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On the origin of the tensile strength of insect swarms

Andy M. Reynolds
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Abstract Traditionally animal groups have been characterized by the macroscopic patterns 

that they form. It is now recognised that such patterns convey limited information about the 

nature of the aggregation as a whole. Aggregate properties cannot be determined by passive 

observations alone; instead one must interact with them. One of the first such dynamical tests 

10 revealed that swarms of flying insects have macroscopic mechanical properties similar to 

solids, including a finite Young’s modulus and yield strength. Here I show, somewhat 

counterintuitively, that the emergence of these solid-like properties can be attributed to centre-

of-mass movements (heat). This suggests that perturbations can drive phase transitions.
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Introduction

Sparse swarms of flying insects show a high degree of spatial cohesion and are a form of 

25 collective animal behaviour; albeit one different from flocks and schools as they do not display 

ordered collective movements [Okubo 1986, Kelley and Ouellette 2013, Puckett et al. 2014]. 

Instead each individual insect moves erratically and seemingly at random within the swarm. 

The occurrence of these swarms makes it clear that group order and morphology are not 

sufficient to accurately describe animal aggregations. Indeed, it is now recognized that the 

30 properties of animal aggregates cannot be determined by passive observation alone; instead 

one must interact with them, by for example applying controlled perturbations [Ouellette 2017]. 

This approach allows for the extraction of emergent group properties that are not directly linked 

to the characteristics of the individuals. Ni and Ouellette [2016] were the first to examine 

swarms of flying insects (the non-biting midge Chironomus riparius) in this way and did so by 

35 placing them under an effective load, i.e., by manipulating ground-based visual features, so-

called ‘swarm markers’, over which swarms form. Ni and Ouellette [2016] showed that a 

swarm can be quasi-statically pulled apart into multiple daughter swarms which were centred 

over each marker once the marker separation was large enough. For intermediate separations 

the daughter swarms were pulled away from the centres of their respective markers and into 

40 a stable ‘neck’ region that linked them.  This indicates that the swarms have mechanical 

properties similar to solids, including a finite Young’s modulus and yield strength, and it shows 

that they lack a viscous flow regime. 

Here I show how these emergent mechanical properties of insect swarms can 

45 be deduced from the simple, analytically-tractable model of Reynolds et al. [2017] which is in 

close accord with a plethora of other (albeit passive) observations of midge swarms [Reynolds 

et al. 2017, Reynolds 2018a,b, van der Vaart et al. 2019]. I show that tensile strength can be 

attributed to the presence of centre-of-mass movements (i.e., to heat), as documented by 

Reynolds and Ouellette [2016]. This new result along with earlier results [Reynolds et al. 2017, 

50 Reynolds 2018a,b, van der Vaart et al. 2019] shows how the suite of observed complex, 

emergent, macroscopic behaviours of insect swarms [Kelley and Ouellette 2013, Ni and 

Ouellette 2016, Sinhuber and Ouellette 2017, Sinhuber et al. 2019, Kasper et al. 2019] can 

be attributed to simple processes and encapsulated within a simple model [Reynolds et al. 

2017, Reynolds 2018a,b]. This is significant because the development of accurate, generally-

55 applicable models is of central importance, as a check on our understanding of the processes 

at work within swarms.
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The emergence of tensile strength

In the 1-dimensional form of the model of Reynolds et al. [2017] the positions, x, and velocities, 

60 u, of insects within a swarm are determined by the stochastic differential equations

(1)
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where is the velocity autocorrelation timescale,  is the velocity variance,  is the T 2
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observed swarm density profile,  is a constant, and  is an incremental Wiener 0B ( )tdW0

process with correlation property . The first term on the right-hand ( ) ( ) ( )dttdWtdW τδτ =+00

65 side of Eqn. (1) is a memory term that causes velocity fluctuations to relax back to their (zero) 

mean value.  Interactions between the individuals are not explicitly modeled; rather, their net 

effect is subsumed in a restoring force term, since observations have suggested that to 

leading order insects appear to be tightly bound to the swarm itself but weakly coupled to 

each other inside it [Kelley and Ouellette 2013]. This restoring force is given by the second 

70 term on the right-hand side of Eqn. (1) which ensures that the spatial distribution of the 

simulated insects matches observations. The third term, the noise term, represents 

fluctuations in the resultant internal force that arise partly because of the limited number of 

individuals in the grouping and partly because of the nonuniformity in their spatial distribution. 

The model, Eqn. 1, is effectively a first-order autoregressive stochastic process in which 

75 position and velocity are assumed to be jointly Markovian. At second-order, position, velocity 

and acceleration would be modelled collectively as a Markovian process. The first order 

model, Eqn. 1, is appropriate because the acceleration autocorrelation timescale is shorter 

than the velocity autocorrelation timescale [Reynolds and Ouellette 2016]. By construction, 

simulated trajectories have homogeneous (position-independent) Gaussian velocity statistics. 

80 When the density profile is Gaussian, as it nearly is for laboratory swarms [Kelley and 

Ouellette 2013], Eqn. 1 reduces to Okubo’s [1986] classic model for the simulation of insect 

trajectories. Similar models have also been used to model robotic swarms [Hamann and 

Wӧrn 2008].

85 In the presence of two swarm makers, swarms are bi-modal and could, for example, be 

characterised by 
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90 time [Ouellette and Reynolds 2016]. These fluctuations can be regarded as being ‘parametric’ 

noise which operationally equates to . In this case the model becomes( )1 12a a a dW t→ +
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This new model corresponds to the Fokker-Planck equation  
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95 where is the joint distribution of velocity and position. Here Eqn. 4 is examined in the ),,( txup

long-time limit as . Here this is done following the approach of Thomson [1987] who /t T → ∞
identified the conditions under which stochastic models of tracer-particle trajectories in 

turbulent flows reduce to diffusion-equation models as the Lagrangian velocity-autocorrelation 

timescale tends to zero. In this approach the unit of time is chosen so that T is small compared 

100 with unity and the unit of length is chosen so that the size of a swarm of individuals from a 

point source is of order unity at times of order unity. In this system of units, velocities must be 

large to make up for the small timescale. Moreover, because velocities are large and rapidly 

changing,  and  must also be large. Simple scaling arguments indicate that the long-time 0B 1B

limit of Eqn.4 can be examined by replacing  and  with   and  0, ,T u B
1B
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If a different rescaling is adopted, then it can be shown that the dispersal is not of order unity 

at times of order unity. Following Thomson [1987] I now look for solutions to Eqn. 5 that take 

the form ...2
2

10 +++= pppp εε
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110 The leading order  terms give( )2ε −
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where is the swarm density profile predicted by the new model, Eqn. 4.( ),c x t

At order 1−ε
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115 At order 0ε
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which after integrating over all velocities becomes 
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i.e., becomes the non-linear diffusion equation
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and where . Hence the non-linear Langevin equation, Eqn. 3, reduces to a 1K up du= −∫
diffusion equation in the limit . The density profiles are determined by Eqn. 9 those /t T → ∞

125 steady-state solution is 
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where N is normalization constant. This theoretical prediction is supported by the results of 

numerical simulations using the non-linear Langevin equation, Eqn. 3 (Fig. 1). A directly 
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analogous result was obtained by Okubo [1986], albeit in a different context and for diffusion 

130 models rather than for non-linear Langevin equation, Eqn. 3.

In the absence of parametric noise, Eqn. 12 rightly reduces to the unperturbed density profile, 

(Eqn.2). When the parametric noise, , is small, Eqn.12 has maxima close to the ( )xρ
1B

maxima of   but displaced towards the origin (Fig. 1). And when the relative strength of ( )xρ

135 the parametric noise  there this a single maximum at the origin that becomes more aBB >01 /

pronounced as increases (Fig. 1). The swarm therefore appears to be in tension with 01 / BB

a tensile strength that increases with increasing . Similarly as a pair of swarm markers 01 / BB

are pulled apart, two daughter swarms form that are effectively pulled away from 

their respective markers and into the neck that links them, mirroring the observations  of Ni 

140 and Ouellette [2016] (Fig. 2).This demonstrates that the simulated swarms, like real swarms, 

possess an emergent analogue of a finite Young’s modulus and do not show a viscous flow 

regime; if they did then they would be expected to either flow back into a single swarm or to 

form two completely distinct swarms centred over their respective markers [Ni and Ouellette 

2016]. Moreover, when the marker separation becomes large enough, the model predicts that 

145 the two daughter swarms become fully distinct and that individuals no longer pass between 

them (Fig. 2). The simulated swarms like the real swarms [Ni and Ouellette 2016] therefore 

possess yield strengths. 

The results of numerical simulations (not shown) suggest that the emergence of tensile 

150 strength is a general consequence of parametric noise, arising for example when the 4th-order 

term rather than the 2nd-order term in the unperturbed density profile, Eqn.2, is noisy.

Discussion

Male midges swarm to provide a mating target for females, making stationarity desirable. Ni 

155 and Ouellette [2016] were the first to show that this biological function is reflected in an 

emergent physical macroscopic property of the swarm; namely its tensile strength. This 

emergent macroscopic mechanical property may be advantageous, in helping to stabilise 

insect swarms against environmental perturbations. Perturbations are inevitable in wild 

(natural) swarms that must contend with gusts of wind and with environmental disturbances. 
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160 Here it was shown that the tensile strength of swarms can (somewhat counter-intuitively) to 

be attributed to centre-of-mass movements, as documented by Reynolds and Ouellette [2016] 

(Figs. 1 and 2). This may explain how these swarms possess enhanced properties relative to 

individual insects.

165 As the swarm size increases, centre-of-mass movements are determined by a balance 

between two competing effects: namely averaging over more but larger fluctuations because 

insects behave as if they are more weakly bound when in larger swarms [Kelley and Ouellette 

2013]. The results of preliminary numerical simulations (not shown) suggest that the latter 

outweighs the former and that consequently centre-of-mass movements and so tensile 

170 strength increases with increasing swarm size. Insect swarms are therefore predicted to 

‘solidify’ as they increase in size, making it harder to pull them apart. This new prediction could 

be tested in the laboratory by measuring tensile strength as a function of swarm size. If true, 

then it suggests that insect swarms effectively cool as they increase in size. Fire ants, on the 

other hand, which link their bodies to form dense aggregations, behave more like viscoelastic 

175 fluids, becoming stiffer and more purely elastic as the density of the ants increases 

[Tennenbaum et al. 2016, Vernerey et al. 2018]. Active changes in group morphology in 

response to dynamic loads are also evident in dense tree-hanging clusters of honeybees 

[Peleg et al. 2018]. 

180 The identification and understanding of the emergent macroscopic properties of insect swarms 

holds promise of a unified ‘thermodynamic’ theory of insect swarms, where one seeks to 

describe their mechanical-like properties in a way that does not directly reference individual 

behaviours [Ouellette 2017]. In such a theory different swarm morphologies and dynamics 

might be regarded as being different phases of insect swarming behaviour. This notion may 

185 help reconcile conflicting observations of insect swarms made in quiescent laboratory 

conditions and in the wild [Kelley and Ouellette 2013, Attanasi et al. 2014] because, as was 

shown here and as was prefigured in Reynolds (2018b), perturbations may drive phase 

transitions. 

190
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255

Figure 1. Theoretical predictions for swarm density profiles match data from numerical 

simulations. The swarms are being pulled away from their respective swarm markers 

(dashed-lines) and displaced towards the origin. The swarms therefore appear in tension with 

a tensile strength that increases as centre-of-mass movements increase. Predictions (solid 

260 line) obtained from Eqn. 12 are shown for a=0.8, b=0.1 and B0=1 with B1=0.1 (left), 0.3 (middle) 

and 0.5 (right). Simulation data (●) were obtained from Eqn. 3 for  and T=1. 2 1uσ =
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Figure 2. In the presence of parametric noise insect swarms are predicted to have an 

265 emergent analogue of a finite Young’s modulus and yield stress, and do not show a 

viscous flow regime. When parametric noise is absent (B1=0) the swarm is always localized 

over the swarm makers (  ) (dashed lines) as it is pulled apart and so not in tension bax /±=
(upper panel). When parametric noise is present (B1=1.0) the swarm is put into tension as it 

is pulled apart as the swarms are being pulled away from their respective swarm markers 

270 (dashed-lines) and displaced towards the origin (lower panel) This displacement decreases 

with increasing separation of the swarm markers. Predictions obtained from Eqn. 12 are 

shown for a=0 (left), 2 (middle) and 4 (right), and b=0.25. 


