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Introduction

Sparse swarms of flying insects show a high degree of 
spatial cohesion and are a form of collective animal 
behaviour; albeit one different from flocks and schools 
as they do not display ordered collective movements 
(Okubo 1986, Kelley and Ouellette 2013, Puckett et al 
2014). Instead each individual insect moves erratically 
and seemingly at random within the swarm. The 
occurrence of these swarms makes it clear that group 
order and morphology are not sufficient to accurately 
describe animal aggregations. Indeed, it is now 
recognized that the properties of animal aggregates 
cannot be determined by passive observation alone; 
instead one must interact with them, by for example 
applying controlled perturbations (Ouellette 2017). 
This approach allows for the extraction of emergent 
group properties that are not directly linked to the 
characteristics of the individuals. Ni and Ouellette 
(2016) were the first to examine swarms of flying 
insects (the non-biting midge Chironomus riparius) in 
this way and did so by placing them under an effective 
load, i.e. by manipulating ground-based visual features, 
so-called ‘swarm markers’, over which swarms form. 
Ni and Ouellette (2016) showed that a swarm can be 
quasi-statically pulled apart into multiple daughter 
swarms which were centred over each marker once the 
marker separation was large enough. For intermediate 
separations the daughter swarms were pulled away 
from the centres of their respective markers and into 
a stable ‘neck’ region that linked them. This indicates 
that the swarms have mechanical properties similar to 

solids, including a finite Young’s modulus and yield 
strength, and it shows that they lack a viscous flow 
regime.

Here I show how these emergent mechanical 
properties of insect swarms can be deduced from the 
simple, analytically-tractable model of Reynolds et al 
(2017) which is in close accord with a plethora of other 
(albeit passive) observations of midge swarms (Reyn-
olds et al 2017, Reynolds 2018a, 2018b, van der Vaart 
et al 2019). I show that tensile strength can be attrib-
uted to the presence of centre-of-mass movements 
(i.e. to heat), as documented by Reynolds and Ouel-
lette (2016). This new result along with earlier results 
(Reynolds et al 2017, Reynolds 2018a, 2018b, van der 
Vaart et  al 2019) shows how the suite of observed 
complex, emergent, macroscopic behaviours of insect 
swarms (Kelley and Ouellette 2013, Ni and Ouellette 
2016, Sinhuber and Ouellette 2017, van der Vaart et al 
2019, Sinhuber et al 2019) can be attributed to sim-
ple processes and encapsulated within a simple model 
(Reynolds et al 2017, Reynolds 2018a, 2018b). This is 
significant because the development of accurate, gen-
erally-applicable models is of central importance, as a 
check on our understanding of the processes at work 
within swarms.

The emergence of tensile strength

In the 1D form of the model of Reynolds et al (2017) 
the positions, x, and velocities, u, of insects within a 
swarm are determined by the stochastic differential 
equations
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du = − u
T dt + σ2

u
ρ

∂ρ
∂x dt +

√
2B0dW0 (t)

dx = udt
�

(1)

where T is the velocity autocorrelation timescale, 
σ2

u  is the velocity variance, ρ (x) is the observed 
swarm density profile, B0 is a constant, and dW0 (t) 
is an incremental Wiener process with correlation 

property dW0 (t) dW0 (t + τ) = δ (τ) dt . The first 

term on the right-hand side of equation  (1) is a 
memory term that causes velocity fluctuations to 
relax back to their (zero) mean value. Interactions 
between the individuals are not explicitly modeled; 
rather, their net effect is subsumed in a restoring 
force term, since observations have suggested that 
to leading order insects appear to be tightly bound 
to the swarm itself but weakly coupled to each 
other inside it (Kelley and Ouellette 2013). This 
restoring force is given by the second term on the 
right-hand side of equation (1) which ensures that 
the spatial distribution of the simulated insects 
matches observations. The third term, the noise 
term, represents fluctuations in the resultant 
internal force that arise partly because of the 
limited number of individuals in the grouping and 
partly because of the nonuniformity in their spatial 
distribution. The model, equation (1), is effectively 
a first-order autoregressive stochastic process in 
which position and velocity are assumed to be jointly 
Markovian. At second-order, position, velocity 
and acceleration would be modelled collectively 
as a Markovian process. The first order model, 
equation (1), is appropriate because the acceleration 
autocorrelation timescale is shorter than the velocity 
autocorrelation timescale (Reynolds and Ouellette 
2016). By construction, simulated trajectories have 
homogeneous (position-independent) Gaussian 
velocity statistics. When the density profile is 
Gaussian, as it nearly is for laboratory swarms 
(Kelley and Ouellette 2013), equation  (1) reduces 
to Okubo’s (1986) classic model for the simulation 
of insect trajectories. Similar models have also been 
used to model robotic swarms (Hamann and Wӧrn 
2008).

In the presence of two swarm makers, swarms are 
bi-modal and could, for example, be characterised by

ρ (x) = exp

Å
a

2
x2 − b

4
x4

ã
� (2)

which has maxima at x = ±
√

a/b . For such swarms  

the mean restoring force term −σ2
u
ρ

∂ρ
∂x = −σ2

u (ax − bx3).  

The locations of the swarm centres do, however, 

fluctuate over time (Ouellette and Reynolds 
2016). These fluctuations can be regarded as being 
‘parametric’ noise which operationally equates to 
a → a +

√
2a1dW1 (t). In this case the model becomes

du = − u
T dt + σ2

u
ρ

∂ρ
∂x dt +

√
2B0dW0 (t) +

√
2B1xdW1

dx = udt.
� (3)

This new model corresponds to the Fokker–Planck 
equation

∂p

∂t
+ u

∂p

∂x
=

∂

∂u

Å
u

T
− σ2

u

ρ

∂ρ

∂x

ã
p +

(
B0 + B1x2

) ∂2p

∂u2

� (4)

where p (u, x, t) is the joint distribution of velocity and 
position. Here equation (4) is examined in the long-
time limit as t/T → ∞. Here this is done following 
the approach of Thomson (1987) who identified the 
conditions under which stochastic models of tracer-
particle trajectories in turbulent flows reduce to 
diffusion-equation models as the Lagrangian velocity-
autocorrelation timescale tends to zero. In this 
approach the unit of time is chosen so that T is small 
compared with unity and the unit of length is chosen 
so that the size of a swarm of individuals from a point 
source is of order unity at times of order unity. In this 
system of units, velocities must be large to make up 
for the small timescale. Moreover, because velocities 
are large and rapidly changing, B0 and B1 must also 
be large. Simple scaling arguments indicate that the 
long-time limit of equation (4) can be examined by 
replacing T, u, B0 and B1 with ε2T, ε−1u, ε−4B0 and 
ε−4B1 where ε → 0 so that equation (4) becomes

∂p

∂t
+

u

ε

∂p

∂x
=

∂

∂u

Å
u

ε2T
− σ2

u

ερ

∂ρ

∂x

ã

p +
1

ε2

(
B0 + B1x2

) ∂2p

∂u2
.

�

(5)

If a different rescaling is adopted, then it can be 
shown that the dispersal is not of order unity at times 
of order unity. Following Thomson (1987) I now 
look for solutions to equation (5) that take the form 
p = p0 + εp1 + ε2p2 + ....

The leading order (ε−2) terms give

u

T
p0 +

(
B0 + B1x2

) ∂p0

∂u
= 0, i.e.

p0 =
c(x, t)√

B0 + B1x2
exp

Å
− u2

2 (B0 + B1x2)T

ã

� (6)

where c (x, t) is the swarm density profile predicted by 
the new model, equation (4).

At order ε−1

u
∂p0

∂x
− σ2

u

B0 + B1x2

u

Tρ

∂ρ

∂x
p0 =

∂

∂uÅ
u

T
p1 +

(
B0 + B1x2

) ∂p1

∂u

ã
.

�

(7)

At order ε0

∂p0

∂t
+ u

∂p1

∂x
=

∂

∂u

Å
u

T
− σ2

u

ρ

∂ρ

∂x

ã
p2 +

(
B0 + B1x2

) ∂2p2

∂u2

� (8)

which after integrating over all velocities becomes

∂c

∂t
+

∂

∂x

ˆ
up1du

Å
∂c

∂x
− 1

B0 + B1x2

Å
B1x2 +

c

ρ

∂ρ

∂x

ãã
= 0

� (9)
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i.e. becomes the non-linear diffusion equation

∂c

∂t
= K

∂

∂x

Å
∂c

∂x
− B0

B0 + B1x2

Å
B1x2 +

c

ρ

∂ρ

∂x

ãã

� (10)

where from equation (7), p1 is the solution to

u√
B0 + B1x2

exp

Å
− u2

2T (B0 + B1x2)

ã

=
∂

∂u

Å
u

T
p1 +

(
B0 + B1x2

) ∂p1

∂u

ã

� (11)

Figure 1.  Theoretical predictions for swarm density profiles match data from numerical simulations. The swarms are being pulled 
away from their respective swarm markers (dashed-lines) and displaced towards the origin. The swarms therefore appear in tension 
with a tensile strength that increases as centre-of-mass movements increase. Predictions (solid line) obtained from equation (12) 
are shown for a  =  0.8, b  =  0.1 and B0  =  1 with B1  =  0.1 (left), 0.3 (middle) and 0.5 (right). Simulation data (●) were obtained from 
equation (3) for σ2

u = 1 and T  =  1.

Figure 2.  In the presence of parametric noise insect swarms are predicted to have an emergent analogue of a finite Young’s modulus 

and yield stress, and do not show a viscous flow regime. When parametric noise is absent (B1  =  0) the swarm is always localized over 

the swarm makers (x = ±
√

a/b) (dashed lines) as it is pulled apart and so not in tension (upper panel). When parametric noise is 
present (B1  =  1.0) the swarm is put into tension as it is pulled apart as the swarms are being pulled away from their respective swarm 
markers (dashed-lines) and displaced towards the origin (lower panel) This displacement decreases with increasing separation of 
the swarm markers. Predictions obtained from equation (12) are shown for a  =  0 (left), 2 (middle) and 4 (right), and b  =  0.25.

Phys. Biol. 16 (2019) 046002
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and where K = −
´

up1du. Hence the non-linear 
Langevin equation, equation (3), reduces to a diffusion 
equation in the limit t/T → ∞. The density profiles 
are determined by equation  (9) those steady-state 
solution is

c (x) =
N√

B0 + B1x2

× exp

Å
B0 (aB1 + bB0) ln (B0 + B1x2)− bB0B1x2

2B2
1

ã

� (12)

where N is normalization constant. This theoretical 
prediction is supported by the results of numerical 
simulations using the non-linear Langevin equation, 
equation (3) (figure 1). A directly analogous result was 
obtained by Okubo (1986), albeit in a different context 
and for diffusion models rather than for the non-linear 
Langevin equation, equation (3).

In the absence of parametric noise, equation (12) 
rightly reduces to the unperturbed density profile, 
ρ (x) (equation (2)). When the parametric noise, B1, is 
small, equation (12) has maxima close to the maxima 
of ρ (x) but displaced towards the origin (figure 1). 
And when the relative strength of the parametric noise 
B1/B0 > a  there this a single maximum at the origin 
that becomes more pronounced as B1/B0 increases 
(figure 1). The swarm therefore appears to be in ten-
sion with a tensile strength that increases with increas-
ing B1/B0. Similarly as a pair of swarm markers are 
pulled apart, two daughter swarms form that are effec-
tively pulled away from their respective markers and 
into the neck that links them, mirroring the observa-
tions of Ni and Ouellette (2016) (figure 2).This dem-
onstrates that the simulated swarms, like real swarms, 
possess an emergent analogue of a finite Young’s mod-
ulus and do not show a viscous flow regime; if they did 
then they would be expected to either flow back into 
a single swarm or to form two completely distinct 
swarms centred over their respective markers (Ni and 
Ouellette 2016). Moreover, when the marker separa-
tion becomes large enough, the model predicts that 
the two daughter swarms become fully distinct and 
that individuals no longer pass between them (figure 
2). The simulated swarms like the real swarms (Ni and 
Ouellette 2016) therefore possess yield strengths.

The results of numerical simulations (not shown) 
suggest that the emergence of tensile strength is a 
general consequence of parametric noise, arising for 
example when the 4th-order term rather than the 2nd-
order term in the unperturbed density profile, equa-
tion (2), is noisy.

Discussion

Male midges swarm to provide a mating target 
for females, making stationarity desirable. Ni and 
Ouellette (2016) were the first to show that this 
biological function is reflected in an emergent physical 
macroscopic property of the swarm; namely its tensile 

strength. This emergent macroscopic mechanical 
property may be advantageous, in helping to stabilise 
insect swarms against environmental perturbations. 
Perturbations are inevitable in wild (natural) swarms 
that must contend with gusts of wind and with 
environmental disturbances. Here it was shown 
that the tensile strength of swarms can (somewhat 
counter-intuitively) to be attributed to centre-of-
mass movements, as documented by Reynolds and 
Ouellette (2016) (figures 1 and 2). This may explain 
how these swarms possess enhanced properties relative 
to individual insects.

As the swarm size increases, centre-of-mass move-
ments are determined by a balance between two com-
peting effects: namely averaging over more but larger 
fluctuations because insects behave as if they are more 
weakly bound when in larger swarms (Kelley and 
Ouellette 2013). The results of preliminary numerical 
simulations (not shown) suggest that the latter out-
weighs the former and that consequently centre-of-
mass movements and so tensile strength increases with 
increasing swarm size. Insect swarms are therefore 
predicted to ‘solidify’ as they increase in size, mak-
ing it harder to pull them apart. This new prediction 
could be tested in the laboratory by measuring ten-
sile strength as a function of swarm size. If true, then 
it suggests that insect swarms effectively cool as they 
increase in size. Fire ants, on the other hand, which 
link their bodies to form dense aggregations, behave 
more like viscoelastic fluids, becoming stiffer and 
more purely elastic as the density of the ants increases 
(Tennenbaum et al 2016, Vernerey et al 2018). Active 
changes in group morphology in response to dynamic 
loads are also evident in dense tree-hanging clusters of 
honeybees (Peleg et al 2018).

The identification and understanding of the emer-
gent macroscopic properties of insect swarms holds 
promise of a unified ‘thermodynamic’ theory of insect 
swarms, where one seeks to describe their mechanical-
like properties in a way that does not directly refer-
ence individual behaviours (Ouellette 2017). In such 
a theory different swarm morphologies and dynamics 
might be regarded as being different phases of insect 
swarming behaviour. This notion may help reconcile 
conflicting observations of insect swarms made in qui-
escent laboratory conditions and in the wild (Kelley 
and Ouellette 2013, Attanasi et al 2014) because, as was 
shown here and as was prefigured in Reynolds (2018b), 
perturbations may drive phase transitions.
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