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Landmark Papers: No. 8

Burgess, T.M. & Webster, R. 1980. Optimal interpolation and isarithmic
mapping of soil properties. I. The semi-variogram and punctual kriging.
Journal of Soil Science, 31, 315–331

Reflections by R. Webster

Early days

I have told before in a tribute to Danie Krige how geostatistics
came to be applied to soil (Webster, 2015), but the hard graft
and fortuitous events that led to this first paper on the subject
will bear repeating. It began with my appointment as soil chemist
by the British Colonial Office to the Government of Northern
Rhodesia, now Zambia, in 1957. The government’s aim was to
evaluate the suitability of land for agricultural development, and it
became my job to survey and map soil for that purpose. My training
beforehand in Britain was based on what was then conventional
technique, namely the identification of distinct classes of soil and
their delineation on maps. The notion underlying the procedure,
usually implied but less often stated, was that if one could identify
from a map the class of soil at a place then one should be able to
predict the soil’s properties there. Transferring the practice to the
soil on the deeply weathered rocks on the Zambian plateaux was
problematic, however. The soil varied gradually over the landscape;
there were no obvious boundaries between one kind of soil and
another, although there were the repetitive sequences related to the
topography, for which Milne had coined the term ‘catena’. Further,
the fairly dense miombo woodland in the north of the country meant
that one could rarely see for more than a few tens of metres, and
air-photo interpretation had so far been of little help. Survey had to
be carried out almost entirely by sampling, and I made my maps
from the sparse punctual observations by interpolation. The last
was simply by hand and eye, hardly satisfactory in an increasingly
quantitative era. I wanted something better.

Enter into Zambia Philip Beckett, another sceptical chemist.
He too was interested in prediction of soil conditions between
observation sites. During service in the British army he had noted
the successes and failures of conventional soil maps in predicting
going conditions for military vehicles. Sitting around a paraffin
lamp out in the bush in 1960, we returned evening after evening to
the question: how can we predict from punctual data with known
measures of confidence? We recognized that the problem was
essentially statistical and that we needed a statistical solution. The
following year I joined Philip at Oxford to pursue the matter in
collaboration with the Royal Engineers.

We were not alone in our quest; several other engineers had
begun to realize what the problem was and were toying with
combinations of classical soil maps and statistical prediction. Morse
& Thornburn (1961) sampled at random the classes of agricultural
soil maps in Illinois and computed the means and variances of
engineering properties within classes so as to predict values at
unsampled places. Kantey & Williams (1962) in South Africa
took matters a stage further; they made their own engineering soil
maps and sampled with the same aims. Beckett and I planned a
thorough study along similar lines. We classified and mapped a
large part of the Oxfordshire landscape, sampled it to a stratified
random design and measured properties of the soil. Then by analysis
of variance we assessed our classification for its effectiveness in
(i) diminishing the variances within the classes and (ii) predicting
values with acceptable precision. We also assessed maps made and
sampled by several of our collaborators. We had mixed success.
Our map of the Oxford region enabled us to predict the mechanical
properties of the soil reasonably well. It predicted relatively poorly
the soil’s pH and organic matter content, and it was useless for
predicting the plant nutrients in the soil. Table 1, from Webster &
Beckett (1970), summarizes our results. Nevertheless, even in the
most favourable situations there was substantial residual variation
for which the classification could not account. It was unlikely to be
white noise, ‘pathological variation’ as Priestley (1981) later called
such impossible variation for a continuous variable in continuous
space or time. It must be structural. We had not solved the problem
arising from gradual change or trend. If we simply drew arbitrary
boundaries in those situations then the residuals would be spatially
correlated. At about that time petroleum geologists were having
some success with trend-surface analysis to map simple smoothly
varying geological structures. In our situation, however, it was
unsatisfactory because (i) fluctuation in one part of a region affected
the fit of the surface elsewhere and (ii) the residuals were correlated
so that calculated prediction variances were biased.

Soil properties as stochastic processes

The next significant step came when H.E. Cuanalo arrived in Oxford
from Mexico. He pointed out that time-series analysts have similar
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problems; they treat actuality as realizations of stochastic processes
to describe quantitatively fluctuations in time. We should be able
to do the same for soil in space. What heresy! It would require
a leap of imagination, away from the then current view of soil
as the deterministic outcome of certain factors (and predictable if
we know what those factors were) to soil as the product of random
processes. Looking back, we should not have been surprised. Our
knowledge of the soil-forming factors is far from certain, and their
interactions are so complex that it is hard to distinguish the outcome
from random (Webster, 2000).

Cuanalo set to with vigour to test the feasibility of the approach.
He recorded the soil profile at 10-m intervals in 321 pits on
a 3.2-km-long transect across the Jurassic scarp-lands of north
Oxfordshire. We computed correlograms of the properties from
the data and reported them, the first of their kind, in Webster &
Cuanalo (1975). All showed strong spatial correlation extending
to 200–250 m. This distance corresponded approximately to the
average width of the outcrops and to the evident changes in soil.
If we filtered out the variation due to the presence of the distinct
underlying Jurassic strata we discovered that there was still spatial
correlation in the residuals, although with a range of only about
80 m. Figure 1 shows an example, here with variograms rather than
correlograms, for the clay content in the subsoil (at ≈ 65 cm deep).
The upper sequence of points is of the raw data, and the curve is
that of the spherical function fitted to them. The lower sequence is
of the residuals after the outcrop means have been filtered out; again,
the curve is of the spherical function fitted to them. The spherical
function is:

𝛾 (h) = c0 + c1

{
3h
2r

− 1
2

(h
r

)3
}

for 0 < h ≤ r

= c0 + c1 for h > r

= 0 for h = 0, (1)

where c0 is the variance at lag zero, the so-called nugget variance,
c1 is the correlated component of variance, and r is the range, the
limiting distance of spatial dependence. Table 2 lists the values of
the parameters of the curves shown in Figure 1.

Seen from today, the situation seems obvious; we had two sources
of variation, one from class to class of outcrops, which we might
treat as a fixed effect, and the other within classes, which we
should treat as random. We needed a mixed model to describe it,
as I explained in my tribute to Danie Krige (Webster, 2015) and
illustrated with some results.

To some extent north Oxfordshire was a fortunate choice for
exploring spatial correlation in soil. We could see qualitatively how
the soil varied and chose a sampling interval to accord with this. In
the event we took a cautious approach and sampled more closely
than necessary to reveal the form and scale of variation. We might
have drawn the same conclusion with a coarser sampling interval
and less work. But what was one to do where one could not see,
as on the Zambian plateaux? How could one discover the spatial
scale(s) of variation with modest labour before more intensive

Table 1 Components of variance and intra-class correlations, ri, for a soil
classification in Oxfordshire (from Webster & Beckett, 1970)

Variance components

Soil property Mean Between classes Within classes ri

Strength (cone
index)

138 1248 510 0.71

Clay content /
%

37.2 112.3 90.2 0.61

Plastic limit / % 38.8 125.6 111.4 0.53
pH 7.1 0.161 0.326 0.40
Organic matter

/ %
9.8 3.96 9.48 0.28

Available P / % 0.031 0.000113 0.00114 0.09
Available K / % 0.013 6.0 × 10−6 93.9× 10−6 0.06

Table 2 Parameters of the models fitted to the experimental variograms of
the clay content in the subsoil (≈ 65 cm) of north Oxfordshire and displayed
in Figure 1

c0 c r / m

Raw data 120.6 580.3 207.0
Residuals 108.4 296.4 79.2

sampling to obtain reasonably accurate variograms? I had the
opportunity to explore while working with B.E. Butler, the doyen
of Australian pedology in the CSIRO. Our first task was to discover
the spatial scale(s) on which soil properties varied on the Southern
Tablelands of Australia, another region of deep weathering. We
sampled to a balanced spatially nested design and estimated the
components of variance from a hierarchical analysis of variance,
quite unaware that the technique had been proposed 36 years
earlier by Youden & Mehlich (1937) and lain almost forgotten in
their house journal. We summed the components to form rough
variograms and discovered that different soil properties varied
on disparate scales in that landscape (Webster & Butler, 1976).
Figure 2 shows such variograms of two of the variables. Armed
with that information I could compute for the soil’s phosphorus
content a conventional variogram and map with it, but the grid
interval of 180 m was too course for potassium (Webster, 2011).
But I anticipate; we did not know how to use the knowledge
at the time.

The spacings in Figure 2 increase in logarithmic progression.
Notice that as the sampling interval shortens (i.e. as the scale
becomes increasingly fine, from right to left on the graph) the
number of degrees of freedom increases twofold with each step
after the first. If one wants more steps on the graph for greater
refinement, then doubling the sampling at each stage to maintain
balance soon becomes unaffordable. The increased precision at
the shorter lag distances is also unnecessary. Margaret Oliver
recognized the problem and sacrificed balance and analytical
elegance for greater efficiency for studying the soil in the Wyre
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Figure 1 Variograms of clay percentage in the subsoil (at 65 cm) along
the transect in north Oxfordshire. The points are the experimental
semi-variances estimated by the method of moments; the curves are those
of the spherical model, Equation (1), fitted by non-linear least squares in
GenStat. Table 2 lists the model parameters. [Colour figure can be viewed
at wileyonlinelibrary.com].

Forest of England. She and I designed a five-stage hierarchy
but without doubling all branches of the hierarchy at the lowest
stage, and we programmed Gower’s (1962) algorithm to estimate
the components of variance (Oliver & Webster, 1987). Shortly
afterwards Boag and I devised an extreme form of unbalanced
hierarchy with equal degrees of freedom at all stages apart from
the first in a study of the distribution of cereal cyst nematodes
in soil, and again we estimated the components of variance by
Gower’s method (Webster & Boag, 1992). We have since replaced
Gower’s method, which although unbiased is not unique, by
the more efficient residual maximum likelihood method reml
(Webster et al., 2006).

The publications cited above and the more recent one by Lark
(2011) should ensure that this efficient, economical way of obtain-
ing a first rough estimate of the variogram in unknown territory is
available for any pedometrician’s tool kit.

A second topic in my Australian research was to character-
ize the spatial pattern of gilgai terrain. Gilgais are typically
shallow wet depressions a few metres across in otherwise flat
plains, and their patterns seem to be regular. I and two tech-
nicians sampled the soil to 1 m at regular 4-m intervals on a
1.5-km transect on the Bland Plain of New South Wales (Web-
ster, 1977). The correlograms of several properties appeared wavy,
and I transformed them to their corresponding power spectra.
Chapter 7 in Webster & Oliver (2007) is an up-to-date account of
that research.

But how could we use this intelligence to interpolate?

Figure 2 Accumulated variances as proportions of the total variances for
soluble phosphorus (P) and soluble potassium (K) estimated by hierarchical
analysis of variance from nested sampling at Ginninderra, Australia (data
from Webster & Butler, 1976). The degrees of freedom for the distances are
printed immediately above the abscissa.

The answer: kriging

Perhaps the most significant event during my sojourn in Australia
occurred a week or so before I was due to leave. A complete
stranger breezed into my office without a by-your-leave and asked
me bluntly: ‘What’s this kriging?’. I had never heard the term
before, and rather than plead complete ignorance I played for time.
Who was this intruder? Why did he ask? He was Daniel Sampey, a
mining geologist. I let him talk, which he did for about 20 minutes.
He told me of a certain Professor Krige and of Georges Matheron,
of the theory of regionalized variables and of its application
in geostatistics. Then, clearly disappointed that I knew even less
than he did, he left as abruptly as he had arrived. His parting shot
was that as I was about to return to Britain I should visit Leeds
University where mining engineers knew a thing or two. In those
20 minutes I realized that my problem of spatial prediction of soil
conditions at unvisited places had been solved, at least in principle,
and in general terms I understood how. On my return to Britain
I contacted Anthony Royle at Leeds. He amplified what Daniel
Sampey had told me, and he generously gave me a copy of his
lecture notes on the subject and some references to the literature,
including to Matheron’s (1965) seminal thesis.

On my return I recruited Trevor Burgess, who was keen to apply
his newly won mathematics degree to the task of kriging. Together
we turned Matheron’s equations into algorithms and algorithms
into computer code. From colleagues we obtained data on several
soil variables from surveys in mid-Wales and Norfolk and plugged
them into our code, first to estimate the variograms and then,
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having modelled the variograms, to interpolate by ordinary kriging.
Finally, we contoured the kriged predictions to map the variables.
We submitted our papers (Burgess & Webster, 1980a,b) describing
our achievement to the Journal of Soil Science, and they appeared
shortly afterwards. They were the first to describe for soil scientists
the variogram as we know it today and the first to display maps of
soil properties made by kriging.

On re-reading those papers for this issue of the journal I was
surprised to discover how deep was our understanding at that time.
There in black and white are accounts of the underlying theory
and mathematics. They have been the basis of my teaching of
geostatistics ever since. More worryingly, I have had to explain them
time and time again in critical reviews of papers sent to me by the
editors of learned journals. I wish that authors would read those
papers before simply pressing buttons on computer packages and
copying uncritically the results into their scripts.

I return to my reflections, and to more good fortune for us as soil
scientists. Soil is almost the ideal medium for practical geostatistics.
It forms a continuous mantle over large parts of the earth’s land
surface. Access is easy over much of that, so that sampling at the
working scale of the individual field, farm or estate can be cheap.
We are not confined to tunnels underground, as gold-miners are;
our targets do not move, as fish and the weather do. Some of the
soil’s most important properties, such as its pH, concentrations of
the major plant nutrients and trace elements, salinity and pollutant
heavy metals, are also cheap to measure nowadays: we need not
be short of data for these variables. With so many data we can
estimate spatial covariance functions and variograms accurately.
The statistical distributions of these properties are in most instances
‘well-behaved’ in that they are either close to normal (Gaussian)
or to lognormal. In the latter situations simple transformation to
logarithms makes analysis straightforward and efficient. Further,
although the laws of physics must be obeyed as soil is formed, the
numerous processes that operate and have operated in combination
over many millennia to form the present-day soil have produced a
complexity that is indistinguishable from random (Webster, 2000).
So, we can often treat it as the outcome of random processes without
harming our professional reputations.

It is a small step from there to assume that the soil variables,
transformed if necessary, are intrinsically stationary and that the
variogram is a sufficient summary of the spatial structure. Ordinary
kriging follows, and from the 1980s onwards it has become the
workhorse of geostatistics in surveys not only of soil itself but also
in the related fields of agronomy, pest infestation and pollution;
there are hundreds of examples of its application described in
the literature. It has proved to be valuable in modern precision
agriculture in particular (see Oliver (2010) and the topics therein).

There have been advances and refinements, of course: science
and technology do not stand still. One in particular seems to
me especially important; it is the treatment of geographic trend,
or ‘drift’ as it is usually known among geostatisticians, and the
mathematically related ‘external drifts’ (i.e. related variables). If
there is drift then the assumption of intrinsic stationarity is violated.
The kriging itself requires no more than an augmentation of the

ordinary kriging system, which Matheron (1969) called ‘universal
kriging’. The difficulty, and a serious impediment for a couple of
decades, was obtaining a valid estimate of the variogram of the
random component of the variation (i.e. of the residuals from the
drift). The way to overcome this difficulty has been to use likelihood
methods, as pointed out by Stein (1999), and residual maximum
likelihood (reml) in particular. Lark and colleagues have been at the
forefront of this development to obtain what they call the empirical
best linear unbiased predictor, or ‘e-blup’ (Lark et al., 2006). I
leave Lark et al. (2019) to expand on this in their commentary.

Addenda

While reflecting I mention one other way in which I was for-
tunate. All of the popular valid variogram functions, apart from
the unbounded linear model, contain non-linear distance parame-
ters, and these cannot be estimated by ordinary least-squares regres-
sion. Some, such as the exponential and power functions, can be
re-parameterized so that they are linear. Others such as the spherical
and related functions cannot; they must be estimated by numeri-
cal approximation, and doing that requires expertise in numerical
analysis. Rothamsted had that expertise; Ross (1987) had written
his program, MLP, for non-linear estimation, and we soil scientists
used it to advantage for fitting models to experimental variograms
(McBratney & Webster, 1986). The algorithms are incorporated in
GenStat, Rothamsted’s general statistical program, now in its 19th
release (Payne, 2018), to provide the facilities for estimating and
modelling spatial covariances completely under the control of the
practitioner and with transparent monitoring of the processes. These
facilities include the choice of steps, bins and maximum lags, the
robust estimators and variable weighting according to the expected
values. They include the linear model of coregionalization for two
or more random variables. GenStat also contains the algorithms to
analyse spatial data by reml and so cope with trend and external
drift. It has been a boon to those of us at Rothamsted and the scien-
tists elsewhere who have sought our help and collaboration.

And what about the future? I shall not be drawn; it is in the hands
of my successors, and Lark et al. (2019) in their commentary have
dealt admirably with my sentiments. Theirs is the future.

R. Webster
Rothamsted Research, Harpenden AL5 2JQ, UK

E-mail: richard.webster@rothamsted.ac.uk
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