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 G-protein signaling components have been attributed many biological roles in plants but the 18 

extent of involvement of G-protein coupled receptor 1 (GCR1) with the Gα (GPA1) remained 19 

unknown. To address this, we have performed transcriptomic analyses on Arabidopsis gpa1-20 

5gcr1-5 double mutant and identified 656 differentially expressed genes (DEGs). MapMan and 21 

Gene Ontology analyses revealed global transcriptional changes associated with external 22 

stimulus, cell wall organization/biogenesis and secondary metabolite process among others. 23 

Comparative transcriptomic analyses using the single and double mutants of gcr1-5 and gpa1-5 24 

identified 194, 139 and 391 exclusive DEGs respectively, whereas 64 DEGs were common to all 25 

three mutants. Further, pair wise comparison of DEGs of double mutant with single mutants of 26 

gcr1-5 or gpa1-5 showed about one-third and over half common DEGs, respectively. Further 27 

analysis of the DEGs exclusive to the double mutant using protein-protein interaction networks 28 

revealed molecular complexes associated with nitrate and light signaling and plant-pathogen 29 

interactions among others. Physiological and molecular validation of nitrate-response revealed 30 

the sensitivity of germination to low N in the double mutant, and differential expression of 31 

nitrate transporter and nitrate reductase in all three mutants. Taken together, GCR1 and GPA1 32 

work in partnership as well as independently to regulate different pathways. 33 

Introduction: 34 

Heterotrimeric G-proteins regulate diverse signaling events in plants, following the dissociation 35 

of heterotrimer into GTP-bound Gα subunit and Gβγ dimers, which further activate the various 36 

downstream effectors for the coordinated regulation of plant responses. The model dicot 37 

Arabidopsis has been so far found to have only one α (GPA1), one β (AGB1), three γ subunits 38 

(AGG1-3), and three extra-large Gα proteins (XLG1-3)1,2. It has been shown that heterotrimeric 39 

G-proteins regulate cell growth and development, hormonal signaling, nitrate reductase gene 40 

expression and response to both abiotic and biotic stresses3-7. The upstream components of plant 41 

G-protein signalling and their interactions with G-proteins have been studied8-10 but still poorly 42 

understood. The best-considered GPCR candidate, GCR1, in Arabidopsis, has been implicated in 43 

the regulation of DNA synthesis11, abolishing seed dormancy, reducing flowering time12, 44 

brassinosteroid and gibberellin-regulation of seed germination13, drought stress, ABA response, 45 

regulation of stomatal apperture14, blue light response15 and most recently in biotic stress, 46 

flavonoid biosynthesis, cytokinin biosynthesis, salicylic acid and ethylene response, phosphate 47 



 
 

starvation16. Transcriptome analyses of gpa1-5 has also identified DEGs involved in similar 48 

pathways including flavonoid biosynthesis, transcription factors, transporters and nutrient 49 

responses to nitrate and phosphate17. 50 

The demonstration of self-activation of GPA118, lack of a confirmed GPCR and its ligand 51 

or guanine nucleotide exchange factor (GEF) activity in plant GCR so far19 and the 52 

disagreement20 over the reported interaction between GCR1 and GPA1 in Arabidopsis14,21 were 53 

used to question the existence and the role of GPCRs in plant G-protein signalling20. Instead, it 54 

has been shown with the help of crystal structure and in vitro experiments that plant Gα-proteins 55 

are self-activating and spontaneously exchange GDP with GTP without the need of GEF 56 

activity1822. The sustained activation of G-protein signaling occurs by endocytosis of the 57 

regulator of G-protein signalling (RGS1) in Arabidopsis23. The seven transmembrane RGS 58 

proteins were initially thought to be absent in most studied grasses and monocots24 but later it 59 

was found that RGS proteins are present in many grasses with frequent losses in different species 60 

like rice25. Moreover, the argument regarding the lack of heterotrimeric G-proteins in green algae 61 

(which are predicted to have GCRs) has been countered recently by the discovery of a complete 62 

G-protein complex in a green alga, Chara braunii26. Most recently, transcriptome analyses on 63 

gcr1-5 mutant revealed differentially expressed genes belonging to known G-protein regulated 64 

processes16 suggesting the need to revisit the role of GCR1 in plant signalling in general and G-65 

proteins in particular. 66 

Till the GEF activity for GCR1 and its GPCR properties are proven, an overlap between 67 

the genes/processes/responses between the single mutants of GCR116 and GPA117 remains the 68 

best genetic evidence in favour of their functional association. This can be best validated by 69 

transcriptomic analyses of a double mutant, in comparison with either of the single mutants. The 70 

above two single mutant studies were done in the WS ecotype, whereas the double mutant 71 

isolated elsewhere was in the Col-0 ecotype11 and therefore, a double mutant in WS ecotype was 72 

necessary to validate the predictions made using the single mutants16,17. Accordingly, in this 73 

study, we used the GPA1 and GCR1 double mutant generated in WS background for whole 74 

transcriptome microarray analysis and comparison with single mutant data to demonstrate their 75 

combinatorial roles for various cellular responses and sensitivity of its seed germination to low 76 

nitrate.  77 



 
 

Results 78 

Characterization of the gpa1-5gcr1-5 double mutant.  A double mutant of gpa1-5gcr1-5 was 79 

generated by crossing their confirmed single null mutants16,17 but its characterization was not 80 

reported earlier6. The null double mutant, devoid of expression of both GPA1 and GCR1, was 81 

confirmed by qPCR (Fig. 1A). The mutant plants were phenotypically characterized for root 82 

length, plant height, leaf shape and other phenotypic traits. It was found that gpa1-5gcr1-5 is 83 

similar to the only other known gpa1gcr1 double mutant in Col-0 background11 with longer 84 

roots, less plant height, longer siliques, and rounded leaves and smaller rosette (Fig. 1B-E). 85 

Overall, the double mutant gpa1-5gcr1-5 was found to be phenotypically closer to the gpa1-5 86 

single mutant17 than the gcr1-5 single mutant16, though in most cases the phenotype is 87 

somewhere between the single mutants. 88 

Microarray analysis and validation. The MIAME compliant microarray replicates had high 89 

correlation coefficient (>0.9), clearly indicating the robustness and a high level of reproducibility 90 

of the data (Table S1). The Benjamini Hochberg FDR procedure at a cut-off value of p ≤ 0.05 91 

was used for multiple testing corrections. A stringent cut-off value of 1.0 (geometric mean log2) 92 

with a p-value of ≤ 0.05 was used to identify 829 differentially regulated transcripts in the double 93 

mutant (422 up-regulated and 407 down-regulated). These transcripts corresponded to 656 94 

unique differentially expressed genes (DEGs), 306 up-regulated and 350 down-regulated). A list 95 

of 10 most up- and down-regulated genes is shown in Table 1 and the heat map of all the DEGs 96 

and their GO classification is shown in Fig. 2. In order to validate the microarray results, 19 97 

DEGs (10 up- and 9 down-regulated) were selected spanning each of the important functional 98 

categories and subjected to RT-qPCR using gene specific primers tested for efficiency (100 ± 10 99 

%). The list of these genes and the primer sequences used are given in the Table S2. The results 100 

of RT-qPCR matched with the microarray data in all the cases (Fig. 3) with Pearson’s product 101 

moment correlation of >0.99 (p-value = 6.54E-17), validating the basic trends of regulation of 102 

gene expression found in the microarray analyses. 103 

Gene Ontology and MapMan pathway analyses of double mutant DEGs. To understand the 104 

biological effects of loss of both GCR1 and GPA1 function, we have performed the GO analyses 105 

of the DEGs identified in the double mutant using AgriGO2.0 tool. The statistically 106 



 
 

overrepresented GO terms (based on p value and FDR) were considered for further analyses 107 

(Fig. 2B and Table S3). All the 656 DEGs were broadly classified into biological processes, 108 

molecular functions and cellular components. The over-represented GO terms for biological 109 

processes were “response to external stimulus”, “plant-type secondary cell wall biogenesis”, 110 

“cell wall organization or biogenesis”, “response to external biotic stimulus”, “response to other 111 

organism”, “response to biotic stimulus” and secondary metabolite biosynthetic process” among 112 

others. In molecular function category, we observed the significant GO terms were “terpene 113 

synthase activity”, “O-methyltransferase activity”, “carbon-oxygen lyase activity”, “acting on 114 

phosphates tetrapyrrole binding” and “transcription factor activity” among others whereas 115 

“extracellular region” GO term identified for cellular component (Table S3). We also mapped 116 

these DEGs into various pathways using MapMan28. Comparative analyses showed a high 117 

degree of agreement between GO terms and Mapman pathways. The DEGs were broadly 118 

mapped into various pathways (bins) such as metabolic processes (Fig. 4A), different levels of 119 

regulation (Fig. 4B) and cellular responses (Fig. 4C). Further insight into these pathways (sub-120 

bins) showed that many DEGs were mapped into biotic and abiotic stress pathways, 121 

development, cell wall, lipid and amino acid metabolism, hormone signaling, protein 122 

modification and degradation among others. DEGs were also classified as receptor like kinases 123 

(RLKs), transcriptional regulators and genes regulated by calcium and G-protein signaling (Fig. 124 

4).  125 

Sub cellular distribution of DEGs and identification of associated transcription factors. To 126 

understand the global cellular context of both GCR1 and GPA1 mutations in terms of the 127 

affected subcellular organelles and associated pathways, all the DEGs were subjected to 128 

subcellular prediction using YLoc program. We observed that majority fraction of the DEGs 129 

were distributed into cytosol (24%), extracellular (22%), nucleus (21%) and plasma membrane 130 

(11%) among others (Fig. 5A). This suggests that both GCR1 and GPA1 regulate many 131 

processes and pathways operated within these organelles. Nuclear genome is an important target 132 

for myriad signaling pathways that culminate in gene regulation by transcription factors (TFs). A 133 

search using the DEGs at the plant transcription factor database (plantTFDB 2.0)29, revealed 64 134 

transcription factors (Table S4) belonging to 22 families. Their regulation was nearly equally 135 

distributed in the double mutant, with 34 up-regulated and 30 down-regulated TF genes. (Table 136 

S4).  Most of them belong to the class of bHLH, C2H2, MYB, WRKY and AP2-EREB families, 137 



 
 

other than putative and unspecified ones (Fig. 5B). While many of the MYB family members 138 

were found to be down-regulated in the double mutant, none of the transcription factors of AP2-139 

EREB and WRKY families were down-regulated. On the other hand, in the bHLH and C2H2 140 

families, the up- and down-regulated transcription factors showed a mixed distribution. Sixteen 141 

TFs were commonly regulated in gpa1 while none of these TFs were common in the gcr1-5 142 

mutant. The guard cell functions and root differentiation are mediated through G-protein 143 

signaling14. The transcriptional regulators such as bHLH, MYB and WD40 are known to regulate 144 

these functions30 and many of these regulators were identified as DEGs in our datasets. MYB 145 

and WRKY belong to a major TFs class and were reported to be involved in stress responses31,32. 146 

Members of AP2/EREB class of TFs have been reported to be involved in storage compound, 147 

fatty acid biosynthesis and stress responses33. The up regulation of two TFs, bHLH100 and 148 

ERF13 and the down regulation of MYB69 and MYB5 were validated in the double mutant 149 

using qPCR (Figs. S1 and S2). 150 

Double and single mutants share substantial genes. In order to gain a comprehensive view of 151 

the differential regulation of the affected genes in the single and double mutants of GPA1 and 152 

GCR1, we compared the DEGs obtained in gpa1-5gcr1-5 double mutant to those of the single 153 

gpa1-517 and gcr1-516 mutants. Out of the 350 GCR1-regulated genes in the single mutant, 115 154 

(or 34%) were common to the 656 DEGs in the double mutant. Similarly, out of the 394 of the 155 

GPA1 regulated genes in the single mutant 214 (or 54%) were common to the 656 DEGs in the 156 

double mutant. Only 64 DEGs were found to be shared amongst all three mutants (Fig. 6A). The 157 

hierarchical clustering of the DEGs from all the mutants revealed that the double mutant (gpa1-158 

5gcr1-5) is closer to gpa1-5 and that gcr1-5 is closer to the wild type (Fig. 6B). This closely 159 

parallels the similarity patterns in their phenotypes. 160 

If the genetic interactions are additive, the genes differentially expressed in the double 161 

mutant should have been the sum of all the DEGs found in the single mutant. Also, all the DEGs 162 

shared by the single mutants should also have been common to the double mutant, but this was 163 

not observed using the log2 fold change (log2FC) cut-off of 1.0. The double mutant has almost 164 

double the DEGs than each of the single mutant. Only 64 DEGs (37 up-regulated; 27 down-165 

regulated) were common to all the three mutants, while the single mutants shared 104 DEGs 166 

between them. A closer look at these 104 DEGs revealed that they did not light up in the double 167 



 
 

mutant due to either the stringent p-value cut-off of 0.05 or log2FC cut-off of 1.0. Out of the 28 168 

such up-regulated genes that did not light up in the double mutant, 10 did not meet the p-value 169 

cut-off, 10 had log2FC value of 0.8 and above, while the rest 8 genes had log2FC value of less 170 

than 0.8. Similarly, in the 12 such down-regulated genes, only 4 genes did not meet the log2FC 171 

cut-off of -1.0 and the rest did not figure in the list due to p-value cut-off of 0.05 despite having 172 

log2FC values beyond -1.0. We validated 10 DEGs from the list shared only by the single 173 

mutants and 10 DEGs unique to the double mutant by qPCR (Figs. S1 and S2). 174 

Abiotic and biotic stress. Heterotrimeric G-protein-dependent immune regulation34-37 and 175 

abiotic stress-responses4,38-40 are well known in plants. Functional analyses of the DEGs revealed 176 

that “response to stimulus” constitutes the top most GO category of genes regulated by GPA1 177 

and/or GCR1. Among these DEGs, 32 genes (including ESC, ARR22, TT7, etc.) were reported to 178 

be GPA1-regulated17, while 23 (including CAD1, EF1α, WRKY 53, etc.) of them have been 179 

reported to be regulated by GCR116, which also includes the 15 genes that are regulated by both 180 

GPA1 and GCR1. The genes that are regulated by both GPA1 and GCR1 include Arabidopsis 181 

thaliana phloem protein 2 A5 (ATPP2-A5), dark inducible 11 (DIN11), phytoalexin deficient 3 182 

(PAD3), etc. Many DEGs like DIN11, FMO1, MEE16, PAD3, etc. have been reported to be 183 

differentially regulated in gpa1-517 and gcr1-5 mutants16,41. These include several well-known 184 

stress-responsive genes like low temperature induced 78 (LTI78), plant defensin 2.5 (PDF2.5), 185 

ethylene response factor (ERF6), several peroxidases and transcription factors. Analysis of the 186 

DEGs using Mapman revealed them to be involved in abiotic stresses such as cold, heat, drought, 187 

salt etc., as well as in biotic stress. More detailed mapping revealed that 225 out of total 656 188 

DEGs belong to the biotic stress category (Fig. S3), though a few of them are also involved in 189 

abiotic stress. A majority of these 225 genes were mapped into signalling, proteolysis, cell wall, 190 

PR-proteins and secondary metabolites. The basic trends of their regulation in the mutant have 191 

been confirmed by qRT-PCR on two up-regulated genes (peroxidise family protein gene 192 

(AT1G49570) and ATPP2A5) and two down-regulated ones (PDR12 and PAD3), as shown in 193 

Fig. 3. 194 

Secondary metabolism. The GO class associated with secondary metabolites were found to be 195 

an important category, so we checked the involvement of GCR1/GPA1 in regulating the genes of 196 

secondary metabolism. We found that 107 DEGs belong to the biosynthesis of flavonoids and 197 



 
 

isoprenoids based on Mapman as well as pathway analysis using AraCyc database (Fig. S4, 198 

Table 2). The genes involved in flavonoid biosynthesis include 2-oxoglutarate, dihydroflavanol-199 

4-reductase (DFR), UDP-glucosyl transferase 73C6 (UGT73C6), etc., while those involved in 200 

isoprenoid biosynthesis include dehydrodolichyl diphosphate synthase, myrcene synthase, 201 

terpene synthase 21 (TPS21), etc. The basic trends of their regulation in the mutants have been 202 

confirmed by qRT-PCR on the up-regulated gene 2-oxoglutarate and two down-regulated ones 203 

(FMO1 and DFR), as shown in Fig. 3. Flavonoid biosynthesis was also found to be regulated in 204 

our previous studies using single mutants of GPA1 and GCR1, but many more genes belonging 205 

to this category are differentially regulated in the double mutant. Thus, we found that out of the 206 

11 genes that regulate flavonoid biosynthesis in the double mutant, only 2 genes were found to 207 

be regulated in both the single mutants, whereas 5 genes were regulated in gpa1-5 and 3 genes 208 

were regulated in gcr1-5. 209 

Development. We also detected the association of 80 DEGs in developmental processes (Fig. 4). 210 

These genes include senescence-associated gene 12 (SAG12), vegetative storage protein 2 211 

(VSP2), lateral organ boundaries-domain 29 (LBD29), several expansins, etc. Out of these, few 212 

genes like expansins are involved in cell wall modification. Genes like transparent testa 8 (TT8), 213 

tetratricopeptide repeat 3 (TPR3), cytokinin response factor 4 (CRF4), etc. are involved in 214 

development of shoot while transparent testa 16 (TT16), shatterproof 2 (SHP2), flowering locus 215 

T (FT), etc. are involved in flower development. GPA1 has been previously reported17 to be 216 

involved in developmental processes and hence, shows a larger convergence with 17 genes being 217 

common between them. Only four DEGs were found to be common to gcr1-516 in this category. 218 

We confirmed the basic trends of regulation in the mutant in this category using qPCR on the up-219 

regulated (AT2G35710 and AT1G78860) as well as down-regulated (VSP2 and AT2G02160) 220 

genes (Fig. 3). 221 

Hormone response. G-protein signaling has been implicated to regulate hormone signaling in 222 

plants41-43. GO and MapMan analyses showed that 37 of the DEGs were associated with 223 

hormone biosynthesis and signaling (Fig. 2 and 4). These include genes which are responsive to 224 

cytokinin, ethylene, ABA, auxin, salicylic acid, etc. Ethylene is known to down-regulate the 225 

expression of AGB144 and the role of GPA1 in ethylene signalling operated in guard cell is 226 

known45. Cytokinin oxidase 4 (CKX4) and cytokinin response factor 4 (CRF4) are involved in 227 



 
 

cytokinin biosynthesis/response; ethylene response factor 6 and 13 (ERF6 and ERF13) and 228 

pleiotropic drug resistance 12 (PDR12) are involved in ethylene response. A few others like 229 

MYB43, hydroxysteroid dehydrogenase (HSD1), responsive to desiccation 26 (RD26), syntaxin 230 

of plants 121 (SYP121) etc., are involved in ABA response. A few auxin-responsive genes like 231 

PDR12 and LBD29 were also found among the hormone-responsive genes. Though hormone 232 

response was found as a major category in gcr1-516, the overlap to the double mutant in terms of 233 

DEGs was limited to only 2 genes. Similarly, only 3 DEGs were found to be common to the 234 

gpa117 and double mutant. The basic trends of their regulation in the double mutant have been 235 

confirmed by qRT-PCR on the up-regulated genes, CKX4 and ERF13, as well as the down-236 

regulated gene PDR12, as shown in Fig. 3. 237 

Transport. Twenty three genes related to transport were also found to be differentially regulated 238 

in the double mutant (Table S3). These include lipid transporters (LPTs), oligopeptide 239 

transporters (POT, OPT5), nuclear transport factor (NTF2), as well as nutrient transporters such 240 

as methylammonium transporter (TIP 2;3), phosphate transporter (APT1), nitrate excretion 241 

transporter (NAXT1) and high affinity K+ transporter (HKT1). A few of these DEGs have been 242 

reported earlier in other G-protein mutants41,46. The basic trends of their regulation in the mutant 243 

have been confirmed by qRT-PCR on the down-regulated genes PDR12 and AZG2, as shown in 244 

Fig. 3. Interestingly, transport was also found to be a major response category in the 245 

transcriptomic analyses of the gpa1-5 mutant17, but not in the gcr1-5 mutant16. 246 

Cellular processes and molecular complexes regulated by both GCR1 and GPA1 function. 247 

To understand the function of DEGs detected in the gpa1-5gcr1-5 double mutant, we have 248 

compared significantly overrepresented GO terms and observed both overlapping as well 249 

exclusive biological processes in all three mutant datasets (Table S5). The comparison clearly 250 

revealed that processes exclusive to the double mutant predominantly regulate cell wall 251 

composition and associated metabolic processes (Fig. 7A). MapMan analyses also revealed the 252 

over-representation of cell wall-associated DEGs in the double mutant (Fig. 7B). The results of 253 

both AgriGO (Fig. 7A) and Mapman analyses (Fig. 7B) are similar in the sense that the double 254 

mutant showed higher number of cell wall-associated exclusive DEGs as compared to either of 255 

the single mutants. A combination of both GO and MapMan analyses led to the identification of 256 

36 cell wall-associated exclusive DEGs in the double mutant (Fig. 7C). Majority of these DEGs 257 



 
 

such as the family members of ANAC, MYC, MYB and pectinesterase were down-regulated, 258 

whereas pectinase, expansin-like B3 precursor, proline-rich extensin-like among others up-259 

regulated in the double mutant. To validate the expression level of cell wall associated DEGs 260 

identified in the gpa1-5gcr1-5 double mutant, 4 DEGs were selected for qPCR validation. Three 261 

DEGs viz. beta-xylosidase 3 (BXL3), COBRA-like 4 (COBL4), galacturonosyl transferase 12 262 

(GAUT12) were down-regulated, whereas pectin methylesterase (ATPMEPCRB) was up-263 

regulated in the gpa1-5gcr1-5 double mutant (Fig. S5), confirming their trend on the microarray. 264 

The BXL3 is generally localized in the extracellular matrix and is involved in the hydrolysis of 265 

arabinan, whereas COBL4, also known as irregular xylem 6 (IRX6), is involved in the secondary 266 

cell wall biosynthesis. The loss of function of GAUT12, also known as irregular xylem 8 (IRX8), 267 

significantly reduces xylose contents in the cell walls whereas ATPMEPCRB act on cell wall 268 

pectin in plant. The modulation of the expression of these genes in the double mutant indicates 269 

GCR1 and GPA1 coupling in the regulation of the cell wall. 270 

To further understand the combinatorial role of GCR1 and GPA1 in cellular response, we 271 

used the DEGs from all three mutants to search in the G-protein interactome47, MIND database48, 272 

XLGs interactome49 and RGS1 protein networks50. We observed association with known G-273 

protein signaling components in 12, 8 and 16 DEGs in the gcr1-5, gpa1-5 and gpa1-5gcr1-5 274 

mutants, respectively (Fig. 8A). Only two DEGs namely phloem protein 2 A5 and methionine 275 

sulfoxide reductase B7 were found to be the common interactor DEGs among all three mutants 276 

(Table S6). To further delineate these complex regulations, we have developed PPI networks of 277 

exclusive DEGs identified in the double mutant and mapped these DEGs into networks. To 278 

construct the PPI networks, we retrieved the experimentally validated interactions list from 279 

STRING and BioGRID databases and assigned the colour code to the nodes using DEGs 280 

expression value. The networks consisting of 2216 nodes and 3499 edges were analysed and 281 

viewed in Cytoscape 3.0.051. The PPI network analyses showed many of the DEGs interacting 282 

with other components in the networks (Fig. 8B-E). Sub-clustering of the networks using 283 

MCODE plugin in Cytoscape revealed 7 highly connected molecular complexes/sub-clusters 284 

(Fig. 8 and Fig. S6). Four molecular complexes having MCODE score > 3 with node number > 3 285 

(Fig. 8B-E) were selected for further analyses. A total of 5, 18, 4, 7 nodes and 9, 35, 5, 11 edges 286 

were detected in sub-cluster 1, 2, 3 and 4, respectively. All seven sub-clusters details are 287 

mentioned in Table S7. The sub-cluster 1 includes transcriptional regulators associated with light 288 



 
 

signaling such as HY5 (Long Hypocotyl 5), COP1 (Constitutive Photomorphogenic1) and HFR1 289 

(Long Hypocotyl in Farred1) (Fig. 8, Table S7). The sub-clusters 4 also include transcription 290 

regulators such as ATMYC-2, MYC6.2, ATMYB123, homeodomain-like superfamily protein 291 

involve in diverse biological processes. The miscellaneous interactors such as auxin-responsive 292 

family protein, glycosyl transferase family 4 protein, nucleotide-sugar transporter family protein, 293 

and ubiquitin-conjugating enzyme 34 among others as were identified in sub-cluster 2. 294 

AKINBETA1, KIN10, KIN11, and SNF4 genes were identified in sub-cluster 3 and these protein 295 

kinases are involved in various cell signaling process. The identification of DEGs in these 296 

molecular complexes suggests that associated cellular pathways may be regulated by the 297 

combined function of GCR1 and GPA1 in Arabidopsis. 298 

Germination of gpa1-5gcr1-5 double mutant is sensitive to low nitrate. The effect of N and 299 

N-associated genes on seed germination is well known in plants52-54. We analysed the role of G-300 

protein signaling on nitrate-responsive germination in single mutants (gpa1-5, gcr1-5) and their 301 

double mutant (gpa1-5gcr1-5) grown on B5 media supplemented with low nitrate (12.5 mM 302 

KNO3) optimal nitrate (25 mM KNO3) as per the standard B5 media composition or high nitrate 303 

(30 mM KNO3) at 22 °C in a growth chamber. The emergence of radicle was observed at every 304 

three hours for the next three days (72 h) and total % seeds germinated and time taken for 50% 305 

germination were used to compare WT and mutants. All of them started germinating around 30 h 306 

after soaking and seeds of both the single mutants and wild type were broadly similar at all 307 

nitrate doses, both in terms of total germination at 72 h (95-100%) and the time taken for 50% 308 

germination (Fig. 9). However, the double mutant was sensitive to low nitrate level (12.5 mM) 309 

on both counts. It had significantly lower level of total germination (80%) and also significantly 310 

slower germination rate, as the time taken for 50% seeds to germinate was delayed by 4 h 311 

relative to the WT (Fig. 9B).  312 

 313 

In order to investigate whether these mutants are affected in genes encoding nitrate uptake and 314 

metabolism, we have grown them along with WT in low (12.5 mM) and high (30 mM) nitrate 315 

conditions for 14 days, harvested their root tissues and analyzed the expression of known nitrate-316 

regulated genes viz. nitrate transporter (NRT1), nitrate reductase (NR2) cytosolic glutamine 317 

synthetase (GS1 or GLN1), and ferredoxin dependent glutamate synthase (Fd-GOGAT) by real 318 

time PCR. At 12.5 mM nitrate level, the expression of NRT1 was higher in all three mutants as 319 



 
 

compared to wild type, whereas NRT1 expression was reduced at 30.0 mM nitrate (Fig. S7). 320 

Considering that NRT1 is known to be a low affinity nitrate transporter and sensor or transceptor, 321 

12.5 mM nitrate may have been perceived as inadequate due to GCR1 and/or GPA1 mutation, 322 

triggering higher expression of NRT1, which was not the case at 30.0 mM nitrate. This is 323 

consistent with our previously reported role for Gα signaling in N-response and nitrate reductase 324 

expression/activity17,55. Accordingly, the perceived nitrate-limited condition in both the single 325 

and double mutants also explains the observed down-regulation of nitrate reductase (NR2) 326 

transcript level at 12.5 mM nitrate but not at 30 mM nitrate, except in the gpa1 mutant (Fig. S7). 327 

Our results also show for the first time that gcr1 mutant shows altered dose-dependent 328 

differential N-response for both NRT1 and NR2 gene expression, implying GCR1-GPA1 329 

coupling in N-signaling.  330 

 331 

Discussion 332 

It is well recognized that heterotrimeric G-proteins play important roles in several plant 333 

processes, despite the limited diversity of their components24. For example, all the functions of 334 

the Gα subunit were previously attributed to GPA1 in Arabidopsis, till it was shown that a few of 335 

these functions are attributed to XLGs3,56. The existence of multiple γ subunits necessitated the 336 

classification of downstream signalling partners/pathways in Arabidopsis57. Normally, this 337 

would also be expected for molecules upstream of G-proteins, as their diversity facilitates the 338 

perception, discrimination and transduction of diverse signals. Instead, they were viewed from a 339 

predominantly all-or-none approach that initially relied only on GPCRs14 and subsequently relied 340 

only on RGS20, arguing explicitly that only one of the two possibilities can exist24 till recently. 341 

We have provided the first evidence against such exclusive approach using parallel functional 342 

genomic analyses of mutants of Arabidopsis GCR116/GPA117 from a gene discovery perspective. 343 

We showed there by venn selection that 30% of all GCR1-responsive genes and 57% of all 344 

GCR1-regulated processes were similar to those of GPA1, though there were also many that did 345 

not overlap with those of GPA1. This was by far the most compelling indication, not only in 346 

favour of the GCR1-GPA1 partnership, but also in favour of its possible coexistence with other 347 

alternative partnerships (GCRx-GPA1, GCR1-GPAx, non-GCR-partnership with GPA1 or 348 

GCR1 partnership with a non-G-protein). 349 



 
 

In this study, we extended this approach further by microarray analysis of a double-350 

mutant generated from the confirmed single mutants of GCR116 and GPA117 in Arabidopsis to 351 

further confirm the genes/processes co-regulated by GCR1-GPA1 partnerships, as well as to 352 

predict other possible partnerships based on the observed responses. This double mutant (gpa1-353 

5gcr1-5) is different from the only other double mutant reported so far11, not only because it is in 354 

a different ecotype, but also with respect to the specific loci of mutations in their single mutant 355 

parents we generated and used for crossing, as described earlier for gpa1-517 and gcr1-516. The 356 

double mutant was found to be phenotypically similar to the previously published double 357 

mutant11 as well as closer to the gpa1-5 parent (Fig. 1B-E)17, further confirmed by hierarchical 358 

clustering (Fig. 2). We found 656 DEGs in the double mutant spanning all 5 chromosomes, with 359 

nearly equal proportion of up/down-regulated genes. Nineteen of these genes (10 up and 9 down) 360 

have been verified by qRT-PCR (Fig. 3) and a larger list of the top 10 DEGs is given in Table 1. 361 

Functional annotation and MapMan pathway enrichment analysis showed that these DEGs were 362 

involved many pathways such as response to external stimulus, primary and secondary cell wall 363 

modulation/biosynthetic processes, plant immunity, secondary metabolism, nitrogen signaling 364 

and light signaling among others. 365 

The genes/processes identically regulated in all 3 mutants can be best explained by GCR1 366 

and GPA1 working together in the same G-protein signalling pathway, though co-regulation by 367 

convergence of independent pathways cannot be ruled out, till the clinching biochemical 368 

evidence for the functional coupling of GCR1 and GPA1 is obtained. On the other hand, 369 

independent signalling pathways of GCR1 and GPA1 provide the most plausible explanation for 370 

the regulation of the 51 additional genes in the double mutant shared only with the GCR1 371 

mutant, as well as for the 150 additional genes shared only between the double mutant and the 372 

GPA1 mutant, as detailed in the later sections. At least some of these DEGs in the double mutant 373 

common to either of the two single mutants (but not both) belong to the same process categories 374 

including stress, response to stimulus, transcription, etc. that are shared by all three mutants. This 375 

means that even when GCR1 and GPA1 follow independent pathways involving other partners 376 

to regulate different genes, some of them seem to achieve similar regulatory outcomes at the 377 

process level. This is indeed the best explanation for 195 unshared genes from the GCR1 single 378 

mutant and 140 unshared genes from the GPA1 single mutant belonging to 41 shared processes 379 



 
 

in the double mutant. These processes include response to stress, cell wall modification, 380 

development, hormone response, etc. 381 

To understand the functional association of DEGs and associated processes regulated by 382 

GCR1 but independent of GPA1, we compared the list of DEGs and found that 51 DEGs in the 383 

double mutant shared only with the gcr1-5 mutant and not with the gpa1-5 mutant constitute 384 

about 44% of the 115 total DEGs shared between them, (as the remaining 64 are common to all 3 385 

mutants). Their identical pattern of regulation in the gcr1 mutant and the double mutant clearly 386 

indicates that the effects of GCR1 mutation are carried over to the double mutant but GPA1 387 

mutation has no effect on these genes, either in the gpa1-5 mutant or in the double mutant. The 388 

best explanation for this is that GCR1 regulates these genes through some other partner, which 389 

may be another GPA alike isoform that is yet to be identified, or the Gβ and/or Gγ, RGS, XLG 390 

components of heterotrimeric G-protein complex, or through a totally different, non-G-protein 391 

signalling mechanism. While testing these possibilities is beyond the scope of the current study, 392 

it does offer a list of genes regulated through such a partnership as a starting point to test these 393 

hypotheses. 394 

The significant overlap of DEGs (150 using stringent cut-offs) between gpa1-517 and the 395 

double mutant suggests their regulation via GPA1 but independent of GCR1 function. Even 396 

though they form a minority of the 656 DEGs identified in the double mutant, they constitute 397 

70% of all the 214 DEGs shared between gpa1-5 and the double mutant (as the remaining 64 398 

GPA1-regulated genes are shared between all 3 mutants). Their huge overlap and identical 399 

differential regulation explains the sheer predominance of the effects of GPA1 mutation in the 400 

double mutant, in terms of the 92% similarity in the 79 processes to which their shared DEGs 401 

belong as well as their phenotypic traits. 402 

We detected a higher number of DEGs including exclusive DEGs in the double mutant 403 

than in either of the single mutants. The exclusive biological processes in all three datasets 404 

revealed overrepresentation of cell wall modification/biogenesis/organization, response to light 405 

intensity, flavonoid biosynthetic and metabolic processes among others in the double mutant; 406 

hydrogen peroxide metabolic and catabolic processes in the gpa1-5 mutant and response to 407 

starvation, phosphate starvation and nutrient levels in the gcr1-5 mutant (Fig. 7A). This clearly 408 

suggests that modulation of cell wall composition requires both GCR1 and GPA1 function. 409 



 
 

MapMan pathway analyses also showed significant enrichment of cell wall associated DEGs in 410 

the double mutant as compare to either of the single mutants (Fig 7B). 411 

PPI network analysis yielded 7 molecular complexes/sub-clustered genes, of which sub-412 

cluster 1 revealed light regulated transcription factors HY5, HFR1, COP1, MYB18 and HFY1. 413 

Out of them, HY5 and HFR1 acts downstream of phytochrome A (phyA) mediated signaling and 414 

regulate phyA-responsive gene expressions in Arabidopsis. HY5 and HFR1 both are positive 415 

regulators of phyA signaling and interact with COP1 E3 ligase, which is negative regulator 416 

photomorphogenesis58. HFR1 was up-regulated in the double mutant, which suggests that GPA1 417 

and GCR1 may regulate these molecular complexes through HFR1 function and accordingly 418 

their associated phenotypic traits and biological responses. We identified another important hub 419 

(Fig. 8C) involved in nitrate (N) response regulation in Arabidopsis. KIN10 and KIN11 show 420 

significant homology with human adenosine monophosphate-activated protein kinase 421 

(AMPKα1). It has been shown that loss of KIN10 and KIN11 function reduces mutant sensitivity 422 

to N level59. Further, the circadian clock-dependent activities of these kinases are regulated by N 423 

level and control the flowering time in Arabidopsis60. Though KIN10 and KIN11 were not 424 

identified as DEGs in our mutants but we detected AKINBETA1 (5'-AMP-activated protein 425 

kinase beta-2 subunit) as an up-regulated DEG, which is interacting with both KIN10 and KIN11 426 

to constitute molecular complexes (Fig. 8C). This leads to a testable hypothesis that both GCR1 427 

and GPA1 control the N-regulated flowering time via modulating KIN10, KIN11 and associated 428 

molecular complexes in plants. The role of Hy5 has been established as phloem mobile signal to 429 

enhance the nitrate uptake from root60. The NIN-like protein 8 (NLP8), a transcription factor and 430 

positive regulator of nitrate signaling, is essential for nitrate-regulated seed germination in 431 

Arabidopsis53. Our physiological data on the sensitivity of seed germination to low nitrate in the 432 

double mutant (Fig. 9) further support the involvement of G-protein signaling17 as a regulator of 433 

nitrate response. Our molecular evidence on the differential transcript accumulation of the low 434 

affinity nitrate transporter/transceptor (NRT1) and nitrate reductase (NR2) in the root tissues of 435 

single and double mutants at low N (Fig. S7) confirms the role of GCR1 and GPA1 coupling in 436 

nitrate signaling. Further examination of G-protein signaling in N response and NUE is in order, 437 

in view of these and earlier studies17,61 in this regard. Hormones control developmental and 438 

defense responses by orchestrating cellular pathways. GO and MapMan analyses showed many 439 

DEGs associated with hormone biosynthesis as well as signaling (Fig. 4 Table S3). The DEGs 440 



 
 

involved in auxin and ethylene biosynthesis were overrepresented among other hormonal 441 

pathways (Fig. 4). We also detected the auxin-related molecular complexes comprised of indole-442 

3-acetic acid inducible 31 (IAA31), auxin response factor 16 (ARF16) and indole-3-acetic acid 443 

inducible 5 (AA5). IAA3 was down-regulated in the double mutant but how GPA1 and GCR1 444 

coordinate these hormonal responses involving IAA3 is yet to be discovered. The GO terms for 445 

response to stimulus and biotic stresses belong to highly enriched biological processes (Fig. 2B). 446 

MapMan analyses also highlighted the biotic stress as a major pathways/bin (Figure 4). Further 447 

sub-clustering of PPI networks showed that regulatory protein (NPR1), NPR1-like protein 3 448 

(NPR3), and AHBP-1B (bZIP transcription factor family protein) are involved in the formation 449 

of molecular complexes (Fig.S5). NPR1 and NPR3 are salicylic acid receptors and AHBP-1B 450 

interacts with these receptors to modulate the expression of PR genes in Arabidopsis42. AHBP-451 

1B was up-regulated in the double mutant, which suggests that combined function of GPA1 and 452 

GCR1 modulate plant immunity. Further investigation is needed to understand the mechanism of 453 

immune regulation by co-functionality of GPA1 and GCR1 in Arabidopsis. 454 

Conclusions 455 

This is the first comprehensive transcriptome analysis of gpa1-5 gcr1-5 double mutant that goes 456 

beyond abiotic stress6, and provides compelling genetic evidence to our earlier findings based on 457 

the single mutants16,17 on: a) the role of GCR1 in G-protein signalling and b) the combinatorial 458 

involvement of GCR1 and/or GPA1 in regulating different gene sets and c) specific evidence of 459 

GCR1-GPA1 coupling in mediating nitrate response. Our analysis reveals the genes/processes 460 

identically regulated in both single and double mutants, providing the strongest genetic evidence 461 

thus far for GCR1-GPA1 coupling, at least in Arabidopsis. They include cell wall 462 

composition/processes, plant immunity, nitrogen signaling and biosynthesis of isoprenoids, 463 

stress, development and nutrient transport, among others. PPI network analyses and MCODE 464 

sub-clustering led to the identification of seven hub key genes, which are regulated by coupling 465 

of GPA1 and GCR1. Our comparative analysis of the mutants also reveal the genes/processes 466 

that are affected only by either GPA1 or GCR1 in the single mutants but not in the double 467 

mutant, providing a starting point to find their other signaling partners, including, but not limited 468 

to other isoforms of GCR/GPA. Most importantly, we identified genes uniquely regulated in the 469 



 
 

double mutant but not in any of the single mutants, though the processes to which they belong 470 

may not be so exclusive. 471 

Methods 472 

Isolation of double mutant. The gpa1-5 gcr1-5 double mutants were obtained by crossing the 473 

gcr1-5 mutant16 to gpa1-5 mutant17. First, a number of homozygous gpa1-5 gcr1-5 individuals 474 

were identified among the F2 progeny due to their characteristic phenotype i.e. enlarged 475 

roundish rosette leaves under the short-day growth conditions. Second, these individuals were 476 

subjected to the PCR analyses to test for the absence of the GPA1 and GCR1 gene copies. 477 

Predicted gpa1-5 gcr1-5 double mutant individuals were allowed to self-pollinate, and 478 

homozygosity for both gene mutations were verified using S2 segregation analyses on drugs 479 

(BASTA and Kanamycin). 480 

Growth conditions and phenotypic characterization. Both the mutant and wild type seeds 481 

were surface-sterilized using 70% ethanol and washed thrice with autoclaved ultrapure water and 482 

stratified at 4 °C for two days on half-strength B5 agar plates. The plates were incubated in a 483 

growth chamber at 22±1°C with a light intensity of 150 μM sec-1 m-2 and a photoperiod of 16:8 484 

(light:dark). Ten days old plants were transferred to 3.5 cm pots containing a mixture of soilrite 485 

and vermiculite (1:1), supplemented with full-strength B5 media and regularly watered using 486 

sub-irrigation. The plants were used for the measurement of phenotypic characters throughout 487 

their life cycle. 488 

RNA isolation and microarray analysis. Total RNA was isolated from 23 days old whole 489 

plants as described previously16. RNA samples were analyzed for quality, quantity and suitability 490 

for microarray using Nanodrop spectrophotometer and Bioanalyzer (Agilent technologies, Santa 491 

Clara, USA). The same RNAs were also used for confirming the knockout mutants using RT-492 

qPCR with gene-specific primers. The Cy3 labelled cRNAs from independent biological 493 

duplicates of the wild type (Ws2) and gpa1-5gcr1-5 double mutant were subjected to microarray 494 

analysis using Agilent 8×60k Arabidopsis arrays (AMADID 037661) as described6. Overall the 495 

microarray images were clean, with uniform intensity and very low background noise. The data 496 

were extracted using Feature Extraction 10.7 software (Agilent Technologies) and normalized 497 

using the recommended ‘Per Chip and Per Gene Normalization’ feature of GeneSpring GX 498 



 
 

Version 11.5. The correlation coefficients of replicates were obtained by principal component 499 

analysis. Log2fold change value of 1.0 and p-value of 0.05 was used as a cut-off for differential-500 

regulation. The Benjamini Hochberg FDR procedure at a cut-off value of p ≤ 0.05 was used for 501 

multiple testing corrections. Area-proportional Venn selections were done using the DEG lists in 502 

the gpa1-5, gcr1-5 and the double mutants using the online software 503 

(http://bioinforx.com/free/bxarrays/venndiagram.php). 504 

Functional classification/meta-analysis of DEGs. The DEGs were assigned gene ontology 505 

terms according the TAIR 10 database62. The DEG lists were subjected to enriched GO 506 

categorization using AgriGO2.0 with default settings. The DEGs were mapped into various 507 

pathways (bins) using MapMan tool. The coloured boxes in each bin represent the DEGs log2FC 508 

values. Further, pathway analysis of the DEGs was done to obtain the list of changed pathways 509 

using plant MetGenMAP, which takes AraCyc as the background. Differentially expressed 510 

transcription factors were compared with the Plant Transcription Factor Database (plantTFDB 511 

ver 2.0). 512 

Data validation using qPCR. A few DEGs were selected from microarray data for its validation 513 

based on their roles in different biological processes. The genes were selected in a manner such 514 

that at least two up-regulated and two down-regulated genes figured in each of the described 515 

biological category. The RT-qPCR was carried out using 1.0 μl of 1:50 diluted cDNA, reverse 516 

transcribed form 5 μg of DNase treated RNA. PCR amplifications were performed in 20 μl 517 

reactions using the KAPA SYBR® FAST Master Mix (2X) Universal (Kapa Biosystems, USA) 518 

with 100 nmoles of each gene-specific primer in Stratagene Mx3000P (Agilent technologies). 519 

The amplifications were carried out using biological triplicates, two of which were the same as 520 

those used for microarray. Serial dilutions were used to check for primer efficiency and only 521 

those primers that worked at 100 ± 10% efficiency were used for all qPCR analyses. The 522 

specificity of primer pairs was confirmed by melting curve analysis of the amplicons. Actin2 523 

(ACT2) was used as an internal control for normalization. Quantification of the relative changes 524 

in gene expression was performed by the standard curve method. 525 

Construction of PPI networks and sub-clustering analyses. The exclusive DEGs identified in 526 

the double mutants were used to retrieve the interactors from STRING (https://string-db.org/) 527 



 
 

and BioGRID (https://thebiogrid.org/) databases. The experimentally validated interactions were 528 

considered to create the PPI networks and DEGs were mapped using Cytoscape version 6.0. 529 

Molecular complex detection (MCODE) plugin was used to perform the sub-clustering of the 530 

networks and identification of the molecular complexes associated with various pathways. 531 

N-responsive seed germination assay. Seeds of Arabidopsis wild-type (Ws2) and all three 532 

mutants (gpa1-5, gcr1-5, gpa1-5gcr1-5) were surface-sterilized using 70 % ethanol for 5 minutes 533 

and subsequently washed 5 times with ultrapure water. The stratification of seeds was carried out 534 

at 4 °C in total darkness for 48 h to facilitate uniform germination. These stratified seeds were 535 

placed on 1X B5 agar plates supplemented with different concentrations of KNO3 [optimal 536 

nitrate as per standard B5 media composition (25 mM), low nitrate (12.5 mM) and high nitrate 537 

(30 mM)]. Plates were transferred to the growth chamber maintained at 22 ± 1 ᵒC with 538 

photoperiod (12 h of light/dark period). After 12 h, we examined the seed germination at every 3 539 

h till 72 h.  540 

For qPCR analyses, surface sterilized and stratified seeds of the wild type and all three mutants 541 

were grown in B5 medium containing 12.5 and 30 mM KNO3 at 22 ᵒC ± 1 in a growth chamber. 542 

Root tissues (~100 mg) were used to extract their total RNA using Trizol (Invitrogen, USA) as 543 

described by the manufacturer. DNase I treated total RNAs were transcribed into cDNAs using 544 

RevertAid first strand cDNA synthesis kit (Thermo Fisher Scientific). The qPCR reaction was 545 

performed using KAPA SYBR FAST Master Mix (2X) Universal (Kapa Biosystems, USA) or 546 

Brilliant III Ultra-Fast SYBR Green QPCR Master Mix on Agilent MxPro3000P machine. The 547 

comparative C(T) method was used for relative quantitation of the transcript and the expression 548 

of the genes was normalized using actin as a reference gene. 549 

 550 
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Figure legends 739 

Figure 1. Characterization of the gpa1-5gcr1-5 double mutant. (A) The mutants and WT 740 

were grown for 23 days and subjected to total RNA isolation and qRT-PCR to confirm the lack 741 

of expression of GPA1 or GCR1 in the single as well as double mutants. The data represent 742 

averages of three independent replicates ± SE. (B-E) Phenotypic characterization of the gpa1-743 

5gcr1-5 mutants. The double mutant and the WT were grown for 5 days on agar plates for root 744 

length comparison and were subsequently transferred to pots and grown to complete their life 745 

cycle to evaluate other phenotypic parameters shown. Each experiment was performed twice 746 

independently and the data represent averages of 10 individual plants + SE (*P<0.05, **P<0.01 747 

according to unpaired t-test using GraphPad Prism).. The photographic strip of the WS2 control 748 

have been reproduced from our previous paper16 under creative commons attribution license for 749 

ready reference. Scale bar= 1.0 cm. 750 

Figure 2. (A) Heat map and GO analyses of differentially expressed genes. The background-751 

subtracted microarray data of the double mutant was subjected to (filter and cut off) hierarchical 752 

clustering using Genespring software ver. 11.5 to generate the heat map. Red, green and yellow 753 

represent up-regulated, down–regulated and unregulated genes, respectively . (B) The DEGs 754 

were functionally categorized into various biological processes using AgriGO2.0 tool. The p-755 

values of biological processes were log transformed (–log2) and plotted (Fig 2B). The complete 756 

results of AgriGO analyses, which include p-value, FDR and the numbers of DEGs associated 757 

with each biological process are listed in the supplementary Table S3. 758 



 
 

Figure 3. qPCR validation of differentially expressed genes in gpa1-5gcr1-5 double mutant. 759 

A total of 19 DEGs (10 up- and 9 down-regulated) were selected subjected to RT-qPCR. The 760 

experiment was carried out using three biological replicates and the values are presented as 761 

log2FC ± SE. qPCR was performed in triplicate and the ratios of statistics were calculated 762 

relative to the internal control gene Actin2 (*P<0.05, **P<0.01 vs. control) 763 

Figure 4. Mapping of DEGs found in the gpa1-5gcr1-5 double mutant into various 764 

pathways using MapMan. (A). DEGs mapped into metabolic pathways (B). DEGs associated 765 

with regulation. (C). DEGs assigned to cellular responses. Each box represents a DEG while the 766 

red and blue colours indicate up- and down-regulated DEGs, respectively. 767 

Figure 5. Subcellular localization of DEGs and classification of transcription factors among 768 

them.. (A). Subcellular distributions of the DEGs identified in the double mutant as predicted 769 

using YLoc program. (B). Identification and classification of transcription factors among the 770 

DEGs in the double mutant using plantTFDB. 771 

Figure 6. (A) Venn selection of differentially regulated genes between single and double 772 

mutants. The DEGs identified in the double mutant in the current study were compared with 773 

those identified earlier in the single mutants of gpa1-5(17) and gcr1-5(16) and shown as up/down 774 

regulated subsets or together. (B) Hierarchical clustering of DEGs obtained from all the 3 775 

mutants to show that gpa1-5gcr1-5 double is closer to the gpa1-5 mutant than the gcr1-5 mutant. 776 

Figure 7. Heat map of biological processes exclusive to each of the three mutants and cell 777 

wall associated DEGs in the double mutant. The GO classes of DEGs exclusive to each of the 778 

single and double mutants were used for the analysis. (A). Heat map of the exclusive biological 779 

processes generated using heatmapper (http://heatmapper.ca/). The default colour scheme depicts 780 

the presence or absence of the exclusive GO classes as yellow or blue respectively. (B). Venn 781 

selection of cell wall associated DEGs from all three mutants identified by MapMan. (C). Heat 782 

map showing the cell wall associated exclusive DEGs identified in the double mutant using GO 783 

and MapMan analyses. Heat map was generated using Multi Experiment Viewer software 784 

(http://mev.tm4.org/#/welcome) 785 

  786 

Figure 8. PPI networks of exclusive DEGs identified in the double mutant. (A). Venn 787 

diagram showing the overlapping and exclusive DEGs identified as interactors of G-protein 788 

signaling components. (B-E). The protein-protein interaction (PPI) networks were constructed 789 



 
 

with Cytoscape using experimentally validated interactions obtained from BioGRID and 790 

STRING databases. Sub-clustering of the PPI networks was performed using the MCODE plugin 791 

in Cytoscape and representative networks are shown. The red and dark green nodes represent the 792 

up-regulated and down-regulated DEGs, respectively. Interactors that are not among DEGs 793 

identified in the double mutant are assigned with light green colour. 794 

Figure 9. N-responsive germination in single and double mutants. Thirty seeds each of the 795 

wild-type (Ws2) and all three mutants viz. gpa1-5, gcr1-5 and gpa1-5gcr1-5 were surface 796 

sterilized and stratified at 4 ᵒC in dark for 48h. These seeds were placed on 1X B5 agar plates 797 

supplemented with different concentrations of KNO3 as shown for optimal (A), low (B) and high 798 

(C) dose of nitrate. The plates were transferred to growth chambers maintained at 22 ± 1ᵒC and 799 

after 12 h germination was monitored at every 3h until 72 h. The data are plotted as a percentage 800 

of germinated seeds along with standard error bars. The data was statistically analysed using 801 

ANOVA in the GraphPad Prism 6.0 (*P<0.05, **P<0.01, ***P<0.001). 802 

 803 

804 



 
 

Table 1. List of top 10 each up-regulated and down-regulated DEGs in the gpa1-5gcr1-5 mutant. 805 
Locus id Accession id Gene name Log2FC p-value 

Up-regulated in gpa1-5gcr1-5 
AT3G04330 NM_111304 Kunitz family trypsin and protease inhibitor protein 6.20 0.0127 
AT1G63580 NM_105036 Receptor-like protein kinase-related family protein 5.31 0.0341 
AT1G65570 NM_105231 Pectin lyase-like superfamily protein 5.30 0.0493 

AT5G11140 NM_121152 
Arabidopsis phospholipase-like protein (PEARLI 4) 

family 
4.99 0.0003 

AT3G01580 NM_111024 
Tetratricopeptide repeat (TPR)-like superfamily 

protein 
4.94 0.0463 

AT3G55550 NM_115412 LECRK-S.4 4.91 0.0002 
AT4G15650 NM_117656 unknown protein 4.54 0.0466 
AT2G06002 NR_022465 ncRNA 4.45 0.0025 
AT5G35300 NM_122921 unknown protein 4.12 0.0082 
AT2G41240 NM_129689 BHLH100 4.04 0.0067 

Down-regulated in gpa1-5gcr1-5 
AT1G04890 NM_100367 Protein of unknown function DUF593 -8.77 0.000 
AT2G38900 NM_129447 PR (pathogenesis-related) peptide -7.53 0.001 
AT3G25170 NM_113422 RALFL26 -7.35 0.024 
AT5G47350 NM_124106 Alpha/beta-Hydrolases superfamily protein -7.11 0.003 
AT5G50300 NM_124409 AZG2 -7.01 0.011 

AT4G15750 NM_117666 
Plant invertase/pectin methylesterase inhibitor 

superfamily protein 
-6.58 0.000 

AT5G10880 NM_121126 tRNA synthetase-related / tRNA ligase-related -6.35 0.006 
AT4G40100 NM_120176 PRSL1 -5.87 0.028 
AT3G58190 NM_115681 LBD29 -5.33 0.011 
AT3G24510 NM_113361 Defensin-like (DEFL) family protein. -5.33 0.004 
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Table 2. Secondary metabolite pathways identified in gpa1-5, gcr1-5, gpa1-5gcr1-5 mutants. The significantly 815 
enriched pathways are represented in terms of p-value and shown in bold. The significantly enriched common 816 
pathways identified in all three mutants are marked with asterisk (*). 817 

S. No. Pathway name 
p-value 

gpa1-5 gpa1-
5gcr1-5 

gcr1-5 

1 Monoterpene biosynthesis 0.122093 9.5E-06 NA 

2 Gibberellin inactivation II (methylation) 0.042435 0.000841 NA 

3 2,3-cis-flavanols biosynthesis 0.021443 0.02924 NA 

4 Homogalacturonan degradation 0.099275 0.002344 0.038723 

5 Leucodelphinidin biosynthesis*  0.003796 0.011516 0.0322 

6 Leucopelargonidin and leucocyanidin biosynthesis* 0.003796 0.011516 0.0322 

7 Camalexin biosynthesis 0.062988 0.08522 0.027535 

8 Flavonol biosynthesis 0.005997 0.095354 0.154768 

9 Coniferin metabolism 0.006383 0.163288 0.05435 

10 Monolignol glucosides biosynthesis 0.006383 0.163288 0.05435 

11 Flavonoid biosynthesis 0.164026 0.261912 0.038214 

12 Superpathway of flavones and derivatives biosynthesis 0.043732 0.279198 0.44851 
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