-LRR protein (Lorang et al., 2007). The equivalent S 

gene in oats triggers plant defence-like responses and is thought to share identity 

with a rust resistance gene. This suggests that HSTs from necrotrophs may hijack R 

gene mediated plant defence responses evolved against biotrophs. 

1.4.6 The interaction between Fusarium and wheat during FEB infection 

The molecular basis of the interaction between cereal infecting Fusaria and their 

hosts is poorly understood, with few characterised effector proteins and no evidence 

of a gene-for-gene interaction mediating either susceptibility or resistance; the 

currently identified sources of resistance in wheat are QTL based, as previously 

described.  

Fusarium virulence mechanisms 

Transcriptome analyses have identified a number of candidate secreted effector 

proteins from F. graminearum but many of these have yet to be functionally 
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evaluated in planta (Brown et al., 2012). One characterised F. graminearum secreted 

effector is the secreted lipase Fgl1, which is thought to be responsible for the 

generation of polyunsaturated free fatty acids (FFAs) which suppress callose 

biosynthesis. Callose deposition is associated with decreased colonisation by Δfgl1 

mutants (Blümke et al., 2014, Voigt et al., 2005). 

The trichothecene mycotoxin deoxynivalenol (molecular weight, 296.32), though not 

a protein, may arguably be classed as an effector molecule since it is required for 

symptomless colonisation of wheat, and its biosynthesis genes are highly expressed 

during the initial symptomless colonisation phase (Brown et al., 2011, Brown et al., 

2012, Cuzick et al., 2008b, Jansen et al., 2005). Studies in Arabidopsis leaves 

suggest that low levels of DON production may aid early symptomless growth of F. 

graminearum by inhibiting PCD (Diamond et al., 2013), while higher concentrations 

induce ROS production (Desmond et al., 2008). This is similar to the observed role 

of oxalic acid in the pathogenicity of S. sclerotiorum as previously described. 

However, DON biosynthesis is not required for infection of maize cobs, or 

Arabidopsis flowers and siliques (Bormann et al., 2014, Cuzick et al., 2008b). This 

may indicate that DON toxicity is host, and also tissue, specific. F. graminearum also 

secretes cell wall degrading enzymes (CWDEs), such as xylanases and 

polygalacturonases (PGs) which are thought to aid infection by breaking down cell 

wall components (Kikot et al., 2009, Tomassini et al., 2009). 

Transcriptional analyses of wheat defence responses to FEB 

Several studies have examined the effect of FEB infection on gene transcription in 

wheat, in order to elucidate the defence signalling responses induced by infection, 

and differences in transcription profiles between resistant and susceptible cultivars. 
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Ding et al. (2011) found that SA signalling was initially induced by infection 6 hours 

after infection in the resistant cultivar Wangshuibai, followed by ET and then JA 

signalling after 12 hours. SA signalling was delayed and JA/ET signalling reduced in 

a susceptible mutant. Gottwald et al. (2012) similarly found that JA and ET signalling 

related genes were up-regulated during infection of the resistant cultivar Dream 

compared to susceptible cultivar Lynx, and that the expression pattern of Dream was 

similar to that of the resistant spring wheat Sumai 3. Yang et al. (2013) identified 

three wheat orthologues of the Arabidopsis defence regulator NPR1, and found that 

two of them were up-regulated in a resistant compared to a susceptible cultivar 

during infection. Resistant and susceptible cultivars also show quantitative 

differences in expression of PR genes – for example the resistant cultivar Sumai 3 

shows increased expression of chitinases, which target the fungal cell wall, 

compared to susceptible mutants (Li et al., 2001). Pritsch et al. (2000) found that 

these PR genes were expressed in distal tissues following Fusarium inoculation, 

indicating that a defence response is mounted ahead of the infection front. 

Collectively, these transcript analyses demonstrate that the timing and magnitude of 

diverse defence responses is important for resistance to FEB, and that resistance 

pathways typically associated with both biotrophs and necrotrophs are recruited for 

defence against FEB.  

These transcriptome analyses provide substantial insights into the induction of 

defence signalling during FEB disease in resistant compared with susceptible 

cultivars. However, the functionality of many of the identified genes remains to be 

tested, and wheat’s large, hexaploid genome makes transgenic and / or mutagenesis 

approaches to analyse gene function difficult. Furthermore, it is difficult to estimate 

the importance of some differentially expressed genes which have no known function 
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or close homologues in other species (Bernardo et al., 2007). The complete 

sequencing, alignment and annotation of the wheat genome are only now nearing 

completion, owing to its size and complexity (The International Wheat Genome 

Sequencing Consortium, 2014, Lai et al., 2012, Brenchley et al., 2012). 

1.5 Arabidopsis as a model for FEB infection 

In contrast to wheat, the model plant Arabidopsis thaliana has a small, diploid, fully 

sequenced genome, which extends to a large number of different ecotypes (Cao et 

al., 2011b, Ossowski et al., 2008a, Arabidopsis Genome Initiative, 2000). This is 

supported by large collections of genetic mutants along with a wealth of online 

resources such as annotated genome browsers, gene expression data, and pathway 

information (Hruz et al., 2008, Kanehisa et al., 2014, Lamesch et al., 2011, Alonso et 

al., 2003, Schmid et al., 2005) (www.plantcyc.org). Much of this is accessible via the 

Arabidopsis Information Resource (TAIR), with the recently launched Arabidopsis 

Information Portal further facilitating access to community resources (Baerenfaller et 

al., 2012). 

Arabidopsis has therefore been widely adopted to study the genetic basis of plant-

pathogen interaction outcomes as previously outlined, results from which then have 

the potential to be translated into important crops (Piquerez et al., 2014, Dangl et al., 

2013). This has extended to its use as a model for studying infection by FEB causing 

isolates of Fusarium: 

Urban et al. (2002) demonstrated that both F. culmorum and F. graminearum infect 

the floral and silique tissue of Arabidopsis, but that this infection does not spread to 

the main stem or leaf tissue. DON mycotoxin is also produced during infection. Floral 

infection of Arabidopsis by FEB causing Fusarium species was therefore put forward 
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as a suitable model system for the study of plant defence signalling against the 

causal agents of FEB, without the need for complex genetic studies in wheat (Fig. 

1.2).  

Since the publication of this original study, several research groups have used the 

pathosystem to investigate the role of various defence associated genes and 

signalling pathways in determining the outcome of the Fusarium-Arabidopsis 

interaction, as well as the variation in susceptibility among Arabidopsis ecotypes. 

While some studies have made use of the floral infection system and disease 

scoring method originally published by Urban et al. (2002), others have used leaf 

and seedling systems to study the Fusarium-Arabidopsis interaction.  
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Figure 1.2: Wheat ear experimentally infected with Fusarium (a), 

compared to spray inoculated Arabidopsis floral tissue (b) and 
droplet inoculated siliques (c). All images show infection at 10 dpi. 
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1.5.1 Variation in Fusarium susceptibility between Arabidopsis ecotypes 

Urban et al. (2002) screened 236 Arabidopsis ecotypes and did not find that any 

were extremely resistant or susceptible to Fusarium floral infection. However, it 

was found that inoculation of ecotype Landsberg erecta 0 (Ler-0) results in 

consistently severe floral infection with low variability between plants and 

experimental replicates, while infection of ecotype Columbia-0 (Col-0) is highly 

variable. This difference was attributed to the compact floral morphology of Ler-

0 facilitating fungal spread, namely in that developing siliques which were open 

flowers at the time of inoculation remain in close proximity to the apical 

inflorescence.  This is in contrast with the more relaxed, spread out floral 

morphology of Col-0, where developing siliques stretch away from the apical 

inflorescence, preventing spread of fungal hyphae. The effect of the erecta 

mutation on floral susceptibility to F. culmorum is explored further in Chapter 7.  

Chen et al. (2006) developed a detached leaf assay involving wounding and the 

application of exogenous DON mycotoxin to induce consistent F. graminearum 

infection in Arabidopsis rosette leaves. Using this method, these researchers  

found differences in susceptibility between Arabidopsis ecotypes; Bay-0, Kas-1 

and Ler-0 were all found to be more susceptible to F. graminearum compared to 

four distinct Columbia lines. This indicated that the differences in susceptibility 

to Fusarium between Col-0 and Ler-0 were not purely the result of erecta acting 

on the floral morphology. Indeed, Chen and colleagues performed QTL analysis 

on a Col-0 x Ler-0 mapping population and found that Fusarium susceptibility 

was associated with a major QTL on Chromosome 4, not linked to the erecta 

mutation.  

It is worth noting however that this study relied on significant manipulation of the 

Arabidopsis-Fusarium interaction via wounding and exogenous DON 



51 
 

application, and that detachment of the leaves might also impact on the plant 

defence response. It is therefore unclear how well findings from this study might 

relate to FEB susceptibility in wheat floral tissue.  

1.5.2 Arabidopsis genes screened for altered Fusarium susceptibility 

Several studies have used knock-out mutants and/or over-expression lines to 

study the role of specific defence-related genes on the interaction between 

wheat-infecting Fusarium strains and Arabidopsis floral and/or leaf tissue, as 

summarised in Table 1.1 and detailed below (Cuzick et al., 2009, Cuzick et al., 

2008a, Makandar et al., 2010, Makandar et al., 2006, Savitch et al., 2007, Van 

Hemelrijck et al., 2006). 

The Arabidopsis mutant esa1 (enhanced susceptibility to Alternaria 1) carries a 

mutation in an unmapped gene, which renders it susceptible to several 

necrotrophic pathogens. The mutation does not alter susceptibility to biotrophic 

pathogens such as the oomycete Hyaloperonospora arabidopsidis. Further 

analysis showed that esa1 is attenuated in ROS-induced production of the 

antimicrobial phytoalexin camalexin, along with JA and ET induced defence 

responses (Tierens et al., 2002). Van Hemelrijck et al (2006) screened the esa1 

mutant for susceptibility to several pathogens of the genus Fusarium, including 

the FEB causing species F. graminearum and F. culmorum. The floral tissue of 

the esa1 mutant was found to be significantly more susceptible to F. culmorum 

than wild-type plants. A similar but non-significant trend was observed for F. 

graminearum. This finding indicated that ESA1 mediated defence against 

necrotrophs is also involved in defence against cereal infecting F. culmorum. 

The Arabidopsis gene GLK1 (Golden Like Kinase 1) is a transcriptional activator 

involved in chlorophyll biosynthesis (Waters et al., 2009, Waters et al., 2008). 



52 
 

Savitch et al. (2007) found that over-expression of GLK1 resulted in up-

regulation of a number of defence related genes including antimicrobial 

peptides, but down-regulation of PR1, used as a marker SA mediated defence 

signalling. Arabidopsis plants overexpressing GLK1 also supported less F. 

graminearum growth in leaves infiltrated with F. graminearum spores using a 

needleless syringe. Transgenic Arabidopsis plants expressing the bacterial SA 

hydroxylase NahG, which breaks down SA, showed increased F. graminearum 

infection levels.  

The most extensive studies on responses of Arabidopsis mutants to wheat 

infecting Fusarium have so far been reported by Cuzick et al. (2008-2009) and 

Makandar et al. (2010). The former used the floral spray assay devised by 

Urban et al. (2002) and F. culmorum inoculum, while the latter used a 

combination of the floral spray assay and leaf syringe infiltration, both with F. 

graminearum. These studies particularly focussed on the effect of mutation of 

genes in the SA, JA and ET signalling pathways on Fusarium susceptibility.  

Both Cuzick et al. (2008a) and Makandar et al. (2010) found that mutation of the 

central signalling regulator NPR1 resulted in increased Fusarium susceptibility. 

Makandar et al. (2010) attributed this to the requirement of a functional SA 

signalling pathway for defence against Fusarium, due to the susceptibility 

profiles observed in a number of other SA signalling mutants and transgenic 

lines (see table 1.1), including the SA induction mutant sid2-2. By contrast, 

Cuzick et al. (2008a) did not observe a significant difference in F. culmorum 

floral infection levels between sid2-2 and wild type plants, casting doubt over 

the role of SA signalling in resistance to F. culmorum. Similarly, later studies 

found no effect of mutation of EDS1 or EDS5 on F. culmorum floral 
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susceptibility. However, eds12, which is attenuated in SA mediated systemic 

resistance, shows enhanced susceptibility to F. culmorum (Cuzick et al., 2009, 

and unpublished data). The phenotypes of the Arabidopsis enhanced disease 

susceptibility (eds) mutants are further explored in Chapters 3 and 4. 

Constitutive expression of Arabidopsis NPR1 in wheat has previously been 

shown to reduce FEB infection, and this was later shown to be associated with 

SA accumulation (Makandar et al., 2006, Makandar et al., 2011). However, the 

potential of these findings for reducing FEB infection in the field is hampered by 

the increased Fusarium seedling blight seen in the NPR1 transgenic plants 

(Gao et al., 2013). 

Contrasting conclusions have also been drawn from different studies on the 

roles of JA and ET signalling in defence against Fusarium. Cuzick et al (2008a) 

found that the JA signalling mutants coi1 and jar1 were more resistant to F. 

culmorum floral infection, but attributed this to alterations in floral morphology 

such as increased stem elongation and decreased fertility affecting nutrient 

availability to the fungus. Only one of four ET signalling genes studied (EIN2) 

appeared to contribute to F. culmorum floral resistance, rendering the role of ET 

signalling inconclusive.  

However, Makandar et al. (2010) put forward evidence for a role of JA signalling 

in F. graminearum susceptibility, based on decreased leaf and floral infection of 

JA signalling mutants jar1 and opr3 (Table 1.1).  As described by Cuzick et al 

(2008), jar1 has altered floral morphology, and opr3 is male sterile (Sanders et 

al., 2000). The evidence from this study of the role of these genes in leaf 

susceptibility is therefore more reliable than the floral data. Interestingly, the jar1 

npr1 double mutant was found by Makandar et al. (2010) to be more 
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susceptible to floral and leaf infection by F. graminearum than both wild-type 

plants and the npr1 single mutant. Indeed, the disease scores for the double 

mutant were higher than the maximum value allowed for by the original scoring 

system devised by Urban et al. (2002), indicating that the authors had to amend 

the scoring protocol to represent the severity of disease in the double mutant. 

This would suggest that JAR1, though initially contributing to susceptibility, may 

play a role in resistance at some later stage in infection, or that JA mediated 

defence may help to block infection in the absence of NPR1 mediated defence 

responses. Evidence for the former hypothesis was supported by the finding 

that application of methyl jasmonate (MeJA) early during leaf infection 

enhanced susceptibility, while later application enhanced resistance. This 

correlates with the findings by Ding et al. (2011) that JA signalling is induced in 

resistant wheat plants, but not susceptible plants, 12 hours after infection. 

Chen et al. (2009) reported that ET signalling mutants are more resistant to F. 

graminearum infection, using the previously described DON-amended detached 

leaf assay. However, only the ein2 mutant showed significantly less disease on 

detached flowers, correlating with the findings of Cuzick et al (2008). Ethylene 

signalling was also found to contribute to disease susceptibility of detached 

wheat leaves and ears. It was postulated that ET signalling contributes to DON 

induced host cell death facilitating infection. However, these results conflict with 

findings by Gottwald et al. (2012) on the role of ET signalling in Fusarium 

resistant wheat lines. Analysis of the function of ET signalling genes in FEB 

resistance in wheat is ongoing, using an RNA silencing approach (Scofield et 

al., unpublished). 
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Cuzick et al (2008a) also reported that the Pseudomonas susceptible mutant 

eds11 (enhanced disease susceptibility 11) is highly susceptible to F. culmorum 

floral infection. As discussed further in Chapters 3 and 5, the genomic location 

and function of EDS11 are unknown, and it does not appear to be required for 

SA or JA mediated defence responses (Glazebrook et al., 1996). Its role in 

defence signalling is therefore unclear.  

It was also reported that mutation of SGT1b, which is involved in oxidative burst 

mediated basal and effector triggered defences, results in reduced susceptibility 

to F. culmorum floral infection (Cuzick et al., 2009). The reason for this remains 

unclear. It was previously indicated that abolition of PCD by silencing of SGT1 

was responsible for enhanced resistance to necrotrophs in tobacco (El Oirdi 

and Bouarab, 2007), however Cuzick et al. (2009) found no differences in ROS 

accumulation or PCD between sgt1b mutant and wild type plants. 

These findings, when taken together, present a complex and at times 

contradictory picture of the relative roles of various defence signalling pathways 

in defence against Fusarium in Arabidopsis. The general model appears to be 

that SA mediated defence signalling reduces infection, while JA and ET 

mediated signalling increases infection, at least for F. graminearum on 

Arabidopsis leaves.  However, roles for both JA and ET in resistance have also 

been elucidated. It is not clear to what extent the success of defence responses 

are dependent on the fungal species, since no direct comparisons have been 

made between F. culmorum and F. graminearum under the same laboratory 

conditions. Furthermore, findings from Arabidopsis leaf assays may not always 

be translatable to FEB disease of wheat. While floral infection may be more of a 
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representative model, the effects of many defence signalling mutants on plant 

development and floral morphology compound results. 
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Table 1.1: Arabidopsis mutants with altered defence responses to F. graminearum (Fg) and F. culmorum (Fc) strains. Key:  (-) indicates less disease than wild-type, (+) indicates more 
disease than wild-type, (wt) indicates equivalent disease to wild-type. (++) indicates increased disease in jar1 npr1 double mutant compared to npr1 mutant alone. (*) indicates 
expression of a transgene. OE signifies over-expression of a transgene. 

GENOTYPE GENE FUNCTION PATHOGEN INOCULATION ASSESSMENT DISEASE REFERENCE 

coi1 JA signalling Fc 98/11 

Fg Z-3639 

Fg 
DAOM233423 

floral spray 

leaf infiltration 

seeding inoculation 

disease score 

% leaf infected 

cotyledon infection 

- 

- 

- 

(Cuzick et al., 2008a) 

(Makandar et al., 2010) 

(Schreiber et al., 2011) 

cpr5 SA and JA down-regulation Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score - (Makandar et al., 2010) 

eds11 unknown Fc 98/11 floral spray disease score, DON + (Cuzick et al., 2008a) 

ein2 ET signalling Fc 98/11 floral spray disease score, DON + (Cuzick et al., 2008a) 

ERF1 OE JA/ET signalling Fc 98/11 floral spray disease score, DON wt (Cuzick et al., 2008a) 

esa1 unknown Fc 180420 floral spray disease score + (Van Hemelrijck et al., 2006) 

eto1 ET regulation Fc 98/11 floral spray disease score, DON wt (Cuzick et al., 2008a) 

etr1 ET signalling Fc 98/11 floral spray disease score, DON wt (Cuzick et al., 2008a) 

GLK1 OE chloroplast development Fg Z-3639 

Fg 
DAOM233423 

leaf infiltration 

seeding inoculation 

imaging 

cotyledon infection 

- 

- 

(Savitch et al., 2007) 

(Schreiber et al., 2011) 

jar1 JA signalling Fc 98/11 floral spray disease score - (Cuzick et al., 2008a) 
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GENOTYPE GENE FUNCTION PATHOGEN INOCULATION ASSESSMENT DISEASE REFERENCE 

    Fg Z-3639 

Fg  

DAOM233423 

leaf infiltration, floral spray 

seedling inoculation 

% leaf infected, disease score 

cotyledon infection 

- 

- 

(Makandar et al., 2010) 

(Schreiber et al., 2011) 

jar1 npr1 See single mutants  Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score ++ (Makandar et al., 2010) 

opr3 JA signalling Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score - (Makandar et al., 2010) 

NahG* SA degradation Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score + (Makandar et al., 2010, 
Savitch et al., 2007) 

npr1 central regulator Fc 98/11 floral spray disease score, DON + (Cuzick et al., 2008a) 

    Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score + (Makandar et al., 2010) 

NPR1 OE central regulator Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score - (Makandar et al., 2010) 

sgt1b R gene mediated defence Fc 98/11 floral spray disease score, DON - (Cuzick et al., 2009) 

sid2 SA synthesis Fc 98/11 floral spray disease score wt (Cuzick et al., 2008a) 

    Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score + (Makandar et al., 2010) 

ssi2 SA down-regulation Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score - (Makandar et al., 2010) 

wrky18 NPR1 mediated defence Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score + (Makandar et al., 2010) 

WRKY18 OE NPR1 mediated defence Fg Z-3639 leaf infiltration, floral spray % leaf infected, disease score - (Makandar et al., 2010) 
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1.5.3 Transgenic and chemical approaches 

The Arabidopsis-Fusarium pathosystem has also been used to test a number of 

transgenic and chemical approaches to controlling FEB in wheat. Schreiber et 

al. (2011) used a high throughput cotyledon infection assay to screen for 

chemicals which inhibit F. graminearum growth in planta. Two chemicals, 

sulfamethoxazole and gramine, inhibited infection of Arabidopsis seedlings and 

also FEB disease and DON accumulation in wheat ears, though neither showed 

in vitro antifungal activity. This study also upheld the previous findings that 

GLK1 overexpression and mutation of JAR1 and COI1 reduce foliar disease 

(Table 1.1). 

Ferrari et al. (2012) demonstrated that constitutive expression of 

polygalacturonase-inhibiting proteins (PGIPs) in Arabidopsis resulted in 

inhibition of Fusarium PG activity (involved in cell wall degradation) and 

enhanced floral resistance to F. graminearum. Transgenic wheat plants 

expressing the bean PGIP PvPGIP2 showed reduced FEB symptoms, 

indicating the translatability of this study. However, accumulation of DON 

mycotoxin was not compared between wild-type and transgenic lines; 

successful FEB control in wheat requires not just reduction in symptoms but 

also in mycotoxin production. 

Conversely, Shin et al. (2012) created transgenic Arabidopsis plants expressing 

a barley UDP-glucosyltransferase, which detoxifies DON.  These plants were 

able to grow on plates supplemented with high levels of DON, where wild-type 

plants died. However, the resistance of these transgenic lines to Fusarium 

infection was not assessed. It is therefore unclear whether increased DON 

tolerance correlates with enhanced resistance to infection.  
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Several studies have also shown a role of secreted antimicrobial defensin-like 

compounds in Arabidopsis resistance to Fusarium using transgenic 

approaches. Expression of the Medicago trunculata defensin targeted to either 

the vacuole, endoplasmic reticulum or extracellular space decreased silique 

infection by F. graminearum following point wound inoculations (see Chapter 2) 

and also resulted in lower DON accumulation (Kaur et al., 2012). This defensin 

also inhibited in vitro Fusarium growth. Targeting of the M. trunculata defensin 

to the extracellular space also reduced growth of the obligate biotrophic 

oomycete pathogen Hyaloperonospora arabidopsidis.  

The insect defensin thanatin from the spiny soldier bug Podisus maculiventris 

was also found to inhibit F. graminearum in vitro growth. Furthermore, 

Arabidopsis plants transgenically expressing thanatin showed less F. 

graminearum leaf infection, as well as reduced infection by the necrotrophic 

fungus B. cinerea (Koch et al., 2012). 

Thionins have been found to accumulate in the cell walls of wheat spikes 

following infection with F. culmorum (Kang and Buchenauer, 2003). Asano et al. 

(2013) found that the Arabidopsis thionin Thi2.4 inhibited in vitro Fusarium 

growth and that constitutive expression in Arabidopsis reduced leaf and floral 

infection by F. graminearum. This was thought to be mediated by its interaction 

with fungal fruiting body lectin (FFBL), a virulence factor from F. graminearum. 

These studies provide proof of concept for the use of transgenic plants 

expressing small antimicrobial peptides in control of FEB. However, further 

studies in wheat are needed, particularly with relation to thanatin and thionin.  
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1.5.4 Host Induced Gene Silencing of Fusarium genes 

One final exciting use of the Arabidopsis-Fusarium pathosystem has come to 

light during the development of this thesis. In addition to the expression of 

antimicrobial compounds or alteration of defence signalling pathways, the 

Arabidopsis-Fusarium pathosystem has also been used to demonstrate a 

potential role of host induced gene silencing (HIGS) in disease control. F. 

graminearum contains three paralogues of the sterol 14α-demethylase 

encoding gene CYP51, which are important for growth and virulence on wheat 

and Arabidopsis and are the target site for azole fungicides (Fan et al., 2013). 

Expression of double stranded (ds) RNA complementary to the F. graminearum 

CYP51 genes in Arabidopsis and barley resulted in their silencing in the fungus, 

inhibiting fungal growth and blocking infection of both Arabidopsis and barley 

(Koch et al., 2013). This is one of the first examples of host induced gene 

silencing of fungi, which may provide a novel and effective mechanism for 

disease control (Bailey, 2014). 

1.6 Metabolomics, an emerging research tool in plant biology 

Metabolomics – the analysis of all the metabolites in a given biological sample – 

is becoming an increasingly important tool for the study of plant metabolic 

processes in the post genomics era (Ward et al., 2003; 2007). Several distinct 

analytical techniques including 1H Nuclear Magnetic Resonance (NMR) 

spectroscopy, Electrospray Ionisation (ESI) mass spectroscopy, and gas and 

liquid chromatography have been used to study the plant metabolome with a 

number of applications, as reviewed by  Schauer and Fernie (2006), Hall 

(2006), Saito and Matsuda (2010), Sumner (2010). These applications include 

the assessment of factors contributing to food taste and nutrition, and the 

search for novel pharmaceutical compounds. Metabolomic analyses are also 
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used to assess the effects of genetic mutations and to screen for unintended 

impacts of genetic modification (Ren et al., 2009, Baker et al., 2006, Hofmann, 

2011, Shepherd et al., 2006).  

Metabolic signatures may also be useful in predicting plant growth rates and 

other agronomically desirable traits, with potential applications for metabolic 

marker assisted breeding (Meyer et al., 2007, Fernie and Schauer, 2009, Lisec 

et al., 2008). The effect of abiotic stresses on plant metabolism, and the role of 

plant metabolites in modulating stress responses, has also been studied using 

metabolomics approaches (Ward et al., 2011, Nikiforova et al., 2006). 

1.6.1 Metabolomics and plant-pathogen interactions 

Most pertinent to this thesis is the use of metabolomics to advance 

understanding of plant pathogen interactions. The plant immune response relies 

heavily on both primary and secondary metabolites, making metabolomics an 

important tool for dissecting defence responses, as recently reviewed by Leiss 

et al. (2011), Rojas et al. (2014) and Heuberger et al. (2014). Plants must 

carefully balance distinct primary metabolic pathways such as those involved in 

photosynthesis, respiration carbon and nitrogen partitioning  against pathways 

required for inducible defences to pathogens, without compromising essential 

functions. By contrast, pathogens have been shown to modulate host 

metabolism in order to aid infection (Truman et al., 2006, Ward et al., 2010). An 

overview of some of the plant metabolites which may be involved in defence 

responses, from Heuberger et al. (2014), is shown in Figure 1.3. 
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Figure 1.3: Modulation of metabolism during plant responses to pathogen invasion, from Heuberger et al (2014). Metabolites are involved in pathogen detection 
and defence signalling, along with modification to primary metabolism, physical defence responses and production of antimicrobial secondary metabolites. 
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Several studies have analysed changes in the plant metabolome during 

pathogen infection. For example, gas chromatography – mass spectroscopy 

(GC-MS) analysis of Medicago trunculata cell cultures treated with pathogen 

elicitors such as yeast extract and MeJA found alterations in levels of the amino 

acids glycine, threonine and serine (Broeckling et al., 2005), while analysis 

using liquid chromatography – mass spectroscopy (LC-MS) found alterations in 

phenylpropanoid and isoflavonoid biosynthesis and phytoalexin accumulation 

(Farag et al., 2008). Meanwhile NMR spectroscopy has been used to study the 

response of Nicotiana tabacum to infection by tomato mosaic virus (TMV) and 

of Catharanthus roseus to phytoplasma infection (Choi et al., 2006, Choi et al., 

2004).  

Further to the role of metabolomics in understanding plant defence responses, 

metabolomics can also be used to identify metabolic biomarkers of plant 

disease, which can be used for diagnostic purposes. For example, Hantao et al. 

(2013) used GC-MS to identify biomarkers of Eucalyptus infection by the 

necrotrophic fungal pathogen Teratosphaeria nubilosa, while Aksenov et al. 

(2014) used GC-MS to identify biomarkers of bacterial citrus greening disease 

(Huanglongbing), a major threat to the citrus industry. 

1.6.2 Use of metabolomics to study FEB 

Several studies have used metabolomics approaches to identify compounds 

and pathways which may influence the severity of FEB infection of wheat, 

maize and barley: 

Two separate comparative analyses of the metabolomes of FEB susceptible 

and resistant barley lines have independently identified several resistance 

related (RR) compounds including flavonoids, fatty acids and phenylpropanoid 
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derived compounds such as p-coumaric acid, which is a hydroxycinnamic acid. 

p-coumaric acid was also found to inhibit fungal growth in vitro (Bollina et al., 

2010, Bollina et al., 2011, Kumaraswamy et al., 2011). The latter study also 

found that jasmonic acid, linolenic acid and a detoxified form of DON (DON-3-

O-glucoside) accumulated to a greater extent in resistant lines, and suggested 

that these compounds could be used as biomarkers for resistance during 

breeding. Several of these compounds were also independently put forward as 

RR metabolites following a metabolome analysis of FEB resistant double 

haploid barley (Chamarthi et al., 2014). 

Flavonoids and phenylpropanoid derived metabolites such as cinnamic acid and 

hydroxycinnamic acid have also been identified as RR metabolites in wheat 

during comparative metabolome analysis or resistant and susceptible lines 

(Gunnaiah et al., 2012, Paranidharan et al., 2008, Hamzehzarghani et al., 2005) 

A study of maize resistance to FEB also found that p-coumaric acid was 

induced during infection, although the presence of this compound alone was not 

thought to delay infection (Cao et al., 2011a).  

Flax, an important biofuel and fibre crop, is also susceptible to FEB causing 

Fusarium species. It has been shown that transgenic flax with increased 

production of glycosylated flavonoids has enhanced resistance to F. culmorum 

seedling infection (Lorenc-Kukula et al., 2009). 

These studies demonstrate the usefulness of metabolomics for assessing the 

basis of resistance traits in Fusarium hosts, and highlight flavonoids and 

phenylpropanoids, particularly hydroxycinnamic acids, as resistance related 

metabolites which could be useful biomarkers for resistance during crop 

breeding. 
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1.7 Project Objectives 

The main focus of this project was to investigate the factors determining 

resistance and susceptibility in Arabidopsis floral and silique tissue to the FEB 

causing pathogens F. culmorum and F. graminearum. Specific aims of the 

project were: 

1. To analyse the metabolomic fingerprints of the Arabidopsis enhanced 

disease susceptibility (eds) mutants along with other mutants previously 

screened for F. culmorum susceptibility, in both the absence and presence of F. 

culmorum infection. It is hypothesised that mutants susceptible to F. culmorum 

will have metabolic traits in common which distinguish them from wild-type and 

non-susceptible mutant plants (Chapters 3 and 4). 

2. To identify the genomic location of the gene harbouring the eds11 mutation, 

using a mapping-by-sequencing approach (Chapter 5). 

3. To identify additional mutations which alter floral and/or silique susceptibility 

to F. culmorum (and F. graminearum) by screening mutants with altered 

defence to other biotrophic or hemi-biotrophic pathogens (Chapters 6 and 7). 

1.8 Project scope 

1.8.1 Use of floral and silique inoculation methods 

Several studies have reported infection of Arabidopsis leaves by F. 

graminearum using a variety of experimental infection methods on attached and 

detached leaves (Skadsen and Hohn, 2004, Chen et al., 2006, Makandar et al., 

2010, Makandar et al., 2006, Savitch et al., 2007, Schreiber et al., 2011). 

However, attempts to induce Fusarium infection in healthy Arabidopsis leaves 

under the conditions reported in this thesis were not successful (Figure 1.4). 

This thesis therefore focusses on Fusarium floral, silique and pedicel infection 
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of Arabidopsis, although differences in the surface colonisation of senescent 

rosette leaves following spray inoculations are also reported. 

1.8.2 Focus on F. culmorum 

While some of the studies reported in this thesis involve Fusarium 

graminearum, this research project predominantly focuses on the interaction 

between Arabidopsis and F. culmorum. There are several reasons for this. 

Firstly, F. culmorum has historically been considered the primary causal agent 

of FEB in the UK and its optimum growth and infection conditions are more 

suited to the UK climate (Parry et al., 1995, Doohan et al., 2003). Secondly, 

previous research on the Arabidopsis-FEB interaction which has fed into this 

research project has focussed on resistance to F. culmorum (Cuzick et al., 

2008a, Cuzick et al., 2009). Finally, while F. culmorum is an important cause of 

FEB disease in the UK, F. graminearum is considered globally to be the 

predominant causal agent, and many research groups are therefore focussing 

on the interaction between F. graminearum and its host plants. Focussing on F. 

culmorum as a causal agent therefore avoids duplication of research efforts and 

optimises research output. 
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Wounded 

  

  

  

Col-0 Ler-0 

Detached 
- water 

Detached 
- Fusarium 

Attached  
- Fusarium 

Non-
wounded 

Wounded Non-
wounded 

Figure 1.4: Arabidopsis leaves 5 days after droplet inoculation with ~10
5 
F. graminearum spores, onto the 

abaxial surface of wounded or unwounded, attached or detached leaves of Arabidopsis ecotypes Col-0 and 
Ler-0. White arrow indicates location of spore/water droplet.
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2 General Materials and Methods 

2.1 Arabidopsis growth and propagation 

Arabidopsis plants for Fusarium assays and metabolomics analysis were grown 

in Levingtons F2+S compost (Ipswich, UK) in a Fitotron® ‘walk in’ plant growth 

chamber (www.fitotron.co.uk), with a 16 h light / 8 h dark cycle at temperatures 

of 20°C (light) and 17°C (dark), with 150 μmol m−2 s−1 fluorescent illumination, 

at 70% humidity. Seeds were sown onto compost in 40 well flats  (each well 

4cm2 wide and 5cm deep) placed on capillary matting in plastic trays. These 

were then covered with kitchen foil and transferred to 5°C for four days to allow 

for seed imbibition and stratification prior to transfer to the growth chamber. A 

list of seed stocks and their sources is given in Appendix 1. 

2.2 Fusarium growth, maintenance and storage 

F. culmorum strain 98/11 and F. graminearum strain PH-11 were obtained and 

propagated as previously described (Cuzick et al., 2008b, Urban et al., 2002): 

Conidia were transferred from frozen stocks stored at -80°C onto synthetic 

nutrient poor agar plates (SNA -0.1% KH2PO4, 0.1% KNO3, 0.1% MgSO4x7 

H2O, 0.05% KCl, 0.02% glucose, 0.02% saccharose, 2% Agar) for 8-11 days, 

and then transferred onto potato dextrose agar (PDA, Sigma Aldrich UK) plates 

for 48h to encourage high levels of conidial production. Conidia were then 

suspended in sterile distilled water and filtered through sterile Miracloth 

(Calbiochem®, Watford, UK), and stored at -80°C prior to plant inoculations. 

Concentration of stock suspensions was calculated using a haemocytometer 

(Hausser Bright-Line, Horsham, PA, USA). . Studies using F. graminearum 

strain PH-1 were conducted under PHSI license 101948/198285/2. 

http://www.fitotron.co.uk/
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2.3 Arabidopsis-Fusarium infection assays 

Unless otherwise stated, all Arabidopsis-Fusarium inoculations were done 

approximately 14 hours into the light period of the light:dark cycle. Inoculated 

plants were kept in Perspex boxes measuring 50 x 50 x 100cm at 100% 

humidity for the duration of the experiment, with darkness maintained for the 

first 20 hours of the experiment by covering the box with a black pond liner. 

Each box had a capacity of up to 80 plants divided across 4 plastic trays (Figure 

2.1a). Plants were randomised within each tray. At least 5 treated and 2 control 

plants were used per genotype in each experiment. 

2.3.1 Spray inoculation 

Inoculations were done as described in Urban et al. (2002):  

Plants with 2-3 open flowers but no siliques (Growth stage 6, Boyes et al., 

2001) were spray inoculated with Fusarium conidia using a Humbrol airbrush 

powerpack and spray gun (Humbrol, Margate, UK). Stored conidial stocks were 

defrosted and diluted in sterile water to a concentration of 106 conidia ml-1 

unless otherwise stated. Each plant received approximately 0.5ml of 

suspension (Figure 2.1b). Control plants were treated with sterile water. 
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a 

b c 

Figure 2.1: Inoculation of Arabidopsis thaliana floral tissue with Fusarium conidia. Perspex inoculation boxes 

used for all inoculations are shown in (a). Inoculations were done either by spraying flowering plants with 
Fusarium conidia (b) or by droplet inoculation of conidia onto the wounded tips of siliques (c). 
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2.3.2 Assessment of disease progression after spray inoculation 

Disease progression was typically assessed at 7, 11 and 14 dpi for Ler-0 

genotypes and at 14 and 21 days for other genotypes, but this varied between 

experiments. Visible infection symptoms on the flowers and developing siliques 

were assessed using the Fusarium-Arabidopsis Disease (FAD) scoring system 

described in Urban et al. (2002) but with some modifications (Table 2.1). In 

addition, in some experiments the number of non-diseased green siliques and 

infected/uninfected rosette leaves were also counted. 

Table 2.1: Scoring of Fusarium disease in Arabidopsis floral and silique tissue, adapted from Urban et al., 

2002. Plants were given separate scores for floral and silique infection from 0 (no disease) to 7 
(constriction of the main stem).The intermediate scores of 2 and 4 (F), and 2, 4 and 6 (S) were reserved 
for when all the tissue arising from the inoculated inflorescence exhibited the disease phenotype described 
for the preceding score. 

Organ Score Description of disease phenotypes 

Flower (F) 0 No disease 

 1 Aerial mycelium visible on flower 

 3 Drying of flowers 

 5 Stem constriction within flower head 

 7 Main stem constriction 

   

Silique (S) 0 No disease 

 1 Aerial mycelium on silique surface 

 3 Drying of silique surface 

 5 Pedicel constriction  

  or loss of siliques by disease travel within 
pedicel 

 7 Main stem constriction 

 

2.3.3 Single silique wound point inoculation 

For single silique wound point inoculations, plants were selected with 3-6 

immature siliques, depending on the experiment. Approximately 1mm of silique 
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tissue was removed from the tip of each silique and immediately afterwards a 

1µl droplet of Fusarium conidial suspension at a concentration of 106 conidia ml-

1 was placed on the cut tip (Figure 2.1c). 

2.3.4 Assessment of disease progression after single silique wound point 

inoculation 

Following single silique Fusarium inoculation, the silique is rapidly colonised 

and infection progresses along the length of the pedicel, arresting at the 

pedicel-main stem junction. Infection is characterised by tissue necrosis visible 

under white light and as green fluorescence under UV light with a GFP2 or 

Violet filter, viewed using a Leica 205FA stereomicroscope (see imaging, 

below). There is no evidence of symptomless fungal growth beyond the visible 

infection front in Arabidopsis pedicel tissue. 

Green fluorescence under UV light was therefore used to determine the extent 

of fungal growth along each infected pedicel, and measured along with the total 

length of the pedicel using the ruler function in the Leica imaging software (Fig. 

2.2).  

UV light with a Violet filter was used to identify the presence of blue-green auto-

fluorescence at the stem-pedicel junction, characteristic of accumulation of the 

plant defence compounds scopolin and scopoletin (see Chapter 4 and 7).  

2.4 Pseudomonas growth, maintenance and storage 

Pseudomonas syringae pv. maculicola strain ES4326 was provided by the 

Ausubel laboratory (MIT, Boston, USA). For long term storage, 15% glycerol 

stocks were made and kept at -80°C. Stocks were then cultured overnight in 

liquid LB medium (1% tryptone, 0.5% yeast extract, 0.5% NaCl, pH 7) at 28°C.  
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2.5 Infection of Arabidopsis with Pseudomonas bacteria 

Plants for Pseudomonas syringae assays were grown in a Vindon™ upright 

growth chamber (www.vindon.co.uk) with a 12 h light / 12 h dark cycle. Bacteria 

were centrifuged and re-suspended in 10mM MgSO4 at a concentration of 

approximately 106 cfu/ml (OD600=0.0002) equating to 103 cfu/cm2 leaf tissue, 

unless otherwise stated. Plants were inoculated with the bacterial suspension 

by needleless syringe infiltration onto the abaxial leaf surface. Plants were 

inoculated at 4 weeks of age unless otherwise stated. Two leaves were 

inoculated per plant, with at least 6 plants inoculated per genotype. 

2.6 DNA extraction, PCR amplification and sequencing 

2.6.1 DNA extraction 

Total DNA from Arabidopsis plants was extracted using the DNeasy Plant Mini 

Kit (Quiagen, see manufacturer’s instructions). DNA from fungal spores was 

extracted using the phenol chloroform method described for extraction from 

archived air samples in Rogers et al. (2009) with the modification of using 

ammonium acetate and isopropanol in place of sodium acetate and ethanol for 

DNA precipitation. 

 

http://www.vindon.co.uk/
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Figure 2.2: Assessment of fungal growth through Arabidopsis pedicel tissue. Infected tissue was viewed 

using a Leica 205 FA stereomicroscope under UV light with a GFP2 filter. The length of pedicel infected by 
the fungus and the total length of the pedicel were measured using the ruler tool within the LAS-AF6000 
software (Leica microsystems, Milton Keynes, UK), giving absolute and relative levels of fungal infection 
within each pedicel. 
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2.6.2 Polymerase Chain Reaction (PCR) analyses 

PCR was done using either REDTaq® ReadyMix™ PCR Reaction Mix, or 

Phusion High-Fidelity PCR Master Mix with HF Buffer (New England Biolabs, 

Ipswich, MA, USA) where sequencing of the product was required (see 

manufacturers’ instructions). Reactions were done using a G-STORM thermal 

cycler (Somerton, Somerset, UK). 

2.6.3 Purification and sequencing of PCR products 

Amplified DNA was purified using the QIAquick PCR Purification Kit 

(Quiagen,Manchester, UK, see manufacturer’s instructions) and submitted to 

Eurofins MWG Operon (Ebsersberg, Germany) for sequencing along with 

primers, in accordance with their submission guidelines. Geneious™ software 

(Auckland, NZ) was used for viewing and alignment of sequenced amplicons. 

2.6.4 Gel Electrophoresis 

Arabidopsis genomic DNA and DNA amplified from PCR reactions was 

visualised on agarose gels, typically subjected to 80v for 50 minutes. Gels were 

made using 1 x TBE (tris borate EDTA) and 1% or 0.8% agarose (Fisher 

Scientific, UK) for amplicons >1kb and whole genomic DNA, respectively.  

2.6.5 Primer design 

Primers were designed using Primer3 software (Wageningen, Netherlands) 

within the Geneious programme and synthesised by Sigma Aldrich UK.  

2.7 Imaging 

2.7.1 Stereomicroscopy 

A Leica 205FA stereomicroscope and accompanying LAS-AF6000 software 

(Leica microsystems, Milton Keynes, UK) were used for microscopic analysis 
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and image capture, using either white light or UV light with a Violet filter 

(Excitation 405-445, Emission 460) or a GFP2 filter (Excitation: 460-500, 

Emission: 510nm). Scale bars were automatically generated by the LAS-

AF6000 software.  

2.7.2 Photography 

A Nikon D80 digital camera with a Sigma DC MACRO HSM 17-70mm lens was 

used for image capture. Plants were photographed on blue or black velvet 

under growth room lighting conditions using the close-up camera mode without 

the use of flash. Cropping, resizing and annotation of photographs and 

generation of figures was done using Microsoft PowerPoint software  

2.8 Statistical Analysis 

The statistical tests used for analysis of each dataset are outlined in the 

respective figure legends. Tables of means, standard errors and least 

significant differences (LSDs) can be found in Appendix 5. An effect of genotype 

or treatment was considered significant at p=<0.05, unless otherwise stated.  All 

statistical analysis was done using Genstat v16 (Payne et al., 2011). Commonly 

used statistical analyses are detailed below. 

2.8.1 Analysis of Arabidopsis-Fusarium spray inoculation data 

Arabidopsis – Fusarium disease susceptibility data generated using the FAD 

scoring system following spray inoculation (described in Table 2.1), along with 

numbers of infected leaves or uninfected siliques, were subjected to regression 

analysis fitted to a Generalized Linear Model with assumed Poisson distribution 

using the log link function. For mutant experiments with multiple time points, the 

effects of genotype and time, and the interactions between genotype and time, 

were examined for each measured variable. Where a significant effect of 
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genotype or treatment was found (p=<0.05), genotype/treatment means and 

least significant differences (LSDs) between genotypes or treatments were 

calculated at a 5% confidence level and means for all genotypes compared to 

the control genotype, and all treatments (such as amino acid treatment) 

compared to the control treatment, to identify significant differences. In the 

absence of an interaction between genotype and time, one mean per genotype 

was predicted by amalgamating data from all time points, with corresponding 

LSDs. Where a significant interaction between genotype and time was 

observed, means and LSDs between genotypes were calculated for each time 

point assessed.  

2.8.2 Analysis of Arabidopsis-Fusarium silique inoculation data 

For single silique point wound inoculations, one-way analysis of variance 

(ANOVA) was used to compare fungal growth (in mm) along the silique 

between genotypes. LSDs (p= <0.05) from the control genotype were 

calculated. 

2.8.3 Analysis of susceptibility to P. olsonii floral infection and F. 

culmorum infection of the stem-pedicel junction 

Disease probability data presented in figure 4.2 were statistically analysed using 

a Generalized Linear Model with assumed Binomial distribution and using the 

logit link function. LSDs (p=<0.05) were then calculated for predicted mean 

probabilities for each genotype compared to wild type plants. For pedicel 

infection data, the percentage of infected pedicel-stem junctions (/6) was 

calculated for each plant.  
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3 Assessment of metabolome differences between 

Arabidopsis genotypes with altered defence responses 

3.1 Introduction 

Metabolomics is a powerful tool for understanding plant metabolic processes 

and the possible role(s) of uncharacterised genes, as outlined in Chapter 1. 

This chapter examines deviations from the wild type Arabidopsis metabolome in 

a collection of defence related mutants, along with transgenic insertion lines 

known to affect pathogen recognition and defence signalling. This study was 

done in collaboration with the Rothamsted Metabolomics Facility (MeT-RO).  

A selection of 13 mutants/overexpression lines previously tested for altered F. 

culmorum floral susceptibility were selected for metabolomic ‘triple 

fingerprinting’ using  a combination of proton nuclear magnetic resonance (1H 

NMR) spectroscopy and electron spray ionisation (ESI) mass spectroscopy in 

positive and negative ion modes (Ward et al., 2003, Ward et al., 2007).  The 

metabolic complement of whole, healthy wild type and mutant/transgenic plants 

at first flower stage was assessed. The mutants selected show a range of 

responses to F. culmorum and other phyto-pathogens (Table 3.1): 

The enhanced disease susceptibility mutants eds4, eds5, eds7, eds8, eds10, 

eds11, eds12 and eds13 all show increased susceptibility to virulent 

Pseudomonas syringae pv. tomato (Pst) and P. syringae pv. maculicola (Psm) 

but show varying responses to other pathogens including the mildew Erysiphe 

ornontii and the bacterial wilt Xanthomonas campestris (Table 3.1). In addition, 

eds7, eds11 and eds12, along with the SA signalling mutant npr1 (isolated in 

the same mutant screen) all show increased susceptibility to floral infection by 

F. culmorum (Cuzick et al., 2008 and unpublished). Only one of the EDS genes 
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(eds5) has been mapped to a genomic location, and the role of the remaining 

genes in plant defence signalling is poorly understood. 

RAR1 and SGT1b have been shown to have a coupled role in mounting a 

hypersensitive response (HR) mediated by resistance (R) gene recognition in 

both monocotyledonous dicotyledonous plants (Azevedo et al., 2006, Azevedo 

et al., 2002). However, mutation of SGT1b, but not RAR1, results in decreased 

susceptibility to F. culmorum in Arabidopsis floral tissue (Cuzick et al., 2009) . It 

is unclear why the sgt1b mutant would be more resistant rather than less 

resistant to attack by Fusarium, and why the rar1 mutant does not show the 

same phenotype. 

The Cladosporium fulvum effector ECP6 has previously been shown to mask 

recognition of the fungal pathogen associated molecular pattern (PAMP) chitin 

(de Jonge et al., 2010). Constitutive expression of the C. fulvum ECP6 gene in 

Arabidopsis ecotype Col-0 increases susceptibility to the vascular wilt pathogen 

Verticillium daliae (Thomma et al., pers. comm.) and was shown to supress 

resistance to F. culmorum floral infection in preliminary studies (Hammond-

Kosack et al., unpublished).  However this reduced resistance phenotype was 

not observed in follow-up studies (see Chapter 7). 

The role of ethylene (ET) signalling in defence against Fusarium is not clearly 

understood in wheat or Arabidopsis, with evidence that it may promote or 

suppress defence, or be uninvolved (Chen et al., 2006; Cuzick et al., 2008; 

Chen et al., 2009; Ding et al., 2011; Scofield et al., unpublished). Therefore the 

transgenic Arabidopsis line constitutively expressing ETHYLENE RESPONSE 

FACTOR 1 (ERF1), which has previously shown wild type levels of defence 

against F. culmorum (Table 3.1), was also included in the study.  
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The aim of this chapter was to generate a unique metabolomic fingerprint for 

each of the 13 mutant/transgenic lines of interest. It was hypothesised that 

mutants with similar susceptibility profiles (Table 3.1) might share similar 

metabolic perturbations, which could increase understanding of how these 

genes and their associated metabolic processes affect plant resistance. In 

addition, any alterations in defined metabolic pathways in the unmapped eds 

mutants might help to elucidate the function and perhaps identity of the genes 

and pathways in which the unmapped causal mutations lie.  

Table 3.1: Defence response phenotypes of mutants and overexpression lines investigated in this chapter. 

wt = wild type phenotype, S = increased susceptibility, R = increased resistance, SAR+ = wild type 
systemic acquired resistance, SAR- = reduced systemic acquire resistance. ISR+ = wild type induced 
systemic resistance, ISR- = reduced induced systemic resistance. Information collated from Glazebrook et 
al. (1996), Volko et al. (1998), Rogers and Ausubel (1997), Ton et al. (2002), Cuzick et al. (2008a) and 
Cuzick et al. (unpublished) 

  Pathogens / treatments  

Genotypes 

Pseudomonas 
syringae 

leaves 

Erisyphe 
orontii 
leaves 

Xanthomonas 
campestris 

leaves 

Fusarium 
culmorum 

floral 

systemic 
acquired 

resistance 

induced 
systemic 

resistance 

Col-0 wt wt 
 

wt SAR+ ISR+ 

Col-0 npr1-1 S S S S SAR- ISR+ 

Col-0 eds4 S 
  

wt SAR+ ISR- 

Col-0 eds5-2 / sid1 S S S wt SAR- ISR+ 

Col-0 eds7 S 
  

S SAR+ ISR+ 

Col-0 eds8 S 
  

wt SAR+ ISR- 

Col-0 eds10-1 S S S wt SAR+ ISR- 

Col-0 eds11-1 S R wt S SAR+ ISR+ 

Col-0 eds12-1 S wt wt S SAR- ISR+ 

Col-0 eds13-1 S S S wt SAR+ ISR+ 

Col-0 ERF1 S 
  

wt 
  Col-0 ECP6 

   
S/wt 

  Ler-0 wt 
  

wt 
  Ler-0 sgt1b wt 

  
R 

  Ler-0 rar1 wt 
  

wt 
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3.2 Materials and Methods 

3.2.1 Tissue harvesting and metabolomic analysis 

Arabidopsis genotypes Col-0, eds4, eds5, eds7, eds8, eds10, eds11, eds12, 

eds13, ERF1, Ler-0, rar1, sgt1b, npr1 and ECP6 were subjected to 

metabolomic analysis (see Appendix 1.1 for seed stock origins). 

Plants were grown until first flower stage (Growth stage 6.00, Boyes et al. 

2001). This is the growth stage at which Fusarium floral inoculations are done. 

This growth stage and tissue type also precisely matches the main Arabidopsis 

mutant screen currently underway at MeT-RO (Metabolomics at Rothamsted) 

as part of large scale analysis of Arabidopsis mutants generated via forward or 

reverse genetics (HiMET consortium project). This experimental design 

therefore allowed for the possibility of direct comparison between the unmapped 

eds mutants and mutants included in the HiMET screen. 

All aerial tissue from each plant was harvested directly into liquid nitrogen, 

between 14 and 15 hours into the light period. Samples were then stored at -

80°C prior to freeze drying. Three experimental replicates were done, with 6 

plants harvested from each genotype. 

Plant tissue from each experimental replicate was then pooled, freeze-dried, 

ground using a pestle and mortar and then submitted to MeT-RO 

(Metabolomics at Rothamsted) for analysis using methods previously described 

(Ward et al., 2011, Ward et al., 2003). Briefly, freeze dried samples were split 

into three technical replicates and extracted using polar solvent mixture of 80:20 

D20:C3OD, and then analysed using 1H NMR and ESI-Mass spectroscopy. 

SIMCA-P 11 software (Umetrics, Umea, Sweden) was used for multivariate 

analysis. All data were mean centre scaled. 

Principle component analysis, hierarchical clustering, statistical analysis and 

construction of heat maps were done by Dr Jane Ward, MeT-RO. Manipulation 

and interpretation of information provided in heat map form was done by the 

author. 

3.2.2 Amplification and sequencing of FAH1, NPR1, NPR3 and NPR4  

To verify background mutations in the various genetic stocks and/or the 

presence of various wild-type sequences of key defence genes, several 
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diagnostic PCR analyses were done.  A 381bp region of the Arabidopsis FAH1 

gene surrounding the fah1-2  mutation (located at the 292nd nucleotide of the 

ORF) was amplified from genotypes Col-0, eds4, eds5, eds7 and eds8 using 

the primers in Table 3.2. 

Overlapping sequences of the Arabidopsis NPR1, NPR3, and NPR4 gene and 

promoter regions that were approximately 600bp each in length were amplified 

from eds11 using five forward and reverse primer sets per gene (Table 3.2).  

 

Table 3.2: Primers used for PCR and sequencing in this chapter. 

Gene Forward Primer Reverse Primer 

   

FAH1 5’-TCAGCTTCATCACACGGCGGC-3’ 5’ACGAACTGAAGCCCATGACTCAGC-3’ 

NPR1 5’-TCTCACCACCACTCTCGTTG-3’ 5’-CTGCGCATTCAGAAACTCCT-3’ 

 5’- TTCGGTTGTGACTGTTTTGG -3’ 5’- AATGAAGAGCACACGCATCA -3’ 

 5’- TCGAATGTACATAAGGCACTTGA -3’ 5’- TTGGAAAAAGACGTTGAGCA -3’ 

 5’- ACGCTGCTCGATCTTGAAAA -3’ 5’- GGGACGAATTTCCTAATTCCA -3’ 

 5’- GCGGAGAAGACGACACTGCTGA -3’ 5’- CAGGATGCAAAACGAAGAGCG -3’ 

NPR3 5’-TGGTTCTGGGTTTGGTTGAT-3’ 5’-AATGGCAGGTCGACAACAAT-3’ 

 5’-TTTCGAAAACTGAGAAACCAAA-3’ 5’-TCTCCGAAATCTTGGGACTG-3’ 

 5’-TTGACTCAGCTTCTTGATCAGTG-3’ 5’-AGAACCATGGGGTTCTTCCT-3’ 

 5’-CGCCAATGCATCTGAGTTTA-3’ 5’-TGCATTGTGAAACGGTAATGA-3’ 

 5’-TGGGTTAACCGGAAACTTGA-3’ 5’-TTTTGGGTTAATCAGCACTCC-3’ 

NPR4 5’-AAGCAAAGCAAAAAGGAAAGG-3’ 5’-ATGAAACGCCTTATGTGCAA-3’ 

 5’-TGGGAAGTATCTCCGACCTG-3’ 5’-GGAGACTCACTAGGCCGAAA-3’ 

 5’-GAATGGGAACAAGTGGGTGT-3’ 5’-TTGAGAGAGTGGCGAGATCA-3’ 

 5’-TCTGAATCCAATGCCTTGAGTA-3’ 5’-TGAGAAGAAACCTAAGTATCAAATGAA-3’ 

 5’-AATCAATGGCCGGTTTACAA-3’ 5’-GGATCTTTTCTTCAGGGCTTG-3’ 
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3.3 Results 

3.3.1 Metabolomic analysis of healthy Arabidopsis plants reveals 

differences in primary metabolite composition between genotypes 

Healthy plants at first flower stage were subjected to metabolomic analysis in 

order to assess differences in primary metabolism between wild type and 

mutant plants in the absence of pathogen challenge.  

Samples were submitted to MeT-RO for triple fingerprinting analysis (1H NMR 

spectroscopy and ESI mass spectroscopy in both positive and negative ion 

modes). Data from 1H NMR reads are presented and assessed in this chapter. 

Metabolite data for each genotype were subjected to principal component 

analysis (PCA, Fig. 3.1). A heat map was generated by MeT-RO showing 

relative abundance of the metabolites identified in each genotype with 

hierarchical clustering of the metabolites and genotypes shown on the heat map 

axes (Fig. 3.2). Note that wild type Ler-0 and the Ler-0 background mutants rar1 

and sgt1b were omitted from the PCA due to having metabolic fingerprints 

which are very distinct from genotypes in the Col-0 background, in order to 

visualise differences between Col-0 background genotypes more clearly. 

3.3.2 Principal Component and Hierarchical Clustering Analysis reveal 

the relationship between Arabidopsis mutant and wild type 

metabolic fingerprints. 

The Principal Component Analysis (Fig. 3.1) reveals eds4 and eds8 to be clear 

outliers with fingerprints distinct from both wild type Col-0 and the other 

genotypes assessed. Hierarchical Cluster Analysis and heat map generation 

(Fig. 3.2) place eds8 in a cluster with the 3 Ler-0 genotypes assessed, despite 

the mutant being in the Col-0 background. The eds4 mutant clusters separately 

to all the other mutants assessed, denoting its distinct metabolic fingerprint. 

Mutants eds11 and npr1-1 also segregate from the other mutants due to higher 
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PC1 values, and cluster together. Hot and cool metabolite regions relating to 

eds11 and npr1-1 mutants are broadly the inverse of those observed for eds4 

and eds8 (Fig. 3.2). Statistically significant differences (Tukey Kramer, p=<0.05) 

in metabolite abundance between mutant and wild type plants are shown in 

Figure 3.3. 

The transgenic line overexpressing ECP6 co-clusters with wild type Col-0, 

revealing limited differences in metabolite synthesis between these two 

genotypes: The insertion of ECP6 alters plant cell perception of the fungal 

PAMP chitin and so alterations in metabolite synthesis in the absence of chitin 

might be expected to be minimal. Likewise, the SA signalling mutants eds5/sid1 

and eds12 also cluster together closely with Col-0 and ECP6. Differences in 

metabolite synthesis between these mutants and wild type may also only 

become apparent upon pathogen inoculation and /or treatment with defence 

inducing compounds such as SA. 

The 3 Ler-0 genotypes, Ler-0, rar1 and sgt1b, are all more similar to one 

another than to the Col-0 genotypes, with the exception of eds8 (see 

above).This complements previous findings that Ler-0 and Col-0 have very 

distinct metabolic fingerprints (Ward et al., 2003). Mutants rar1 and sgt1b 

cluster more closely with one another than with wild type Ler-0, possibly 

alluding to the known paired role of these genes in R gene mediated defence 

signalling (Azevedo et al., 2002). 

3.3.3 Wild type and mutant plants differ in their abundance of 29 known 

and 26 unknown metabolites  

Known metabolites identified with different levels of abundance between 

genotypes were the amino acids leucine, isoleucine, asparagine, serine, valine, 

proline, alanine, glutamine, threonine, aspartate and glutamate, the sugars 
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maltose, raffinose, stachyose, glucose, fructose, sucrose, galactose and 

galactinol, along with choline, glycine betaine, malate, fumarate, sinopoyl 

malate, γ-aminobuteric acid (GABA) and the flavonoids 3-p-α-coumaroyl 

glucosyl rhamnoside (KGR) and kaempferol 3,7-dirhamnoside (KRR).  

An additional 26 unknown compounds were also present in different 

abundances across the selected genotypes, most of which occurred in the 

carbohydrate and aliphatic regions of the spectrum (Ward et al., 2003). Many of 

these show similar relative abundances and distribution patterns across 

genotypes to known metabolites, indicating that these may be precursors or 

compound derivatives (Fig. 3.2). However, there is a large cluster containing 10 

unknown metabolites at the centre of the HCA map. This splits into two smaller 

clusters, the first of which contains 4 unknown metabolites along with leucine 

and isoleucine, indicating that the unknown compounds may be associated with 

the synthesis of these amino acids. The other cluster contains 5 unknown 

compounds which do not appear to be closely associated with any known 

metabolites, making their role in metabolism difficult to ascertain. One unknown 

compound (position-4.485) does not cluster with any other known or unknown 

compounds and displays a unique pattern of relative abundance between 

genotypes. 

A map of primary metabolism showing the different abundance of known 

metabolites between wild type plants and the eds mutant suite is shown in 

Figure 3.4. These mutants have been selected for further scrutiny because, 

excepting eds5 and npr1, their genomic location and gene function currently 

remain unknown. 
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 Figure 3.1: Principal Component Analysis showing PC1 vs PC2 generated by Jane Ward, MeT-RO, of wild type Columbia and 11 defence related mutant 

or transgenic Arabidopsis plants in the Columbia background, coloured according to genotype, based on data from 
1
H-NMR spectroscopy. Three 

biological replicates per mutant were analysed, with each split into three technical replicates, resulting in 9 data points per genotype. 
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Figure 3.2: Heat map representation generated by Jane Ward, MeT-RO of discriminatory metabolites between Arabidopsis wild type and defence related mutant and 

transgenic plants. Comparisons were generated via HCA using the complete linkage method with similarity based on Euclidian distance. Metabolite levels are based on 
characteristic chemical shift ranges from 

1
H-NMR intensities. For each metabolite, data are mean centred and normalised to unit variance. 
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Figure 3.3:  Heat map representation of statistically significant descriminatory metabolites between mutant/transgenic and wild type lines. All genotypes compared to Col-0, 
with the exception of sgt1 and rar1 which care compared to Ler-0. Statistical analysis done by Jane Ward, MeT-Ro using Tukey-Kramer test. p=<0.05. Heat map adapted for 
statistical significance by H. Brewer. 
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Figure 3.4: Simplified map of primary metabolism in Arabidopsis thaliana, showing the relationships between 

the metabolites identified in this analysis and variation in relative abundance of these metabolites between the 
genotypes analysed, according to data generated from 

1
H

 
NMR. Metabolites without abundance information 

were either not identified in the analysis, or their abundance did not vary significantly between genotypes. 
Pathway information was obtained using the KEGG database. 
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3.3.4 Sinapoyl malate biosynthesis is unaltered in mutants generated in 

the fah1-2 background 

The mutants eds4, eds5, eds7 and eds8 were generated during an EMS 

mutagenesis screen of plants in the ferulic acid hydroxylase 1-2 (fah1-2) 

background, which cannot synthesise the sinapic acid ester sinapoyl malate 

(Chapple et al., 1992). However, this study revealed that only eds4 and eds8 

had reduced levels of sinapoyl malate, and this reduction is only statistically 

significant for eds8 (Tukey-Kramer, p=<0.05). Mutants eds5 and eds7 had 

levels equivalent to those found in wild type Col-0 (Fig. 3.2). The gene fragment 

containing the fah1-2 mutation was therefore amplified from wild type and eds 

mutant plants and sequenced in order to assess whether the mutation was still 

present, revealing that only eds8 still contains the fah1-2 mutation. The 

mutation has most likely been lost from the other eds mutants during a 

backcrossing event, but not from eds8. This may be due to a lower number of 

backcrosses for eds8, or genetic linkage between the eds8 and fah1-2 

mutations.  

3.3.5 Mutants eds11 and npr1 have similar metabolic fingerprints, which 

are distinct from wild type Col-0 and other mutant plants 

The mutants npr1 and eds11 are both highly susceptible to leaf tissue infection 

by virulent strains of the bacteria Pseudomonas syringae, and to floral infection 

by Fusarium culmorum (Volko et al., 1998, Cuzick et al., 2008a). Both mutants 

are also late flowering under the growth conditions used for this study (Fig. 3.5). 

These mutants were found to have distinct metabolic fingerprints from the other 

genotypes assessed, but were very similar to one another; both had 

significantly elevated levels of the sugars galactose, raffinose, and glucose, and 

the flavonoids KRR and KGR along with three associated unknown compounds  
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(7.305-7.385, 6.915-7.035 and 5.285-5.305). Collectively, this data indicates 

that both mutants have altered primary sugar metabolism and flavonoid 

biosynthesis compared to wild type Col-0. Both mutants also had elevated 

levels of two unknown compounds (4.875-4.995 and 7.425-7.485) which 

clustered separately to any known metabolites, and two unknown compounds 

(1.855-1.945 and 7.6015-7.645) which associated with asparagine and 

fumarate, respectively. It is of note that these two unknown compounds are also 

elevated in the Fusarium susceptible mutant eds7, indicating that these may 

play a role in this susceptibility. The eds11 mutant also had significantly 

elevated levels of eight additional unknown metabolites, many of which cluster 

independently of known metabolites, along with leucine, isoleucine, valine, 

serine, betaine and galactinol. Many of these were also elevated in some npr1 

samples but this was not statistically significant. The eds11 mutant has 

previously been found not to be an allele of npr1 (Volko et al., 1998) and 

sequencing of the NPR1 gene and promoter region in eds11 confirmed this. 
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Figure 3.5: Flowering time of plants used for metabolomic analysis, based on time from 

sowing to harvest at first flower stage. Data are means of three experimental replicates. 
Bar = standard error. 
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Additionally, sequencing of the related genes NPR3 and NPR4 (Zhang et al., 

2006, Moreau et al., 2012, Fu et al., 2012) from eds11 confirmed that eds11 is 

wild type for these genes. However, the close relationship between the 

metabolic fingerprints of the two mutants suggests that EDS11 and NPR1 may 

be involved in a common signalling pathway.  

3.3.6 Mutations in EDS8 and EDS4 cause broad spectrum changes in 

primary metabolism 

The eds8 and eds4 mutants are both characterised by small rosettes and early 

flowering (Figure 3.5), along with increased susceptibility to Pseudomonas 

syringae, and a reduction in Induced Systemic Resistance (ISR) mediated by 

Jasmonic Acid (JA) signalling (Table 3.1). Both these mutants have metabolic 

fingerprints which are distinct from wild type plants (Figures 3.1 – 3.3): Both 

have significantly reduced levels of the major flavonoids KRR and KGR, along 

with an associated unknown metabolite (5.205-5.285). In addition, eds8 has 

elevated levels of glutamate and its derivatives GABA, proline and glutamine, 

along with adenosine (and two associated unknown compounds), and alanine 

and galactose. The eds4 mutant has decreased levels of the TCA (tricarboxylic 

acid) cycle components fumarate and malate, and two associated unknowns 

(7.505-7.565), along with the amino acids asparagine, alanine and serine, and 5 

unknown metabolites which cluster together.  

3.3.7 Mutations in the R gene mediated defence signalling genes RAR1 

and SGT1b cause similar alterations in primary metabolism 

Both rar1 and sgt1b showed decreased malate levels, but elevated levels of 

asparagine and aspartate compared to wild type Ler-0 plants. These mutants 

also shared altered levels of eight unknown compounds, and decreases in a 

further three unknown compounds. These shared alterations may reflect the 
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coupled role of SGT1b and RAR1 in plant defence signalling (Azevedo et al., 

2002). Further investigation into the identity of the unknown compounds is 

required. 

3.3.8 ERF1, eds10 and eds13 show common increases in metabolite 

abundance compared to wild type Col-0 

The Arabidopsis line overexpressing ETHYLENE RESPONSE FACTOR 1, and 

mutants in EDS10, which is thought to be involved in ISR mediated by JA 

signalling, and EDS13, a gene of unknown function, are all more susceptible to 

the virulent bacterial pathogen P. syringae but the connection between them in 

terms of metabolite synthesis and signalling are unknown. This study reveals 

that all 3 mutants produce elevated levels of GABA, valine, leucine and 

isoleucine, and 2 associated unknown compounds (0.935-0.945 and 1.625-

1.795), but have reduced levels of sucrose. This indicates that overexpression 

of ERF1 disrupts primary metabolism in a similar manner to mutations in EDS10 

and EDS13. 

3.3.9 Mutation of EDS7 and EDS12 results in a small number of 

significant metabolome alterations from wild type plants 

The floral tissue of both eds7 and eds12 is more susceptible to infection by F. 

culmorum. While neither of these mutants have metabolic fingerprints which 

differ extensively from wild type plants, both are altered in their relative 

abundance of a small number of compounds: 

Asparagine and threonine were both reduced in eds12, while levels of two 

unknown compounds (5.865-5.905 and 7.865-7.915), which were linked to 

adenosine by HCA, were elevated. Mean levels of adenosine were also found 

to be increased compared to wild type plants but this finding was not statistically 

significant (Tukey-Kramer, p=>0.05). 
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Alterations in the eds7 metabolome corresponded to a subset of the alterations 

observed in eds11 and/or npr1; plants had elevated levels of glucose, along 

with fumarate and asparagine and their associated unknown compounds 

(7.6015-7.645 and 1.855-1.945, respectively). 

3.4 Discussion 

This study has revealed differences between Arabidopsis defence related 

mutant and wild type plants in terms of their metabolic fingerprint. Each of the 

13 mutant/transgenic lines investigated deviates from wild type in its abundance 

of at least one primary metabolite. 

3.4.1 Metabolism and plant defence 

The spectroscopic analysis of the Arabidopsis eds mutants, along with other 

defence related mutants, reveals alterations in primary metabolic processes 

compared to wild type plants even in the absence of pathogen challenge. This 

indicates that their compromised defence response may be due to altered levels 

of primary metabolites before, and at the time of, pathogen attack, which may 

facilitate infection and /or prevent induction of a defence response involving key 

defence related secondary metabolites. In the case of eds11 and npr1, 

alterations in primary sugar metabolism could be aiding pathogen attack, as 

seen in other studies with the bacterial pathogen Pseudomonas syringae (Ward 

et al., 2010). However, the finding that the Fusarium susceptible mutants npr1 

and eds11 have elevated flavonoids is unexpected, considering the elucidated 

role of flavonoids in FEB resistance in barley (Kumaraswamy et al., 2011, 

Bollina et al., 2010, Bollina et al., 2011). 

Several mutants also show altered primary amino acid abundance, indicating 

perturbations in amino acid biosynthesis. Alterations in amino acid biosynthetic 

pathways, namely aspartate metabolism and threonine biosynthesis, have 
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recently been shown to impact plant defence to a range of pathogens (van 

Damme et al., 2009, Huibers et al., 2013, Zeier, 2013, Stuttmann et al., 2011). 

This is explored further in Chapter 6. 

3.4.2 Requirement for identification of unknown compounds 

Almost half (26) of the compounds found to differ between genotypes in this 

study are ‘unknowns’ meaning that their chemical structures have not been 

identified. While some of these were linked to known metabolites based on 

relative abundance patterns across genotypes, others showed unique 

distribution. This makes it difficult to link these metabolites to known pathways 

and processes and understand how they may be involved in plant defence, and 

how they related to the specific genotype of the line in which they are altered. 

For example, mutants rar1 and sgt1b, which have a coupled role in R gene 

mediated defence responses, also show changes in metabolite production in 

common with one another. However, the majority of these changes occur in 

compounds whose identity is not yet known, impeding further investigation into 

the roles of these metabolic changes in altering the defence response. 

Characterisation of the unknown metabolites identified in this chapter is 

therefore crucial to further understanding of the genotypes of interest. 

Unfortunately their chemical characterisation requires a great deal of further 

analysis which is beyond the scope of this project (Ward et al., 2011, 

Nakabayashi and Saito, 2013). 

3.4.3 Effects of non-target SNPs 

The mutants investigated in this chapter were generated by ethyl 

methanesulfonate (EMS) mutagenesis, which typically introduces hundreds of 

single nucleotide polymorphisms (SNPs) into the plant genome, only one of 

which is typically responsible for the phenotype under selection (Ashelford et 
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al., 2011, Jander et al., 2003). In the case of the eds mutants this phenotype is 

reduced resistance to Pseudomonas infection. However, while only one SNP 

may be responsible for the defence phenotype, other SNPs may be contributing 

to the metabolomic fingerprint. It cannot therefore be assumed that every 

metabolomic deviation between these mutants and the wild type is directly 

linked to their susceptibility phenotype and underlying causal mutation.  

3.4.4 Effects of using growth stage based analysis 

Growth stage (first flower opening), rather than absolute age, was used to 

select comparable plants between genotypes. There were a number of reasons 

for this, as detailed in the methods section: 

Flower opening is the growth stage at which plants are inoculated with 

Fusarium spores during the spray inoculation assay detailed in chapter 2. It was 

therefore of interest to assess how the base-line metabolome of Fusarium 

susceptible genotypes differs from that of resistant genotypes at the time of 

inoculation. Furthermore, there is evidence that large-scale metabolomic 

changes occur throughout the rosette as the plant transitions from vegetative to 

reproductive growth (Ward et al., unpublished). It would therefore not be 

appropriate to select plants based on age when only some genotypes were 

flowering.  

However, it is interesting to note that the genotypes with the most divergent 

metabolomes from wild type Col-0 are eds4 and eds8 (early flowering) and 

eds11 and npr1-1 (late flowering), and that some metabolites show contrasting 

abundances between the early and late flowering genotypes. This occurs 

namely in the major flavonoids KRR and KGR, which are elevated in the late 

flowering genotypes and reduced in the early flowering genotypes, along with 



98 
 

an additional unidentified flavonoid which shows the reversed abundance 

pattern. There are similar trends in other compounds which are not statistically 

significant in all four genotypes. This raises the question of whether these 

deviations are due to differences in rosette age, or the causal genotype, or a 

combination of both; it is not clear whether flowering time is directly linked to the 

mutation of interest in these genotypes. 

3.4.5 Conclusions 

This chapter shows that many of the mutant/transgenic Arabidopsis lines which 

have been tested for altered resistance to F. culmorum have metabolic 

fingerprints that are significantly divergent from wild type plants, in the absence 

of pathogen challenge. In addition, there are shared deviations in eds7, eds11 

and eds12, all of which have elevated floral F. culmorum susceptibility. 

In the next chapter, the susceptibility of these lines to Fusarium pedicel infection 

following silique inoculation is examined, along with changes in the metabolome 

induced by this infection. 
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4 The effect of Fusarium culmorum infection on the plant 

metabolome 

4.1 Introduction 

Metabolism is a central element of plant pathogen interactions, as discussed in 

Chapters 1 and 2. Synthesis of primary and secondary metabolites is essential 

for many plant defence responses, and pathogens in turn may re-engineer plant 

metabolism to aid invasion and nutrient acquisition. 

Previously, metabolomic analysis of F. culmorum infected Arabidopsis pedicel 

and upper stem tissue eleven days after silique inoculation revealed eight 

secondary metabolites induced by Fusarium infection which were absent from 

mock inoculated samples (Figure 4.1: , Baker, Hammond-Kosack et al., 

unpublished). These included two glucosinolates, and camalexin, which are well 

characterised in their role in plant defence against fungal pathogens (Bednarek 

et al., 2009, Sanchez-Vallet et al., 2010) and two coumarins; scopoletin and its 

glucoside scopolin, thought to be responsible for plant auto-fluorescence in 

infected samples (Figure 4.1, inset). These coumarins are known to be involved 

in Arabidopsis root defence against the related fungal pathogen Fusarium 

oxysporum (Kai et al., 2006) as well as defence against Sclerotinia head rot in 

sunflowers (Prats et al., 2006). Coumarins have also been implicated in 

resistance to FEB in barley following metabolomic analysis of resistant cultivars 

(Bollina et al., 2010, Kumaraswamy et al., 2011).  

In chapter 3, the metabolic fingerprints of thirteen Arabidopsis defence related 

mutants were assessed, under normal growth conditions. The aim of this 

chapter is to generate metabolic fingerprints for these mutants following F. 

culmorum infection, compared to mock inoculated plants. These mutants had 

previously been screened for altered floral susceptibility following spray 
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inoculations. The intention was therefore to study metabolic changes following 

both floral spray inoculation, and silique point wound inoculation. However, 

infection following spray inoculations was not sufficiently severe and consistent 

to permit comparisons between genotypes. Therefore, only silique point wound 

inoculation was used in this study. It was hypothesised that some of the 

mutants investigated might show alterations in production of the previously 

described secondary metabolites which accumulate in wild type plants following 

F. culmorum inoculation. 

The susceptibility of the mutants of interest to infection of the pedicel-stem 

junction following silique inoculation was also assessed, as was the 

susceptibility of these mutants to floral infection by an opportunistic fungal 

contaminant. 

Plant growth, inoculations, disease assessments, harvesting and grinding, and 

interpretation of processed data, were done by the author. Metabolic 

fingerprinting and associated analysis was done by Dr Jane Ward and 

colleagues in the Rothamsted Metabolomics facility (Met-RO).  
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Figure 4.1: NMR spectra revealing compounds induced in Arabidopsis pedicel/upper stem tissue by 
infection of siliques with F. culmorum. Upper: Aromatic regions from NMR spectra of crude extracts 
of treated and untreated samples harvested at 14 dpi (shown inset- UV light with violet filter). Lower: 
Aromatic regions from edited (to remove noise and impurities) NMR spectra of A: 4-
methoxyglucobrassicin, B: 6-O-β-D-glucopyranosyl indole-3-carboxyic acid, C: coniferyl β-D-
glucopyranoside, D: 6-O-β-D-glucopyranosylindole-3-carboxyic acid β -D-glucopyranosyl ester, E: 
camalexin, F: scopolin. Source: MeT-RO at Rothamsted Research (Bakker et al., unpublished). 
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4.2 Materials and Methods 

4.2.1 Plant Growth and Inoculations 

Plants were grown and inoculated by single silique wound point inoculation as 

described in Chapter 2; Plants with 6 immature siliques were chosen for 

inoculation. Inoculations were done 14-16 hours into the light period. Plants 

were grown and inoculated in four independent experiments. Ten mock and ten 

F. culmorum inoculations were done for each genotype in each experiment. 

4.2.2 Harvesting and analysis 

Infected pedicel and adjoining stem tissue was harvested at 14 dpi, directly into 

liquid nitrogen as described in Chapter 3. Plant tissue of each genotype and 

treatment was pooled, each pool containing tissue from two independent 

experiments, giving rise to two pooled biological samples per 

treatment/genotype combination. Samples were freeze dried and ground and 

submitted to Metabolomics at Rothamsted (Met-RO) for metabolic fingerprinting 

as described in Chapter 3. Each sample was split into three technical replicates 

for analysis. Data presented here is generated from 1H-NMR spectroscopic 

analysis. 

4.2.3 Contaminant analysis 

The growth room fungal contaminant isolated during this study was cultured on 

SNA, as described in Chapter 2 for Fusarium cultures. 

The ITS region of the rRNA of the fungal contaminant was amplified using the 

universal primers ITS1 (5’ - TCCGTAGGTGAACCTGCGG -3’) and ITS4 (5’- 

TCCTCCGCTTATTGATATG -3’) (White et al., 1990). 
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4.3 Results* 

4.3.1 Susceptibility to the contaminant fungus Penicillium olsonii differs 

between genotypes 

Plants kept at high humidity for extended periods following silique inoculation 

with either F. culmorum conidia or sterile water often succumbed to infection of 

the apical inflorescence by an unidentified fungal contaminant.  These apically 

restricted infections were first visible after 10 days in the inoculation chamber 

and, due to the elongation of the floral apex post –silique inoculation, were then 

at least 7 to 10 cm above the point of the original silique inoculation.   Isolation 

of the contaminant and sequencing of the ITS region revealed the species to be 

Penicillium olsonii (NCBI Taxonomy ID 99116). This ascomycete fungus is the 

causal agent of blue mould disease on a variety of dicotyledonous species and 

a known growth room contaminant and opportunistic pathogen of Arabidopsis 

floral and leaf tissue (Wagner et al., 2000). Variation in contamination levels 

between genotypes was formally assessed by recording the number of plants 

per genotype that had become contaminated 14 days after mock or F. 

culmorum silique inoculation (Figure 4.2a). No effect of treatment was 

observed, indicating that distal infection with Fusarium neither inhibits nor 

facilitates P. olsonii floral infection. However, there was a significant effect of 

genotype on infection rates (d.f. = 14, 81, p=<0.001). Genotypes eds4, eds7, 

eds12 and npr1 all showed higher contamination levels across four 

experimental replicates than wild type Col-0, regardless of treatment (70.8%, 

68.0%, 92.6%, 90.0% and 36.1% respectively). Higher susceptibility was also 

seen in rar1 compared to wild type Ler-0 (p = <0.05). All other mutants showed 

                                            
*
 Prepared samples for metabolome analysis were submitted by the author to MeT-RO on 24

th
 

October 2012. Analysed data were returned to the author on 28
th
 November 2014. This thesis 

was submitted on 19
th
 December 2014. As such, reporting and interpretation of results from the 

metabolome analysis described in this chapter is not as comprehensive as intended. 
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wild type levels of contamination. Overall contamination levels decreased with 

each replicate, but remained high in the significantly affected genotypes. No 

effect of this floral contaminant on the metabolite composition of upper stem 

and pedicel tissue was seen (Jane Ward, pers. comm.). 
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Figure 4.2: Susceptibility of investigated Arabidopsis genotypes to a) floral infection by P. olsonii 
and b) infection of the stem-pedicel junction by F. culmorum. The percentage of plants of each 
genotype florally infected by the opportunistic blue mould pathogen P. olsonii was recorded at 14 

dpi (a). The incidence of infection of the stem-pedicel junction in each genotype was recorded at 14 
dpi (b). *significantly different from Col-0, ^significantly different from Ler-0 (regression followed by 
calculation of LSDs, p=<0.05). Data is pooled from 4 independent experiments. 
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4.3.2 Rate of infection of the pedicel-stem junction differs between 

genotypes 

Previous studies had shown that silique inoculation with F. culmorum results in 

complete infection of the silique, pedicel and pedicel-upper stem junction by 14 

dpi, with progression of infection symptoms arresting at the junction (Baker et 

al., unpublished, Cuzick et al., 2008a). However, in this study, few inoculation 

events resulted in complete pedicel colonisation by 14 dpi. The incidence of 

infection at the junction was formally assessed and compared between 

genotypes across four independent experiments (n=40).  

A significant effect of genotype on incidence of disease at the stem pedicel 

junction was observed (Figure 4.2b, d.f. = 14, 550, p=<0.001). The incidence of 

visible disease symptoms at the pedicel-stem junction was significantly higher in 

the transgenic line expressing C. fulvum ECP6 (10.4%), eds7 (8.0%), eds8 

(33.1%), eds10 (15.0%), eds11 (18.2%), eds12 (12%) and eds13 (15.6%) 

compared to wild type Col-0 (1.7%), but not in ERF1, eds4, eds5 or npr1. 

Infection incidence in the R gene mediated signalling mutant sgt1b was 

significantly lower than in wild type Ler-0 (0.4% vs. 6.1%) while mutation in its 

signalling partner RAR1 did not significantly alter disease levels. These results 

were significant across four experimental replicates (p = <0.05). However, it is 

noteworthy that with the exception of eds8, the rate of infection at the junction 

did not exceed 20% in any genotype. 

4.3.3 The metabolic profile of uninfected pedicel/upper stem tissue 

differs from that of whole flowering plants 

In chapter 3, the metabolic fingerprint of the 15 genotypes of interest was 

investigated in whole plants at first flower stage. In that analysis, genotypes 

eds11 and npr1 were found to have similar metabolic fingerprints that were also 
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distinct from those of other genotypes in the Col-0 (Figure 3.2). Similarly, 

principal component analysis (PCA) and analysis of individual metabolite 

abundances indicated that eds4 and eds8 were similar to one another but 

distinct from other genotypes.  

As shown in Figure 4.3, PCA did not indicate strong similarities in pedicel/upper 

stem metabolite composition analysed in this study between eds11 and npr1. 

Large differences were also seen in npr1 between experimental replicates for 

PC1, which represents 39% of the variation between samples. Genotypes eds4 

and eds8 segregated from other genotypes and clustered together (Figure 4.3).  

4.3.4 A collection of 32 known metabolites was detected in the upper 

stem/pedicel tissue 

The known metabolites detected in this analysis were the amino acids 

asparagine, arginine, aspartate, GABA, glutamate, glutamine, isoleucine, 

leucine, phenylalanine, alanine, proline, threonine, and valine, the amino acid 

derivatives glycine betaine and proline betaine, the major flavonoids KRR and 

KGR, the sugars glucose, maltose, trehalose, sucrose, fructose and raffinose, 

the TCA cycle components citrate, fumarate, acetate and malate, along with 

choline, choline-O-sulphate, inositol and a uracil-like compound. All of these 

metabolites showed changes in abundance following F. culmorum infection of 

the pedicel, in some or all of the genotypes examined. Interestingly, none of the 

defence related compounds previously identified by 1H-NMR to be induced by 

F. culmorum infection of the stem-pedicel junction were detected in this study. 

Several unknown metabolites were also detected but these have been omitted 

from subsequent analysis. 

Differences in abundance of metabolites between genotypes in uninfected 

tissue are presented in heat map form in Figure 4.4a (Col-0 genotypes) and 
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4.5b (Ler-0 genotypes), following hierarchical cluster analysis (HCA). Note that 

colour denotes relative abundance compared to wild type plants, rather than 

absolute abundance or abundance relative to the mean as presented in Chapter 

3.2. While detailed analysis of differences between metabolites for each 

genotype in uninfected pedicel/upper stem is beyond the scope of this study, it 

is interesting to note that npr1, which showed increased levels of KRR and KGR 

compared to wild type when whole flowering plants were assessed, has 

reduced levels of these compounds in the tissues assessed here. However, 

these compounds were elevated in the pedicel/stem tissue of eds11, consistent 

with findings for whole plants. Primary sugars were also elevated in both 

genotypes in both whole plants and pedicel/stem junctions. The flavonoids KRR 

and KGR were also reduced in genotypes eds8 and eds4, consistent with 

findings for whole plants in Chapter 3. 

In addition, sgt1b, which has reduced susceptibility to F. culmorum infection in 

both floral and pedicel tissue, shows reduced levels of several metabolites in 

comparison to both wild-type Ler-0 and the related mutant rar1.  
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  Figure 4.3: Principal component analysis (PCA) of the metabolic composition of 13 genotypes in the 

Arabidopsis Col-0 background, following 
1
H-NMR spectroscopic analysis of upper stem/pedicel 

junctions of uninfected plants. PCA constructed from 
1
H-NMR data using extracted regions of known 

characteristic regions. Models constructed using unit variance scaling. t[1] = PC1 = 39%, t[2] =  PC2 = 
25%. Figure generated by Jane Ward, MeT-RO 
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Figure 4.4: Differences in metabolite abundances between genotypes.  

Hierarchical cluster analysis generated from discriminatory metabolite profiles of uninfected pedicel/upper 
stem tissue for each mutant compared to wild-type Col-0 (a) or Ler-0 (b). Data generated from pairwise 

PCA analysis of mock-treated samples of each mutant. HCA analysis has been generated by the 
complete linkage method using Euclidian distance as the similarity measure. Red = elevated relative to 
wild-type. Blue = reduced relative to wild-type. Heat maps and HCA generated by Jane Ward, MeT-RO 
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4.3.5 The effect of F. culmorum infection on the metabolic profile of 

pedicel/upper stem tissue 

The metabolic profiles of pedicel/upper stem junction samples analysed in this 

chapter were expected to segregate based on treatment (mock versus 

Fusarium infected) and also genotype. Differences between experimental 

replicates were also expected. As shown in Figure 4.5, PCA revealed that 

samples of ecotype Col-0 segregated predominantly into treated and untreated 

groups based on PC1, which accounts for 45% of the variation between 

samples. Genotype differences were denoted by PC2 (21%). It is interesting to 

note that the metabolome of infected eds4 pedicels was comparable with that of 

mock inoculated tissue from some other genotypes, namely npr1, eds5 and 

ECP6. While the profiles of most genotype/treatment combinations were 

comparable between experimental replicates, some, such as eds13, showed 

higher levels of variation between replicates. By contrast, for genotypes in the 

Ler-0 background, differences between treatments were reflected in PC2 (25%), 

with differences between experimental replicates and genotypes accounting for 

PC1 (51%) (Figure 4.6). 

Individual PCA plots representing differences in metabolic profile between mock 

and Fusarium infected samples in each replicate for each genotype are shown 

in Appendix 6. In all of these analyses, differences between mock and Fusarium 

infected samples were represented by PC1, with variation between 

experimental replicates reflected in PC2.  
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Figure 4.5: Effect of F. culmorum on metabolome profile of genotypes in the Col-0 background. PCA 

constructed from 
1
H-NMR data using extracted regions of known characteristic regions. Models constructed 

using unit variance scaling. M = mock, I = infected.  t[1] = PC1 =45%, t[2] = PC2 = 21%. Figure generated by 
Jane Ward, MeT-RO 
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Figure 4.6: Effect of F. culmorum on metabolome profile of genotypes in the Ler-0 background. PCA 

constructed from 
1
H-NMR data using extracted regions of known characteristic regions. Models 

constructed using unit variance scaling. M = mock, I = infected.  t[1] = PC1 =51%, t[2] = PC2 = 25%. 
Figure generated by Jane Ward, MeT-RO 
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4.3.6 Shifts in individual metabolite abundances caused by F. culmorum 

infection 

The metabolites outlined in section 4.3.3 and Figure 4.4 showed changes in 

abundance following infection with F. culmorum. Fusarium-induced changes in 

abundance of each metabolite across the genotypes assessed are shown in 

Figure 4.7 and Figure 4.8. The majority of compounds were elevated in F. 

culmorum infected samples rather than reduced.  

Compounds which were elevated in F. culmorum infected samples, irrespective 

of genotype, included the sugars trehalose and fructose, the amino acids 

alanine and asparagine, and inositol, glycine betaine and a uracil-like 

compound. Only fumarate and phenylalanine were reduced following infection 

in all genotypes, with the level of reduction differing between genotypes. 

Proline betaine, proline, choline, aspartate, arginine, glutamate, GABA, acetate, 

and the sugars raffinose and maltose were all elevated in most but not all of the 

genotypes. It is particularly interesting to note that choline, proline, proline 

betaine, GABA, glutamate, arginine, acetate, asparagine and inositol all 

accumulated to a lesser degree in Ler-0 genotypes than Col-0. GABA, 

glutamate and proline (betaine) are all synthesised via the TCA cycle 

component 2-oxaloglutarate, while asparagine and arginine both derive from 

aspartate, indicating that these pathways are altered by F. culmorum infection 

to different degrees between ecotypes.   
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Figure 4.7: Changes in abundance of compounds due to F. culmorum  infection of pedicel tissue, compared to mock 

infected samples. Bars show abundance for each genotype relative to mock inoculated plants. Data generated from 
pairwise PCA of each mutant using unit-variance scaling. Figure generated by Jane Ward, MeT-RO.  
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Figure 4.8: Hierarchical cluster analysis generated from discriminatory profiles (for each mutant) of metabolites 
induced or reduced by F. culmorum  infection. Data generated from pairwise PCA analysis of each mutant. HCA 

analysis has been generated by the complete linkage method using Euclidian distance as the similarity measure. 
Red = induced by infection relative to mock treatment; Blue reduced by infection relative to mock treatment. 
Analysis and figure provided by Jane Ward, MeT-RO. Note- The genotypes sgt1b and rar1 are in the Ler-0 
background. 
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4.3.7 Genotype-dependent changes in metabolite composition following 

F. culmorum infection 

For the remaining compounds, the direction (increase or decrease) and 

magnitude of change in abundance was dependent on genotype. These 

compounds were sucrose, glucose, malate, citrate, glutamine, isoleucine, 

threonine, leucine, choline-O-sulphate and the flavonoids KRR and KGR. In 

Figure 4.9, heat map data from Figure 4.8 is re-aligned to the susceptibility data 

in Figure 4.2b, in order to identify possible correlations between alterations in 

metabolite abundance and susceptibility levels.  

For example, while citrate levels were reduced by F. culmorum infection in all 

genotypes, this reduction is less pronounced in the more susceptible 

genotypes. By contrast, the reduction in glutamine is more pronounced in the 

majority of susceptible genotypes compared to those which are less 

susceptible. The exceptions to this are npr1 and eds4. While these genotypes 

did not  show higher levels of infection at the pedicel-stem junction than wild 

type Col-0, npr1 is highly susceptible to F. culmorum floral infection. Elevation 

of aspartate was also generally more pronounced in susceptible genotypes. 

Similarly, the reduction in the flavonoids KRR and KGR observed in Col-0 was 

not detected in the F. culmorum susceptible genotypes, although it was also 

absent in other genotypes. 

Glucose was found to increase in response to F. culmorum infection in Col-0, 

but decreased in the mutants eds7, eds11 and eds12. These mutants all show 

enhanced susceptibility to F. culmorum in both floral and pedicel tissue. Several 

other compounds were reduced following infection of eds7 but not Col-0, 

namely glutamine, threonine, isoleucine, leucine, malate, and choline-O-
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sulphate. However, many of these compounds were initially more abundant in 

untreated eds7 pedicel/upper stem tissues compared to Col-0 (Figure 4.4a).  
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Figure 4.9: Analysis of relationship between incidence of infection at the stem-pedicel junction and alterations 
in metabolite abundance, following F. culmorum infection of the stem pedicel junction of 15 Arabidopsis 
genotypes. Red = induced by infection relative to mock treatment; Blue reduced by infection relative to mock 
treatment. (Adapted from Figure 4.8). Note- The genotypes sgt1b and rar1 are in the Ler-0 background. 

*=infection levels significantly different from wild type plants (p=<0.05). Bar = standard error.  
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4.4 Discussion 

In this chapter, metabolome changes in the pedicel/upper stem tissue of a 

collection of Arabidopsis defence related mutants was analysed in response to 

infection by F. culmorum.  The incidence of infection at the stem-pedicel 

junction was also examined between genotypes. In addition, the susceptibility of 

different genotypes to the opportunistic contaminant P. olsonii was examined. 

4.4.1 Mutants with wild type F. culmorum floral susceptibility phenotypes 

have increased susceptibility to pedicel infection 

Several of the mutants investigated displayed an increased incidence of F. 

culmorum infection at the stem-pedicel junction compared to wild type plants. 

Some of these, eds7, eds11, eds12, have already been identified as more 

susceptible to F. culmorum floral infection. However the remaining genotypes, 

eds8, eds10 and eds13, previously showed wild type levels of floral infection, as 

outlined in Chapter 3. These differential infection outcomes may indicate 

differences in the requirements for the individual EDS genes for defence in floral 

and silique/pedicel tissue. It is interesting to note that both eds8 and eds10 

have been associated with reduced JA signalling, generally associated with 

defence against necrotrophs (Ton et al., 2002). It may therefore be that while 

defence against floral infection is mediated by the SA signalling pathway, 

defence against pedicel/stem infection requires aspects of the JA signalling 

pathway. The lack of susceptibility in npr1 to stem invasion by F. culmorum is 

interesting. On the one hand it could indicate that SA signalling via NPR1 may 

be less important for defence against F. culmorum in Arabidopsis upper stem 

tissue than it is in Arabidopsis floral tissue. However, if JA signalling limits 

pedicel infection then mutation of NPR1 might be expected to reduce infection 

rates, since NPR1 negatively regulates JA signalling (Spoel et al., 2003). 
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Brown et al. (2010) demonstrated an extensive intracellular symptomless 

growth phase of the F. graminearum hyphal front in wheat ears followed by an 

intercellular phase with extensive host necrosis and visible disease symptoms. 

A similar infection process has been observed in F. culmorum (van de Meene, 

et al., unpublished). However, no comparable symptomless phase has been 

observed during infection of Arabidopsis silique and pedicel tissue, and necrosis 

appears concurrent with hyphal invasion. This would suggest that F. culmorum 

induces cell death during infection of Arabidopsis pedicel/upper stem tissue, 

and infection can proceed more rapidly in mutants with reduced JA signalling. 

However, detailed analysis of the lifestyle of Fusarium hyphae within 

Arabidopsis pedicel tissue is required to confirm this, as a brief symptomless 

phase may exist. 

4.4.2 Susceptibility to P. olsonii differs between genotypes 

Contamination of a growth room with an opportunistic plant pathogen is rarely 

desirable, but can be useful for further phenotypic characterisation of mutant 

genotypes, highlighting those which are more susceptible to opportunistic 

attack. In this study, the opportunistic fungal pathogen P. olsonii (blue mould) 

was found to infect the floral tissue of eds4, eds7, eds12 and npr1 plants more 

readily than wild type plants. Three of these mutants, eds7, eds12 and npr1, 

were already known to be more susceptible to floral infection by F. culmorum 

(Chapter 3, Table 3.1). While npr1 shows broad spectrum susceptibility to a 

large number of virulent biotrophic and hemibiotrophic pathogens, susceptibility 

in eds7 and eds12 has so far been limited to virulent P. syringae and F. 

culmorum, along with the mildew Erisyphe orontii in the case of eds12, but not 

eds7 (Glazebrook et al., 1996, Rogers and Ausubel, 1997, Volko et al., 1998). 

These mutants are also able to express SA induced PR genes upon pathogen 
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challenge and mount some level of systemic acquired resistance (SAR). This 

indicates that defence responses against P. olsonii and F. culmorum may be 

mediated by a common signalling pathway, which is more specific than, and 

independent of, broad spectrum SA mediated defence. 

4.4.3 Differences in metabolite profiles between whole plants and 

pedicel/upper stem tissue 

In Chapter 3, the metabolome of whole, healthy plants was analysed at first 

flower stage, to match an analysis done by MeT-RO of the SLAT Arabidopsis 

lines generated by the Sainsbury Laboratory (Tissier et al., 1999) . In this study, 

genotypes were clustered based on similar metabolic profiles.  For example, 

mutants eds11 and npr1, which are more susceptible to F. culmorum floral 

infection than wild type plants, clustered together, and were more distinct from 

wild type plants than other genotypes. In this chapter, which analysed the upper 

stem/pedicel tissue, not all of the patterns observed for whole plants were 

upheld. This indicates the potential importance on focusing specifically on the 

tissues of interest when conducting metabolome analyses. These results also 

clearly indicate that the ‘naïve’ non-induced host metabolome encountered by 

potentially invading Fusarium hyphae is very different between these two 

biological niches.  A healthy attached leaf is considered to be non-host tissue, 

whilst a healthy attached pedicel is readily colonised.   

 As previously outlined, comparison between healthy and infected 

inflorescences was not carried out due to low and variable floral infection rates 

following spray inoculation. However, it would be interesting to examine 

differences in metabolic composition of inflorescences between wild type and F. 

culmorum susceptible mutants in the absence of F. culmorum infection. 
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4.4.4 Absence of antimicrobial secondary metabolites identified in this 

study 

Previous analysis had indicated induction of several defence associated 

antimicrobial compounds following F. culmorum infection of the pedicel-stem 

junction in wild type plants (Figure 4.1). These included glucosinolates, and the 

coumarins scopolin and scopoletin. However, in this study, these compounds 

were not detected. This is most likely to be due to the low incidence of infection 

reaching the stem-pedicel junction; infection was still limited to the pedicel in the 

majority of plants used for this analysis at 14 dpi. This does suggest that these 

compounds may play a role in preventing spread of infection into the main stem, 

since they are not detected in the pedicel. However, it also suggests these eight 

compounds are not induced ahead of infection, with their induction only 

occurring once disease is present at the junction. Alternatively, it is possible that 

the fungal hyphae are able to entirely metabolise these eight compounds in the 

pedicel tissue, but this degradation does not occur in stem tissue. It would be 

interesting to assess whether there are any transcriptional changes in pedicel or 

stem tissue ahead of the infection front, such as those seen in wheat (Pritsch et 

al., 2000).   

Collectively, these results indicate that the accumulation of known defence 

associated antimicrobial compounds, at levels detectable by 1H-NMR, is not 

taking place in advance of F. culmorum infection of the pedicel. This suggests 

that differences in susceptibility of the 15 genotypes explored in this study are 

due to other factors. However, analysis of samples using ESI mass 

spectroscopy is ongoing, which may permit detection of some of these 

compounds. 
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The reason for the slow progression of disease development in this study is not 

clear, but it is likely due to differences in growth room conditions, such as light 

quality, between studies. It is noteworthy that the original study was done when 

the growth rooms were < 6 months old, whereas this study was done 3 years 

later.   

4.4.5 F. culmorum infection results in elevation levels of several 

metabolites 

Of the 32 known metabolites identified in this study, 17 were elevated in all or 

most of the genotypes assessed in infected compared to uninfected tissue. 

These included many components of primary metabolism, namely sugars and 

amino acids. It is not clear however whether this elevation is due to increased 

production by the plant, or production by the invading fungus. Increases in 

carbohydrates in infected plants due to alterations in respiratory function and 

source-sink relationships have been widely reported for a number of pathogens, 

as have alterations in amino acid abundances (Heuberger et al., 2014, Berger 

et al., 2007). The infected siliques are supporting seed development. Therefore 

the pedicel tissue would be a conduit for many of the metabolites destined for 

accumulation in the sink tissue. The presence of the Fusarium hyphae is highly 

likely to alter sink strength and the ability of the pedicel to transport metabolites 

to the various sink tissues in the silique.  

Of particular interest is the finding that several metabolites show differential 

accumulation levels between Col-0 and Ler-0 genotypes. Compounds which are 

induced to a greater extent in Col-0 compared to Ler-0 include GABA and 

derivatives glutamate, proline and proline betaine. This indicates differences in 

metabolic responses to pathogens between these Arabidopsis ecotypes, which 

warrant further investigation. 
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4.4.6 Possible association between metabolite alterations and F. 

culmorum susceptibility in pedicel tissue 

No metabolites were identified which showed a clear cut difference in 

accumulation between genotypes with enhanced F. culmorum susceptibility and 

those with wild types infection levels. However, some trends were observed. 

For example, reduction in citrate level was less pronounced in F. culmorum 

susceptible mutants, while glutamine and glucose were reduced in these 

mutants but not wild type plants. However, it is difficult to determine whether 

alterations in abundance of these amino acids are a result of plant or fungal 

metabolism. It is also impossible to determine what effect each metabolite might 

have on the outcome of the interaction between Arabidopsis and F. culmorum. 

Furthermore, these alterations in abundance are compared to uninfected plants 

for each genotype, rather than absolute abundances being compared between 

genotypes. Metabolites which increase in abundance during infection in a given 

mutant might still have a lower final abundance than in wild type plants. 

The presented data for both incidence of F. culmorum junction infection and 

shifts in metabolite abundance are also combined from four biological replicates 

(F. culmorum infection) which were split into two pooled biological samples 

(metabolome data). The differences between samples for each genotype were 

greater between infected and uninfected samples than between biological 

replicates. However, better understanding of the data might be achieved by 

analysing induced shifts in metabolite abundances in the two pooled biological 

replicates individually, and linking these to the disease levels for these samples. 

Furthermore, while there were statistically significant differences in infection 

incidence at the stem-pedicel junction, infection incidence did not exceed ~20% 

in any genotype and was largely restricted to a portion of the pedicel. The tissue 
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harvested for this study therefore contained a substantial amount of visibly non-

infected tissue, since the entire pedicel and adjoining stem tissue was 

harvested regardless of infection levels. This may have affected metabolome 

analysis, preventing detection of subtle shifts in metabolite abundance which 

might have differed between genotypes, due to dilution of the sample with non-

infected tissue. 

4.4.7 Conclusions 

This study has revealed alterations in abundance of 32 known metabolites in 

Arabidopsis pedicel/upper stem tissue as a result of F. culmorum infection in 

wild type and defence related mutant plants. While many of these compounds 

were induced in all genotypes, some showed discriminatory levels of induction 

(or reduction) between wild type and mutant plants, and also between ecotypes. 

It is not clear to what extent these differences in induction are linked to the 

susceptibility profiles of these mutants. The data presented here will require 

further analysis in order to identify additional patterns and correlations. In 

addition, the importance of these metabolites in other plant-pathogen 

interactions and responses to abiotic stresses should be further evaluated.  
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5 Assessment of the genetic basis of the eds11 susceptibility 

phenotype using a mapping by sequencing approach 

5.1 Introduction 

Forward genetic screens have been widely used to create and identify 

collections of Arabidopsis mutants with altered defence responses to a range of 

plant pathogens. These screens are typically done by generating a 

mutagenised population using a chemical mutagen such as ethyl 

methanesulfonate (EMS), which introduces large numbers of single nucleotide 

polymorphisms (SNPs) into the genome. These mutant populations are then 

screened for altered resistance to a chosen pathogen. Mutant collections 

generated from these screens include the powdery mildew resistant (pmr) 

mutants (Vogel and Somerville, 2000), the downy mildew resistant (dmr) 

mutants (van Damme et al., 2005, see chapter 6) and the enhanced disease 

susceptibility (eds) mutants to Pseudomonas bacterial infection (Glazebrook et 

al., 1996, Rogers and Ausubel, 1997).  

Following isolation of a mutant of interest, it is theoretically possible to map the 

causal mutation to a genomic location, revealing the disrupted gene responsible 

for the mutant phenotype. This has traditionally been done by outcrossing the 

mutant to another Arabidopsis accession and then selecting plants with the 

mutant phenotype from the F2 population. DNA is then extracted from this 

mutant pool and analysed using genetic markers which differentiate between 

the two accessions used, such as CAPS (cleaved amplified polymorphic 

sequence) markers which contain restriction sites in only one accession (Neff et 

al., 1998, Konieczny and Ausubel, 1993, Cao et al., 1997). Assuming that the 

mutant phenotype is recessively inherited, markers close to the mutation of 
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interest will largely represent the accession in which the mutant was generated, 

while unlinked markers will equally represent both the parent and the outcross 

accession, since they are not under selection.  

This marker based approach has been invaluable in the map based cloning of a 

huge number of Arabidopsis mutations and corresponding genes. However, its 

drawbacks include being time consuming and labour intensive, and the 

requirement for a high density of molecular markers surrounding the causal 

mutation. There is also a requirement for large numbers of mutant F2 progeny, 

which can be challenging to obtain if the mutant phenotype is subtle. In addition, 

the requirement to outcross to another accession makes this approach 

unsuitable where a mutant phenotype is reliant on a specific genetic 

background, or where the mutant has been selected in a screen for suppressors 

of another mutation, which is only present in the parent ecotype (Ashelford et 

al., 2011, Hartwig et al., 2012).  

Next generation re-sequencing of mutant genomes is now being widely used to 

rapidly identify candidate mutations and corresponding genes, in combination 

with or in place of traditional molecular marker based mapping. This is thanks to 

significant advances in analysis of whole genome sequencing (WGS) data and 

the ever reducing cost of re-sequencing projects, making mapping by 

sequencing a cost effective and efficient alternative to traditional marker based 

mapping.  

One mapping by sequencing approach makes use of the SHOREmap pipeline: 

Whole genomic DNA from bulked mutant outcrossed F2 plants is sequenced 

using the Illumina sequencing by synthesis (SBS) platform, which generates 

high quantities of short reads with ~50 fold coverage of the genome. These are 
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then aligned to the reference genome using the SHORE (short read alignment) 

pipeline. SHOREmap is an extension of this pipeline, whereby candidate genes 

are called based on the identification of SNPs in regions of the genome which 

have been predominantly inherited from the accession in which the mutant was 

generated (Ossowski et al., 2008b, Schneeberger et al., 2009). This follows the 

same principles as marker based mapping, in that the region of the genome 

surrounding the causal mutation will be inherited in the F2 mutant population 

purely from the mutant accession, while unlinked regions may be heterozygous 

or homozygous for the outcrossed accession. An equivalent pipeline was used 

by Austin et al. (2011) to isolate a candidate mutation from a pool of 80 F2 -

plants from a cross between mutant Col-0 and wild type Ler-0 accessions.  

These mapping by sequencing pipelines still have the limitation of requiring the 

mutant to be outcrossed to another accession, and mutant plants selected from 

a hybrid F2 population. As previously described this can be difficult for mutations 

with subtle or quantitative phenotypes which may be hard to select for in the F2 

population due to natural variation in the phenotypic trait of interest between 

accessions. Pathogen susceptibility is a good example of such a phenotype. 

Several mapping by sequencing projects for recessive mutations have therefore 

used the alternative strategy of re-sequencing single or pooled F2 individuals 

following a backcross to the wild type parental accession, both in Arabidopsis 

and other model species. EMS mutagenesis typically introduces hundreds to 

thousands of SNPs into the genome, but only those causing or linked to the 

mutant phenotype will be consistently present in the mutant genome following 

backcrossing.  Candidate mutations can therefore theoretically be identified in a 

single F2 backcrossed individual by identifying a region or regions of the 

genome which still have a high density of EMS derived mutations following 
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multiple backcrosses (Zuryn et al., 2010, Ashelford et al., 2011) (Figure 5.1a), 

or from a mutant pool of backcrossed F2s by analysing the proportion of SNPs 

supported by the sequencing reads at each locus after re-sequencing the 

pooled DNA: Assuming that only mutant individuals have been selected, the 

SNP responsible for the mutant phenotype will occur in 100% of the reads 

(frequency = 1), while SNPs unrelated to the causal mutation are expected to 

have a frequency of around 50% (Fig 5.1b). The SHOREmap pipeline has 

recently been updated to incorporate a backcross function, which facilitates the 

identification of candidate SNPs from backcrossed populations (Hartwig et al., 

2012). The re-sequencing of the parental accession(s) is recommended for any 

backcross based mapping by sequencing strategy, in order to rule out variation 

between the parent and the reference genome.  

James et al. (2013) have recently published a ‘User guide to mapping by 

sequencing’ in which in silico modelling was used to estimate the number of 

candidate mutations generated by different mapping by sequencing approaches 

by altering parameters such as of number of backcrosses, sequencing depth 

and size of mutant F2 pool. James et al. (2013) predict that 50 fold sequencing 

coverage of ~50 F2 plants following one backcross (BC1F2) would yield ~25 

candidate SNPs, however any incorporation of the wild type allele into the 

pooled F2s would increase the number of candidates significantly.  

The eds11 (enhanced disease susceptibility 11) mutant was isolated from a 

population of EMS mutagenised plants from the BGL2:GUS reporter line in 

accession Col-0, based on enhanced susceptibility to the virulent bacterial 

pathogen Pseudomonas syringae pv. maculicola strain ES4326. The phenotype 

is thought to be caused by a single recessive mutation (Glazebrook et al., 
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1996). Mutant plants are also more susceptible to F. culmorum  (Cuzick et al., 

2008a) but not to the bacterial wilt pathogen Xanthomonas  campestris or the 

powdery mildew Erisyphe orontii. The eds11 mutant  was shown to be  

unaffected in expression of PR genes including BGL2, and can successfully 

mount Systemic Acquired Resistance (SAR) and Induced Systemic Resistance 

(ISR) responses (Volko et al., 1998, Ton et al., 2002). Despite its isolation 

nearly a decade ago and its effect on resistance to both Pseudomonas syringae 

and Fusarium, the causal mutation in eds11 has not been identified and the 

corresponding gene has not been cloned or its genetic location determined.  

In this chapter, mapping of the EDS11 locus responsible for altered 

susceptibility to F. culmorum was attempted by re-sequencing a population of 

58 F. culmorum susceptible F2 plants generated from a backcross to the Col-0 

BGL2:GUS line. The approach used was similar to that of Hartwig et al. (2012), 

making use of Illumina sequencing followed by the SHOREmap backcross 

pipeline (Fig. 5.2). The mapping strategy and preliminary results are presented 

and future work is discussed. 

Crosses, screening of F2s, DNA extraction and analysis of SHOREmap 

backcross output were done by the author. Library assembly, Illumina 

sequencing, read alignment and preliminary SNP calling using SHOREmap 

backcross were done by Konrad Paszkiewicz and colleagues within the 

University of Exeter Sequencing Service, UK.  
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Figure 5.1: Schematic of contrasting approaches to identification of candidate EMS induced mutations in 

backcrossed individuals and pools. Black horizontal lines = chromosomes. Red dots = SNPs. Blue ellipse = region 
containing candidate causal SNPs. A) Re-sequencing of a single individual following multiple backcrosses to the 
wild type parent and identification of genomic regions with high density of SNPs, due to selection through multiple 
backcrosses. B) Re-sequencing of a pool of F2 individuals with the mutant phenotype, following one or more 
backcrosses to the wild type parent. Since whole genome sequencing generates multiple reads for each genomic 
region, the proportion of reads supporting the SNP at each locus can be ascertained. SNPs unrelated to the 
selected phenotype will be represented in ~50% of the reads (frequency =0.5) while the causal SNP will occur in 
100% of the reads (frequency = 1).  
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(x2) 

Figure 5.2: Schematic of the mapping by sequencing approach used in this chapter, adapted from Hartwig et al. 

(2013).  Blue stars = polymorphisms between parental line and reference genome. Pink stars = EMS derived 
mutations. Yellow star = causal mutation. The eds11 mutant was generated by EMS mutagenesis of the 
reporter line Col-0 BGL2:GUS by Glazebrook et al. (1996). The eds11 mutant is backcrossed to the parental 
BGL2:GUS line and resulting F1 plants selfed to give rise to recombinant F2 populations. Plants from two arising 
F2 populations are screened for the eds phenotype (enhanced susceptibility to F. culmorum) and susceptible 
plants selected for re-sequencing using the Illumina platform, along with the parental line BGL2:GUS. The 
SHOREmap pipeline is then used to identify SNPs between the re-sequenced genotypes and the reference. 
SNPs identified in both genotypes are subtracted. A list of candidate causal mutations is then generated based 
on frequency in the pooled susceptible F2 genome. 



134 
 

5.2 Materials and Methods 

5.2.1 Generation of BGL2:GUS x eds11 F2 mapping population 

Pollen from a single eds11 plant was used to fertilise the emasculated flowers 

of a single plant from the parental line BGL2:GUS. The siliques arising from 

cross-pollinated flowers were allowed to ripen and then harvested and dried. 

Seed was stratified at 4°C for 4 days and then sown. Two resulting F1 plants 

were allowed to self-fertilise, giving rise to two F2 populations derived from the 

same initial cross. These populations were then screened for F. culmorum 

susceptibility (see below). The rationale for initially screening two F2 populations 

was that there was no way to verify that the initial cross had been successful, 

and there was therefore a risk that the F1 plants had actually arisen from self-

fertilisation of the wild-type parent used as the pollen recipient. In this situation 

all of the resulting progeny would be wild type. Seed from two F1 plants was 

therefore used for the F2 screen in case one population contained no plants with 

the eds11 phenotype. Both F2 populations contained equivalent proportions of 

plants with the desired phenotype (Table 5.1). Since all F1 plants arising from 

the initial cross would be expected to be genetically identical, the two F2 

populations were treated as one during selection, DNA extraction and re-

sequencing. 

5.2.2 Selection of susceptible F2 plants 

Successful selection of mutant plants from an F2 population requires a clear and 

consistent phenotype which can be identified in single plants and is not present 

in wild type plants. 

Since the eds11 mutant was originally selected for increased susceptibility to 

Pseudomonas syringae pv. maculicola strain ES4326, the initial intention was to 
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use this pathogen to screen for eds11 mutants in the F2 population. However, 

neither this pathogen nor the related pathogen P. syringae pv. tomato DC3000, 

to which eds11 has also been shown to be susceptible, produced a clear and 

consistent susceptibility phenotype in eds11 plants under the growth conditions 

used. While eds11 plants generally supported more bacterial growth than wild 

type plants, they did not consistently display more severe disease symptoms 

than wild type Col-0, irrespective of inoculum titre (Figure 5.3). This made 

Pseudomonas susceptibility an unreliable determinant of the eds11 mutation in 

the F2 population. 

 

Table 5.1: Numbers of plants screened for F. culmorum susceptibility and selected based on high 

susceptibility, from two F2 pools.  

F2 Pool screened selected % selected 

A 308 34 11.0 

B 232 24 10.3 

TOTAL 540 58 10.7 
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Figure 5.3 Infection of Arabidopsis enhanced disease susceptibility mutants with Pseudomonas syringae 
pv.  maculicola (Psm) strain ES4326, with initial inoculum titres of approx. 10

3 
cfu (colony forming units)/cm

2 

of leaf tissue and 10
4
 cfu/

 
cm

2
. Two leaves per plant were inoculated and disease assessed at 3dpi, by 

bacterial titre (cfu/cm
2 
of leaf, see graph) and disease symptoms, as shown in photographs. N=7. Bar = 

standard error. Grey data bars = bacterial titre above assessment threshold. Bacterial titres are higher in 
genotypes eds11 and eds7 compared to wild type Col-0 but disease symptoms are equivalent between 
genotypes. 
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F. culmorum susceptibility following spray inoculation was therefore used to identify 

putative eds11 mutants from the F2 populations. However, F. culmorum susceptibility 

is not a fool proof way to identify eds11 mutants on a plant-by-plant basis, since 

there is a high level of variation in susceptibility in both wild type and eds11 plants 

(Urban et al., 2002, Cuzick et al., 2008a). While eds11 displays significantly higher 

mean infection levels across multiple plants and experiments, some plants escape 

disease, while some wild type plants may become heavily infected. In order to 

mitigate against this, only F2 plants with a floral FAD score ≥5 were selected, and 

only from trays where all control BGL2:GUS plants had a floral FAD score ≤2. At 

least 3 parental eds11 and BGL2:GUS plants were used as the controls in each tray 

of inoculated F2 plants. Typical disease symptoms of BGL2:GUS, eds11 and 

susceptible F2 plants are shown in Figure 5.4. A total of 540 F2 plants grown from 

seed from two selfed F1 plants were screened, and 58 susceptible plants were 

selected and pooled for DNA extraction and re-sequencing (Table 5.1) Plants were 

inoculated as described in Chapter 2 and assessed for Fusarium infection at 11 dpi.  

 

 

 

Figure 5.4: Disease symptoms on genotypes BGL2:GUS (WT), susceptible F2 plants and eds11 plants 11 days 
after spray inoculation with F. culmorum. 
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5.2.3 DNA extraction and quantification 

Floral tissue from 58 susceptible F2 plants (sample 1), 40 BGL2:GUS plants (sample 

2) and 40 eds11 plants (sample 3) were pooled into batches of around 10 plants, 

harvested and ground in liquid Nitrogen. DNA was then extracted using the Qiagen 

DNeasy plant tissue kit, as per the manufacturers’ instructions, but with water rather 

than AE buffer used for elution. DNA was then concentrated by ethanol precipitation: 

eluted DNA was mixed with sodium acetate (final concentration 0.3 M). 2.5 volumes 

of ice cold 100% ethanol were then added, mixed, and placed on ice for 30 minutes. 

DNA pellets were spun down in a microcentrofuge for 10 minutes, washed with 70% 

ethanol and re-suspended in EB buffer (10 mM Tris-Cl, pH 8.5). Final DNA 

concentration was measured using a Qubit Fluorometer (Life Technologies Ltd., UK) 

according to the manufacturers’ instructions, and DNA quality was assessed by gel 

electrophoresis on a 0.8% agarose gel. A total of 5µg genomic DNA per sample was 

submitted for sequencing. 

5.2.4 Sequencing, alignment and SHOREmap analysis 

Purified DNA from pooled F2, BGL2:GUS and eds11 plants was submitted to the 

Exeter DNA sequencing service where it was sequenced using the Illumina HiSeq 

2500 Next Generation Sequencing platform, which generates many millions of short, 

paired end reads with multiple coverage of each region of the genome (Table 5.2). 

Reads from the three samples were independently aligned to the reference genome 

for Arabidopsis accession Col-0. SHOREmap backcross analysis was then used to 

identify SNPs compared to the reference genome in the BGL2:GUS and F2 reads. 

SNPs identified in both samples were filtered out. Frequency of SNPs in the F2 

population was then estimated by dividing the number of reads supporting the 

mutant allele by the total read number. The type of DNA altered by each SNP 
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(intergenic, intronic or coding) was then analysed using the TAIR10 genome 

annotation, along with the amino acid changes induced by SNPs in coding regions. 

 

Table 5.2: Summary data from whole genome resequencing of BGL2:GUS, eds11, and BGL2:GUS x eds11 F2 

plants. *fold coverage calculated as Yield / Arabidopsis genome size. 

Sample ID Yield (Mb) # Reads Average fold 

coverage* 

BGL2:GUS_wildtype parent 7,497 74,971,836 56 

eds11_mutant parent 575 5,749,220 4 

F2 bulked segregants 17,590 175,898,764 130 

 

5.2.5 Refinement of the SNP call 

The SNP call generated by the SHOREmap backcross analysis was checked 

against the sequence reads for the wild type BGL2:GUS parent using the ‘Jump to 

Base’ feature in the Tablet genome browser (Milne et al., 2013). SNPs which were 

present in any of the BGL2:GUS reads were removed from the SNP list (Figure 5.5). 

The remaining SNPs were also checked against the sequence reads from the 

mutant EDS11 parent to confirm their homozygosity in the original mutant stock, 

however, read coverage for this sample was very poor with no coverage for some of 

the SNPs. The presence of candidate causal mutations in the eds11 parent was 

therefore confirmed using fragment amplification re-sequencing as described in 

Chapter 2. 

5.3 Results 

5.3.1 Segregation of the eds11 phenotype in the F2 mapping population 

Based on previous analysis by Glazebrook et al. (1996), the eds11 phenotype was 

expected to segregate 1:4 in the F2 population. However, discounting experiments 

where the control plants became heavily infected, enhanced susceptibility to F. 
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culmorum was observed in approximately 10% of F2 plants (Table 5.1). This does not 

reflect the 1:4 ratio expected of a phenotype caused by a single recessive mutation 

(X2 =58.558, d.f.=1, p=<0.001), or the 1:16 ratio expected of a phenotype caused by 

a double recessive mutation (X2= 18.586, d.f.=1, p=<0.001).



141 
 

 

 

Whole genome re-sequencing of Col-0 BGL2:GUS, eds11, and Fusarium 
susceptible F

2
 plants 

Reads for each sample independently aligned to Arabidopsis reference 
genome (TAIR 10) 

SNP calling in BGL2:GUS and F
2
 reads using SHOREmap backcross  – SNPs 

called in both samples removed from F
2
 SNP call 

Called SNPs manually checked against BGL2:GUS reads using Tablet genome 
viewer – SNPs present in BGL2:GUS reads removed from F

2
 SNP call 

1065 SNPs 

179 SNPs 

Annotation of SNPs (intergenic, intronic, coding) using SHOREmap annotate 

Manual selection of SNPs causing non-synonymous changes in coding 
regions of genes 

39 SNPs 

Manual selection of SNPs with a frequency ≥0.55 

Planned/Ongoing: Evaluation of gene involvement in defence against 
Fusarium culmorum 

Done by H Brewer  Done by University of Exeter Sequencing Services 

Figure 5.5: Work flow for identification of candidate SNPs. The F2  SNP call automatically 

generated by the SHOREmap backcross function contained SNPs present in the reference 
genome BGL2:GUS. These were manually removed by checking against the BGL2:GUS reads 
using Tablet genome viewer. SNPs in coding regions of genes with a frequency ≥0.55 have 
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5.3.2 The majority of called SNPs are present in the parent line BGL2:GUS 

The SHOREmap backcross analysis generated a list of 1,065 SNPs distributed 

throughout the genome (Figure 5.6, Appendix 2). This included a high number of 

SNPs with a frequency of 1, distributed across the genome and located in non-

coding intergenic DNA (Appendix 2). This suggested that these SNPs were unlikely 

to be the causal eds11 mutation. The called SNPs were manually checked against 

the BGL2:GUS reads using the Tablet genome browser and the majority were found 

to be supported in some or all of the reads, indicating that the analysis pipeline had 

not successfully identified and removed SNPs present compared to the reference 

genome in both the BGL2:GUS and bulked F2 reads. The list of SNPs was therefore 

manually refined, removing all SNPs that were present in the BGL2:GUS reads 

(Figure 5.5). The resulting list contains 179 SNPs (Appendix 3). Their frequencies in 

the F2 reads are shown in Figure 5.7.  

5.3.3 Distribution and Frequency of SNPs in the F2 population 

The 179 SNPs present in the F2 reads are predominantly located in 7 clusters across 

the first four Arabidopsis chromosomes: There are two clusters on the long arm of 

chromosome 1, two on the long arm of chromosome 2, one on each arm of 

chromosome 3 and one which covers the length of the short arm of chromosome 4. 

Each cluster contains SNPs in the coding regions of genes (Figure 5.7, Appendix 4). 

However, there were no SNPs in any of these clusters with a frequency close to 1. 

This result could have two explanations.  Possibly, the F2 pool contains some wild 

type EDS11 and heterozygous plants, resulting in wild type reads being present at 

the eds11 locus. Alternatively, a mutation at more than one genetic locus is required 

to increase susceptibility to F. culmorum.  
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The highest SNP frequency was observed for the SNPs on the short arm of 

chromosome 4, where the majority of SNPs had a frequency of around 0.7 (Figure 

5.7, Appendix 4). The SNP with the highest frequency (0.82) is found at position 

5346521, however this is a region of intergenic DNA and therefore not expected to 

harbour the EDS11 locus. The finding that the whole length of the chromosome arm 

appears to be under selection is also unexpected. The only non-synonymous SNPs 

in coding regions are found near the telomere of the chromosome. Assuming that 

only one of these is responsible for the eds11 phenotype, one would not expect the 

rest of the chromosome arm to be predominantly inherited from the eds11 parent 

during selfing of the F1 plants. One possible explanation is low recombination 

frequency in this region, resulting in the whole arm being inherited as a single unit. 

However, previous work has demonstrated that the short arm of chromosome 4 has 

a normal recombination frequency (Drouaud et al., 2006). It is however possible that 

one of the mutations inhibits the formation of chiasmata, lowering the recombination 

frequency. Alternatively, the eds11 phenotype may depend on two weakly linked loci 

on the short arm of chromosome 4. 
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Figure 5.6: Location and frequency of single nucleotide polymorphisms (SNPs) in the F. culmorum susceptible 
F2 mapping population across the five  Arabidopsis chromosomes, as identified by SHOREmap backcross. 
Frequency is calculated as the number of Illumina sequencing reads containing a SNP, divided by the total 
number of reads covering the nucleotide. 
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Figure 5.7: Manual refinement of the SNP call presented in figure 5.6 to remove all SNPs which are present 
in the reads of the wild type parent BGL2:GUS. Red dots indicate SNPs which cause non-synonymous 
changes in coding genes. 
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5.3.4 Identification of SNPs in candidate genes 

Due to the aforementioned possibility of the eds11 phenotype being caused by more 

than one mutation (where only one is required to produce the phenotype), and the 

unexpected frequency pattern on chromosome 4, the frequency of SNPs in other 

regions of the genome was also subjected to further scrutiny. The majority of other 

SNPs in coding regions had the expected frequency for a non-causal mutation of ~ 

0.5. However, there were exceptions in both clusters on chromosome 2, in addition 

to the higher frequency observed across the short arm of chromosome 4. A list of all 

SNPs which cause non synonymous changes in coding genes, that have a 

frequency ≥0.55, is presented in Table 5.3 and Figure 5.8. It is of note that a number 

of the genes harbouring SNPs have previously been linked to plant defence 

signalling. AT2G20010 has a frequency of 0.57 and is predicted to encode an 

antimicrobial peptide (Silverstein et al., 2007), and expression of AT2G22170 

(frequency 0.55) and AT4G02480 (frequency 0.72) are altered in response to viral 

infection (Ascencio-Ibáñez et al., 2008). Meanwhile AT2G42360 (frequency 0.60) 

has been flagged in a number of transcriptomic analyses of plant responses to 

pathogens (Ascencio-Ibáñez et al., 2008, AbuQamar et al., 2006), as has 

AT4G01680 (frequency 0.66) (Zhao et al., 2007, Ditt et al., 2006). 
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Figure 5.8: Physical genomic location of genes harbouring SNPs with a frequency ≥0.55 in the F2 sequence 
reads. Image generated using the Chromosome Map Tool at www.arabidopsis.org 
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Table 5.3: Candidate genes with SNPs in coding regions occurring at a frequency ≥0.55 in the BGL2:GUS x eds11 F2 sequence reads. Annotation, defence association and 

associated references obtained from locus entries in The Arabidopsis Information Resource (www.arabidopsis.org). ZF = zinc finger, TF = transcription factor 

Candidate gene SNP frequency Reference  SNP Position Amino acid change Annotation Defence related? References 

AT2G20010 0.58 G A 1294 E to * Putative antimicrobial peptide Yes Silverstein et al. (2007) 

AT2G22170 0.56 G A 292 I to L PLAT domain protein Yes Ascencio-Ibáñez et al., (2008) 

AT2G36620 0.63 C T 313 * to K Ribosomal protein L24 No  

AT2G36670 0.65 C T 1310 V to E Aspartyl protease Yes Ascencio-Ibáñez et al., (2008) 

AT2G36810 0.60 C T 5102 I to N Gravitropism related No  

AT2G37410 0.58 C T 626 L to H Mitochondrial translocase No  

AT2G39350 0.61 C T 929 T to N ABC-2 type transporter No  

AT2G42360 0.61 C T 373 I to L ZF Yes Ascencio-Ibáñez et al., (2008) 

AbuQamar et al. (2006) 

AT4G01680 0.66 G A 578 A to V TF (MYB55) Yes Zhao et al. (2007) 

Ditt et al. (2006) 

AT4G02400 0.73 G A 889 E to K U3 ribonucleoprotein (Utp) family No  

AT4G02480 0.73 G A 3553 R to * ATPase Yes Ascencio-Ibáñez et al., (2008) 

AT4G03180 0.67 G A 400 A to T Unknown No  

http://www.arabidopsis.org/


149 
 

5.4 Ongoing work – SNP profiling of susceptible F3 populations 

The screen of F2 plants for the eds11 phenotype relied on the mutant phenotype 

being detectable on a plant by plant basis. As previously explained, while eds11 

plants are on average more susceptible to infection, there is high variation in the 

susceptibility of both wild type and eds11 plants. It is therefore likely that some 

of the pooled F2 plants were wild type or heterozygous at the EDS11 locus, 

inhibiting the identification of the causal mutation. F3 populations derived from 

susceptible F2 plants are therefore being screened for increased F. culmorum 

susceptibility at a population level, as this is a more robust way of identifying F3 

pools that are homozygous for the eds11 mutation. Fragment re-sequencing of 

susceptible F3 pools will then be used to re-analyse the frequency of the 

candidate mutations in Table 5.3. F3 pools will be sequenced individually rather 

than bulked, in order to analyse linkage on chromosome 4. 

5.5 Discussion 

While many recent papers on mapping by sequencing present the approach as 

a straightforward pipeline for identifying a causal SNP in an EMS generated 

mutant, this chapter illustrates that such studies do not always result in 

identification of a single small region likely to contain the affected gene. 

5.5.1 Identification of SNPs between the wild type parent and the 

reference genome 

In particular, this study illustrates that the filtering step in the SHOREmap 

backcross pipeline, designed to filter out SNPs that are present between the 

‘wild type’ parent and the reference genome, is not completely effective. In this 

case this may be due to the sheer number of SNPs between the BGL2:GUS 

reporter line and the Col-0 reference genome.  While approximately 6000 SNPs 

were identified and filtered out using the SHOREmap software, another ~900 
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SNPs were not called and therefore falsely attributed to the EMS mutagenesis 

used to generate the eds11 mutant. This interfered with the identification of 

candidate mutations and required the SNP list to be further refined manually 

(Figure 5.5). This illustrates the amount of variation that can exist between so 

called ‘wild type’ Col-0 lines and the reference genome. While the Col-0 line 

used in this study carries a reporter gene insertion, this is unlikely to be 

responsible for the high number of genome wide SNPs observed. The lack of 

accurate calling of the SNPs in the wild type parent also raises the question of 

whether all of the SNPs present in the F2 population were successfully 

identified. While this study has identified a number of promising candidate 

genes for EDS11, it is possible that the true causal SNP was not identified. 

5.5.2 Is the causal mutation in an exon? 

The list of candidate mutations generated in Table 5.3 relies on the assumption 

that the causal mutation is most likely to affect the coding region of a gene by 

introducing a non-synonymous change in the translated protein sequence. 

However, this process has discarded many intronic SNPs, which may affect 

gene expression or splicing, along with those potentially falling in promoter 

regions. Likewise it is possible that some of the SNPs that fall in predicted 

intergenic regions are actually in transcribed regions that have not been 

identified or annotated. However, since it is not possible to follow up on every 

mutation, further work will focus on the candidate SNPs in the coding regions of 

genes, particularly those on the short arm of chromosome 4. 

5.5.3 Are all eds11 phenotypes caused by one mutation? 

The eds11 mutant is associated with a number of phenotypes, namely 

Pseudomonas susceptibility, Fusarium susceptibility and altered accumulation 

of primary sugars, amino acids and flavonoids (chapters 3 and 4). The original 
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study by Glazebrook et al (1996) demonstrated that Pseudomonas susceptibility 

is caused by a single recessive mutation, based on 1:3 segregation of the 

phenotype in an F2 population. However, there is no evidence that both the 

Pseudomonas susceptibility phenotype and the Fusarium susceptibility 

phenotype are caused by the same EMS induced mutation. As demonstrated in 

Table 5.3, several SNPs cause non-synonymous changes in genes associated 

with plant defence signalling. It is therefore possible that one of these mutations 

alters Pseudomonas susceptibility, while another causes enhanced Fusarium 

floral infection. Furthermore, it is not clear whether the Fusarium susceptibility 

may be the result of more than one mutation. It is unlikely that the phenotype 

could be caused by either of two or more mutations acting independently, since 

this should have resulted in an increased number of susceptible plants in the F2 

population (~43.75%). However, reliance on two interdependent mutations for 

the phenotype would result in 1/16 F2 plants having increased Fusarium 

susceptibility. The observed susceptibility ratio, disregarding plants from 

batches where the wild type was heavily infected, was approximately 1/10. 

However, since it is likely that some of these plants were mis-selected wild type 

or heterozygous plants it is possible that the true susceptibility ratio is 1/16 and 

that Fusarium susceptibility requires two interdependent mutations. However, 

this being the case, one would have expected to see two regions of the genome 

with high frequency SNPs. As previously mentioned, it is possible that the 

eds11 phenotype relies on two weakly linked mutations on the short arm of 

chromosome 4, and that this linkage is responsible for the observed 

segregation ratios and for the elevated frequency of all SNPs in this region of 

the genome. The only SNPs causing non-synonymous changes in coding 

regions of annotated genes are those at the end of the chromosome arm, but it 
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is possible that an additional SNP is disrupting the function of currently un-

annotated genes or other regulatory sequences. 

As previously discussed in chapter 2, it is possible that the SNPs responsible 

for the metabolic profile of eds11 are unrelated to the susceptibility phenotype. 

Indeed, some SNPs identified with a frequency close to 0.5 caused non-

synonymous changes in genes linked to primary metabolism. These include the 

glycosyl hydrase encoding gene AT3G10900 which is involved in carbohydrate 

metabolism. Metabolomic analysis of T-DNA insertion lines for these genes 

might reveal fingerprints similar to that seen in eds11 in chapter 3. It would also 

be interesting to analyse the metabolic fingerprints of susceptible F3 populations 

in order to identify which of the previously observed metabolic perturbations 

segregate with the susceptibility phenotype. 

5.5.4 The effect of using F2 pools from two F1 plants 

As previously described, two F2 populations were screened and combined for 

re-sequencing, relying on the assumption of high levels of homozygosity in both 

the BGL2:GUS and eds11 parent plants. This would mean that all F1 plants 

would be identical, generating equivalent F2 pools. However, analysis of the 

BGL2;GUS sequence reads revealed that many SNPs which were not present 

in all of the reads, indicating lack of fixation in the sequenced BGL2:GUS 

population and likely heterozygosity in the parent plant used for the crosses. 

They may also not have been present in the single plant that was used to 

generate the eds mutants. This may explain the high number of SNPs with a 

frequency of 0.25 in the original SNP call prior to manual filtering of SNPs 

present in the BGL2:GUS reads (Fig. 5.6). These SNPs are likely to have been 

heterozygous in the BGL2:GUS parent and absent from the eds11 parent, and 

therefore only inherited by one F1 plant. This would result in a frequency of 0.5 
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in one F2 pool and 0 in the other, creating an overall frequency of 0.25. 

However, since these SNPs were removed in the manual filtering step, and the 

remaining SNPs generally had a frequency of around 0.5, it is likely that the 

eds11 parent was homozygous for the remaining SNPs and that using two F2 

pools has not inhibited the mapping process.  

5.6 Conclusions 

This chapter describes the attempted mapping by sequencing of the eds11 

mutation responsible for F. culmorum susceptibility, using the SHOREmap 

backcross pipeline. While the mutation could not be narrowed down to a single 

causal SNP in one gene, the study has identified a number of potential 

candidate genes, particularly those near the telomere of the short arm of 

chromosome 4. Ongoing work includes the screening of F3 populations derived 

from susceptible plants in order to narrow down the list of candidates, and 

possibly ascertain whether the high frequency of SNPs along the entire 

chromosome arm is due to reduced recombination. Future work will involve 

obtaining T-DNA insertion lines in the candidate genes and analysis of their 

susceptibility to Pseudomonas and Fusarium, along with their metabolic 

fingerprint. 
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6 Resistance to Fusarium culmorum and F. graminearum in 

Arabidopsis silique and leaf tissue is mediated by mutations 

in the homoserine kinase gene DMR1† 

6.1 Introduction 

The Arabidopsis downy mildew resistant (dmr) mutants were isolated from a 

gain of function screen for resistance to the oomycete pathogen 

Hyaloperonospora arabidopsidis (Hpa), following ethyl methanesulfonate (EMS) 

mutagenesis of plants of the susceptible genotype Ler-0 harbouring the 

enhanced disease susceptibility mutation eds1-2 (van Damme et al., 2005). The 

eds1-2 mutation in Ler-0 has previously been shown not to alter the interaction 

outcome between F. culmorum and Arabidopsis floral or silique tissue (Cuzick 

et al., 2009). Of the five dmr mutant alleles identified, three (dmr3, dmr4, dmr5) 

showed constitutive expression of the salicylic acid mediated defence related 

gene PR-1. The remaining mutants, dmr1 and dmr6, were mapped and 

identified as encoding mutations in the Arabidopsis homoserine kinase, and a 

putative 2-oxoglutarate oxygenase, respectively (van Damme et al., 2008, van 

Damme et al., 2009). DMR6 is associated with salicylic acid mediated defence 

signalling but is required for H. arabidopsidis susceptibility. Mutation of dmr1 

results in accumulation of homoserine in non-inoculated plants, and exogenous 

application of L-homoserine co-incident with H. arabidopsidis inoculation 

confers resistance in wild type plants. However, the role of L-homoserine in 

resistance is not known. 

The Fusarium-Arabidopsis pathosystem was used to assess the effects of the 

dmr mutations on Fusarium susceptibility in Arabidopsis floral, silique and 

                                            
†
 Published as Brewer HC, Hawkins ND and Hammond-Kosack KE 2014. Mutations in the 

Arabidopsis homoserine kinase gene DMR1 confer enhanced resistance to Fusarium culmorum 
and F. graminearum. BMC Plant Biology 2014 14:317. 
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rosette leaf tissue. Mutants dmr1-1, dmr1-2, dmr5 and dmr6 (all of which also 

carry the eds1-2 mutation) were initially investigated; dmr3 and dmr4 have 

pleiotropic dwarf phenotypes which affect floral morphology and were therefore 

unsuitable for inclusion in this study.  

This chapter presents the finding that reduced function of the Arabidopsis 

homoserine kinase DMR1 confers resistance to F. graminearum and F. 

culmorum in silique and/or rosette leaf tissues, with varying levels of resistance 

conferred by different dmr1 mutant alleles. The siliques of dmr1 plants 

accumulate homoserine but are not depleted in amino acids such as threonine 

and methionine which are downstream products of homoserine kinase activity. 

It was also found that mutation of DMR1 results in delayed leaf senescence 

which may be related to the observed resistance phenotype. Exogenous 

application of L-homoserine reduced floral and silique disease severity in both 

eds1-2 and dmr1 plants, but did not inhibit in vitro Fusarium growth.  A trend 

was observed towards reduced infection following exogenous L-homoserine 

application onto wheat, but this finding was not conclusive.  

All experiments and analyses were done by the author, with the exception of 

Gas Chromatography – Mass Spectroscopy (GCMS) and subsequent analysis 

which was done by Nathan Hawkins at the Rothamsted Metabolomics facility 

(MeT-RO). 

6.2 Materials and Methods 

6.2.1 In planta amino acid treatment 

For amino acid treatment studies on spray inoculated plants, F. culmorum 

inoculated plants were sprayed at the time of inoculation with a solution of 

10mM L-homoserine, D-homoserine (Sigma-Aldrich) or L-threonine (Sigma-
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Aldrich/Fisher Scientific), or sterile water as a control. This was repeated daily 

for 5 days post inoculation.  For amino acid treatment of single silique wound 

point inoculated plants, conidial suspensions were supplemented at the time of 

point inoculation with 20mM L-homoserine or D-homoserine, or sterile water as 

a control. Amino acid suspensions were then re-applied to the wounded silique 

tip daily for 6 days post inoculation. 

6.2.2 Wheat infection and amino acid treatment 

The dwarf wheat cultivar Apogee (Bugbee et al., 1997) was used for wheat 

infection assays. The 8th and 9th spikelets of ears at anthesis were point 

inoculated with 5µl of F. graminearum conidial suspension at 105 ml-1. In 

addition, the 6th-11th spikelets were treated with 5µl of either 10mM L-

homoserine or D-homoserine, or sterile water. Homoserine/water treatment was 

repeated daily for 7 days. 

The number of bleached spikelets and bent awns (preceding bleaching in 

infected spikelets) was assessed, and grain weight and number recorded at 

10dpi following dissection of the rachis, as per Baldwin et al. (2010). 

6.2.3 In vitro Fusarium growth tests 

F. culmorum and F. graminearum conidia at a concentration of 2x105 spores ml-

1 were cultured for two days in 96 well flat bottomed culture plates in 200µl 

synthetic nutrient poor liquid media supplemented with either L- or D-

homoserine at a concentration range from 0 to 80mM. Absorbance as a 

surrogate for fungal growth was measured for each homoserine concentration 

as previously described (Fan et al., 2013). Three biological replicates were 

included per fungal isolate/amino acid treatment, and the experiment repeated. 
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6.2.4 Analysis of silique amino acids 

The amino acid content of 15mg freeze dried and ground silique samples from 

dmr1 mutant and eds1-2 plants was analysed by Nathan Hawkins at the 

Rothamsted Metabolomics Facility (Met-RO) using the EZFaast GC-MS 

physiological amino acid analysis kit, according to the manufacturers’ 

instructions (Phenomenex, UK). The protocol was amended such that the 

addition of the internal standard supplied with the kit was omitted and the final 

solvent evaporation step with reconstitution in organic solvent was replaced with 

a 1:10 dilution with the organic solvent (reagent 6). Samples were analysed on 

an Agilent 5975 Inert MSD coupled to a 7890A Gas Chromatograph fitted with a 

Zebron Amino acid ZB-AAA column (10m x 0.25mm I.D. Phenomenex, 

Cheshire, UK), Gestel MPS2 autosampler and split/splitless injector (fitted with 

quartz wool packed SGE FocusLiner). For each genotype three biological 

replicates were analysed, each consisting of siliques from ~8 pooled 6-week old 

plants. The internal standard, amino acid standard solutions and glutamine 

standard were obtained from Sigma (Dorset, UK). Homoserine standard was 

obtained from Koch-Light Laboratories, Colnworth, Bucks, UK. 

6.2.5 Statistical analysis 

Statistical analysis was done as described in chapter 2, with differences 

between genotypes and/or treatments considered significant at p=<0.05. 

Statistical outputs are shown in Appendix 5. 
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6.3 Results 

6.3.1 A selection of the Arabidopsis downy mildew resistant mutants 

have altered susceptibility to Fusarium culmorum leaf and silique 

infection 

The Arabidopsis mutants dmr1-1, dmr1-2, dmr5 and dmr6, which were 

generated in the Ler-0 eds1-2 background, were screened for altered 

susceptibility to F. culmorum infection compared to eds1-2. Wild type Ler-0 was 

also included in the assay. Following spray inoculation with F. culmorum 

spores, the plants were scored for floral and silique disease levels, along with 

rosette leaf infection and number of uninfected green siliques, after  7, 11 and 

14 days (Figures 6.1 & 6.2). There was no statistically significant difference in 

the floral FAD (Fusarium-Arabidopsis Disease) score (Urban et al., 2002) 

between the genotypes tested (Regression analysis, F4, 93 = 0.7, p=0.591) at 

any of the time points assessed, with disease progressing at an equivalent rate 

in all genotypes (Fig. 6.1a). At the time of inoculation, this tissue had been 

unopened green buds.  

By contrast, there was a significant effect of genotype on silique FAD score (F4, 

91 = 16.23, p=<0.01). The siliques assessed had been open flowers at the time 

of inoculation. The disease progression in the Ler-0 and Ler-0 eds1-2 plants 

was identical (Fig 6.1b). The mutant allele dmr1-2 had significantly reduced 

silique disease levels at all time points compared to eds1-2 (Fig. 6.1b, Fig. 

6.2a). This finding was confirmed in multiple independent experiments. 

Genotypes dmr5 and dmr6 had reduced silique disease symptoms at 7 and 11 

days post inoculation (dpi) in the displayed experiment but these findings were 

not consistent across experiments. The dmr1-2 plants had significantly higher 

numbers of uninfected green siliques than eds1-2 at all time points, whilst for 
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dmr6 significantly more green siliques were observed at 7 and 11 dpi but not at 

14 dpi (Fig. 6.1c).  

The number of infected rosette leaves following the initial spray inoculation was 

also significantly affected by genotype (F4, 93 = 66.06, p=<.001). Both dmr1 

alleles had significantly fewer infected rosette leaves than eds1-2 at all time 

points (Fig. 6.1d, Fig. 6.2b). Interestingly, Ler-0 had significantly more infected 

rosette leaves per plant than eds1-2, indicating that the eds1 mutation may 

have an effect on F. culmorum leaf susceptibility that was not identified in the 

previous floral screen (Cuzick et al., 2009).
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Figure 6.1: Analysis of susceptibility to F. culmorum infection in four downy mildew resistant (dmr) mutant lines, 

compared to wild-type Ler-0 and the parental genotype Ler-0 eds1-2. Six plants per genotype were scored for (a) 
floral disease levels, (b) silique disease levels, (c) the number of healthy siliques, and (d) the number of infected 
rosette leaves, at 7, 11 and 14 days post inoculation (dpi). For the floral and silique evaluations the FAD- Fusarium-
Arabidopsis Disease scoring system was used.  

Asterisks indicate genotypes significantly different from eds1-2 at each time point (regression analysis followed by 
calculation of LSDs, p=<0.05). Error bars represent standard error of the mean. The experiment was repeated with 
similar results. Since the dmr6 mutant flowers approximately 1 week later than eds1-2, dmr6 plants were used in this 

experiment were 1 week older than those of other genotypes, and therefore rosette leaf data were not comparable 
due to increased senescence in the dmr6 mutant. 
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Figure 6.2: Representative images of the floral and rosette leaf Fusarium culmorum infections of the Arabidopsis 
downy mildew resistant (dmr) mutants at 14dpi, compared to the parental genotype eds1-2 and wild type Ler-0. 
(a) Infected floral tissue of all genotypes. (b) Rosette leaves of the dmr1 alleles compared to eds1-2. The stem 
and floral tissue has been removed from each plant in panel b. Bar = 1cm. White arrows = siliques with different 
levels of infection. 
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6.3.2 Mutation of DMR1 reduces susceptibility to F. graminearum 

FEB disease is caused by several cereal-infecting Fusaria species. Therefore, 

susceptibility to F. graminearum infection was compared between the dmr1 

mutant alleles dmr1-1 and dmr1-2, and the parental genotype eds1-2 at 7, 11 

and 14dpi. Results were similar to those obtained for F. culmorum: No 

difference was observed in floral susceptibility (F2, 62 =2.25, p= 0.114) (Fig. 

6.3c). Rosette leaf infection was affected by genotype (F2, 62 =37.10, p<.001) 

with both dmr1 alleles having fewer infected rosette leaves than eds1-2 (Fig. 

6.3b and f). Silique FAD scores and uninfected silique numbers also differed 

between genotypes (F2, 62 =48.63 and 55.31 respectively, p=<.001). Silique FAD 

scores were lower in dmr1-2 than eds1-2 at all time points, with uninfected 

green siliques higher in dmr1-2 at 7 and 11dpi (Fig. 6.3a, d and e). In these F. 

graminearum inoculated experiments, fully infected and very necrotic siliques 

were visible in the eds1-2 plants from 7dpi onwards, whereas this extreme 

silique phenotype was rarely observed from 11dpi onwards for dmr1-2 plants. 

Overall these results indicate that both leaf and silique resistance conferred by 

mutation of DMR1 is conserved across at least two cereal infecting Fusarium 

species. 
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 Figure 6.3: Analysis of susceptibility to F. graminearum infection in plants harbouring different alleles of the dmr1 mutation, dmr1-1 and dmr1-2, compared to the parental 
line eds1-2. Panel (a) shows infection of the apical inflorescence and siliques in eds1-2 and dmr1-2 at 7, 11, and 14 days post inoculation. In panel b the rosette leaves of 
the dmr1 alleles are compared to eds1-2, and the stem and floral tissues have been removed. Bar = 1cm. Eight plants per genotype were scored for (c) floral disease 
levels, (d) silique disease levels, (e) number of green, uninfected siliques and (f) number of infected rosette leaves and at 7, 11 and 14 days post inoculation (dpi). Asterisks 
indicate genotypes significantly different from eds1-2 at each time point (regression analysis followed by calculation of LSDs, p=<0.05). Error bars represent standard error 
of the mean. The experiment was repeated with similar results. 
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6.3.3 Multiple dmr1 alleles have increased resistance to F. culmorum 

In order to verify that the silique resistance phenotype observed in dmr1-2 is a 

result of mutation of DMR1 and not caused by a second EMS induced mutation, 

three additional alleles of dmr1 (dmr1-3, dmr1-4 and dmr1-6) were tested for 

altered resistance to F. culmorum (Fig.6.4). The dmr1-2, dmr1-3, dmr1-4 and 

dmr1-6 mutants all had lower silique disease levels than eds1-2 (Fig. 6.4a, c) 

(F5, 49 = 2.31, p= 0.005), whilst no differences in floral susceptibility were 

observed between the various dmr1 genotypes and eds1-2. This again 

indicates that the open flowers and very immature siliques at the time of 

inoculation of the dmr1 mutant plants were more resistant to F. culmorum 

infection than the green unopened buds. Rosette leaf infection levels were also 

different between genotypes (F5, 49 = 15.04, p= <0.001) with fewer rosette 

leaves per plant infected in genotypes dmr1-1, dmr1-2, dmr1-3 and dmr1-4 

compared to eds1-2 (Fig. 6.4b, d). For dmr1-6, there was also a trend towards 

less leaf disease, but this was not statistically significant.  Collectively, these 

results confirm that increased silique and leaf resistance occurs in multiple dmr1 

alleles and is therefore likely a result of disruption of DMR1 function. 

Mutant dmr1-1 and dmr1-2 plants were also assessed for altered susceptibility 

to F. culmorum using a second inoculation method, namely the spore droplet, 

single silique point inoculation assay. This assay involves initially removing 

1mm of tissue from the tip of each immature silique and then placing the 1l 

spore droplet onto the cut surface. No clear differences were seen in the 

distance of visible disease progression through the silique and pedicel between 

genotypes. However, necrosis in siliques of dmr1-2 appeared less severe than 

in eds1-2 or dmr1-1, with more green tissue visible at 7dpi (Fig. 6.5).
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Figure 6.4: Multiple dmr1 alleles have reduced disease symptoms of Fusarium culmorum infection in siliques and rosette leaves. Plants were spray inoculated with F. 
culmorum conidia at early flowering, and disease levels were assessed at 7dpi. Representative images of apical inflorescences at 7dpi for (a) eds1-2, dmr1-1, dmr1-2, dmr1-3, 
dmr1-4 and dmr1-6. Representative images of rosette leaves at 13dpi for (b) eds1-2, dmr1-1, dmr1-2, dmr1-3, dmr1-4, and dmr1-6 –minus floral and stem tissues. . Bar = 1cm. 
Blue arrow head – severely necrotic siliques visible in eds1-2. White arrow head – green siliques of dmr1 plants. Silique FAD scores (c) and infected rosette leaves per plant 
(d) are shown at 7dpi. Asterisks indicate genotypes significantly different from eds1-2 (regression analysis followed by prediction of LSDs, p=<0.05). Error bars represent 
standard error of the mean. Data shown are pooled from two independent experimental replicates. n = 10 (eds1-2, dmr1-3, dmr1-4, dmr1-6), n = 5 (dmr1-1, dmr1-2). 
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Figure 6.5: Images of individual siliques point inoculated at the cut tip. (a-c) Water inoculated 
controls show comparable development and seed set between eds1-2 and dmr1-1 and dmr1-2 
genotypes. (d-i) Comparable levels of Fusarium culmorum infection of dmr1 mutant and eds1-2 

siliques 7 days post inoculation. In panels d through f, whole infected split (left) and intact (right) 
siliques are shown. In panels g through i are close-up images of infected seeds. Shown are 
representative images present in multiple biological replicates. 
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6.3.4 Homoserine accumulates in the siliques of dmr1 mutant plants 

Resistance of dmr1 leaves to H. arabidopsidis infection was previously linked to 

elevated homoserine levels in 10 day old seedlings (van Damme et al., 2009). 

The amino acid composition of the siliques of three dmr1 mutant alleles was 

therefore analysed and compared to eds1-2 in order to identify whether 

homoserine also accumulates in dmr1 siliques (Fig. 6.6). Homoserine was not 

detectable in eds1-2 siliques, but was abundant in dmr1 siliques (Fig. 6.6a). 

Homoserine levels were comparable between all three mutant alleles, but were 

higher on average in dmr1-2 and dmr1-3 siliques, which are resistant to F. 

culmorum, compared to dmr1-1 siliques, which have wild type resistance levels. 

As previously observed in seedling tissue by van Damme and colleagues, 

mutation of homoserine kinase does not reduce levels of downstream amino 

acids (Fig. 6.6b-e). Threonine levels were elevated in dmr1-2 siliques, while 

methionine was more abundant in dmr1-1 siliques. These changed levels 

observed in siliques correlate well with the levels of these amino acids in young 

seedlings. Glycine (which can be synthesised from threonine) was more 

abundant in all dmr1 siliques than in eds1-2. A highly abundant unidentified 

amino acid was also detected in dmr1 samples but absent from eds1-2 (Fig. 

6.6f). 
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Figure 6.6: Silique amino acid composition of three dmr1 mutant alleles. Gas chromatography mass 
spectroscopy (GCMS) was used to identify and quantify the amino acids present in dmr1-1, dmr1-2 and dmr1-3  
compared to eds1-2 in the absence of Fusarium infection. Homoserine (a) was not detectable in eds1-2 siliques 
but was abundant in the siliques of the dmr1 mutants. Despite the absence of a functional homoserine kinase in 
the dmr1 mutants, levels of threonine (b) isoleucine (c) glycine (d) and methionine (e), downstream products of 
homoserine phosphorylation, were not reduced in the dmr1 mutants compared to eds1-2. The level of an 
uncharacterised amino acid (f) was also elevated in all three dmr1 mutants. Analysis was done on three 
independent biological silique samples per genotype. Bar = standard error. 
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6.3.5 Exogenous homoserine application reduces F. culmorum infection 

in Arabidopsis buds and siliques 

Exogenous application of L-homoserine, but not D-homoserine, was previously 

shown to increase resistance in Arabidopsis and tomato to the obligate 

biotrophs Hyaloperonospora arabidopsidis, and Oidium neolycopersici, 

respectively, but homoserine did not inhibit spore germination or germling in 

vitro growth of either the oomycete or ascomycete  pathogen (van Damme et 

al., 2009, Huibers et al., 2013). The effect of application of either enantiomer of 

homoserine on in vitro and in planta growth of Fusarium was therefore 

investigated. The effect of in planta threonine treatment on Fusarium growth 

was also tested, since threonine is elevated in some dmr1 alleles and was 

previously shown to reduce H. arabidopsidis growth (Stuttmann et al., 2011).  

No strong inhibitory effect of either homoserine isoform on in vitro growth was 

found for F. culmorum or F. graminearum, following 48h incubation in synthetic 

nutrient poor media supplemented with L- or D-homoserine at concentrations 

ranging from 0 to 80mM (Fig. 6.7). 

To assess the in planta effects of amino acid treatment on F. culmorum growth, 

flowering Arabidopsis plants were sprayed with either 10mM L- or D- 

homoserine (LHS, DHS), L-threonine (THR) or water, concurrent with spray 

inoculation with F. culmorum at early flowering. Amino acid/water treatments 

were repeated daily for 5dpi. Significant differences in F. culmorum infection 

between treatments were found for unopened buds (F3, 31 =41.38, p= <0.001), 

open flowers (F3, 31 =7.31, p= <0.001), siliques (F3, 31 =1.68, p= <0.001) and 

rosette leaves (F3, 31 =7.71, p= <0.001). At 7dpi, LHS treated buds showed little 

or no infection, and infection of opened flowers was also reduced, compared to  
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DHS and water treated control plants (Fig. 6.8a, b, c). Silique infection levels 

were slightly elevated in all amino acid treated plants compared to water 

controls in these experiments (Fig. 6.8d). Threonine treatment increased F. 

culmorum colonisation in both open flowers and rosette leaves (Fig. 6.8a and 

e). 

Plants treated with threonine also exhibited leaf chlorosis and lesion formation 

in the absence of F. culmorum infection, indicating that threonine spray 

treatment at and above 10mM may induce a cell death response and /or 

premature senescence. This result was consistent in both eds1-2 and wild type 

Ler-0 plants (Fig. 6.9). 

Figure 6.7: Homoserine does not inhibit Fusarium hyphal growth in vitro. Spores of either F. culmorum or F. 
graminearum were cultured for 2 days in synthetic nutrient poor media supplemented with (a, b) D-

homoserine and (c, d) L-homoserine at concentrations ranging from 0 to 80mM. Graphs show the optical 
density at 600nm of fungal colonies after 2 days growth. The experiment was repeated with similar findings. 
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Figure 6.8: The effect of exogenous amino acid treatments on Fusarium susceptibility in Arabidopsis floral, 
silique and rosette leaf tissue. Arabidopsis plants of genotype eds1-2 were sprayed at early flowering with 

either 10mM D-homoserine (DHS), L-homoserine (LHS), threonine (THR) or sterile water, co-incident with F. 
culmorum. Amino acid/water treatments were then repeated daily for 6 dpi. Disease was assessed at 7dpi. A) 
Images show infected apical inflorescences (upper panel) and rosette leaves (lower panel) – stem and floral 
tissue have been removed from rosettes. White arrow – green and opening buds present in LHS treated plants. 
Plants were scored for (b) bud disease, (c) open flower disease (d) silique disease and (e) infected rosette leaf 
number. Asterisks indicate statistically significant differences from H2O treated plants (regression analysis 
followed by prediction of LSDs, p=<0.05, n=8). Results are representative of two independent experiments. 
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Figure 6.9: Threonine (THR) mediated chlorosis in rosette leaves of Arabidopsis genotypes Ler-0 and eds1-
2. Plants were sprayed with 10mM threonine or water daily for 5 days, first treatment coincident with F. 
culmorum  or mock (water) spray inoculations. The effect of threonine was most pronounced in Fusarium 
inoculated leaves. Threonine from two different commercial suppliers was tested with identical outcomes. 

eds1-2 
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The effect of D- and L-homoserine on F. culmorum infection of eds1-2 siliques 

following single silique wound point inoculations was also analysed (Fig. 6.10). 

Siliques were droplet inoculated with water, DHS or LHS for 5 days following F. 

culmorum inoculation. There was a significant difference in F. culmorum 

infection development between treatments (ANOVA, p = <0.001). DHS 

treatment resulted in a modest reduction in F. culmorum growth along 

inoculated siliques compared to water treatment, while LHS treatment resulted 

in significantly less Fusarium growth than either water or DHS treatment, with 

most plants showing no externally visible infection. However, F. culmorum 

hyphae were present on and between seeds within some LHS treated siliques 

with externally uninfected pericarps (Fig. 6.11). 

The effect of LHS treatment on dmr1 mutants was also analysed using the 

spray treatment method (Fig. 6.12). We found that exogenous LHS application, 

compared to DHS application, conferred F. culmorum resistance in dmr1-2 buds 

(which are not resistant) equivalent to that seen in LHS treated eds1-2 buds 

(Fig. 6.12a). Furthermore, LHS treatment afforded a further increase in silique 

resistance in dmr1-2 siliques, despite a high level of resistance already being 

conferred by the mutation. By contrast, LHS did not increase silique resistance 

in eds1-2 (Fig. 6.12b, Fig. 6.8d). 
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Figure 6.10: Homoserine treatment reduces F. culmorum growth in point inoculated eds1-2 siliques. Tip-wounded eds1-2 siliques were treated with 10mM L-

homoserine (LHS), D-homoserine (DHS) or sterile water coincident with F. culmorum inoculation. Amino acid/water treatment was repeated for 5dpi. Images 
show infected siliques 8dpi under brightfield (BF) and UV light with a violet filter. Red fluorescence indicates healthy tissue, green fluorescence indicates 
infected tissue. The length of infection along three siliques per plant was assessed at 8dpi. Different letters indicate statistically significant differences between 
treatments (analysis of variance followed by prediction of LSDs, p=<0.01, n=12). Data were pooled from three independent experiments. 
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Figure 6.11: Homoserine treatment reduces F. culmorum growth in point inoculated eds1-2 siliques. Tip-wounded eds1-2 siliques were treated with 10mM L-homoserine 
(LHS), D-homoserine (DHS) or sterile water coincident with F. culmorum inoculation. Amino acid/water treatment was repeated for 5dpi. Images show opened silique 
sections at 8dpi. Tissue necrosis and fungal growth is evident in the pericarp (P) and seed (S) of water and D-homoserine (DHS) treated siliques. L-homoserine (LHS) 
treated siliques have predominantly uninfected pericarps, but some externally uninfected LHS treated siliques revealed, when opened, the presence of fungal 
colonisation within the silique (far right). 
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Figure 6.12: Treatment of dmr1-2  with LHS further reduces Fusarium silique susceptibility compared to DHS treated controls. Arabidopsis plants of genotype eds1-2 and 
dmr1-2 were treated at early flowering with 10mM L-homoserine (LHS) or D-homoserine (DHS) as a control, 1-7dpi with F. culmorum. Bud (a) and silique (b) disease levels 

were assessed at 7dpi. Different letters indicate statistically significant differences between treatments (regression analysis followed by prediction of LSDs, p=<0.05, n=8). C) 
Images show inoculated inflorescences 7dpi. LHS treatment reduced bud disease levels in both eds1-2 and dmr1-2. Silique disease levels were reduced significantly more by 
LHS treatment in dmr1-2  plants. White arrow – opening uninfected buds. Green arrow – green uninfected siliques. Analysis based on pooled data from two independent 
experiments. 
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6.3.6 Mutation of DMR1 affects plant growth and senescence 

During the growth of the experimental plants, dmr1-2 plants appeared to be 

slightly smaller in size than eds1-2 plants.  Therefore, the rosette diameter and 

leaf number were measured and compared between 5-week old plants of 

genotypes dmr1-1, dmr1-2 and eds1-2. The quantification of growth confirmed 

that the dmr1-2 plants have approximately ~ 25% smaller rosettes on average 

than eds1-2 (Fig. 6.13a & b), but that leaf number is similar between genotypes 

(Fig 6.13c). This supports the recent findings by Huibers et al. (2013) that some 

Arabidopsis dmr1 mutants have reduced fresh weight compared to eds1-2. Leaf 

senescence between genotypes was also assessed and found to be delayed in 

both dmr1-1 and dmr1-2 compared to eds1-2 (Fig 6.13d & e).  

Silique number were compared between genotypes at 7, 11 and 14 days post 

flowering (corresponding to assessment of infected plants at 7, 11 and 14dpi) to 

ensure that the increased number of uninfected siliques observed in dmr1-2 

was not due to more siliques being produced in this genotype. No difference 

was found between genotypes at any of the time points assessed (Fig 6.13f). 

There was no evidence of increased silique number in the other dmr1 alleles 

investigated in this study, although this was not formally assessed.  
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Figure 6.13: Differences in developmental morphology and senescence between the dmr1-1 and dmr1-2 mutant 
alleles and eds1-2. (a, b) Rosette diameter is reduced in 5-week old plants of genotype dmr1-2 compared to eds1-2. 
(c) Leaf number is comparable between genotypes. (d, e) Leaf senescence is delayed in both dmr1-1 and dmr1-2.  
Panel d shows the appearance of the rosettes of flowering plants at 14 days post flowering. (f) Silique number was 
equivalent between all genotypes throughout seed set. These phenotypes were observed across multiple 
experimental replicates. Asterisks indicate significant difference from eds1-2. *p<0.05, **p=<0.01 (b – ANOVA, e – 
Regression analysis). 
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6.3.7 Exogenous application of L-homoserine does not consistently 

significantly affect Fusarium colonisation of wheat ears 

The effect of exogenous L-homoserine application on Fusarium infection in 

wheat was assessed by treating F. graminearum infected wheat spikelets with 

L-homoserine, D-homoserine or sterile water daily for 7dpi. The fully Fusarium 

susceptible spring wheat cultivar Apogee was used for these experiments.  The 

number of bleached spikelets and bent awns (which precedes spikelet 

bleaching in infected spikelets), along with grain number and weight, were 

assessed at 10dpi (Fig. 6.14, Fig. 6.15). The experiment was then 

independently replicated. Fewer mean bleached spikelets and bent awns and 

higher grain number and weight were observed in L-homoserine treated plants 

compared to the other treatments. However, only the reduced number of 

bleached spikelets was statistically significant, and only in the first experimental 

replicate (Fig. 6.14) (p=0.03). 

Figure 6.14: Effect of L-homoserine application on Fusarium infection of wheat. Spikes of wheat cultivar Apogee 
were point inoculated with F. graminearum and then treated with either L-homoserine (LHS) D-homoserine (DHS) 

or water for 7 days. The number of bent awns (a) and bleached spikelets (b) along with grain weight (c) and 
number (d) per plant were assessed at 10dpi. (*)  The number of bleached spikelets was significantly lower in LHS 
treated plants (ANOVA p=0.03, followed by LSD calculation at p=0.05). No statistically significant difference 
between treatments was found for other parameters (ANOVA, p = > 0.05). Bar = standard error 
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Figure 6.15: Effect of  L-homoserine application on symptomatic Fusarium infection of wheat. Images taken 10dpi 

with F. graminearum and subsequent treatment with either L-homoserine (LHS), D-homoserine (DHS) or sterile H20.  
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6.4 Discussion 

In order to identify additional host genes controlling the outcome of the 

Fusarium–Arabidopsis interaction, as well as highlight components of defence 

signalling which are conserved in response to different pathogen types, a 

number of recessively inherited downy mildew resistant (dmr) mutants were 

screened for altered susceptibility to the fungal pathogens F. culmorum and F. 

graminearum, which infect floral tissue in cereals and Arabidopsis. It was found 

that multiple loss of function mutant alleles of the Arabidopsis HOMOSERINE 

KINASE gene DMR1 have increased resistance to Fusarium infection in silique 

and/or leaf tissue: Siliques of dmr1-2, dmr1-3, dmr1-4 and dmr1-6, and leaves 

of dmr1-1, dmr1-2, dmr1-3 and dmr1-4, are more resistant to F. culmorum 

infection. Genotypes dmr1-1 and dmr1-2 were also tested for altered F. 

graminearum susceptibility and found to have increased leaf or silique 

resistance, respectively.  

These results indicate that there is potentially a common mechanism of 

susceptibility occurring in response to infection by both the downy mildew 

oomycete pathogen H. arabidopsidis, which is a leaf adapted obligate biotroph, 

and fungal hemi-biotrophic Fusarium species which are floral adapted. Mutation 

of AtDMR1 and its tomato ortholog SlDMR1 has also recently been shown to 

increase resistance to the obligate biotrophic fungal mildew Oidium 

neolycopersici, but has not been found to alter resistance to any other 

pathogens assessed, including the facultative biotrophic bacterium 

Pseudomonas syringae (van Damme et al., 2009, Huibers et al., 2013).  
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6.4.1 Tissue specific resistance caused by DMR1 mutation and 

homoserine application 

Mutation of DMR1 was not found to alter susceptibility to infection of unopened 

buds and young flowers, despite affecting both leaf and silique infection. 

Analysis of Arabidopsis DMR1 expression using GENEVESTIGATOR (Hruz et 

al., 2008) shows that DMR1 is expressed at lower levels in some floral tissues 

than it is in vegetative tissue, namely in the stamens, anthers, stigma and 

sepals (Fig. 6.16a). Since homoserine kinase activity has been shown to be 

driven by homoserine accumulation (Lee et al., 2005),  it may be that these 

tissues do not produce high levels of homoserine and are therefore unaffected 

by decreased DMR1 activity. Susceptibility of sepal and male reproductive 

tissue during early floral development pre-fertilisation may result in loss of the 

flower, whereas infection of these tissues post-pollination would have little effect 

on the siliques of resistant dmr1 plants, as this tissue is shed during silique 

development.  

Since dmr1 induced resistance to H. arabidopsidis is proposed to be mediated 

by homoserine accumulation and can be mimicked by exogenous L-homoserine 

application in wild type plants, we investigated the effects of homoserine 

application on Fusarium growth in vitro and in planta. Treatment of eds1-2 

plants with L-homoserine (LHS) following spray inoculation with F. culmorum 

resulted in significantly decreased bud and flower colonisation by the fungus. 

This contrasts with the phenotype of dmr1 mutants, which have increased 

silique and leaf, but not floral, resistance. As previously discussed, 

Genevestigator analysis suggests that some floral organs may have lower HSK 

expression than other plant tissues (Fig. 6.16). This may result in longer 

persistence of the applied homoserine in buds than in siliques and other 



184 
 

tissues, resulting in reduced fungal growth compared to other tissues. However, 

it was found that more direct application of both the fungus and the LHS onto 

the tips of wounded siliques resulted in decreased fungal growth along the 

silique compared to water and DHS treated controls.  
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a 

b 

Figure 6.16: GENEVESTIGATOR analysis of the expression profile of Arabidopsis DMR1. A) Tissue specific 
expression levels across different floral tissues. B) Development stage specific expression levels. 
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6.4.2 Investigation of homoserine mediated resistance in wheat 

The effect of exogenous homoserine application on F. graminearum infection of 

the wheat cultivar Apogee was also assessed. While there was evidence of 

reduced infection following L-homoserine treatment, this was not statistically 

significant across multiple experimental replicates. This may be due to lack of 

uptake of homoserine into the wheat ear tissue, or to rapid metabolism of 

homoserine by the wheat homoserine kinase, negating its effect on Fusarium 

colonisation. Planned future work therefore includes Virus Induced Gene 

Silencing (VIGS) of the wheat homoserine kinase gene using Barley Stripe 

Mosaic Virus (BSMV) (Lee et al., 2012, Lee et al., 2013) and investigation of the 

effect of this silencing on homoserine accumulation and Fusarium suceptibility. 

Alternatively a stable RNAi construct could be used to silence the wheat 

homoserine kinase gene. Or, the effect of homoserine on the infection of ears of 

a semi-resistance wheat cultivar could be explored.  

6.4.3 The effect of exogenous threonine application 

This study also presents the novel finding that exogenous application of 

threonine induces host cell death in Arabidopsis leaves and increased F. 

culmorum colonisation. This raises further questions about the effects of amino 

acid metabolism on plant defence against different pathogen species and 

lifestyles. van Damme and colleagues did not find an effect of exogenous 

threonine application on H. arabidopsidis susceptibility when amino acids were 

applied by vacuum infiltration. However, Stuttmann et al. (2011) found that 

spray application of 1-5mM threonine resulted in decreased H. arabidopsidis 

sporulation in Ler-0 eds1-2 plants. These contrasting outcomes are interesting. 

H. arabidopsidis is a classic obligate biotroph and would therefore be sensitive 

to any host induced cell death which would limit this pathogen’s access to living 
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tissue. By contrast Fusarium has been shown to have a switching in planta 

lifestyle with host cell death an integral feature of the later disease formation 

process (Brown et al., 2010, Desmond et al., 2008, Thaler et al., 2004).  Cereal 

infecting Fusaria are also able to saprophytically colonise dead plant tissue. 

Threonine mediated chlorosis may therefore facilitate Fusarium colonisation 

while preventing growth of obligate biotrophic pathogens. 

6.4.4 Delayed senescence in dmr1 mutants 

Related to this is the finding that mutation of DMR1 results in delayed 

senescence.  Analysis of DMR1 expression during plant development using 

GENEVESTIGATOR (Hruz et al., 2008) shows that expression is fairly static 

throughout plant development but increases during senescence (Fig. 6.16b). 

This suggests that DMR1 function could have a role in programmed cell death 

and senescence. The delayed DMR1 dependent cell death in the dmr1 mutants 

may restrict Fusarium disease progression and prevent its successful 

exploitation of host cell death (Thaler et al., 2008). For pathogens with a hemi-

biotrophic life style strategy, delayed cell death could prevent full tissue 

exploitation and the gaining of additional nutrition from the cellular debris. 

However, the delayed cell death may not be the underlying cause of the 

enhanced resistance. For example, the manner in which delayed cell death 

might help protect plants against obligate biotrophic pathogens such as H. 

arabidopsidis is not clear. It is formally possible that the normal amino acid 

ratios found in healthy Arabidopsis tissue are modified in the dmr1 mutants and 

this alters the efficiency of nutrient acquisition via the haustoria interfaces in 

obligate biotrophic interactions as well as altering the switching lifestyle of 

hemibiotrophic pathogens. In this regard, the formal identification of the novel 
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accumulating amino acid in the three dmr mutants, but not eds1-2 (Figure 6.6) 

remains a priority.  

 

Figure 6.17: Scheme showing biosynthesis of homoserine derived amino acids in Arabidopsis. Enzymes 

are shown in green. Dashed arrows indicate synthesis via intermediates.  

 

6.4.5 Synthesis of downstream amino acids in dmr1 mutants 

It was also found both in this study and that of van Damme et al. (2009), that 

dmr1 plants have wild type or elevated levels of the amino acids methionine, 

threonine and isoleucine, in both foliar and silique tissue (Fig. 6.6). These amino 
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acids are understood to be synthesised directly via the activity of homoserine 

kinase (Fig. 6.17). Their abundance in plants with severely reduced homoserine 

kinase function therefore challenges the current understanding of amino acid 

biosynthetic pathways. It may be the case that these amino acids are being 

synthesised via alternative, currently unidentified pathways in the dmr1 mutants, 

which are independent of homoserine kinase. Alternatively, mutated 

homoserine kinase may retain some residual function: Homoserine is 

synthesised via the activity of Arabidopsis aspartate kinases, which are 

negatively regulated by accumulation of S-adenosylmethionine (SAM), 

synthesised from methionine (Curien et al., 2005, Curien et al., 2007). Reduced 

methionine biosynthesis may therefore result in increased aspartate kinase 

activity, shunting of more homoserine into the pathway.  Some of the 

accumulating homoserine may then be phosphorylated by the mutated 

homoserine kinase, restoring equilibrium in the pathway. However, no changes 

were observed in aspartate levels between wild type and dmr1 mutant plants. 

Comparison of aspartate kinase expression and activity between genotypes 

would be needed to test this hypothesis. 

6.4.6 The effect of dmr1 mutation on plant growth 

Huibers et al. (2013) found a correlation between reduced Arabidopsis plant 

fresh weight in different dmr1 mutant alleles and the level of resistance 

conferred to O. neolycopersici. The authors concluded that it might be difficult to 

obtain dmr1 alleles in crop species which conferred enhanced resistance to this 

pathogen in the absence of a fitness cost. While the dmr1-3 mutant allele did 

not confer a significant growth penalty, likewise this mutant did not confer 

resistance to O. neolycopersici. However, in the current study, dmr1-3 conferred 

resistance to F. culmorum in both the leaf and silique tissue of Arabidopsis, 
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although the leaf resistance phenotype was not as strong as in other alleles. 

Investigation into the effects of homoserine kinase disruption in FEB-susceptible 

cereal crops is therefore warranted.  

6.4.7 The role of homoserine kinase in human-pathogenic fungi 

As shown in Figure 6.7, homoserine did not inhibit Fusarium growth in vitro, and 

mutation of homoserine kinase in plants does not greatly impact plant 

development and morphology. This is in contrast to findings related to 

homoserine kinase function in human pathogens: Kingsbury and McCusker 

(2008, 2010a, b) investigated the importance of homoserine kinase for growth 

and infection of human fungal pathogens in order to explore its potential as an 

antifungal drug target. It was found that homoserine kinase is essential for 

growth of Cryptococcus neoformans; mutation of the C. neoformans 

homoserine kinase was found to be lethal, and associated with depletion of the 

downstream amino acids threonine and methionine. In addition, reduced 

virulence but not lethality was associated with homoserine kinase mutation in 

Saccharomyces cerevisiae and Candida albicans. This was attributed to the 

toxicity of accumulating homoserine rather than threonine auxotrophy. It would 

therefore be interesting to test the effect of mutation of the Fusarium 

homoserine kinase on growth and pathogenicity. 

6.4.8 Possible direct effects of homoserine accumulation on Fusarium 

pathogenicity 

Homoserine accumulation does not affect Fusarium growth in vitro, but does 

affect the ability of the fungus to colonise Arabidopsis tissue. While this could be 

due to the effects of homoserine on the plant’s defence response, it is also 

possible that homoserine directly affects the virulence of the fungus. For 

example, the requirement of the fungus to metabolise excess homoserine could 
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deplete energy or resources required to secrete virulence factors such as cell 

wall degrading enzymes and/or effectors. Alternatively, homoserine may act as 

a signal which regulates Fusarium gene expression, reducing pathogenicity.  

However, homoserine has been shown to have the opposite effect on Fusarium 

solani, which is a pathogen of pea plants: Pea plants naturally accumulate high 

levels of homoserine, and this has been identified as the signal which triggers 

the expression of the F. solani gene PeID, which is essential for pathogenicity 

and is only expressed in planta (Yang et al., 2005). It would be interesting to 

investigate whether F. graminearum or F. culmorum have peID homologues, 

and if so, whether their expression is affected by homoserine. The fact that 

homoserine level acts as an indicator of a plant species’ suitability to be a host 

for other plant-pathogenic fungal species may also be important. It could be that 

efforts to increase crop resistance to one set of pathogens via homoserine 

kinase silencing might lead to novel infections by pathogens for which the crop 

was previously not a suitable host.  

6.4.9 Conclusions 

This study has identified that a series of mutations in the Arabidopsis 

homoserine kinase gene DMR1 confers resistance in both vegetative and 

reproductive plant tissue to the primary causal agents of cereal FEB disease, a 

source of crop yield losses and grain contamination. Siliques of the dmr1 

mutants accumulate homoserine, and exogenous application of L-homoserine 

confers resistance to the floral and silique tissues of both mutant dmr1 and wild 

type DMR1 plants.  These finding offer the possibility of developing a novel 

source of resistance to an economically important floral crop disease for which 

few other resistance mechanisms exist. However, application of these findings 

could be limited by the effect of homoserine kinase mutation on plant growth, 
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and the role of homoserine in pathogenicity of other plant-infecting fungi. 

Further work will use virus induced gene silencing of the wheat DMR1 ortholog 

to explore the potential of homoserine in Fusarium resistance in wheat. 

However, the mechanism by which homoserine accumulation in plant tissue 

mediates resistance is still not fully understood, and may be key to fully 

exploiting dmr1 based resistance which has the potential for use in multiple crop 

species. 
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7 Additional Arabidopsis mutant/transgenic lines screened for 

altered Fusarium susceptibility 

7.1 Introduction 

The previous chapter examined the effect of the downy mildew resistant 

mutations on Arabidopsis susceptibility to F. culmorum. This chapter examines 

the susceptibility of a further eight mutant or transgenic Arabidopsis lines to 

Fusarium infection following spray and/or silique wound inoculation. The 

rationale for investigation of each mutant varied but was largely based on their 

susceptibility to two or more other Arabidopsis pathogens, and their existence in 

an accession which is not Col-0, due to low floral infection levels in this 

accession following spray inoculation.  The rational for the selection of each of 

the eight lines is described below.  

7.1.1 Mutations affecting oxidative burst mediated defence signalling in 

accessions Ws-2 and Ws-0 

The oxidative burst, characterised by rapid release by plant cells of reactive 

oxygen species (ROS) such as superoxide anions and H2O2, is one of the first 

steps in the plant defence response following pathogen recognition. ROS 

contribute to plant defence by direct oxidative damage to the invading 

pathogen, along with their role in cell wall strengthening and as signalling 

molecules triggering downstream defence responses (O’Brien et al., 2012, 

Lamb and Dixon, 1997, Torres, 2006, Vellosillo et al., 2010).  

Much research has focussed on the role in plant defence of ROS generated via 

the activity of NADPH oxidases (Torres, 2001, Torres et al., 2005). This has 

included the identification of OXI1 (OXIDATIVE BURST INDUCIBLE 1). OXI1 

encodes a serine-threonine protein kinase which is induced by NADPH 

mediated H2O2 production, and required for downstream defence responses. 
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Both knock-out mutation and overexpression of OXI1 result in increased 

susceptibility to the biotrophic oomycete pathogen, Hyaloperonospora 

arabidopsidis, and the hemibiotrophic bacteria Pseudomonas syringae but not 

the necrotrophic fungal pathogen Botrytis cinerea (Rentel et al., 2004, Petersen 

et al., 2009). 

Apoplastic peroxidases have also been identified as a source of ROS required 

for plant defence. Bindschedler et al. (2006) found that plants exhibit an 

extracellular peroxidase mediated oxidative burst in response to Fusarium 

oxysporum cell wall extract.  Antisense expression of the French Bean 

peroxidase gene FBP1 in Arabidopsis silenced the peroxidase genes PRX33 

and PRX34, resulting in broad spectrum pathogen susceptibility (Bindschedler 

et al., 2006). Mutants in these peroxidases show reduced callose deposition in 

response to pathogen attack and decreased resistance to P. syringae (Daudi et 

al., 2012). The importance of both NADPH – and peroxidase – mediated 

oxidative burst was evaluated by testing the mutants oxi1, prx33 and 

prx33/prx34 (prx33 +PRX34 RNAi, hereafter referred to as prx34) for altered 

susceptibility to F. culmorum infection following spray and silique point wound 

inoculations. The oxi1 mutant is in the Ws-2 background, while prx33 and prx34 

are in the Ws-0 background. 

7.1.2 Mutations in disease resistance genes required for defence against 

multiple pathogens in accession Ws-0 

The original gene for gene model postulates that each disease resistance (R ) 

gene recognises the presence of a single avirulence gene (Flor, 1974). 

However, it has been demonstrated that in many cases, a single R gene can 

recognise multiple avirulence proteins (effectors) from the same or unrelated 

pathogens (a so-called ‘gene-for-genes’ interaction), indicating a role for R 
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genes in broad spectrum resistance (Bisgrove et al., 1994, Narusaka et al., 

2009, Jones and Dangl, 2006, Nombela et al., 2003).  

Two such R genes are RRS1 and RPS4, which are adjacent in the Arabidopsis 

genome and encode NB-LRR proteins conferring resistance to the bacterial 

pathogens Ralstonia solanacearum expressing PopP2 and P. syringae pv. 

tomato expressing avrRps4  (Hinsch and Staskawicz, 1996, Gassmann et al., 

1999, Deslandes et al., 2002, Deslandes et al., 2003). The genome of 

Arabidopsis accession Ws-0 encodes alleles of these R genes which confer 

resistance to the hemi-biotrophic fungal pathogen Colletotrichum higginsianum. 

Mutations in either one of these genes increase susceptibility to C. 

higginsianum, along with R. solanacearum and P. syringae expressing avrRps4 

(Narusaka et al., 2009). This indicates that both of these genes are required for 

recognition of effectors from three different pathogens with divergent infection 

strategies. The effect of mutation of these genes on F. culmorum susceptibility 

was therefore assessed. 

It is now understood that RRS1 and RPS4 form a heterodimeric ‘paired plant 

immune receptor’ complex which aids detection of diverse pathogen effectors. 

Recognition of an effector by one protein in the pair activates the other protein 

and triggers downstream defence responses (Williams et al., 2014). 

7.1.3 Transgenic lines constitutively expressing the Cladosporium 

fulvum effector ECP6 

The Cladosporium fulvum effector ECP6 (EXTRACELLULAR PROTEIN 6) 

encodes a protein with three LysM domains, which bind chitin, preventing its 

recognition as a MAMP by the host plant and the triggering of downstream 

defence signalling (de Jonge et al., 2010, de Jonge and Thomma, 2009, Bolton 

et al., 2008). Functional LysM effectors have also been identified in other fungal 
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pathogen species, but there is little evidence for functional chitin binding 

effectors in the genomes of F. graminearum and F. culmorum (Brown et al., 

2012, de Jonge and Thomma, 2009, Marshall et al., 2011). Previous work by 

Thomma et al. (pers comm) has shown that heterologous expression of 

CfECP6 in Arabidopsis increases susceptibility to the fungal wilt pathogen 

Verticillium dahliae. Preliminary studies by Hammond-Kosack and colleagues 

suggested that this also increased F. culmorum susceptibility. This was formally 

assessed in this chapter. 

7.1.4 A mutation blocking biosynthesis of scopoletin 

As described in Chapter 4, the phenylpropanoid derived coumarin compounds 

scopolin and scopoletin have been found to accumulate at the Arabidopsis 

stem/pedicel junction following silique infection with F. culmorum, and in 

seedling shoots following inoculation with Fusarium oxysporum (Kai et al., 

2006). These compounds have been shown to have antifungal activity in a 

number of plant pathosystems (Sun et al., 2014, Gnonlonfin et al., 2012, 

Carpinella et al., 2005, Prats et al., 2006, Chong et al., 2002, Valle et al., 1997).  

The Fe(II)- and 2-oxoglutarate dependent dioxygenase (2OGD) family gene 

F6’H1 is required for the biosynthesis of scopoletin in Arabidopsis. Mutants in 

this gene in ecotype Col-0 show reduced accumulation of scopolin and 

scopoletin, but do not have a pleiotropic growth phenotype unlike other 

scopoletin biosynthetic mutants identified (Kai et al., 2008, Kai et al., 2006). 

Silencing of F6’H1 in tobacco also prevented scopoletin accumulation and 

increased susceptibility to the necrotrophic fungus Alternaria alternata (Sun et 

al., 2014). The susceptibility of the mutant allele f6’h1-2 to F. culmorum and F. 

graminearum pedicel infection was therefore assessed, following single silique 

wound inoculation. 
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7.1.5 Mutation of ERECTA in ecotype Col-0 

The Arabidopsis ERECTA gene encodes a serine-threonine protein kinase with 

a role in plant development. Mutation of ERECTA, such as that seen in the 

widely used Arabidopsis accession Landsberg erecta (Ler-0), results in plants 

with a shorter stature, rounded leaves, and more compact floral morphology 

(van Zanten et al., 2009, Torii et al., 1996). Both the floral and leaf tissues of 

Ler-0 have been shown to be more susceptible to Fusarium infection than Col-

0, using spray inoculation of intact plants and a detached leaf assay, 

respectively (Urban et al., 2002, Chen et al., 2006). The increased floral 

susceptibility was attributed to the erecta mutation, resulting in more compact 

floral morphology compared to Col-0, facilitating hyphal growth across the 

surface of the inflorescence. However, leaf susceptibility of Ler-0 was mapped 

to two QTLs, neither of which encompassed the erecta mutation.  

This raised the question of whether the differences in floral susceptibility 

between ecotypes was purely due to the erecta mutation, either via its effect on 

floral morphology and / or by wider effects on defence signalling: Mutation of 

ERECTA has been found to increase susceptibility to a number of other 

pathogens including the necrotrophic fungal pathogens Verticillium longisporum 

and Plectosphaerella cucumerina and the bacterial wilt pathogen Ralstonia 

solanacearum, indicating a role for ERECTA in broad spectrum defence 

signalling (Haeffner et al., 2014, Llorente et al., 2005, Godiard et al., 2003). The 

floral susceptibility of Col-0 harbouring a mutation in ERECTA (Col-er) to F. 

culmorum was therefore assessed.  
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7.2 Methods 

Plant and fungal growth and maintenance, infection assays and disease 

assessment were done as described in Chapter 2. The identity of mutant and 

transgenic lines was confirmed via PCR and sequencing where required, using 

the primers outlined in Table 7.1.  

Table 7.1: Primers used for confirmation of mutations and transgenes in investigated Arabidopsis lines 

Line Primers (5’ – 3’) 

oxi1 TATCCGTCAACAAACTCGCCA 
CCACAGCAGTAGTGACGTTCT 
 

 

prx33/prx34 ATGCAATTCTCTTCATCTTC 
ATGCAATCGATATCAGCAGCCAATTTTA 
 

 

ECP6 TATCCGTCAACAAACTCGCCA 
CCACAGCAGTAGTGACGTTCT 
 

 

rrs1-1 ACATGAAGCCATTTACAATTGAATATATCC 

TGATGGGTTTACAGTTTGGGGAGGACTGGTAATTG 

 
 

rps4-21 TAAGCTACCATTGAAAGAAGTTCG 
TTAACCATTCACAAAAGCAATCAACAG 
 

 

f6’h1 TAGCATCTGAATTTCATAACCAATCTCGATACAC 

ATGGCTCCAACACTCTTGACAACC 
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7.3 Results 

7.3.1 There is no evidence of altered F. culmorum susceptibility in the 

Ws-background mutants oxi1, prx33, prx34, rps4 or rrs1  

A selection of defence related mutants in the Arabidopsis Ws-0 (prx33, prx35, 

rps4, rrs1) and Ws-2 (oxi1) backgrounds were screened for altered 

susceptibility to F. culmorum following spray and silique point inoculations (Fig. 

7.1 and 7.2, respectively). None of the mutants showed statistically significant 

differences in floral, silique or leaf infection compared to equivalent wild type 

plants 14 or 20 days after spray inoculation with F. culmorum conidia 

(Regression analysis, p= >0.05). The mean silique disease score for oxi1 was 

slightly lower at 14 dpi than wild type Ws-2 (FAD=4 and 5.25, respectively) but 

this difference was not statistically significant. All plants in the Ws-0/Ws-2 

backgrounds bolted rapidly after inoculation resulting in low levels of floral 

disease (Fig7.1d and e). 

Infection of the pedicel tissue following silique wound point inoculations was 

also equivalent between genotypes at 14 dpi (Fig. 7.2). Total infected pedicel 

length was slightly greater in the oxi1 mutant compared to wild type Ws-2, but 

this was due to the longer pedicels in the oxi1 mutant, resulting in the proportion 

of pedicel tissue infected being slightly lower in oxi1 than Ws-2 (Fig. 7.2b). Blue-

green autofluorescence indicative of scopoletin accumulation was observed 

under UV light in all plants where infection had reached the stem-pedicel 

junction, irrespective of genotype (Fig. 7.2c). 
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Figure 7.1: F. culmorum infection of Arabidopsis genotypes Ws-2 (ws2) oxi1, and Ws-0 (ws) prx33, prx34, rps4 and 
rrs1 compared to wild type Ws-2 and Ws-0. Plants were assessed for floral (a), silique (b) and leaf (c) disease at 14 
and 20 days after spray inoculation with F. culmorum. N= 8, Bar= SE. A representative inoculated apical inflorescence 

at 14 dpi is shown in (d) (bar = 1cm); a whole plant is shown in (e) (bar=3cm). This experiment was repeated with 
similar results. 
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Figure 7.2: F. culmorum pedicel infection in Arabidopsis Ws-2 mutant oxi1 and Ws-0 mutants rrs1, rps4, prx33 

and prx34 14 days after point inoculation of wounded siliques. The length of the pedicel compared to total 
pedicel length is shown in (a), with the proportion of pedicel infected is shown in (b). N=6, bar=SE. No 
significant differences in infection were found between genotypes (ANOVA, p= >0.05). Fully infected pedicels 
are shown in (c) under white light (top) and UV light with a violet (middle) and GFP2 (lower) filter. Bar = 750µm. 
Blue-green fluorescence under UV light with a violet filter was seen in all genotypes where infection reached 
the pedicel-stem junction. 
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7.3.2 Heterologous expression of Cladosporium fulvum ECP6 does not 

increase Fusarium susceptibility 

Heterologous expression of the C. fulvum effector ECP6 in Arabidopsis Col-0 

had previously been shown to increase plant susceptibility to pathogens such 

as Verticillium dahliae, by masking chitin recognition (Thomma et al., pers. 

comm.).  Arabidopsis Col-0 plants constitutively expressing CfECP6 were 

therefore screened for altered susceptibility to F. culmorum.  However, very low 

levels of floral infection were observed in both wild type and ECP6 transgenic 

plants, along with no variation in silique infection and little variation in leaf 

colonisation at 14 dpi (Table 7.2). 

 

Table 7.2: Fusarium culmorum disease formation on the floral, silique and leaf tissue of Arabidopsis Col-0 
expressing CfECP6 compared to wild type Col-0. SEM= standard error of the mean. 

Genotype Tissue type 

Floral FAD Silique FAD Infected leaves 

MEAN SEM MEAN SEM MEAN SEM 

Col-0 0.36 0.13 5 0 7.14 0.43 

ECP6 0.36 0.13 5 0 6.43 0.36 

 

The effect of heterologous ECP6 expression on Fusarium susceptibility was 

also tested in the Ler-0 background, which has a more consistent Fusarium 

susceptibility phenotype than Col-0 (Urban et al., 2002). There were no 

significant differences in recorded disease scores at 7, 10 and 14 dpi (Figure 

7.3). Infected plants were observed until senescence but no differences in 

disease symptoms were evident between genotypes. 
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7.3.3 Susceptibility to pedicel infection is not altered in the scopoletin 

deficient mutant f6’h1  

The antifungal coumarin scopoletin has previously been found to accumulate at 

the pedicel-stem junction in response to F. culmorum infection of the silique and 

pedicel (see Chapter 4). Infection is not observed to progress beyond the 

junction into the main stem. Susceptibility to F. culmorum and F. graminearum 

pedicel and main stem infection in the Arabidopsis scopoletin biosynthesis 

mutant f6’h1, which is deficient in scopoletin, was therefore assessed (Fig. 7.4). 

Infection of f6’h1 mutant pedicels was equivalent to that of wild type Col-0 at 14 

dpi, both in terms of total length of pedicel infected and proportion of pedicel 

infected (Fig7.4a, b). However, no blue-green autofluorescence characteristic of 

Figure 7.3: Analysis of F. culmorum susceptibility in Arabidopsis Ler-0 heterologously expressing 

CfECP6. Disease was assessed in floral (a) and silique (b) tissue at 7, 10 and 14 days post spray 
inoculation with F. culmorum conidia. Error bars = standard error, N=12. Representative images of 
infection at 10 dpi are shown in c (bar=1cm). This experiment was repeated with equivalent results. 
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scopoletin accumulation was seen in the f6’h1 mutant where infection reached 

the pedicel-stem junction (Fig7.4c). There was no evidence of main stem 

colonisation in either genotype after 14 days. The distance that the infection 

progressed did differ significantly between F. culmorum and F. graminearum 

(ANOVA, p=0.005), with F. culmorum infecting a greater part of the stem than F. 

graminearum (mean infected pedicel = 9.86 and 8.88mm ±0.36 SED, 

respectively). 
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Figure 7.4: Fusarium culmorum (Fc) and F. graminearum (Fg) infection of f6’h1 pedicels compared to wild type Col-

0. Total length of pedicel (a) and proportion of pedicel infected (b) was assessed 14 days after point inoculation of 
wounded silique tips with Fusarium spores. Different letters denote statistically significant differences between 
treatments (ANOVA, p=>0.05). 

Fully F. culmorum infected pedicels are shown in (c) under UV light with a violet filter (left) and white light (right). 
Blue-green auto-fluorescence indicative of scopoletin accumulation at the pedicel-stem junction was observed in 
wild type Col-0 but not f6’h1 plants. Bar = 750µm. 
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7.3.4 The role of the erecta mutation in Ler-0 floral susceptibility to 

Fusarium culmorum 

Infection of Ler-0 floral tissue by Fusarium is both more consistent and more 

severe than that seen in Col-0, and this was previously attributed to the 

compact floral architecture and shorter bolt stature in Ler-0 compared to Col-0, 

caused by the erecta mutation (Urban et al., 2002). This was further tested by 

assessing the floral susceptibility of Col-0 harbouring the erecta mutation (Col-

er), compared to wild type Col-0, following spray inoculation. The Col-er line has 

compact floral morphology equivalent with that of Ler-0 (Fig. 7.5, top image 

panel). Comparison of susceptibility between Col-0 and Ler-0 was also 

intended, however the Ler-0 seed planted for these experiments did not 

germinate. Ler-0 eds1 was therefore used, since it has equivalent floral 

susceptibility to wild type Ler-0 (Chapter 6, Cuzick et al., 2009). 

In these experiments, there was a significant difference in floral infection 

between genotypes (F15,63  =150 p=<0.001 ). No disease symptoms or fungal 

hyphae were visible on the flowers and buds of Col-0 plants, at 7 or 11 dpi (Fig. 

7.5). By contrast, floral infection was consistently visible in Col-er and Ler-0 

eds1 plants. However, infection was slightly but significantly lower in Col-er 

flowers compared to Ler-0 (p=0.05). Col-er plants had a mean FAD score of 

3.38 at 7 dpi and 5.5 at 11 dpi, while Ler-0 plants had a mean FAD score of 4 

and 6.75 at 7 and 11 dpi, respectively. The difference was therefore particularly 

marked at the later time point. This corresponded with increased incidence of 

constriction of the main stem below the apical inflorescence in Ler-0 plants at 

11 dpi, as indicated by the white arrow in the lower panel of Fig. 7.5. By 

contrast, stem constriction in Col-er was generally limited to within the 

inflorescence.  
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Figure 7.5: Assessment of susceptibility of Columbia erecta (Col-er) to F. culmorum infection, compared to 
wild type Col-0 and Landsberg erecta  eds1-2 (Ler-0 eds1).Floral disease symptoms were assessed at 7 
and 11 days after spray inoculation with F. culmorum spores. Letters indicate significant differences in 
symptoms between genotypes (Regression analysis and calculation of LSDs, p = <0.05) Error bars = 
standard error. Top image panel shows whole plants at the time of inoculation. Lower panels show close-
up images of inoculated floral tissue. Bar = 1cm. White arrow = upper stem constriction.  
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7.4 Discussion 

In this chapter, the contribution of a number of components of plant defence 

signalling to Fusarium resistance was assessed using mutant and transgenic 

Arabidopsis lines. These encompassed the oxidative burst (oxi1, prx33, prx34), 

recognition of effectors by specific R genes (rps4-21, rrs1-1), recognition of the 

fungal MAMP chitin (ECP6), and production of the antifungal phytoalexin 

scopoletin (f6’h1). However, none of these mutants/transgenic lines differed 

from wild type plants in terms of their susceptibility to Fusarium under the 

infection conditions used. While this could indicate that these aspects of 

defence are not required for resistance to Fusarium, there are clear limitations 

with the Arabidopsis-Fusarium floral pathosystem which make these negative 

results difficult to interpret: 

7.4.1 Lack of consistent floral infection in Ws-0 and Ws-2 

Mutants in the Ws-0 and Ws-2 background were selected in the hope that these 

ecotypes would succumb to Fusarium floral infection more consistently than 

ecotype Col-0, facilitating the identification of mutants with altered infection 

levels. This was not the case: Very low levels of floral infection were seen in all 

genotypes in the Ws backgrounds and experiments had to be run for nearly 3 

weeks in order to observe floral infection, which was very variable. Silique and 

pedicel infection following both spray and point inoculation with Fusarium was 

equivalent between all genotypes, indicating that none of the mutations affected 

progression of this infection. This is consistent with all mutants previously 

screened in the Col-0 background under the infection conditions used in this 

study: Cuzick et al. (2008a) did not observe alterations in silique and pedicel 

susceptibility even in mutants npr1 and eds11 which show reproducibly high 

levels of floral infection. This indicates that these tissues may not be well suited 
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for evaluation of defence signalling against Fusarium. However, as illustrated in 

chapter 6, the potential for identification of mutants conferring increased 

resistance to silique infection should not be overlooked. Furthermore, 

assessment of the incidence of infection of the stem-pedicel junction, rather 

than measurement of disease progression along the pedicel, revealed 

differences in susceptibility between the genotypes assessed in Chapter 4. 

7.4.2 The oxidative burst and Fusarium infection 

It is not clear whether the lack of an altered defence phenotype shown by 

oxidative burst related mutants oxi1, prx33 and prx34 to F. culmorum floral and 

silique infection is due to the previously described limitations of the Arabidopsis 

pathosystem, as opposed to these genes not having a role in the Fusarium-

Arabidopsis interaction. This is particularly true when considering the 

applicability of these results to Fusarium infection of natural cereal hosts such 

as wheat. 

The oxidative burst is known to play a major role in plant defence to a number 

of pathogens, particularly biotrophs, through the induction of HR (Levine et al., 

1994). However, ROS mediated HR is known to be exploited by necrotrophic 

pathogens such as Botrytis cinerea and Sclerotinia sclerotiorum (Govrin and 

Levine, 2000, Govrin et al., 2006). The implications of this for the Fusarium –

wheat interaction are not clear. Wheat infecting Fusaria species are considered 

to have a hemi-biotrophic or switching lifestyle, with a short symptomless phase 

followed by induction of host cell death (Brown et al., 2010, Scherm et al., 2013, 

Kazan et al., 2011). Production of DON mycotoxin by F. graminearum has been 

shown to elicit ROS production and HR in wheat, and H2O2 has been shown to 

elicit DON production in vitro, suggesting a positive feedback loop of DON and 

ROS production, but it is not known whether this ROS generation contributes to 
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fungal virulence or promotes plant defence (Desmond et al., 2008, Ponts et al., 

2006). DON production is required for full virulence during colonisation of wheat 

ears and stems, which implies that the associated oxidative burst may aid 

colonisation, or at least does not hinder it (Cuzick et al., 2008b, Mudge et al., 

2006). However, in Arabidopsis DON production is not required for virulence on 

floral tissues (Cuzick et al., 2008b).  It is also possible that F. culmorum is 

adapted to ‘ignore’ oxidative stress in a similar manner to B. cinerea (Temme 

and Tudzynski, 2009), meaning that mutations that modulate ROS based 

defence responses in planta do not affect the infection outcome. Furthermore, 

while all three of the mutants investigated have an oxidative burst related role, 

none result in complete abolition of ROS production and signalling – ROS is 

presumably still produced via NADPH oxidase in the prx mutants, and the oxi1 

mutant, while blocking ROS induced defence signalling, does not block ROS 

production itself. This could also explain the lack of an altered defence 

phenotype observed in these mutants. 

7.4.3 R gene mediated defence signalling against Fusarium 

The R genes RPS4 and RRS1 contribute to resistance to at least three 

pathogens with different phylogenies and lifestyles. The effect of mutations in 

these genes on F. culmorum susceptibility was therefore assessed, but no 

significant effect was found. This may be due to the aforementioned limitations 

of using the Ws-0 ecotype in the Arabidopsis-Fusarium pathosystem. 

However, the null hypothesis that these genes are not involved in recognition of 

F. culmorum infection is probably more plausible than the hypothesis that they 

are: Traits conferring resistance to Fusarium infection in wheat are limited, 

complex, and QTL based, rather than being conferred by a single locus. There 

is no evidence for Effector Triggered Immunity (ETI) based on a gene-for-gene 
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interaction, and traits conferring resistance to head blight do not correlate with 

those conferring resistance to crown rot (Jayatilake et al., 2011, Zhou et al., 

2010, Li et al., 2010, Buerstmayr et al., 2009, Liu et al., 2007, Bai and Shaner, 

2004, Liu and Anderson, 2003). It therefore follows that resistance to Fusarium 

in Arabidopsis is not mediated by a gene-for-gene interaction, and that neither 

RRS1 nor RPS4 are involved in recognition of the fungus or activation of 

defence responses.  

7.4.4 The effect of blocking chitin recognition on F. culmorum 

susceptibility 

Heterologous expression of the C. fulvum chitin binding effector ECP6 in 

Arabidopsis has been shown to increase susceptibility to fungal pathogens, 

presumably by blocking chitin recognition by Arabidopsis chitin receptors such 

as CERK1 (Thomma et al., unpublished data). Heterologous expression of 

ECP6 in Fusarium oxysporum also increased this pathogen’s virulence on 

tomato, indicating that chitin recognition is a factor limiting disease progression 

by this Fusarium pathogen. This led to the hypothesis that the same might be 

true of F. culmorum infection of Arabidopsis floral tissue following spray 

inoculation. Preliminary studies by Hammond-Kosack and colleagues 

(unpublished data) had revealed systemic F. culmorum infection in Col-0 plants 

heterologously expressing ECP6. Furthermore, as shown in chapter 4, infection 

of the stem-pedicel junction was higher in ECP6 plants compared to wild type 

Col-0 following single silique wound inoculations, although the incidence of this 

level of infection was very low across all genotypes in these experiments. 

In this study, heterologous expression of ECP6 was not found to significantly 

alter floral infection following spray inoculation, in either Col-0 or Ler-0 plants. 

There are a number of possible explanations for this. It could be that F. 



211 
 

culmorum blocks recognition of chitin fragments released from the fungal cell 

walls during infection via a process that has not yet been identified. 

Alternatively, chitin recognition may occur, but the activation of downstream 

defence processes might be blocked by F. culmorum effectors. Or, lastly, chitin 

may be perceived and downstream defence responses activated, such as HR, 

but these might either be ineffective in blocking F. culmorum infection, or indeed 

facilitate infection as described previously for other pathogens with a 

necrotrophic infection phase (Govrin et al., 2006, Govrin and Levine, 2000).  

7.4.5 The role of scopoletin in preventing colonisation of the main stem 

Following inoculation of a wounded silique with F. culmorum spores, infection 

progresses through the silique and pedicel, but arrests at the pedicel-stem 

junction. This is associated with the accumulation of the coumarin compounds 

scopolin and scopoletin at the infection front, characterised by blue-green 

autofluorescence (Cuzick et al., 2008a)(Baker et al., unpublished data, Chapter 

4). Production of coumarins has also been associated with increased resistance 

to FEB in wheat and barley (Kumaraswamy et al., 2011, Ravensdale et al., 

2014).  

The role of these compounds in the prevention of disease progression into the 

main stem of Arabidopsis was therefore assessed using the scopoletin 

biosynthesis mutant f6’h1. There was no difference in disease progression 

along the pedicel between mutant and wild type plants, and infection did not 

visibly progress into the main stem in either genotype. This indicates that, 

despite its in vitro antifungal properties and the association of its presence with 

prevention of disease progression, scopoletin production is not solely 

responsible for the restriction of F. culmorum growth to the silique and pedicel. 

As seen in chapter 4, a number of other phytoalexins are induced by infection at 
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the stem-pedicel junction which could render any one defence molecule or 

pathway functionally redundant. 

It is also possible that the absence of scopoletin allows symptomless 

colonisation of the main stem vasculature, since only disease symptoms were 

assessed, or that stem infection would eventually occur in the f6’h1 mutant if the 

assay were run over a longer time period. However, confirmation of 

symptomless infection would require detailed microscopic analysis or sensitive 

molecular tests for fungal presence within the stem (as opposed to epiphytic 

growth). Running the infection time-course beyond the two week period would 

have introduced the complication of senescence of the investigated tissues due 

to the age of the plants required for silique wound point inoculations. 

7.4.6 The contribution of erecta to susceptibility in ecotype Ler-0 

F. culmorum floral infection is more severe and consistent in the Arabidopsis 

ecotype Ler-0 than it is in Col-0. This was attributed to the more compact floral 

morphology of Ler-0 owing to mutation in the erecta gene, but this was not 

formally assessed (Urban et al., 2002). Furthermore, a detached leaf assay 

revealed increased F. graminearum susceptibility in Ler-0 compared to Col-0, 

and the basis of this susceptibility was mapped to two QTLs unrelated to the 

ERECTA gene (Chen et al., 2006). The contribution of the erecta mutation to 

the floral susceptibility phenotype of Ler-0 compared to Col-0 was therefore 

assessed by examining the effect of erecta mutation in the Col-0 ecotype (Col-

er). The mutation resulted in consistent infection of the floral tissue, compared 

to wild type plants which displayed no disease symptoms in these experiments. 

This indicates that mutation of erecta contributes considerably to F. culmorum 

floral susceptibility, likely due to its effect on floral morphology. However, floral 

susceptibility in Col-er was slightly but significantly lower than that observed in 
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Ler-0 eds1-2, a genotype with equivalent susceptibility to wild type Ler-0. It 

could be that this is due to other polymorphisms between Col-0 and Ler-0 which 

contribute to Ler-0 susceptibility, such as those identified by Chen et al. It is 

possible that erecta facilitates initial colonisation by F. culmorum hyphae by 

compacting the inflorescence, but other genetic factors then facilitate 

development of this infection and constriction of the main stem below the 

inflorescence.  

Whether the mutant erecta allele in the Col-er line is the same as that in Ler-0 is 

not known. The exact identity of the Col-er accession used in this study cannot 

be traced. While both lines show equivalent floral morphology there could be 

subtle differences in the mutant alleles which result in the observed differences 

in susceptibility between Col-er and Ler-0, and this would need to be verified 

before attributing these differences to other loci.  

7.4.7 Conclusions 

This chapter has identified a number of Arabidopsis mutants which do not 

appear to have altered F. culmorum susceptibility. While this may indicate that 

the corresponding genes are not key to defence signalling against Fusarium, 

there are limitations with the floral pathosystem which may complicate 

interpretation of the results. Furthermore, functional redundancy between 

different defence responses always has implications for the suitability of using a 

reverse genetics approach to identify key components in any host-pathogen 

interaction.  

This study has confirmed the contribution of the erecta mutation to the 

susceptibility phenotype of Ler-0. However, further work would be required to 

determine whether this accounts fully for the differences in floral F. culmorum 
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susceptibility observed between ecotypes, particularly in the light of Ler-0 leaf 

susceptibility to F. graminearum being attributed to other QTLs. 
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8 Discussion 

8.1 Key findings 

This thesis has examined several aspects of the Arabidopsis-Fusarium 

interaction, from the metabolic fingerprint of Fusarium susceptible mutants to 

the similarities and differences between resistance to Fusarium and to other 

plant pathogens. The most important finding from these studies is arguably the 

reduction in Fusarium susceptibility afforded by accumulation of homoserine, 

either via exogenous application or mutation of the homoserine kinase DMR1. 

This highlights a possible common mechanism of susceptibility occurring in 

plants to Fusarium, a hemibiotrophic fungal pathogen, and the obligate biotroph 

oomycete and fungal pathogens H. arabidopsidis and O. neolycopersici. This 

mechanism could potentially be manipulated for crop protection purposes. In 

addition, the finding that mutation of ERECTA in Col-0 results in enhanced, 

consistent Fusarium susceptibility confirms the previous hypothesis by Urban et 

al. (2002), and could be exploited in a forward genetic screen (as discussed in 

section 8.6.3). It also complements other studies which have identified a role for 

ERECTA in plant defence against the bacterial wilt pathogen Ralstonia 

solanacearum, the hemibiotrophic fungal wilt Verticillium longisporum and the 

necrotrophic fungus Plectosphaerella cucumerina (Godiard et al., 2003, 

Haeffner et al., 2014, Llorente et al., 2005). 

Conversely, other findings presented in this thesis may be informative in 

highlighting distinct differences between pathosystems. The new reverse 

genetics insights presented in Chapter 7 highlight a number of genes and 

defence signalling processes which do not appear to be involved in resistance 

or susceptibility to Fusarium, namely peroxidase mediated ROS generation in 

the apoplast, and recruitment of the R gene pair RRS1 and RPS4.  
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A central theme in this thesis is the identity and function of the EDS11 locus, 

which is involved in resistance to F. culmorum and P. syringae species via an 

unidentified pathway(s). Metabolomic analysis of eds11 mutant plants reveals 

alterations in primary sugar metabolism and flavonoid accumulation, both in 

whole flowering plants and pedicels. While the precise genomic location of the 

eds11 mutation remains unknown, a mapping by sequencing approach has 

identified a manageable list of potential candidates, particularly the four genes 

on the short arm of chromosome four which contain non-synonymous SNPs in 

coding regions (Chapter 5). 

While care must be taken when interpreting the results of the metabolome 

analyses presented in Chapters 3 and 4 (see section 8.3), these studies have 

highlighted some interesting trends. For example, in addition to the defence 

associated secondary metabolites previously identified (Chapter 4, Figure 4.1) 

the study described in Chapter 4 revealed that many primary metabolites are 

induced in Arabidopsis pedicels infected with Fusarium. However, changes in 

abundance of some of these metabolites were highly dependent on genotype, 

with possible correlations with susceptibility found for some compounds, such 

as citrate and glutamine. In addition, several differences in metabolite induction 

were seen between ecotypes Col-0 and Ler-0, such as a less pronounced 

accumulation of proline betaine in Ler-0. Therefore, a comparative 

metabolomics analysis between genotypes Col-0, Col-er and Ler-0 in flowering 

plants and pedicels could be used to identify whether these differences in 

compound induction are due to the erecta mutation.    

In addition to differences in metabolite induction between genotypes, the 

analyses presented in Chapter 4 also included assessment of differences in 
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susceptibility between genotypes to F. culmorum pedicel-stem junction 

infection, and also to floral infection by P. olsonii. This has expanded the 

phenotypic profile of the various eds and other mutants or overexpression lines 

assessed in terms of their variant defence responses to a number of plant 

pathogens (Table 8.1).  
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Table 8.1: Defence response phenotypes of mutants and overexpression lines investigated in Chapters 3 and 4. wt = wild type phenotype, S = increased susceptibility, R = 

increased resistance, SAR+ = wild type systemic acquired resistance, SAR- = reduced systemic acquire resistance. ISR+ = wild type induced systemic resistance, ISR- = 
reduced induced systemic resistance. Information collated from Glazebrook et al. (1996), Volko et al. (1998), Rogers and Ausubel (1997), Ton et al. (2002), Cuzick et al. 
(2008a) Cuzick et al. (unpublished) and Chapter 4. 

Pathogens / treatments 

Genotypes 
Pseudomonas 

syringae leaves 

Erisyphe 
orontii 
leaves 

Xanthomonas  
campestris 

leaves 

Fusarium 
culmorum 

floral 

F. culmorum 
pedicel/upper 

stem 

Penicillium 
olsonii 
floral  

systemic 
acquired 

resistance 

induced 
systemic 

resistance 

Col-0 wt wt 
 

wt wt wt SAR+ ISR+ 
Col-0 npr1-1 S S S S wt S SAR- ISR+ 
Col-0 eds4 S 

  
wt wt S SAR+ ISR- 

Col-0 eds5-2 / sid1 S S S wt wt wt SAR- ISR+ 
Col-0 eds7 S 

  
S S S SAR+ ISR+ 

Col-0 eds8 S 
  

wt S wt SAR+ ISR- 

Col-0 eds10-1 S S S wt S wt SAR+ ISR- 
Col-0 eds11-1 S R wt S S wt SAR+ ISR+ 
Col-0 eds12-1 S wt wt S S S SAR- ISR+ 
Col-0 eds13-1 S S S wt S wt SAR+ ISR+ 
Col-0 ERF1 S 

  
wt wt wt 

  Col-0 ECP6 
   

S/wt S wt 
  Ler-0 wt 

  
wt wt wt 

  Ler-0 sgt1b wt 
  

R R wt 
  Ler-0 rar1 wt 

  
wt wt S 
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8.2 Is Arabidopsis a suitable model host for a cereal disease? 

Fusarium infection of Arabidopsis was originally put forward as a suitable model for 

FEB disease of wheat, due to the comparable disease progression and tissue 

specificity between the two plant hosts (Urban et al., 2002). Susceptibility is 

predominantly limited to the floral organs in both species, with infection of healthy 

leaf tissue requiring experimental manipulation (Chen et al., 2006, Makandar et al., 

2010, Daudi and Hammond-Kosack, unpublished). 

However, the long term usefulness of the model Arabidopsis-Fusarium pathosystem 

is potentially questionable, especially with the emergence of the model 

monocotyledonous plant species Brachypodium distachyon as an experimental host 

for FEB and other cereal diseases. While it has been argued that findings from 

Brachypodium might be more directly translatable than Arabidopsis into 

monocotyledonous crop species such as wheat and barley, this has not yet been 

demonstrated. Furthermore, in contrast with cereal crop hosts and Arabidopsis, non-

manipulated foliar tissue of Brachypodium is readily susceptible to Fusarium 

infection (Draper et al., 2001, Mur et al., 2004, Parker et al., 2008, Peraldi et al., 

2011, Routledge et al., 2004, Thole et al., 2012). 

One issue with using Arabidopsis as an FEB model is that several inoculation 

methods into different tissues have been used, sometimes yielding dissimilar results. 

Equivalent effects of various defence signalling mutations on F. graminearum 

susceptibility were observed between leaves and floral tissues (Makandar et al., 

2010). In contrast, the role of several Arabidopsis defence related genes does not 

appear to be equivalent in floral tissue following spray inoculation and pedicel/upper 

stem tissues following single silique wound inoculation with F. culmorum, as shown 

in Table 8.1. It is therefore not clear which inoculation method or tissue type yields 
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results most analogous to FEB in cereals. However, results from both seedling and 

floral assays have been shown to be translatable to wheat (Makandar et al., 2006, 

Schreiber et al., 2011).  

A conserved pattern is the role of NPR1 and its wheat orthologues in defence 

signalling against Fusarium; Mutation of npr1 enhances leaf and floral susceptibility 

in Arabidopsis, transgenic expression of Arabidopsis NPR1 in wheat increases FEB 

resistance, and increased expression of wheat orthologues of NPR1 is associated 

with naturally occurring resistance (Yang et al., 2013, Cuzick et al., 2008a, Makandar 

et al., 2006, Makandar et al., 2010, Makandar et al., 2011). An obvious exception to 

this pattern is the wild type level of pedicel-stem junction infection seen in npr1 

mutants in Chapter 4, following single silique wound point inoculations. This raises 

the question of whether this assay, and therefore the findings presented in Chapter 

4, is representative of FEB disease in wheat. However, the susceptibility of eds7, 

eds11 and eds12, and resistance of sgt1b, seen in both floral and pedicel infection 

assays suggests shared components in the defence response against Fusarium in 

both these tissue types. Therefore, the apparent lack of a function of NPR1 in 

pedicel-stem junction resistance is intriguing and warrants further investigation. It 

would also be interesting to see whether the SA binding proteins NPR3 and NPR4 

have a role in pedicel-stem junction resistance (Fu et al., 2012, Yan and Dong, 2014, 

Moreau et al., 2012). 

As discussed in Section 8.4, another limitation of the pathosystem is that, under the 

conditions used in these studies, consistent Arabidopsis floral susceptibility following 

spray inoculation is dependent on the erecta mutation. The apical inflorescence of 

wild type ERECTA genotypes is not readily susceptible to Fusarium, resulting in low 

or inconsistent infection levels. It would be interesting to assess the effect of 
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silencing of the two known wheat ERECTA orthologues on FEB susceptibility (Huang 

et al., 2013).  

Broadly speaking, defence responses against Fusarium floral infection in 

Arabidopsis and wheat are comparable. Both species are dependent on components 

of SA and JA signalling, but with a potential bias towards SA, at least in the case of 

F. graminearum (Makandar et al., 2011, Makandar et al., 2010). This may be linked 

to the symptomless infection phase observed in wheat (Brown et al., 2010), although 

a comparable phase has not been observed in Arabidopsis. Synthesis of 

phenylpropanoid derived secondary metabolites such as cinnamic acid and 

scopoletin also appears to be associated with limitation of infection spread in both 

species, along with maize and barley, although susceptibility was found not to be 

visibly enhanced in the Arabidopsis scopoletin biosynthesis mutant f6’h1 (Chapter 7). 

Furthermore, in both species, host susceptibility is predominantly confined to the 

floral tissues. 

It is unclear whether the findings presented in this thesis represent further similarities 

between Arabidopsis and wheat. The metabolites induced by pedicel infection as 

described in Chapter 4 do not appear to correlate strongly with metabolites induced 

during wheat infection (Gunnaiah et al., 2012, Paranidharan et al., 2008, 

Hamzehzarghani et al., 2005). It is also still not known whether wheat has an EDS11 

ortholog, or whether silencing of the wheat homoserine kinase gene has equivalent 

effects to those seen for DMR1 in Arabidopsis. 

However, on balance the Arabidopsis-Fusarium is arguably still a useful working 

model for understanding FEB disease in wheat, at least while the wheat genome is 

refined and methods of genetic manipulation optimised. For example a forward 
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genetic screen of Arabidopsis might reveal additional susceptibility genes with 

orthologues in wheat, as described in section 8.6.3.  

Furthermore, unsuitable host species can in themselves provide useful starting 

points from which to study the determinants of non-host resistance (the mechanism 

by which all variants of a plant species are resistant to all variants of a pathogen 

species). For example, screens for Arabidopsis mutants which are susceptible to the 

cereal powdery mildews Blumeria graminis f. sp. tritici and B. graminis f. sp. hordei 

has identified several genes required for non-host resistance to these pathogens 

(Stein et al., 2006, Lipka et al., 2005). The leaf tissues of both Arabidopsis and 

wheat can be argued as non-host for Fusarium.  Similar screens to those used for 

cereal powdery mildews could therefore be used to elucidate the basis of non-host 

resistance to Fusarium graminearum and F. culmorum in Arabidopsis leaves, 

potentially identifying the determinants of tissue specificity during FEB infection of 

wheat. 

8.3 Use of metabolomics to study plant-pathogen interactions 

This thesis incorporates two large scale metabolomics datasets generated by MeT-

RO using tissue samples generated and prepared by the author, as presented in 

Chapters 3 and 4. These datasets contain large amounts of information and highlight 

compounds and pathways that might have a role in determining the outcome of the 

Fusarium-Arabidopsis interaction. However, drawing conclusions from these 

datasets is difficult for a number of reasons. For example, many of the compounds 

identified in these analyses are of unknown identity. Significant expertise and further 

work will be required to identify them. Linked to this is the issue that expertise in 

metabolomic analyses is also required to interpret and refine raw data relating to 

known compounds. This can lead to substantial bottlenecks in the knowledge 
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production pipeline, as seen in Chapter 4. Furthermore, the association between a 

compound and a process or plant phenotype does not necessarily represent 

causality. For the majority of the metabolites identified in Chapter 4, there was no 

clear relationship between the degree of infection incidence and changes in 

compound abundance. The previously described wheat metabolome analyses 

compared resistant and susceptible lines and/or linked to transcriptome analyses 

(Gunnaiah et al., 2012, Paranidharan et al., 2008, Hamzehzarghani et al., 2005). 

Even so, it is not clear whether compounds associated with resistance contribute to 

the observed phenotype.  

In addition, successful interpretation of results from analyses such as those 

presented in this thesis requires substantial knowledge of plant metabolic processes 

and/or the ability to compare and contrast datasets generated in different studies. 

This requires that studies be comparable, highlighting a need for international 

community standardisation of both methods and data annotation and interpretation, 

as well as statistical analysis (Saito and Matsuda, 2010). 

8.4 Experimental difficulties encountered and possible solutions 

There were a number of experimental challenges encountered during the 

development of this thesis. The principal difficulty was the lack of floral infection 

generally observed when studying genotypes in the Col-0 background. Those 

mutants which did show enhanced susceptibility generally still had variable infection 

levels. This prevented the intended metabolome analysis comparing healthy and 

Fusarium infection floral tissue in a collection of Col-0 genotypes, as outlined in 

Chapter 4. Due to this difficulty, subsequent selection of mutants to screen for 

altered Fusarium susceptibility was limited to non Col-0 genotypes (Chapters 6 and 

7). Indeed, clear and consistent results were chiefly obtained for genotypes in the 
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Ler-0 background, such as the dmr1 mutants. Since most existing Arabidopsis 

mutant lines have been generated in the Col-0 background, this limited the extent to 

which various genes and defence signalling pathways could be explored using a 

reverse genetics approach. However, as described in Section 8.6.3, there is the 

potential for a forward genetic screen via mutagenesis of an erecta line.  

A principal aim of the project was to map the EDS11 locus to a genomic location. 

However, this was made difficult by high levels of variability in the susceptibility 

phenotype of mutant plants. Susceptibility to F. culmorum floral infection sometimes 

overlapped with wild type plants. In addition, P. syringae disease symptoms were not 

consistently different between eds11 and wild type plants, though bacterial counts 

were generally higher in eds11. F. culmorum susceptibility was used to screen the F2 

population, but this may have resulted in contamination of the mapping population 

with wild type plants and, furthermore, it is not clear whether the mutation conferring 

F. culmorum susceptibility is the same mutation conferring P. syringae susceptibility. 

In hindsight, it would have been beneficial to visit the laboratory of a collaborator who 

already has optimised conditions and protocols for identifying discriminatory P. 

syringae susceptibility phenotypes. This would potentially have allowed for the rapid 

identification of an inoculation method which results in a clearly visible P. syringae 

susceptibility phenotype in eds11 plants. Parallel screens for both P. syringae and F. 

culmorum susceptibility could then have been done.  

8.5 The working model 

Prior to the commencement of this project in 2010, knowledge of defence against 

Fusarium in Arabidopsis floral tissue was limited to the likely contributions of the SA, 

JA and ET signally pathways to resistance and/or susceptibility, the importance of 

NPR1 and the unmapped genes EDS11 and ESA1 for resistance, as well as the 
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contribution of SGT1b to susceptibility (Cuzick et al., 2008a, Cuzick et al., 2009, 

Makandar et al., 2010, Van Hemelrijck et al., 2006). Other loci such as the GLK1 

regulon had been implicated in leaf resistance (Savitch et al., 2007). 

The studies presented in this thesis, combined with other research which has been 

published in the same time period, create a more complex picture of the genes, 

proteins, compounds, pathways and processes which influence the interaction 

outcome, some of which are analogous to findings from wheat studies. These 

findings have been incorporated into a new working model, shown in Figure 8.1. This 

model highlights possible differences between defence components acting in 

Arabidopsis floral and new silique tissue following spray inoculation, and those acting 

in the pedicel and pedicel stem junction following silique point inoculations. The role 

of NPR1 in floral, but not pedicel defence, combined with recruitment of genes 

associated with JA mediated defence signalling in the pedicel, suggests there may 

be a biotrophic phase of infection occurring in flowers which is not present in the 

pedicel. The floral infection data certainly suggests that the defence response to 

Fusarium has features in common with defence against both biotrophic and 

necrotrophic pathogens. There is currently no evidence of a symptomless phase of 

infection in either tissue type. However, there is an increasing body of evidence that 

even pathogens previously defined as ‘classical’ necrotrophs, such as S. 

sclerotiorum and B. cinerea, may have an asymptomatic growth phase, or grow 

endophytically on some plant species without causing disease, via complex 

interactions with the host immune system (Williams et al., 2011, van Kan et al., 

2014). It would therefore seem likely that Fusarium might have a symptomless 

growth phase in Arabidopsis, and this warrants further investigation. 
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Similarities between Arabidopsis and wheat include the importance of NPR1 and its 

wheat orthologues, (Yang et al., 2013, Makandar et al., 2006, Makandar et al., 2010, 

Cuzick et al., 2008a), the likely role of SA signalling (Makandar et al., 2011, Ding et 

al., 2011), the accumulation of cinnamic acids (Gunnaiah et al., 2012, Paranidharan 

et al., 2008, Hamzehzarghani et al., 2005) and a supporting role for JA signalling 

(Ding et al., 2011, Makandar et al., 2010). The role of ET signalling is still not clear in 

either species. There are also similarities in the division between host and non-host 

tissue in each species. Infection occurs via floral tissues at anthesis in both species, 

and is limited to the spikelets and rachis in wheat, and to the flowers/siliques and 

adjoining pedicel in Arabidopsis. This suggests that the pedicel tissue may be 

analogous to the rachis, with further disease progression limited at the main stem.   

In addition to using knockout mutants to highlight existing components of resistance 

to infection (solid lines), several studies by other researchers have highlighted 

potential transgenic approaches to increasing resistance (dashed lines), such as 

overexpression of CWDE inhibiting proteins and thionins (Asano et al., 2013, Ferrari 

et al., 2012). Arabidopsis has also been used to identify chemistries acting against 

Fusarium (Schreiber et al., 2011). The potential to exploit these findings for 

enhancement of FEB resistance in wheat is discussed in Section 8.7. 

In addition to the possible existence of a symptomless phase, several other aspects 

of the Arabidopsis-Fusarium interaction are still unclear. These include the 

mechanism by which SGT1b contributes to susceptibility. Since SGT1b is known to 

be involved in R gene mediated signalling, it could be that Fusarium susceptibility is 

dependent on the activity of an R-like protein, as seen for the necrotrophic fungi P. 

nodorum  and C. victoriae (Lorang et al., 2007). Mutation of SGT1b might block this 

activity. However, it is not clear why mutants of RAR1, which forms a cytosolic 
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defence signalling complex with SGT1b and HSP90, do not show the equivalent 

susceptibility phenotype, or why resistance is limited to the bud tissue (Azevedo et 

al., 2002, Cuzick et al., 2009). Extending the previous hypothesis, it is possible that 

the targeted R-like protein might only be expressed in the buds (see section 8.6.4). 

The identities of the majority of the EDS loci are also still unknown. 

RNA sequencing has recently been used to study transcriptional changes in F. 

graminearum during the symptomless growth phase and symptomatic disease 

development in wheat ears (Brown, 2011).This dataset could also be used to identify 

differences in transcription of wheat genes during these two phases of infection, 

compared to uninfected tissue. This may provide additional information on defence 

signalling in wheat during these two contrasting infection phases.  RNA sequencing 

of Arabidopsis bud tissue between inoculated and non-inoculated Ler-0, Ler-0 sgtb 

and Ler-0 rar1 might also be useful in understanding why these mutants do not show 

equivalent phenotypes, despite the corresponding genes being known to have a 

coupled role.  

Figure 8.1 represents those studies where genes with a role in the Arabidopsis-

Fusarium interaction have been identified based on an altered phenotype in mutant 

plants. However, several mutants have been screened which do not show significant 

alterations in F. culmorum susceptibility, namely those presented in Chapter 7 and 

reported by Cuzick et al. (2008 and 2009). These mutants are summarised in Table 

8.2. For example, three ET signalling mutants were found by Cuzick et al. (2008) to 

have wild type F. culmorum susceptibility levels. This adds to the lack of certainty 

over the role of ET signalling in defence against Fusarium.   
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Table 8.2: Arabidopsis mutant and transgenic lines which do not show altered floral or silique susceptibility to F. 
culmorum infection. 

Genotype Gene function Reference 

Col-0 35S:ERF1 JA/ET signalling Cuzick et al. (2008) 

Col-0 eto1 ET regulation Cuzick et al. (2008) 

Col-0 etr1 ET signalling Cuzick et al. (2008) 

Col-0 f6'h1 Scopoletin biosynthesis Chapter 7 

Ler-0 eds1 Basal and R gene mediated defence signalling Cuzick et al. (2009) 

Ler-0 lms1 Resistance to Leptosphaeria maculans Cuzick et al. (2009) 

Ler-0 rar1 R gene signalling Cuzick et al. (2009) 

Ws-0 prx33 Peroxidase mediated ROS production Chapter 7 

Ws-0 prx34 Peroxidase mediated ROS production Chapter 7 

Ws-0 rps4 
Ws-0 rrs1 

R genes effective against R. solanacearum,  
P. syringae and C. higginsianum 

Chapter 7 

Ws-2 oxi1 Oxidative burst response Chapter 7 

 

The current working model focuses exclusively on the defence response of 

Arabidopsis to Fusarium infection compared to wheat. However, the fungal virulence 

mechanisms also appear to differ during infection of the two plant species. For 

example, it has previously been shown that DON mycotoxin is produced by the 

fungus during Arabidopsis infection, but is not required for full virulence on flowers, 

which contrasts with the requirement for DON in Fusarium colonisation of wheat ears 

(Cuzick et al., 2008b, Urban et al., 2002). However, DON may still be eliciting 

defence responses in Arabidopsis, which could be analysed by comparing 

transcriptome and/or metabolome data between plants infected by wild type 

Fusarium and a DON biosynthesis mutant. 
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Figure 8.1: The 2014-2015 working model: Proteins/Genes (pale blue), compounds (purple) pathways and processes (dark blue) associated with susceptibility (red lines) 

and resistance (green arrows) to Fusarium infection in Arabidopsis buds, flowers, siliques and pedicels (left) , compared to plant responses to FEB disease in wheat (right) . 
Solid lines – existing mechanisms, dashed lines – novel mechanisms resulting from gene silencing or overexpression. Note that wheat data relates exclusively to F. 
graminearum, while Arabidopsis data predominantly relates to F. culmorum. Arabidopsis leaf  data is not presented here. 
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8.6 Further work 

There are many opportunities for further work arising from and/or complimenting 

the findings presented in this thesis. These include novel genetic screens and 

translational research in monocotyledonous hosts of Fusarium, as outlined 

below. 

8.6.1 The future of EDS11 

As explained in Chapter 5, it has not yet been possible to pinpoint the genomic 

location of EDS11. However, the list of candidates is modest and will hopefully 

soon be narrowed down to a single gene, assuming that the susceptibility 

phenotype results from a single mutation. This will allow analysis of EDS11 

expression in distinct Arabidopsis tissues and the effect of Fusarium infection 

on expression, as well as the study of the interaction between EDS11 and other 

proteins. A transgenic Ler-0 line overexpressing EDS11 could also be 

generated, to assess whether this would lead to increased resistance in this 

susceptible ecotype. Likewise, a reporter line expressing a GFP:EDS11 fusion 

construct could be used to study subcellular localisation. 

The potential translation of findings pertaining to EDS11 into crop species would 

depend whether the gene is ubiquitous in higher plants or limited to Arabidopsis 

and related species, and knowledge of this could be achieved by a search for 

orthologues in wheat and other Fusarium hosts. If a wheat ortholog exists, 

transient silencing could be used to study its role in FEB resistance. 

Alternatively, if the gene is absent from wheat, the susceptibility of transgenic 

wheat lines constitutively expressing Arabidopsis EDS11 could be assessed, as 

was previously done for Arabidopsis NPR1 (Makandar et al., 2006).  
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8.6.2 The effect of homoserine accumulation on pathogenesis  

As shown in Chapter 6, mutation of the Arabidopsis homoserine kinase gene 

DMR1 leads to accumulation of homoserine in siliques and resistance to 

Fusarium, along with the mildew pathogens H. arabidopsidis and O. 

neolycopersici. Senescence is also delayed in mutant plants (Huibers et al., 

2013, van Damme et al., 2009, Brewer et al., 2014). Exogenous application of 

homoserine onto wheat ears did not result in a substantial reduction in FEB 

disease symptoms. However, transient silencing of the wheat DMR1 ortholog is 

underway, and may result in a more significant reduction in FEB either alone or 

combined with exogenous homoserine application. Furthermore, it will be 

interesting to see whether homoserine kinase silenced wheat plants show the 

reduced size or delayed senescence phenotypes observed in Arabidopsis dmr1 

plants. The utility of reduced plant size as a phenotype would depend on the 

nature of the reduction – while reduced grain size would be undesirable, 

reduced stature, pedicel length, leaf length or tillering could be beneficial in 

wheat breeding programmes. Similarly, delayed senescence might translate 

into a longer grain filling period. 

The mechanism by which chloroplastic homoserine accumulation confers 

resistance to three distinct pathogens still remains to be determined (van 

Damme et al., 2009, Huibers et al., 2013, Brewer et al., 2014). Future research 

might investigate the effect of homoserine application on Fusarium gene 

expression in vitro, as well as on Arabidopsis gene expression. Furthermore, 

since mutation of homoserine kinase reduces viability and virulence of human 

pathogens, it would be interesting to explore the effect of silencing the Fusarium 

homoserine kinase gene on fungal growth and pathogenicity (Kingsbury and 
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McCusker, 2010a, Kingsbury and McCusker, 2010b, Kingsbury and McCusker, 

2008).  

8.6.3 A forward genetic screen for enhanced resistance 

The mutants screened for altered Fusarium susceptibility in this and similar 

studies were either isolated from forward genetic screens for altered resistance 

to other pathogens, or from reverse genetics analysis of genes involved in 

specific aspects of plant defence. A forward genetic screen would allow for 

isolation of additional mutants with significantly altered resistance to Fusarium 

floral or silique infection. Since mutation of ERECTA results in consistent and 

reliable floral infection levels in both Columbia and Landsberg ecotypes, it 

would be most advantageous to carry out such a screen in an erecta 

background. Indeed, this background has already yielded two mutant 

genotypes, dmr1 and sgt1b, which have reduced resistance to Fusarium in 

reproductive tissues (Brewer et al., 2014, Cuzick et al., 2009). A screen for 

resistant mutants in an EMS mutagenised Ler-0 population would help to 

identify more genes which contribute to Fusarium susceptibility, and potentially 

susceptibility to other pathogens. Since a Col-0 erecta (Col-er) line is also 

available, isolated mutants could be outcrossed to this genotype and mapped in 

the F2 using a conventional marker based approach or whole genome re-

sequencing (Schneeberger et al., 2009, Konieczny and Ausubel, 1993, Neff et 

al., 1998). Alternatively, mutations could be mapped by backcrossing to Ler-0, 

using the pipeline demonstrated in Chapter 5. Doing forward genetic screens in 

both backgrounds could also be highly informative.   
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8.6.4 Analysis of transcriptome data from distinct Arabidopsis tissue 

types 

Altered susceptibility phenotypes in many of the mutants assessed appears to 

be limited to one or two tissue types. For example, sgt1b has enhanced bud 

resistance and a lower incidence of stem-pedicel junction infection compared to 

wild-type plants, but shows wild type infection of new siliques. Mutants npr1 and 

eds11 both show enhanced floral susceptibility, but infection does not extend 

into the main stem and become systemic. These disparities could be due to the 

effects of resistance or susceptibility genes acting in a tissue specific manner. 

Analyses of transcription patterns for identified R genes and defence related 

genes in bud, silique and pedicel tissues could be used to investigate tissue 

specific gene expression patterns which might account for restriction of 

observed mutant phenotypes to specific tissues. This could be done using the 

Genevestigator tool presented in Chapter 6 and by Cuzick et al. (2008a), or the 

expression visualisation tool available via the new Arabidopsis Information 

Portal (Baerenfaller et al., 2012, Krishnakumar et al., 2014). This might highlight 

potential interacting partners contributing to disease or susceptibility. 

8.7 Current and future perspectives for FEB management 

As described in Chapter 1, the control strategies for FEB on wheat are currently 

very limited. Effective use of fungicides is a major challenge. This is due to 

intrinsic and developing resistance, along with the need for accurate spray 

timing and application which can be hard to predict. Furthermore, some 

fungicides have been associated with elevated DON production, there are few 

new antifungal chemistries being developed, and those already in use may face 

bans under new EU legislation. With FEB disease incidence likely to increase in 

the future due to climate change associated factors, along with increased maize 
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cultivation in predominantly wheat growing regions of the UK and elsewhere, 

improved control measures are needed (West et al., 2012).  

These measures include improving accuracy of existing risk assessments, by 

combining advanced forecasting models with the use of biosensors to detect 

regions with high spore loads (Shah et al., 2013, Moshou et al., 2011). 

Monitoring could be used to guide crop protection decisions in the field. In 

addition, novel strategies for detecting Fusarium infection in grains pre- and 

post-harvest, such as screens for associated plant and fungal metabolites, 

could be used to reduce the risks of food chain contamination and the costs 

associated with DON mycotoxin testing. 

There is also the potential for improved chemical control, particularly that which 

enhances plant resistance rather than targeting the fungus. For example, there 

could be applications for the resistance inducing compounds found in the high 

throughput screen carried out by Schreiber et al. (2011). The potential 

applications of homoserine to improve resistance presented in this thesis also 

warrant further exploration.  

8.7.1 Genetic improvement of FEB resistance 

Targeted genetic improvement of wheat has historically presented a challenge 

due to the large, polyploid nature of the genome and limitations of 

transformation techniques. However, the gene coding portions of the wheat 

genome are now well sequenced, and novel precision genome editing 

techniques could be used to modify multiple copies of genes in order to 

enhance disease resistance. Proof of this concept has recently been shown by  

Wang et al. (2014b), who induced targeted mutations in all alleles of the wheat 

MLO (mildew resistance locus), resulting in broad spectrum powdery mildew 
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resistance. If transient VIGS based disruption of the wheat DMR1 or SGT1b 

orthologues is shown to enhance FEB resistance in wheat, these loci could also 

be durably modified using a similar genome editing approach.  

Studies in Arabidopsis and wheat have also highlighted other potential 

mechanisms of improving FEB resistance via transgenic approaches. As 

previously described, these include overexpression of native or heterologous 

genes encoding defence related metabolites and proteins inhibiting fungal 

virulence mechanisms such as cell wall degradation, along with RNA 

interference constructs which target Fusarium genes (Koch et al., 2012, Asano 

et al., 2013, Kaur et al., 2012, Ferrari et al., 2012, Koch et al., 2013). However, 

it is not known whether these approaches would provide durable resistance in 

the field, or what the impacts on yield or quality might be. Furthermore, the 

adoption of genetic modification (GM) based crop improvement approaches by 

farmers and consumers depends highly on public attitudes towards GM along 

with national and international regulation policies (Border, 2014, Government 

Office for Science, 2011). However, there is some evidence that existing 

commercially grown transgenic  maize expressing the insecticidal Bacillus 

thuringiensis (Bt) toxin supports lower levels of Fusarium mycotoxin 

contamination than non GM maize, supporting the use of GM crops for FEB 

control (Ostry et al., 2010). 

8.7.2 Broad spectrum resistance strategies and limitations 

While Fusarium is an incredibly important global pathogen of small grain 

cereals, it is one of many. Development and implementation of broad spectrum 

resistance strategies against multiple diseases and pathogens, and potentially 

other biotic and abiotic stresses is therefore desirable. 
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However, many of the ‘broad spectrum’ resistance loci identified are specific to 

pathogens with shared infection lifestyles, such as biotrophic rusts and mildews 

(Campbell et al., 2012, Wang et al., 2014b, Spielmeyer et al., 2005), or 

hemibiotrophic/necrotrophic pathogens such as Z. tritici, P. stagonospora and 

Fusarium (Miedaner et al., 2012). Indeed, as previously described, defence 

against pathogens of contrasting lifestyles may require opposing defence 

pathways. This is evidenced by the recent finding that the MLO allele conferring 

resistance to biotrophic cereal pathogens in barley is required for susceptibility 

to the emerging necrotrophic leaf pathogen Ramularia collo-cygni (McGrann et 

al., 2014). This may have implications for the use of mutated MLO loci in wheat 

(Wang et al., 2014b). Even where two distinct diseases are caused by one 

pathogen, requirements for resistance may differ, as demonstrated by the 

contrasting effects of Arabidopsis NPR1 expression on FEB and Fusarium 

seedling blight in wheat (Gao et al., 2013). 

However, while fungal pathogens of cereals may be divided by infection 

lifestyle, many may still share similar weaknesses which can be exploited for 

disease control. For example, as demonstrated in this thesis, homoserine 

accumulation induces resistance not only to obligate biotrophs but also to the 

hemibiotroph Fusarium. Likewise, HIGS might prove useful for silencing 

conserved genes required for survival of multiple fungal pathogens with 

divergent lifestyles. There is also the possibility of using non-pathogenic 

organisms as biocontrol agents which afford protection against multiple 

pathogen types, either via antagonism in the soil or on the epidermis, or by 

inducing plant defences. One such organism is Piriformospora indica (NCBI 

taxonomy ID 1109443), which has been shown to enhance resistance to 

multiple fungal pathogens of cereal crops (Waller et al., 2005). 
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8.8 Conclusions 

The requirement for global food security is a multifaceted problem which no 

single solution or technology is likely to overcome. While crop diseases pose a 

major threat to meeting the increasing global demand for food, issues such as 

distribution and domestic wastage also need to be addressed, requiring overall 

improved governance of the global food system (Godfray et al., 2010, 

Government Office for Science, 2011). Furthermore, while it may be possible to 

find new ways to control existing pathogens in their current host ranges, it is to 

be expected that new pathogens will continue to emerge and spread (Fisher et 

al., 2012, Bebber et al., 2014). In addition, the durability of control strategies is 

likely to always be threatened by evolution of pathogens to overcome them.  

However, in order to meet the challenge of sustainably feeding the world’s 

growing population, while meeting nutritional requirements and cultural 

demands, agricultural processes need to be intensified (The Royal Society, 

2009). This sustainable intensification will only be possible if the potential yields 

of crops can be adequately protected against pests and pathogens, without the 

need for energy-intensive chemical inputs which may also cause environmental 

pollution. This must also be done in the face of volatile and changing climate 

patterns, which could hamper forecasting of outbreaks of weather dependent 

diseases such as FEB. Therefore while no magic bullet exists for sustainable 

intensification, novel crop protection strategies have a key part to play, and the 

findings presented in this thesis may be a useful piece in the (albeit rather large) 

puzzle that is global food security. 
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Appendices 

Appendix 1:  Arabidopsis lines used and sources of seed 

 

Name Gene locus Type Source Background 

35S:ERF1 AT3G23240 transgene NASC  line N6142 Col-0 

BGL2:GUS AT3G57260 transgene Xinnian Dong Col-0 

Col-0 N/A N/A Jing Col-0 

dmr1-1 AT2G17265 EMS Guido van den Ackervekken Ler-0 eds1-2 

dmr1-2 AT2G17265 EMS Guido van den Ackervekken Ler-0 eds1-2 

dmr1-3 AT2G17265 EMS Guido van den Ackervekken Ler-0 eds1-2 

dmr1-4 AT2G17265 EMS Guido van den Ackervekken Ler-0 eds1-2 

dmr1-6 AT2G17265 EMS Guido van den Ackervekken Ler-0 eds1-2 

dmr5 unknown EMS Guido van den Ackervekken Ler-0 eds1-2 

dmr6 AT5G24530 EMS Guido van den Ackervekken Ler-0 eds1-2 

ECP6 N/A transgene Bart Thomma Col-0 

ECP6 N/A transgene Bart Thomma Ler-0 

eds10 unknown EMS Jane Glazebrook Col-0 BGL2:GUS 

eds11 unknown EMS Jane Glazebrook Col-0 BGL2:GUS 

eds12 unknown EMS Jane Glazebrook Col-0 BGL2:GUS 

eds1-2 AT3G48090 fast neutron Guido van den Ackervekken Ler-0 

eds13 unknown EMS Jane Glazebrook Col-0 BGL2:GUS 

eds4 unknown EMS Jane Glazebrook Col-0 

eds5-1 (sid1) AT4G39030 EMS Jane Glazebrook Col-0 

eds7 unknown EMS Jane Glazebrook Col-0 

eds8 unknown EMS Jane Glazebrook Col-0 fah1-2 

erecta AT2G26330 ? Guido van den Ackervekken Col-0 

f6'h1 At3g13610 T-DNA Bun Shimizu Col-0 

Ler-0 N/A N/A Graham McGrann Ler-0 

npr1-1 AT1G64280 EMS Xinnian Dong Col-0 BGL2:GUS 

oxi1 AT3G25250   t-DNA NASC line N9423 Ws-2 

prx33 AT3G49110 t-DNA Arslan Daudi Ws-0 

prx33:prx34 AT3G49120 t-DNA Arslan Daudi Ws-0 

rar1 AT5G51700 fast neutron Jane Parker Ler-0 

rps4 AT5G45250 t-DNA Yoshihiru Narusaka Ws-0 

rrs1 AT5G45260 t-DNA Yoshihiru Narusaka Ws-0 

sgt1b AT4G11260 EMS Jane Parker Ler-0 

Ws-0 N/A N/A Yoshihiru Narusaka Ws-0 

Ws-2 N/A N/A NASC line N1601 Ws-2 
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Appendix 2: Excerpt from the unrefined SHOREmap SNP call 

 

Output from the SHOREmap BACKCROSS function. 

    
1 4556877 G T 9 1.00 144 NEWSNP intergenic 

1 5819658 C A 17 1.00 222 NEWSNP intergenic 

1 7960976 T A 43 0.30 62 NEWSNP intergenic 

1 9958155 T A 50 1.00 222 NEWSNP intergenic 

1 11148735 G T 37 1.00 120 NEWSNP intergenic 

1 11719168 C A 116 1.00 222 NEWSNP intronic/noncoding

 AT1G32450.1 11719167 

1 11895819 G T 35 1.00 220 NEWSNP intergenic 

1 12823594 A G 48 0.36 75 NEWSNP intergenic 

1 13728131 C T 45 0.48 225 NEWSNP intergenic 

1 13841889 C A 31 0.26 112 NEWSNP intergenic 

1 13841896 G A 32 0.27 122 NEWSNP intergenic 

1 14237613 A G 30 0.25 144 NEWSNP intergenic 

1 14237622 C T 29 0.24 124 NEWSNP intergenic 

1 14238773 A T 83 0.45 106 NEWSNP intergenic 

1 14309238 G T 23 0.33 112 NEWSNP intergenic 

1 14309242 G A 23 0.33 111 NEWSNP intergenic 

1 14309249 T A 21 0.32 119 NEWSNP intergenic 

1 14309586 C A 15 0.27 162 NEWSNP intergenic 

1 14309591 T C 16 0.28 152 NEWSNP intergenic 

1 14309592 T C 16 0.28 147 NEWSNP intergenic 

1 14453537 A C 26 0.27 67 NEWSNP intergenic 

1 14453557 C G 25 0.28 72 NEWSNP intergenic 

1 14453734 C T 26 0.26 80 NEWSNP intergenic 

1 14508824 C A 26 0.23 71 NEWSNP intergenic 

1 14508877 T G 23 0.23 118 NEWSNP intergenic 

1 14508890 T C 18 0.20 100 NEWSNP intergenic 

1 14509027 C T 29 0.25 125 NEWSNP intergenic 

1 14509123 T A 20 1.00 209 NEWSNP intergenic 
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1 14509131 C G 14 1.00 172 NEWSNP intergenic 

1 14509140 T C 12 1.00 158 NEWSNP intergenic 

1 14509657 T G 21 0.30 132 NEWSNP intergenic 

1 14510406 C A 40 0.27 203 NEWSNP intergenic 

1 14545583 T C 11 0.65 181 NEWSNP intergenic 

1 14545584 T C 11 0.65 181 NEWSNP intergenic 

1 14545588 G T 11 0.61 176 NEWSNP intergenic 

1 14545589 C T 11 0.61 174 NEWSNP intergenic 

1 14545590 C G 11 0.61 180 NEWSNP intergenic 

1 14545592 A G 11 0.61 179 NEWSNP intergenic 

1 14545598 G A 11 0.61 175 NEWSNP intergenic 

1 14545610 G C 11 0.61 171 NEWSNP intergenic 

1 14592401 G A 36 0.23 144 NEWSNP intergenic 

1 14592492 C A 82 0.37 225 NEWSNP intergenic 

1 14592654 G A 36 0.23 131 NEWSNP intergenic 

1 14607910 A T 15 1.00 222 NEWSNP intergenic 

1 14607913 G A 15 1.00 221 NEWSNP intergenic 

1 14608172 A G 13 1.00 135 NEWSNP intergenic 

1 14608180 A T 11 1.00 114 NEWSNP intergenic 

1 14608181 T C 10 0.91 97 NEWSNP intergenic 

1 14608281 C G 17 1.00 149 NEWSNP intergenic 

1 14608287 T A 21 1.00 160 NEWSNP intergenic 

1 14608339 C A 21 1.00 157 NEWSNP intergenic 

1 14608366 T C 12 1.00 126 NEWSNP intergenic 

1 14609970 C A 34 0.30 140 NEWSNP intergenic 

1 14609971 C T 34 0.30 141 NEWSNP intergenic 

1 14610148 C T 29 0.23 135 NEWSNP intergenic 

1 14610401 A C 30 1.00 222 NEWSNP intergenic 

1 14610457 C A 7 1.00 92 NEWSNP intergenic 

1 14610472 C A 20 0.95 150 NEWSNP intergenic 

1 14656926 G A 16 1.00 78 NEWSNP intergenic 

1 14657448 A T 9 1.00 137 NEWSNP intergenic 

1 14660225 A G 18 0.95 126 NEWSNP intergenic 

1 14660244 G A 12 0.92 103 NEWSNP intergenic 

1 14660245 C T 12 0.92 103 NEWSNP intergenic 

1 14685504 C G 15 0.25 60 NEWSNP intergenic 

1 14685550 T G 14 0.26 71 NEWSNP intergenic 

1 14691955 A T 20 0.29 96 NEWSNP intergenic 

1 14722038 T C 164 0.61 225 NEWSNP intergenic 

1 14722181 G A 48 0.45 117 NEWSNP intergenic 

1 14722182 C T 48 0.46 117 NEWSNP intergenic 

1 14722183 A T 48 0.45 115 NEWSNP intergenic 

1 14722201 T C 35 0.36 96 NEWSNP intergenic 

1 14922428 T A 24 0.22 137 NEWSNP CDS AT1G40083.1

 14922427 517 1 Nonsyn T S 

1 14922454 T C 23 0.22 113 NEWSNP CDS AT1G40083.1

 14922453 491 2 Nonsyn Y C 

1 14922478 C T 28 0.25 133 NEWSNP CDS AT1G40083.1

 14922477 467 2 Nonsyn R Q 

1 14922486 G A 29 0.28 130 NEWSNP CDS AT1G40083.1

 14922485 459 3 Syn I I 

1 14922497 C T 26 0.26 89 NEWSNP CDS AT1G40083.1

 14922496 448 1 Nonsyn G R 

1 14922498 G C 26 0.26 92 NEWSNP CDS AT1G40083.1

 14922497 447 3 Syn G G 

1 15043615 T C 34 0.34 82 NEWSNP intergenic 

1 15061574 C T 29 0.30 95 NEWSNP intergenic 

1 15061611 C G 28 0.26 74 NEWSNP intergenic 

1 15085691 A C 565 0.53 225 NEWSNP CDS AT1G40104.1

 15085690 1760 2 Nonsyn D A 

1 15085911 A T 502 0.88 80 NEWSNP intergenic 

1 15089556 A T 83 0.38 76 NEWSNP intergenic 

1 15092057 T G 76 0.40 114 NEWSNP intergenic 

1 15096676 T C 48 0.27 64 NEWSNP intergenic 

1 15096849 G A 34 0.20 71 NEWSNP intergenic 

1 15096954 C T 34 0.33 161 NEWSNP intergenic 

1 15096958 A T 33 0.32 155 NEWSNP intergenic 

1 15096974 A C 38 0.35 108 NEWSNP intergenic 

1 15097006 T A 52 0.39 82 NEWSNP intergenic 

1 15098775 T C 51 0.33 68 NEWSNP intergenic 

1 15099912 C T 166 0.27 107 NEWSNP intergenic 

1 15100046 T C 96 0.34 156 NEWSNP intergenic 

1 15100164 A T 73 0.32 100 NEWSNP intergenic 

1 15105792 A G 72 0.45 120 NEWSNP intergenic 

1 15106762 A G 82 0.31 82 NEWSNP intergenic 

1 15107681 G A 32 0.24 90 NEWSNP intergenic 

1 15108165 T G 64 0.42 95 NEWSNP intergenic 
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Appendix 3: Revised SNP call 

Chromosome Location Reference SNP Quality 
Supporting 

Reads Frequency 

1 12823594 A G 75 48 0.3636 

1 18544646 G A 225 50 0.431 

1 18558731 C T 225 49 0.3828 

1 18671409 C T 225 45 0.4412 

1 18708105 C T 225 60 0.5607 

1 18761334 C T 225 44 0.4583 

1 18970208 C T 225 59 0.513 

1 18995641 G C 225 43 0.5119 

1 19015465 C T 225 58 0.4296 

1 19138576 C T 225 35 0.4795 

1 19392208 C T 225 31 0.4493 

1 19577128 C T 225 39 0.4105 

1 20243307 C T 225 25 0.4808 

1 20458572 C T 225 46 0.4646 

1 27801552 C T 225 45 0.4545 

1 27982216 C T 225 46 0.5111 

1 28379684 C T 225 38 0.4419 

1 29084873 C T 225 48 0.4948 

1 29338984 C T 225 44 0.4835 

1 29665377 G A 225 43 0.4433 

1 29898748 G A 225 28 0.3457 

1 30006622 G A 225 58 0.5225 

1 30165580 G A 225 51 0.4679 

1 30284797 G A 225 69 0.552 

1 30292182 G A 225 50 0.4902 

1 30389418 G A 225 45 0.3814 

2 407623 T A 225 35 0.4167 

2 6269078 C T 225 27 0.4286 

2 6874676 A C 225 49 0.5158 

2 7338597 G A 225 43 0.5 

2 7430744 G A 225 66 0.5546 

2 7453624 G A 225 46 0.4381 

2 7495430 G A 225 48 0.5161 

2 7506870 G A 225 37 0.4805 

2 7541810 G A 225 71 0.5035 

2 7550419 G A 225 56 0.549 

2 7571697 G A 225 56 0.6022 

2 7657571 C T 225 38 0.4419 

2 7726055 G A 225 60 0.5217 

2 7882885 G A 225 52 0.5843 

2 8551977 G A 225 52 0.4685 

2 8639378 G A 225 56 0.5773 

2 8758102 G A 225 56 0.5091 

2 9065147 G A 225 56 0.5773 

2 9124286 G A 225 73 0.5407 
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2 9188319 G A 225 63 0.6 

2 9206341 G A 225 45 0.5294 

2 9328658 G A 225 44 0.4632 

2 9396582 G A 225 53 0.5 

2 9402923 G A 225 66 0.5455 

2 9427270 G A 225 48 0.5581 

2 15323688 C T 225 74 0.5968 

2 15350824 C T 225 90 0.6338 

2 15365352 C T 225 64 0.6465 

2 15425788 C T 225 68 0.6018 

2 15450817 C T 225 51 0.5368 

2 15698225 C T 225 60 0.5769 

2 15734711 C T 225 55 0.5789 

2 15776849 C T 225 79 0.594 

2 15944466 C T 225 56 0.5545 

2 16025774 G A 225 43 0.5513 

2 16089603 C T 225 53 0.5955 

2 16153486 C T 225 58 0.5631 

2 16232126 C T 225 58 0.5088 

2 16308451 C T 225 60 0.566 

2 16431468 C T 225 76 0.608 

2 16498763 C T 225 58 0.5631 

2 16645720 C T 225 72 0.5294 

2 16897217 C T 225 60 0.5 

2 17015117 C T 225 63 0.5 

2 17205732 C T 225 49 0.5326 

2 17385385 C T 225 65 0.5603 

2 17641279 C T 225 81 0.609 

2 17946987 C T 225 63 0.4632 

2 18216969 C T 225 58 0.5088 

2 18266869 G A 225 56 0.5333 

2 18587656 C T 225 40 0.3478 

2 18626528 C T 225 44 0.4835 

2 18695013 C T 225 55 0.5556 

2 18800761 C T 225 47 0.5109 

2 19097520 C T 225 46 0.4423 

3 905101 C T 225 46 0.4842 

3 1247186 C T 225 81 0.5364 

3 1331640 C T 225 64 0.5517 

3 1392085 C T 225 63 0.5207 

3 1895423 C T 225 58 0.5133 

3 2081411 C T 225 66 0.5641 

3 2175696 C T 225 44 0.5238 

3 2279468 C T 225 58 0.5918 

3 2374403 C T 225 54 0.5806 

3 2488484 C T 225 68 0.5037 

3 2644451 C T 225 60 0.5217 

3 2797284 C T 225 52 0.5714 
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3 2892189 C T 225 61 0.5398 

3 2904659 C T 225 45 0.5 

3 3410416 C T 225 52 0.52 

3 3561581 C T 225 54 0.5455 

3 3899478 C T 225 50 0.463 

3 4134397 C T 225 48 0.5161 

3 4389509 C T 225 54 0.432 

3 4468132 C T 225 23 0.5476 

3 4556108 C T 225 52 0.5532 

3 4686826 C T 225 66 0.5323 

3 13326596 G C 225 48 0.5217 

3 19578944 C T 225 53 0.5096 

3 19828584 C T 225 52 0.5306 

3 20337052 C T 225 68 0.5714 

3 21447552 C T 225 56 0.5045 

3 21579167 C T 225 52 0.5049 

3 21900990 G A 225 53 0.4569 

3 21924614 C T 225 55 0.5612 

3 22275578 C T 225 58 0.5 

3 22742511 C T 225 39 0.4333 

3 23250660 C T 225 50 0.5556 

4 13187 G A 225 91 0.7222 

4 205368 G A 225 65 0.6701 

4 284677 G A 225 71 0.6893 

4 432043 G A 225 70 0.6542 

4 675948 G A 225 71 0.7245 

4 716655 G A 225 65 0.6633 

4 792979 G A 225 36 0.7347 

4 850162 G A 225 67 0.6907 

4 965551 G A 225 62 0.6889 

4 1055622 G A 225 65 0.7303 

4 1082514 G A 225 74 0.7255 

4 1098091 G A 225 72 0.766 

4 1276833 G A 225 63 0.7683 

4 1302926 G A 225 61 0.7176 

4 1404505 G A 225 63 0.6702 

4 1600758 G A 225 66 0.7097 

4 1654258 G A 225 63 0.7159 

4 1655653 G A 225 77 0.7549 

4 1794927 G A 225 70 0.6863 

4 1981110 G A 225 76 0.6909 

4 1999123 G A 225 82 0.6891 

4 2004196 G A 225 68 0.6415 

4 2068244 G A 225 77 0.713 

4 2194038 G A 225 61 0.6289 

4 2655499 G A 225 74 0.6852 

4 2730467 G A 225 75 0.6579 

4 2730678 G A 225 59 0.7108 



245 
 

4 2853251 G A 225 71 0.6961 

4 2892514 G A 225 66 0.6667 

4 3164420 G A 225 71 0.7245 

4 3186625 G A 225 57 0.6786 

4 3263975 G A 225 68 0.7556 

4 3428470 G A 225 67 0.6768 

4 3597373 G A 225 64 0.6957 

4 3619277 G A 225 60 0.6452 

4 3678331 G A 225 71 0.7172 

4 3680222 G A 225 69 0.7188 

4 3714724 G A 225 81 0.75 

4 3773854 G A 225 46 0.6866 

4 3806462 G A 225 72 0.6923 

4 3845762 G A 225 58 0.6905 

4 3898127 G A 225 52 0.7647 

4 4080947 G A 225 68 0.6667 

4 4126012 G A 225 58 0.7073 

4 4171716 G A 225 64 0.6667 

4 4544258 G A 225 68 0.7083 

4 4552978 G A 225 74 0.7048 

4 4722251 T C 76 20 0.1527 

4 5197914 G A 225 64 0.7273 

4 5276516 G A 225 99 0.7984 

4 5346521 G A 137 32 0.8205 

4 5368413 G A 225 87 0.685 

4 6161576 G A 225 75 0.6579 

4 6398620 G A 225 91 0.7459 

4 6417927 G A 225 45 0.625 

4 6643446 G A 225 58 0.6667 

4 6738672 G A 225 68 0.6667 

4 6863387 G A 225 76 0.6441 

4 9499819 T G 225 33 0.3367 

4 9499825 T C 187 27 0.3034 

4 15637425 C T 225 38 0.3958 

5 3131345 G C 225 59 0.4876 

5 14809767 C T 225 25 0.3788 

5 15089919 A T 225 38 0.4222 

5 19789468 C T 225 42 0.4516 

5 25936238 C T 225 37 0.4458 
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Appendix 4: SNPs resulting in non-synonymous changes in genes 

 

Chr Location Ref SNP Quality 
Supporting 

Reads Frequency Gene 

1 19138576 C T 225 35 0.4795 AT1G51610.1 

1 20243307 C T 225 25 0.4808 AT1G54215.1 

1 27982216 C T 225 46 0.5111 AT1G74448.1 

1 29665377 G A 225 43 0.4433 AT1G78910.1 

1 29898748 G A 225 28 0.3457 AT1G79480.1 

1 30006622 G A 225 58 0.5225 AT1G79740.1 

1 30165580 G A 225 51 0.4679 AT1G80210.1 

1 30292182 G A 225 50 0.4902 AT1G80570.1 

2 6874676 A C 225 49 0.5158 AT2G15780.1 

2 7495430 G A 225 48 0.5161 AT2G17230.1 

2 7506870 G A 225 37 0.4805 AT2G17260.1 

2 7550419 G A 225 56 0.549 AT2G17370.1 

2 8639378 G A 225 56 0.5773 AT2G20010.1 

2 8758102 G A 225 56 0.5091 AT2G20300.1 

2 9427270 G A 225 48 0.5581 AT2G22170.1 

2 15350824 C T 225 90 0.6338 AT2G36620.1 

2 15365352 C T 225 64 0.6465 AT2G36670.1 

2 15425788 C T 225 68 0.6018 AT2G36810.1 

2 15698225 C T 225 60 0.5769 AT2G37410.1 

2 16431468 C T 225 76 0.608 AT2G39350.1 

2 16897217 C T 225 60 0.5 AT2G40460.1 

2 17641279 C T 225 81 0.609 AT2G42360.1 

2 18266869 G A 225 56 0.5333 AT2G44010.1 

2 18626528 C T 225 44 0.4835 AT2G45180.1 

3 2488484 C T 225 68 0.5037 AT3G07790.1 

3 2644451 C T 225 60 0.5217 AT3G08700.1 

3 2892189 C T 225 61 0.5398 AT3G09400.2 

3 2904659 C T 225 45 0.5 AT3G09440.2 

3 3410416 C T 225 52 0.52 AT3G10900.1 

3 3899478 C T 225 50 0.463 AT3G12230.1 

3 4686826 C T 225 66 0.5323 AT3G14130.1 

3 19828584 C T 225 52 0.5306 AT3G53480.1 

3 21447552 C T 225 56 0.5045 AT3G57930.1 

3 21579167 C T 225 52 0.5049 AT3G58280.1 

3 23250660 C T 225 50 0.5556 AT3G62900.1 

4 716655 G A 225 65 0.6633 AT4G01680.1 

4 1055622 G A 225 65 0.7303 AT4G02400.1 

4 1082514 G A 225 74 0.7255 AT4G02480.1 

4 1404505 G A 225 63 0.6702 AT4G03180.1 
 

 

http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT1G51610.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT1G54215.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT1G74448.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT1G78910.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT1G79480.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT1G79740.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/TairObject?id=28181&type=locus
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT1G80570.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/TairObject?id=32267&type=locus
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G17230.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G17260.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G17370.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/TairObject?id=34832&type=locus
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G20300.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G22170.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G36620.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G36670.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G36810.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G37410.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G39350.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/TairObject?id=34870&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=33578&type=locus
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G44010.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT2G45180.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT3G07790.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT3G08700.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT3G09400.2&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/TairObject?id=35709&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=40628&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=36973&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=37910&type=locus
http://www.arabidopsis.org/servlets/TairObject?id=37309&type=locus
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT3G57930.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/Search?type=general&search_action=detail&method=1&show_obsolete=F&name=AT3G58280.1&sub_type=gene&SEARCH_EXACT=4&SEARCH_CONTAINS=1
http://www.arabidopsis.org/servlets/TairObject?id=36868&type=locus
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Appendix 5: Statistical analysis outputs and LSD tables 

 

 

Figure 4.2a – contamination by P. olsonii 

Regression analysis 

=================== 

 

   Binomial totals: N 

     Distribution: Binomial 

    Link function: Logit 

     Fitted terms: Constant + Rep + Genotype + Treatment + Genotype.Treatment 

 

Predictions from regression model 

--------------------------------- 

 

 

               Prediction        s.e. 

     Genotype 

         Col0      0.3618     0.10751 

         ECP6      0.1630     0.07663 

        eds10      0.2972     0.09573 

        eds11      0.3926     0.10456 

        eds12      0.9267     0.06298 

        eds13      0.5175     0.10860 

         eds4      0.7084     0.10379 

       eds5-2      0.4726     0.10981 

         eds7      0.6809     0.10595 

         eds8      0.4622     0.09704 

         erf1      0.3569     0.10144 

          ler      0.0397     0.05228 

       npr1-1      0.9005     0.07095 

         rar1      0.3094     0.10862 

        sgt1b      0.0001     0.00130 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype Col0    1           * 

   Genotype ECP6    2      0.2623           * 

  Genotype eds10    3      0.2860      0.2436           * 

  Genotype eds11    4      0.2979      0.2574      0.2816           * 

  Genotype eds12    5      0.2478      0.1973      0.2279      0.2428 

  Genotype eds13    6      0.3038      0.2641      0.2877      0.2994 

   Genotype eds4    7      0.2974      0.2566      0.2808      0.2930 

 Genotype eds5-2    8      0.3057      0.2663      0.2897      0.3014 

   Genotype eds7    9      0.3003      0.2600      0.2839      0.2959 

   Genotype eds8   10      0.2881      0.2461      0.2714      0.2840 

   Genotype erf1   11      0.2938      0.2526      0.2771      0.2893 

    Genotype ler   12      0.2384      0.1851      0.2175      0.2332 

 Genotype npr1-1   13      0.2562      0.2077      0.2370      0.2512 

   Genotype rar1   14      0.3055      0.2658      0.2894      0.3018 

  Genotype sgt1b   15      0.2139      0.1525      0.1905      0.2081 

                                1           2           3           4 

 

 

 

  Genotype eds12    5           * 

  Genotype eds13    6      0.2497           * 

   Genotype eds4    7      0.2415      0.2987           * 

 Genotype eds5-2    8      0.2518      0.3070      0.3004           * 

   Genotype eds7    9      0.2452      0.3016      0.2949      0.3034 

   Genotype eds8   10      0.2303      0.2901      0.2831      0.2919 

   Genotype erf1   11      0.2375      0.2953      0.2886      0.2972 
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    Genotype ler   12      0.1630      0.2403      0.2313      0.2422 

 Genotype npr1-1   13      0.1887      0.2580      0.2500      0.2600 

   Genotype rar1   14      0.2501      0.3070      0.2993      0.3080 

  Genotype sgt1b   15      0.1253      0.2161      0.2065      0.2185 

                                5           6           7           8 

 

 

 

   Genotype eds7    9           * 

   Genotype eds8   10      0.2862           * 

   Genotype erf1   11      0.2916      0.2796           * 

    Genotype ler   12      0.2352      0.2193      0.2275           * 

 Genotype npr1-1   13      0.2536      0.2394      0.2462      0.1755 

   Genotype rar1   14      0.3026      0.2893      0.2971      0.2381 

  Genotype sgt1b   15      0.2108      0.1931      0.2019      0.1041 

                                9          10          11          12 

 

 

 

 Genotype npr1-1   13           * 

   Genotype rar1   14      0.2586           * 

  Genotype sgt1b   15      0.1412      0.2161           * 

                               13          14          15 

 

 

Figure 4.2b – Incidence of infection at the stem-pedicel junction 

 

Regression analysis 

=================== 

 

   Binomial totals: BinN 

     Distribution: Binomial 

    Link function: Logit 

     Fitted terms: Constant, Rep, Genotype 

 

Predictions from regression model 

--------------------------------- 

               Prediction        s.e. 

     Genotype 

          185     0.01782     0.01060 

          116     0.18223     0.03076 

          138     0.06003     0.01931 

          175     0.15022     0.02865 

          177     0.02636     0.01273 

          192     0.04603     0.01702 

          194     0.00442     0.00511 

          232     0.12463     0.02619 

          243     0.08042     0.02169 

          352     0.15644     0.02735 

          368     0.06154     0.01903 

          442     0.33106     0.03576 

          535     0.03039     0.01356 

          895     0.04717     0.01661 

          935     0.10452     0.02409 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

 Genotype 185    1           * 

 Genotype 116    2     0.06390           * 

 Genotype 138    3     0.04326     0.07135           * 

 Genotype 175    4     0.06000     0.08259     0.06786           * 
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 Genotype 177    5     0.03253     0.06538     0.04543     0.06158           * 

 Genotype 192    6     0.03938     0.06905     0.05056     0.06546     0.04174 

 Genotype 194    7     0.02310     0.06124     0.03923     0.05716     0.02694 

 Genotype 232    8     0.05549     0.07932     0.06392     0.07625     0.05719 

 Genotype 243    9     0.04742     0.07394     0.05705     0.07059     0.04941 

 Genotype 352   10     0.05762     0.08086     0.06576     0.07780     0.05926 

 Genotype 368   11     0.04279     0.07103     0.05327     0.06757     0.04498 

 Genotype 442   12     0.07325     0.09264     0.07983     0.09001     0.07456 

 Genotype 535   13     0.03380     0.06603     0.04635     0.06226     0.03653 

 Genotype 895   14     0.03871     0.06865     0.05004     0.06506     0.04111 

 Genotype 935   15     0.05170     0.07678     0.06064     0.07352     0.05352 

                             1           2           3           4           5 

 

 

 

 Genotype 192    6           * 

 Genotype 194    7     0.03490           * 

 Genotype 232    8     0.06134     0.05241           * 

 Genotype 243    9     0.05416     0.04378     0.06680           * 

 Genotype 352   10     0.06327     0.05465     0.07438     0.06858           * 

 Genotype 368   11     0.05015     0.03871     0.06358     0.05669     0.06544 

 Genotype 442   12     0.07779     0.07096     0.08706     0.08216     0.08846 

 Genotype 535   13     0.04274     0.02846     0.05792     0.05025     0.05996 

 Genotype 895   14     0.04672     0.03414     0.06092     0.05368     0.06285 

 Genotype 935   15     0.05794     0.04838     0.06990     0.06368     0.07159 

                             6           7           8           9          10 

 

 

 

 Genotype 368   11           * 

 Genotype 442   12     0.07958           * 

 Genotype 535   13     0.04590     0.07513           * 

 Genotype 895   14     0.04961     0.07746     0.04212           * 

 Genotype 935   15     0.06032     0.08470     0.05430     0.05750           * 

                            11          12          13          14          

15 

 

Figure 6.1 – Fc infection of dmr mutants  

 

Regression analysis  

=================== 

 

      Distribution: Poisson 

    Link function: Log 

     Fitted terms: Constant + Genotype + Time + Genotype.Time 

Summary of analysis - Siliques 

Predictions from regression model 

 

         Time           7                      11 

               Prediction        s.e.  Prediction        s.e. 

     Genotype 

         eds1       4.533      0.2971       5.867      0.3382 

       dmr1-1       4.375      0.3999       4.875      0.4221 

       dmr1-2       1.750      0.2521       2.750      0.3170 

         dmr5       2.714      0.3360       5.625      0.4535 

         dmr6       3.250      0.3444       4.500      0.4055 

          Ler       4.250      0.5572       5.750      0.6484 

 

 

         Time          14 

               Prediction        s.e. 
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     Genotype 

         eds1       6.400      0.3533 

       dmr1-1       6.000      0.4683 

       dmr1-2       4.750      0.4167 

         dmr5       6.875      0.5014 

         dmr6       5.625      0.4535 

          Ler       7.000      0.7154 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype eds1 Time  7    1           * 

   Genotype eds1 Time 11    2       0.890           * 

   Genotype eds1 Time 14    3       0.913       0.967           * 

 Genotype dmr1-1 Time  7    4       0.985       1.036       1.055           * 

 Genotype dmr1-1 Time 11    5       1.021       1.070       1.089       1.150 

 Genotype dmr1-1 Time 14    6       1.097       1.143       1.160       1.218 

 Genotype dmr1-2 Time  7    7       0.771       0.834       0.858       0.935 

 Genotype dmr1-2 Time 11    8       0.859       0.917       0.939       1.009 

 Genotype dmr1-2 Time 14    9       1.012       1.061       1.080       1.142 

   Genotype dmr5 Time  7   10       0.887       0.943       0.964       1.033 

   Genotype dmr5 Time 11   11       1.072       1.119       1.137       1.196 

   Genotype dmr5 Time 14   12       1.153       1.196       1.213       1.268 

   Genotype dmr6 Time  7   13       0.899       0.955       0.976       1.044 

   Genotype dmr6 Time 11   14       0.994       1.044       1.064       1.126 

   Genotype dmr6 Time 14   15       1.072       1.119       1.137       1.196 

    Genotype Ler Time  7   16       1.249       1.289       1.305       1.357 

    Genotype Ler Time 11   17       1.411       1.446       1.460       1.507 

    Genotype Ler Time 14   18       1.532       1.565       1.578       1.621 

                                        1           2           3           4 

 

 

 

 Genotype dmr1-1 Time 11    5           * 

 Genotype dmr1-1 Time 14    6       1.247           * 

 Genotype dmr1-2 Time  7    7       0.972       1.052           * 

 Genotype dmr1-2 Time 11    8       1.044       1.119       0.801           * 

 Genotype dmr1-2 Time 14    9       1.173       1.240       0.963       1.035 

   Genotype dmr5 Time  7   10       1.067       1.140       0.831       0.914 

   Genotype dmr5 Time 11   11       1.225       1.289       1.026       1.094 

   Genotype dmr5 Time 14   12       1.296       1.357       1.110       1.173 

   Genotype dmr6 Time  7   13       1.077       1.150       0.844       0.926 

   Genotype dmr6 Time 11   14       1.158       1.225       0.944       1.018 

   Genotype dmr6 Time 14   15       1.225       1.289       1.026       1.094 

    Genotype Ler Time  7   16       1.383       1.440       1.210       1.268 

    Genotype Ler Time 11   17       1.530       1.582       1.376       1.428 

    Genotype Ler Time 14   18       1.643       1.691       1.500       1.548 

                                        5           6           7           8 

 

 

 

 Genotype dmr1-2 Time 14    9           * 

   Genotype dmr5 Time  7   10       1.059           * 

   Genotype dmr5 Time 11   11       1.218       1.116           * 

   Genotype dmr5 Time 14   12       1.289       1.194       1.337           * 

   Genotype dmr6 Time  7   13       1.069       0.952       1.126       1.203 

   Genotype dmr6 Time 11   14       1.150       1.042       1.203       1.275 

   Genotype dmr6 Time 14   15       1.218       1.116       1.268       1.337 

    Genotype Ler Time  7   16       1.376       1.287       1.421       1.483 

    Genotype Ler Time 11   17       1.524       1.444       1.565       1.621 

    Genotype Ler Time 14   18       1.638       1.563       1.675       1.728 

                                        9          10          11          12 

 

 

 

   Genotype dmr6 Time  7   13           * 

   Genotype dmr6 Time 11   14       1.052           * 

   Genotype dmr6 Time 14   15       1.126       1.203           * 

    Genotype Ler Time  7   16       1.296       1.363       1.421           * 
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    Genotype Ler Time 11   17       1.452       1.513       1.565       1.691 

    Genotype Ler Time 14   18       1.570       1.626       1.675       1.794 

                                       13          14          15          16 

 

 

 

    Genotype Ler Time 11   17           * 

    Genotype Ler Time 14   18       1.910           * 

                                       17          18 

 
Summary of analysis – Green Siliques 

 

Predictions from regression model 

 

         Time           7                      11 

               Prediction        s.e.  Prediction        s.e. 

     Genotype 

         eds1      0.6250      0.1561      0.0667      0.0526 

       dmr1-1      0.7500      0.2418      0.5000      0.1974 

       dmr1-2      1.6250      0.3559      1.5000      0.3419 

         dmr5      0.8750      0.2612      0.1250      0.0987 

         dmr6      3.6250      0.5316      1.5000      0.3419 

          Ler      0.7500      0.3419      0.5000      0.2792 

 

 

         Time          14 

               Prediction        s.e. 

     Genotype 

         eds1      0.0001      0.0010 

       dmr1-1      0.0001      0.0013 

       dmr1-2      0.6250      0.2207 

         dmr5      0.0001      0.0013 

         dmr6      0.2500      0.1396 

          Ler      0.0001      0.0019 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype eds1 Time  7    1           * 

   Genotype eds1 Time 11    2      0.3257           * 

   Genotype eds1 Time 14    3      0.3087      0.1041           * 

 Genotype dmr1-1 Time  7    4      0.5691      0.4894      0.4782           * 

 Genotype dmr1-1 Time 11    5      0.4977      0.4041      0.3904      0.6173 

 Genotype dmr1-1 Time 14    6      0.3087      0.1041      0.0033      0.4782 

 Genotype dmr1-2 Time  7    7      0.7685      0.7115      0.7038      0.8509 

 Genotype dmr1-2 Time 11    8      0.7433      0.6842      0.6762      0.8282 

 Genotype dmr1-2 Time 14    9      0.5346      0.4487      0.4365      0.6474 

   Genotype dmr5 Time  7   10      0.6017      0.5269      0.5165      0.7038 

   Genotype dmr5 Time 11   11      0.3652      0.2212      0.1952      0.5165 

   Genotype dmr5 Time 14   12      0.3087      0.1041      0.0033      0.4782 

   Genotype dmr6 Time  7   13      1.0956      1.0564      1.0512      1.1549 

   Genotype dmr6 Time 11   14      0.7433      0.6842      0.6762      0.8282 

   Genotype dmr6 Time 14   15      0.4141      0.2950      0.2761      0.5521 

    Genotype Ler Time  7   16      0.7433      0.6842      0.6762      0.8282 

    Genotype Ler Time 11   17      0.6325      0.5619      0.5521      0.7304 

    Genotype Ler Time 14   18      0.3087      0.1042      0.0042      0.4782 

                                        1           2           3           4 

 

 

 

 Genotype dmr1-1 Time 11    5           * 

 Genotype dmr1-1 Time 14    6      0.3904           * 

 Genotype dmr1-2 Time  7    7      0.8049      0.7038           * 

 Genotype dmr1-2 Time 11    8      0.7808      0.6762      0.9760           * 

 Genotype dmr1-2 Time 14    9      0.5856      0.4365      0.8282      0.8049 

   Genotype dmr5 Time  7   10      0.6474      0.5165      0.8730      0.8509 

   Genotype dmr5 Time 11   11      0.4365      0.1952      0.7304      0.7038 

   Genotype dmr5 Time 14   12      0.3904      0.0037      0.7038      0.6762 

   Genotype dmr6 Time  7   13      1.1214      1.0512      1.2651      1.2499 
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   Genotype dmr6 Time 11   14      0.7808      0.6762      0.9760      0.9563 

   Genotype dmr6 Time 14   15      0.4782      0.2761      0.7560      0.7304 

    Genotype Ler Time  7   16      0.7808      0.6762      0.9760      0.9563 

    Genotype Ler Time 11   17      0.6762      0.5521      0.8945      0.8730 

    Genotype Ler Time 14   18      0.3904      0.0046      0.7038      0.6762 

                                        5           6           7           8 

 

 

 

 Genotype dmr1-2 Time 14    9           * 

   Genotype dmr5 Time  7   10      0.6762           * 

   Genotype dmr5 Time 11   11      0.4782      0.5521           * 

   Genotype dmr5 Time 14   12      0.4365      0.5165      0.1952           * 

   Genotype dmr6 Time  7   13      1.1382      1.1712      1.0692      1.0512 

   Genotype dmr6 Time 11   14      0.8049      0.8509      0.7038      0.6762 

   Genotype dmr6 Time 14   15      0.5165      0.5856      0.3381      0.2761 

    Genotype Ler Time  7   16      0.8049      0.8509      0.7038      0.6762 

    Genotype Ler Time 11   17      0.7038      0.7560      0.5856      0.5521 

    Genotype Ler Time 14   18      0.4365      0.5165      0.1952      0.0046 

                                        9          10          11          12 

 

 

 

   Genotype dmr6 Time  7   13           * 

   Genotype dmr6 Time 11   14      1.2499           * 

   Genotype dmr6 Time 14   15      1.0869      0.7304           * 

    Genotype Ler Time  7   16      1.2499      0.9563      0.7304           * 

    Genotype Ler Time 11   17      1.1874      0.8730      0.6173      0.8730 

    Genotype Ler Time 14   18      1.0512      0.6762      0.2761      0.6762 

                                       13          14          15          16 

 

 

 

    Genotype Ler Time 11   17           * 

    Genotype Ler Time 14   18      0.5521           * 

                                       17          18 

 

 

Summary of analysis – infected leaves 

 

Predictions from regression model 

 

         Time           7                      11 

               Prediction        s.e.  Prediction        s.e. 

     Genotype 

         eds1       3.375      0.4282       3.500      0.4361 

       dmr1-1       1.125      0.2472       1.500      0.2855 

       dmr1-2       0.375      0.1425       1.750      0.3083 

         dmr5       4.250      0.4805       6.500      0.5942 

         dmr6           *           *           *           * 

          Ler       3.500      0.6167       5.250      0.7553 

 

 

         Time          14 

               Prediction        s.e. 

     Genotype 

         eds1       4.750      0.5080 

       dmr1-1       3.000      0.4037 

       dmr1-2       2.875      0.3952 

         dmr5       9.000      0.6992 

         dmr6           *           * 

          Ler       8.250      0.9468 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype eds1 Time  7    1           * 
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   Genotype eds1 Time 11    2       1.214           * 

   Genotype eds1 Time 14    3       1.319       1.329           * 

 Genotype dmr1-1 Time  7    4       0.982       0.995       1.122           * 

 Genotype dmr1-1 Time 11    5       1.022       1.035       1.157       0.750 

 Genotype dmr1-1 Time 14    6       1.169       1.180       1.289       0.940 

 Genotype dmr1-2 Time  7    7       0.896       0.911       1.048       0.567 

 Genotype dmr1-2 Time 11    8       1.048       1.061       1.180       0.785 

 Genotype dmr1-2 Time 14    9       1.157       1.169       1.278       0.926 

   Genotype dmr5 Time  7   10       1.278       1.289       1.389       1.073 

   Genotype dmr5 Time 11   11       1.454       1.464       1.552       1.278 

   Genotype dmr5 Time 14   12       1.628       1.636       1.716       1.473 

   Genotype dmr6 Time  7   13           *           *           *           * 

   Genotype dmr6 Time 11   14           *           *           *           * 

   Genotype dmr6 Time 14   15           *           *           *           * 

    Genotype Ler Time  7   16       1.491       1.500       1.587       1.319 

    Genotype Ler Time 11   17       1.724       1.732       1.808       1.578 

    Genotype Ler Time 14   18       2.063       2.070       2.134       1.943 

                                        1           2           3           4 

 

 

 

 Genotype dmr1-1 Time 11    5           * 

 Genotype dmr1-1 Time 14    6       0.982           * 

 Genotype dmr1-2 Time  7    7       0.634       0.850           * 

 Genotype dmr1-2 Time 11    8       0.834       1.009       0.675           * 

 Genotype dmr1-2 Time 14    9       0.968       1.122       0.834       0.995 

   Genotype dmr5 Time  7   10       1.110       1.246       0.995       1.134 

   Genotype dmr5 Time 11   11       1.309       1.427       1.214       1.329 

   Genotype dmr5 Time 14   12       1.500       1.603       1.417       1.518 

   Genotype dmr6 Time  7   13           *           *           *           * 

   Genotype dmr6 Time 11   14           *           *           *           * 

   Genotype dmr6 Time 14   15           *           *           *           * 

    Genotype Ler Time  7   16       1.349       1.464       1.257       1.369 

    Genotype Ler Time 11   17       1.603       1.701       1.526       1.620 

    Genotype Ler Time 14   18       1.964       2.044       1.901       1.977 

                                        5           6           7           8 

 

 

 

 Genotype dmr1-2 Time 14    9           * 

   Genotype dmr5 Time  7   10       1.235           * 

   Genotype dmr5 Time 11   11       1.417       1.518           * 

   Genotype dmr5 Time 14   12       1.595       1.685       1.822           * 

   Genotype dmr6 Time  7   13           *           *           *           * 

   Genotype dmr6 Time 11   14           *           *           *           * 

   Genotype dmr6 Time 14   15           *           *           *           * 

    Genotype Ler Time  7   16       1.454       1.552       1.701       1.851 

    Genotype Ler Time 11   17       1.693       1.778       1.908       2.044 

    Genotype Ler Time 14   18       2.037       2.108       2.220       2.337 

                                        9          10          11          12 

 

 

 

   Genotype dmr6 Time  7   13           * 

   Genotype dmr6 Time 11   14           *           * 

   Genotype dmr6 Time 14   15           *           *           * 

    Genotype Ler Time  7   16           *           *           *           * 

    Genotype Ler Time 11   17           *           *           *       1.936 

    Genotype Ler Time 14   18           *           *           *       2.244 

                                       13          14          15          16 

 

 

 

    Genotype Ler Time 11   17           * 

    Genotype Ler Time 14   18       2.405           * 

                                       17          18 
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Figure 6.3 – Fg infection of dmr1 mutant alleles 

Regression analysis  

=================== 

 

      Distribution: Poisson 

    Link function: Log 

     Fitted terms: Constant + Genotype + Time + Genotype.Time 

Summary of analysis – Green siliques 

 

Predictions from regression model 

--------------------------------- 

Response variate: G 

 

         TIME           7                      11 

               Prediction        s.e.  Prediction        s.e. 

     Genotype 

         eds1      0.6250      0.1637      0.3750      0.1268 

       dmr1-1      2.5714      0.3549      2.2500      0.3105 

       dmr1-2      0.5000      0.1464      0.0000      0.0004 

 

 

         TIME          14 

               Prediction        s.e. 

     Genotype 

         eds1      0.0000      0.0004 

       dmr1-1      0.0000      0.0004 

       dmr1-2      0.0000      0.0004 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype eds1 TIME  7   1           * 

   Genotype eds1 TIME 11   2      0.4138           * 

   Genotype eds1 TIME 14   3      0.3272      0.2534           * 

 Genotype dmr1-1 TIME  7   4      0.7813      0.7534      0.7094           * 

 Genotype dmr1-1 TIME 11   5      0.7017      0.6705      0.6208      0.9427 

 Genotype dmr1-1 TIME 14   6      0.3272      0.2534      0.0010      0.7094 

 Genotype dmr1-2 TIME  7   7      0.4389      0.3871      0.2926      0.7674 

 Genotype dmr1-2 TIME 11   8      0.3272      0.2534      0.0010      0.7094 

 Genotype dmr1-2 TIME 14   9      0.3272      0.2534      0.0010      0.7094 

                                       1           2           3           4 

 

 

 

 Genotype dmr1-1 TIME 11   5           * 

 Genotype dmr1-1 TIME 14   6      0.6208           * 

 Genotype dmr1-2 TIME  7   7      0.6863      0.2926           * 

 Genotype dmr1-2 TIME 11   8      0.6208      0.0010      0.2926           * 

 Genotype dmr1-2 TIME 14   9      0.6208      0.0010      0.2926      0.0010 

                                       5           6           7           8 

 

 

 

 Genotype dmr1-2 TIME 14   9           * 

                                       9 

 

Summary of analysis – infected leaves 

 

Predictions from regression model 

--------------------------------- 

Response variate: IL 

 

               Prediction        s.e. 
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     Genotype 

         eds1       5.016      0.2647 

       dmr1-1       2.516      0.1874 

       dmr1-2       2.765      0.1997 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype eds1   1           * 

 Genotype dmr1-1   2      0.6483           * 

 Genotype dmr1-2   3      0.6628      0.5475           * 

                               1           2           3 

 

Summary of analysis - Siliques 

 

Predictions from regression model 

--------------------------------- 

Response variate: S 

 

         TIME           7                      11 

               Prediction        s.e.  Prediction        s.e. 

     Genotype 

         eds1       4.875      0.3741       6.000      0.4150 

       dmr1-1       4.875      0.3741       5.625      0.4018 

       dmr1-2       1.571      0.2270       2.500      0.2679 

 

 

         TIME          14 

               Prediction        s.e. 

     Genotype 

         eds1       7.000      0.4483 

       dmr1-1       6.625      0.4361 

       dmr1-2       5.500      0.3973 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype eds1 TIME  7   1           * 

   Genotype eds1 TIME 11   2       1.117           * 

   Genotype eds1 TIME 14   3       1.167       1.221           * 

 Genotype dmr1-1 TIME  7   4       1.058       1.117       1.167           * 

 Genotype dmr1-1 TIME 11   5       1.097       1.155       1.203       1.097 

 Genotype dmr1-1 TIME 14   6       1.148       1.203       1.250       1.148 

 Genotype dmr1-2 TIME  7   7       0.875       0.946       1.004       0.875 

 Genotype dmr1-2 TIME 11   8       0.920       0.987       1.044       0.920 

 Genotype dmr1-2 TIME 14   9       1.091       1.148       1.197       1.091 

                                       1           2           3           4 

 

 

 

 Genotype dmr1-1 TIME 11   5           * 

 Genotype dmr1-1 TIME 14   6       1.185           * 

 Genotype dmr1-2 TIME  7   7       0.923       0.983           * 

 Genotype dmr1-2 TIME 11   8       0.965       1.023       0.702           * 

 Genotype dmr1-2 TIME 14   9       1.130       1.179       0.915       0.958 

                                       5           6           7           8 

 

 

 

 Genotype dmr1-2 TIME 14   9           * 

                                       9 
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Figure 6.4 – Fc infection of dmr1 mutant alleles 

 

Regression analysis  

=================== 

Distribution: Poisson 

Link function: Log 

Fitted terms: Constant + Exp + Geno + Time + Geno.Time 

 

Summary of analysis - siliques 

 

Predictions from regression model 

--------------------------------- 

Response variate: S 

 

               Prediction        s.e. 

         Geno 

       eds1-2       5.453      0.2703 

       dmr1-1       4.970      0.3870 

       dmr1-2       3.313      0.3113 

       dmr1-3       4.313      0.2401 

       dmr1-4       4.264      0.2387 

       dmr1-6       4.710      0.2510 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

 Geno eds1-2   1           * 

 Geno dmr1-1   2      0.9519           * 

 Geno dmr1-2   3      0.8299      0.9537           * 

 Geno dmr1-3   4      0.7149      0.9164      0.7900           * 

 Geno dmr1-4   5      0.7131      0.9148      0.7882      0.6697           * 

 Geno dmr1-6   6      0.7292      0.9289      0.8041      0.6870      0.6851 

                           1           2           3           4           5 

 

 

 

 Geno dmr1-6   6           * 

                           6 

 

Summary of analysis – infected leaves 

 

Predictions from regression model 

--------------------------------- 

Response variate: IL 

 

         Time           7                      13 

               Prediction        s.e.  Prediction        s.e. 

         Geno 

       eds1-2       3.580      0.3788       5.612      0.4750 

       dmr1-1       0.693      0.2578       3.465      0.5879 

       dmr1-2       0.924      0.2984       3.003      0.5457 

       dmr1-3       2.225      0.2984       4.741      0.4363 

       dmr1-4       0.581      0.1522       3.870      0.3940 

       dmr1-6       2.612      0.3234       5.418      0.4667 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

 Geno eds1-2 Time  7    1           * 

 Geno eds1-2 Time 13    2       1.204           * 

 Geno dmr1-1 Time  7    3       0.914       1.078           * 

 Geno dmr1-1 Time 13    4       1.400       1.516       1.266           * 

 Geno dmr1-2 Time  7    5       0.962       1.120       0.780       1.298 

 Geno dmr1-2 Time 13    6       1.329       1.451       1.190       1.560 

 Geno dmr1-3 Time  7    7       0.957       1.112       0.786       1.317 

 Geno dmr1-3 Time 13    8       1.145       1.277       1.011       1.467 
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 Geno dmr1-4 Time  7    9       0.811       0.991       0.596       1.209 

 Geno dmr1-4 Time 13   10       1.083       1.223       0.939       1.417 

 Geno dmr1-6 Time  7   11       0.988       1.139       0.824       1.341 

 Geno dmr1-6 Time 13   12       1.191       1.318       1.064       1.506 

                                    1           2           3           4 

 

 

 

 Geno dmr1-2 Time  7    5           * 

 Geno dmr1-2 Time 13    6       1.224           * 

 Geno dmr1-3 Time  7    7       0.842       1.242           * 

 Geno dmr1-3 Time 13    8       1.055       1.400       1.048           * 

 Geno dmr1-4 Time  7    9       0.667       1.128       0.665       0.918 

 Geno dmr1-4 Time 13   10       0.986       1.347       0.980       1.165 

 Geno dmr1-6 Time  7   11       0.878       1.267       0.873       1.077 

 Geno dmr1-6 Time 13   12       1.106       1.440       1.098       1.265 

                                    5           6           7           8 

 

 

 

 Geno dmr1-4 Time  7    9           * 

 Geno dmr1-4 Time 13   10       0.839           * 

 Geno dmr1-6 Time  7   11       0.710       1.011           * 

 Geno dmr1-6 Time 13   12       0.975       1.210       1.126           * 

                                    9          10          11          12 

 

Figure 6.8 – Amino acid treatment (DHS, LHS, THR)  

Regression analysis 

=================== 

Distribution: Poisson 

    Link function: Log 

     Fitted terms: Constant + Treat + block + Treat.block 

 

Predictions from regression model 

--------------------------------- 

Response variate: Buds 

 

               Prediction        s.e. 

        Treat 

        Water       3.484      0.3523 

          DHS       4.266      0.3915 

          LHS       0.234      0.0886 

          THR       4.219      0.4111 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

 Treat Water   1           * 

   Treat DHS   2      1.1166           * 

   Treat LHS   3      0.7701      0.8509           * 

   Treat THR   4      1.1478      1.2035      0.8916           * 

                           1           2           3           4 

 

Predictions from regression model 

--------------------------------- 

Response variate: Flowers 

 

               Prediction        s.e. 

        Treat 

        Water       4.016      0.2917 

          DHS       4.375      0.3040 

          LHS       2.500      0.2293 

          THR       5.000      0.3385 

 

Least significant differences of predictions (5% level) 
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------------------------------------------------------- 

 

 

 Treat Water   1           * 

   Treat DHS   2      0.8930           * 

   Treat LHS   3      0.7865      0.8072           * 

   Treat THR   4      0.9472      0.9644      0.8667           * 

                           1           2           3           4 

 

Predictions from regression model 

--------------------------------- 

Response variate: Siliques 

 

               Prediction        s.e. 

        Treat 

        Water       4.016      0.1295 

          DHS       5.234      0.1473 

          LHS       5.141      0.1464 

          THR       5.000      0.1502 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

 Treat Water   1           * 

   Treat DHS   2      0.4158           * 

   Treat LHS   3      0.4144      0.4402           * 

   Treat THR   4      0.4204      0.4459      0.4446           * 

                           1           2           3           4 

 

Predictions from regression model 

--------------------------------- 

Response variate: Infected Leaves 

 

               Prediction        s.e. 

        Treat 

        Water       2.359      0.2686 

          DHS       2.500      0.2774 

          LHS       2.500      0.2773 

          THR       4.344      0.3716 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

 Treat Water   1           * 

   Treat DHS   2      0.8186           * 

   Treat LHS   3      0.8185      0.8315           * 

   Treat THR   4      0.9720      0.9830      0.9829           * 

                           1           2           3           4 
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Figure 6.10 – HS silique treatment 

 

Analysis of variance 

==================== 

 

Tables of means 

=============== 

 

Variate: dist 

 

Grand mean  6.65 

 

 Treatment      DHS      LHS    Water 

               7.04     3.22     9.68 

 

 

Standard errors of means 

------------------------ 

 

Table            Treatment 

rep.                    12 

d.f.                    31 

e.s.e.               0.666 

 

Least significant differences of means (1% level) 

------------------------------------------------- 

 

Table            Treatment 

rep.                    12 

d.f.                    31 

l.s.d.               2.585 

 

Figure 6.12 LHS on eds1-2 and dmr1-2 

Regression analysis 

=================== 

Distribution: Poisson 

    Link function: Log 

     Fitted terms: Constant + Genotype + treatment + Genotype.treatment 

 

Summary of analysis – BUDS 

 

Predictions from regression model 

--------------------------------- 

 

    treatment         DHS                     LHS 

               Prediction        s.e.  Prediction        s.e. 

     Genotype 

       dmr1-2       3.750      0.6651       1.250      0.3839 

       eds1-2       3.875      0.6760       1.875      0.4703 

 

 

    treatment       Water 

               Prediction        s.e. 

     Genotype 

       dmr1-2       3.667      0.7594 

       eds1-2       3.833      0.7764 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype dmr1-2 treatment DHS   1           * 
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   Genotype dmr1-2 treatment LHS   2       1.555           * 

 Genotype dmr1-2 treatment Water   3       2.043       1.723           * 

   Genotype eds1-2 treatment DHS   4       1.920       1.574       2.058 

   Genotype eds1-2 treatment LHS   5       1.649       1.229       1.808 

 Genotype eds1-2 treatment Water   6       2.070       1.753       2.199 

                                               1           2           3 

 

 

 

   Genotype eds1-2 treatment DHS   4           * 

   Genotype eds1-2 treatment LHS   5       1.667           * 

 Genotype eds1-2 treatment Water   6       2.084       1.838           * 

                                               4           5           6 

 

 

 

Summary of analysis - SILIQUES 

 

Predictions from regression model 

--------------------------------- 

Response variate: S 

 

    treatment         DHS                     LHS 

               Prediction        s.e.  Prediction        s.e. 

     Genotype 

       dmr1-2       3.000      0.3682       1.750      0.2805 

       eds1-2       5.125      0.4816       4.125      0.4319 

 

 

    treatment       Water 

               Prediction        s.e. 

     Genotype 

       dmr1-2       2.333      0.3747 

       eds1-2       5.000      0.5492 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype dmr1-2 treatment DHS   1           * 

   Genotype dmr1-2 treatment LHS   2       0.937           * 

 Genotype dmr1-2 treatment Water   3       1.063       0.947           * 

   Genotype eds1-2 treatment DHS   4       1.227       1.128       1.235 

   Genotype eds1-2 treatment LHS   5       1.149       1.043       1.157 

 Genotype eds1-2 treatment Water   6       1.339       1.248       1.346 

                                               1           2           3 

 

 

 

   Genotype eds1-2 treatment DHS   4           * 

   Genotype eds1-2 treatment LHS   5       1.310           * 

 Genotype eds1-2 treatment Water   6       1.479       1.414           * 

                                               4           5           6 
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Figure 6.13 morphology and senescence 

 

Analysis of Variance – Rosette Diameter 

=============== 

 

Variate: Rosette Diameter 

 

Grand mean  75.1 

 

 Genotype   dmr1-1   dmr1-2     eds1 

              77.9     61.0     86.4 

 

 

Standard errors of differences of means 

--------------------------------------- 

 

Table             Genotype 

rep.                     9 

d.f.                    24 

s.e.d.                3.85 

 

 

 

Least significant differences of means (5% level) 

------------------------------------------------- 

 

Table             Genotype 

rep.                     9 

d.f.                    24 

l.s.d.                7.94 

 

Least significant differences of means (1% level) 

------------------------------------------------- 

 

Table             Genotype 

rep.                     9 

d.f.                    24 

l.s.d.               10.76 

 

 

Regression analysis – Senescent leaves 

=================== 

     Distribution: Poisson 

    Link function: Log 

     Fitted terms: Constant + Genotype + Day + Genotype.Day 

 

Predictions from regression model 

--------------------------------- 

Prediction        s.e. 

     Genotype 

       dmr1-1       2.542      0.2507 

       dmr1-2       1.833      0.2129 

         eds1       4.500      0.3335 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

 Genotype dmr1-1   1           * 

 Genotype dmr1-2   2      0.6571           * 

   Genotype eds1   3      0.8337      0.7907           * 

                               1           2           3 
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Figure 6.14 Apogee F. graminearum HS 

Analysis of variance 

==================== 

 

Variate: spikelets 

 

Tables of means 

=============== 

 

Grand mean 8.5714 

 

 

   TREATMENTB         DHS         H20         LHS 

         mean      9.0000      9.4000      7.4000 

         rep.           4           5           5 

 

 

Standard errors of differences of means 

--------------------------------------- 

 

TREATMENTB DHS   1           * 

TREATMENTB H20   2      0.7122           * 

TREATMENTB LHS   3      0.7122      0.6715           * 

                             1           2           3 

 

Minimum standard error of difference       0.6715 

Average standard error of difference       0.6987 

Maximum standard error of difference       0.7122 

 

 

Least significant differences (at 5%) 

------------------------------------- 

 

            1           * 

            2      1.5676           * 

            3      1.5676      1.4780           * 

                        1           2           3 

 

Minimum least significant difference        1.478 

Average least significant difference        1.538 

Maximum least significant difference        1.568 

 

Figure 7.4 – f6’H1 and Col-0 silique infection F. culmorum and F. 

graminearum 

 

Analysis of variance 

==================== 

Tables of means 

=============== 

 

Variate: infection 

 

Grand mean  9.37 

 

 Arabidopsis     Col0     F6H1 

                 9.35     9.39 

 

 Fusarium       Fc       Fg 

              9.86     8.88 

 

 Arabidopsis Fusarium       Fc       Fg 
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        Col0              9.91     8.78 

        F6H1              9.80     8.98 

 

 

Standard errors of means 

------------------------ 

 

Table          Arabidopsis    Fusarium Arabidopsis 

                                          Fusarium 

rep.                    14          14           7 

d.f.                    24          24          24 

e.s.e.               0.227       0.227       0.320 

 

 

Least significant differences of means (5% level) 

------------------------------------------------- 

 

Table          Arabidopsis    Fusarium Arabidopsis 

                                          Fusarium 

rep.                    14          14           7 

d.f.                    24          24          24 

l.s.d.               0.661       0.661       0.935 

 

Figure 7.5 – The effect of erecta 

 

Regression analysis 

=================== 

 

 Response variate: Flowers 

     Distribution: Poisson 

    Link function: Log 

     Fitted terms: Constant + Genotype + Day + Tray + Genotype.Day + 

                   Genotype.Tray + Day.Tray + Genotype.Day.Tray 

Predictions from regression model 

--------------------------------- 

Response variate: Flowers 

 

               Prediction        s.e. 

     Genotype 

         Col0       0.000      0.0001 

        Coler       4.437      0.1407 

       dmr1-2       5.812      0.1611 

       eds1-1       5.375      0.1549 

 

 

 

Least significant differences of predictions (5% level) 

------------------------------------------------------- 

 

 

   Genotype Col0   1           * 

  Genotype Coler   2      0.2829           * 

 Genotype dmr1-2   3      0.3238      0.4300           * 

 Genotype eds1-1   4      0.3114      0.4207      0.4493           * 

                               1           2           3           4 
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Appendix 6: PCA plots of individual genotypes 

PCA plots of metabolic profiles of mock vs F. culmorum infected pedicel-stem 

junctions of 15 Arabidopsis genotypes. PCA constructed from 1H-NMR data 

using extracted regions of known characteristic regions. Models constructed 

using unit variance scaling. Generated by Jane Ward, MeT-RO. 
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