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Abstract

Biotic resistance theory suggests that diverse cover crop mixes may be more effective at weed 

suppression than a cover crop monoculture. However, evidence for this has so far been 

inconsistent. To investigate, we designed a trial to explicitly test the role of cover crop diversity in 

weed suppression, through comparing eight cover crop mixes that varied in species diversity, 

functional diversity, and composition. Mixes contained either one, four or eight species, in equal 

proportions. Three mixes contained only cereal species, three contained only legumes, and two 

contained a mix of cereals, legumes and brassicas. Research was conducted on two farms in 

South Africa’s winter rainfall region, replicated over two years. Indicators of resource uptake by 

each mix in terms of light, soil nitrogen and water were measured at three time points throughout 

the season, approx. 50, 85 and 110 days after establishment (DAE). Aboveground biomass (dry 

weight) of cover crops and weeds within each mix was measured twice, at approximately 70 and 

120 DAE. Regression analyses indicated that cover crop biomass was key to resource uptake 

and weed suppression, and that early-season nitrogen and later-season light availability had the 
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strongest influence on weed biomass. Neither species diversity nor functional diversity affected 

resource uptake or weed suppression by cover crops. These results indicate that it is important 

to consider the competitiveness of individual species when designing cover crop mixes. Diverse 

mixes remain valuable to perform multiple functions, but may contribute to weed problems if 

composed of poorly competitive species.

Keywords: cover crops, weed management, diversity, competition, biotic resistance
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Introduction

Cover crops, defined as crops planted for a purpose other than harvest, are integrated into 

cropping systems to achieve a variety of goals. Cover crops can be used to conserve and 

enhance soil quality, provide resources to biodiversity, break pest and disease cycles, and 

suppress weeds (Snapp et al 2005, Blanco-Canqui et al 2015). Recently, cover crops comprising 

mixes of different species have become popular, as combining species with different properties 

creates a single crop that can perform multiple functions (Storkey et al 2015, Finney et al 2017). 

Combining multiple species may also increase the capacity of a cover crop to perform individual 

functions. This concept has not yet been extensively tested in cover crops, and there is mixed 

evidence so far (e.g. Döring et al 2012a, Finney et al 2016). However, in general, increased plant 

diversity is known to be associated with increased provision of several specific ecosystem 

functions (Isbell et al 2017), including productivity (Tilman et al 2012), soil carbon storage (Lange 

et al 2015), nutrient cycling (Oelmann et al 2011) and the support of further biodiversity 

(Scherber et al 2010). Diversity is thought to increase the magnitude and resilience of an 

ecosystem function because each species performs the function in a different way, or at different 

rates under different conditions, leading to a higher overall capacity to consistently perform the 

function (Díaz and Cabido 2001, Isbell et al 2011). Functional diversity (the diversity of species’ 

traits that influence ecosystem functioning; Tilman 2001) is considered to have a stronger effect 

on ecosystem functioning compared with species diversity. Functionally different species are 

more likely to have distinct strategies (distinct niches) to perform the function, so their strategies 

are more likely to be complementary rather than overlapping, and lead to greater functioning 

(Díaz and Cabido 2001).

One function of cover crops that has potential to be improved by increased diversity is weed 

suppression. Cover crops primarily suppress weeds by competing with them for resources 

(although allelopathy can also play a role; Blanco-Canqui et al 2015). Thus, combining different 

species that acquire resources from their surrounding environment in different ways could result 

in increased overall resource capture, so that fewer resources remain available to weeds. This 
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concept has been explored in invasion ecology, where it was first put forward by Elton (1958) 

and forms a central pillar of the ‘biotic resistance’ or ‘diversity-invasibility’ hypothesis (Richardson 

and Pyšek 2006, Jeschke 2014). Biotic resistance can be defined as a resident community’s 

capacity to resist invasion by alien species, and in the context of plant communities, diversity 

may contribute in two ways (Shea and Chesson 2002, Funk et al 2008). First, according to the 

niche differentiation hypothesis, the additive effect of each species acquiring resources in 

different ways could result in more efficient overall resource capture. Second, the sampling effect 

hypothesis states that a diverse community would be more likely to contain a few species that 

are particularly effective at resource capture, thereby lowering overall resource availability and 

reducing opportunities for invasion. The sampling effect may also manifest as an increased 

likelihood of limiting similarity, where the community contains species that use resources in 

similar a fashion to the invader, and these species are thus more likely to suppress the invader 

through competitive exclusion (limiting similarity) (Funk et al 2008). 

Empirical support for a positive relationship between species diversity and biotic resistance via 

either niche differentiation, limiting similarity and/or the sampling effect has been inconsistent 

(Levine and D’Antonio 1999, Jeschke 2014). The current consensus in the literature is that 

diversity can play a role, but its effect is often obscured by other variables such as abiotic 

disturbance and fluctuating resource availability (Richardson and Pyšek 2006). Several authors 

have noted a scale-dependent pattern, where resident diversity increases biotic resistance at 

small spatial and temporal scales, but at landscape scales and over decades resident diversity is 

often the result of high resource availability and frequent resource fluctuations, conditions that 

also promote invasion by alien species (Levine 2000, Nunez-Mir et al 2017). However, the 

findings that diversity can increase resistance at small scales suggests that the principle could be 

applied to increase cover crop suppression of weeds at the scale of a farm field.

Few studies so far have investigated the relationship between the diversity of cover crop mixes 

and their capacity for weed suppression, and their findings have been inconsistent. Some 

previous studies suggest functional diversity may increase weed suppression (Linares et al 2008, 
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Döring et al 2012a), while others suggest that the biomass produced by a cover crop is the main 

predictor of weed suppression, and that diversity does not play a role (Brennen and Smith 2005, 

Smith et al 2014, Smith et al 2015, Finney et al 2016). These latter studies suggest that whilst 

the sampling effect may play a role in natural systems by increasing the chances that a 

particularly competitive species will be present, in agricultural systems we could simply choose to 

sow the most competitive species, or pick the species most likely to suppress locally abundant 

weeds through limiting similarity.

Another potential role of cover crop diversity in weed management is that diverse cover crops 

may help to promote a more beneficial weed community. Although weeds are considered 

primarily detrimental to crop production, weeds can benefit agroecosystem functioning by 

supporting other beneficial organisms (Petit et al 2011), and the provision of this service is 

expected to be higher when the weed community is more diverse (in this context, a low 

abundance of diverse weeds could perhaps be considered an unplanned but nonetheless 

beneficial component of a cover crop). A study by Palmer and Maurer (1997) indicated that 

diverse cover crop mixtures may promote weed diversity, possibly through the creation of diverse 

microhabitats and/or by combining different crops that promote or facilitate different groups of 

weeds. However, a more recent trial by Smith et al (2015) found no evidence for such a 

relationship. 

Overall, there is a promising theoretical basis that increasing cover crop diversity could improve 

weed management, but inconsistent results from previous studies indicate a need for further 

experimental evidence. To investigate how cover crop diversity influences weed abundance and 

community composition, this paper presents a field trial designed to systematically test the 

effects of different levels of both species diversity and functional diversity on weeds, and to 

investigate whether any effect can be explained by increased resource capture. Specifically, we 

test the following hypotheses:
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(A) increased cover crop species diversity and/or increased cover crop functional 

diversity increases weed suppression;

(B) the capacity of a cover crop mix to suppress weeds can be explained by its ability to 

capture resources;

(C) specific cover crop functional types are more effective at suppressing weeds of 

comparable functional types; 

(D) a more diverse cover crop mixture promotes a more diverse weed community; 

(E) cover crops that are more effective in weed suppression result in higher cash crop 

yields in the following year.

2. Methods

2.1 Trial overview, location and layout

To test our five hypotheses, we designed a field experiment consisting of cover crop mixes that 

differed in species diversity, functional diversity, and the functional types of species included in 

the mix. We assessed the effect of each mix on overall weed biomass, and identified whether the 

species diversity, functional diversity, composition or biomass of each cover crop mix best 

explained the effect on weed biomass (hypothesis A). To understand whether these cover crop 

mix characteristics influenced weed biomass through reducing resource availability to weeds, we 

explored how cover crop characteristics related to the availability of light, moisture and nitrogen 

throughout the season, and also investigated whether or not weed biomass responded to the 

availability of these resources (hypothesis B). To assess whether limiting similarity played a role 

(hypothesis C) we explored whether different cover crop functional types reduced the biomass of 

weeds of similar functional types to a greater degree. We also investigated whether weed 

species diversity increases as cover crop diversity increases (hypothesis D). Lastly, to assess 

the agronomic significance of the cover crop mixes, we explored how the different cover crop 
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mixes and their ability to suppress weeds was linked to cash crop yields in the following year 

(hypothesis E).

The trial took place on two farms in South Africa’s Western Cape winter rainfall region, 

Langgewens (33°17'0.78"S, 18°42'28.09"E) and Tygerhoek (34° 9'31.76"S, 19°54'36.77"E) 

Research Farms (Figure 1) of the Western Cape Government Department of Agriculture. 

Langgewens receives an average annual rainfall of 408 mm (SD = 109 mm) of which 

approximately 80% falls between April and September, while Tygerhoek receives an average 

annual rainfall of 511 mm (SD = 101 mm) with approximately 60% falling between April and 

September (based on rainfall records between 1996-2016). The dominant weed species at both 

sites are Lolium species, with the local population thought to be a hybrid complex of L. rigidum, 

L. multiflorum and L. perenne (Ferreira et al 2013). These research farms are representative of 

field cropping systems in the region, where most farms follow conservation agriculture practices, 

including no-tillage or minimum-tillage, crop rotation, and crop residue retention. The main crops 

are winter cereals, canola (Brassica napus), and legume forages. Due to the annual rainfall 

distribution, only one crop per year can be grown in the winter months, so a cover crop replaces 

a cash crop. Vineyards and orchards are also major cropping systems in the Western Cape 

winter rainfall region, and annual cover crops are used to protect soil and suppress weeds in 

winter. Findings from this trial are applicable to both annual field crop and perennial fruit and 

wine crop systems in the region.

The trial was laid out in randomised blocked design, with three blocks on each farm. Each 

treatment plot was 4.2 m wide by 20 m long. At Langgewens, the blocks were located on three 

separate fields that had been continuously cropped with wheat (Triticum aestivum) since 1996, 

and the trials were surrounded by wheat. At Tygerhoek, all blocks were located in a single field 

with a mixed cropping history and the field around the trial was left fallow. Cover crops were 

sown directly into the residue of the previous year’s crop using a Kuhn Neo 13 no-tillage double-

disc planter (manufactured in Brazil), following typical practice in conservation agriculture 

systems. At Tygerhoek, there was minimal crop residue but a substantial amount of residue from 
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summer weeds, particularly from the knotweed Polyganum aviculare. In 2016, the trial at 

Tygerhoek was planted on 11 May and at Langgewens on 18 May; in 2017 Tygerhoek was 

planted on 3 May and Langgewens on 12 May. The first substantial rainfall of the season was 

unusually late at both farms in both years (late May in 2016 and early June in 2017), so the trials 

were planted into dry soil. In 2016, seedling emergence occurred approximately 15 days after 

planting, and in 2017 approximately 25 days after planting. At the end of the season (late 

September/early October), the cover crops were rolled using a roller-crimper to terminate their 

growth and prevent them from setting seed (the effectiveness of this termination was not formally 

assessed but will be considered in the discussion section). The roller-crimper used was 

constructed by staff in the Western Cape Government Department of Agriculture.

In 2017, cash crops were also planted into the cover crop plots of 2016, to investigate the effects 

of the mixes on subsequent yield, and whether any effects were linked to weed suppression 

during the cover crop year. At Langgewens the cash crop was wheat, and forage oats (Avena 

sativa) were used at Tygerhoek. The wheat was sown with a Piket Implements 20-row fine seed 

planter (manufactured in South Africa) and the forage oats with the Kuhn Neo 13 (manufactured 

in Brazil). Neither fertiliser nor herbicides were used throughout the season, to avoid obscuring 

the impact of the previous cover crop treatments. The wheat grain at Langgewens was harvested 

on 6th November 2017 (using a HEGE 140 combine plot harvester manufactured in Germany) 

and oat biomass samples collected by hand at Tygerhoek on 25th October 2017. The oat grain 

was not harvested at Tygerhoek as a forage cultivar was used, and thus the grain yield may not 

be reflective of growth conditions. 

2.2 Species selection and mix composition

The trial consisted of nine treatments: a weed fallow or ‘bare ground’ (BG) control where no 

cover crops were planted, two monoculture controls (a single cereal, 1C; and a single legume, 

1L), three four-species mixes (four cereals, 4C; four legumes, 4L; and a diverse mix, 4D), and 

three high richness mixes (cereals, HC; legumes, HL; and a diverse mix, HD) (Table 1). 

Page 8 of 54Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



9

Treatments differed slightly between the two years of the trial. In the first year (2016), a total of 

21 different species was used, and the HL and HD mixes contained 12 species each (Tables 1 

and 2). In 2017, the number of species in the H mixes was reduced to eight: species that did not 

establish well in 2016 were excluded from the trial in 2017. In 2016 not enough cereal species 

could be obtained to create an HC mix (seed suppliers did not have these in stock), so this 

treatment was only implemented in 2017. The HC mix included two rye (Secale cereale) 

varieties, a spring variety and a stooling variety, in addition to six other cereal species. These two 

varieties were suggested by local agronomists to vary in phenology and growth habit as much as 

two different cereal species. 

The selection of species to include in the trial was informed by common practices in the Western 

Cape (the species used for the 1C and 1L mixes are typical cover crops) and on advice from 

local experts, including government agronomists and commercial seed suppliers. Sowing rates 

were also based on advice from local experts. To create the mixes, the recommended sowing 

rate was divided by the proportion of the mix made up by each species; for example, in a four 

species mix, each species was sown at 25% of its recommended sowing rate (Table 1). 

The functional diversity investigated in this study was diversity in spatial resource capture 

strategy: the species included differed in their growth forms and root architectures. Although 

plants do not compete for space per se, plants compete for the resources within a space (Booth 

et al 2003), and thus a group of plants capable of more completely occupying the three-

dimensional space around them would be expected to deplete resources more uniformly from 

that space and thus more effectively reduce resource availability to weeds. Specifically, diversity 

in growth form was expected to allow the cover crops to create a more complete canopy cover to 

restrict light availability to weeds, and diversity in root architecture to allow the cover crop to 

more effectively deplete the soil of moisture, nitrogen and other key nutrients (Figure 2). 

Species were divided into the functional types of ‘cereal’, ‘legume’, ‘brassica’ and ‘other’. These 

four groups have different strategies to utilise the space around them, and thus different 
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strategies to acquire resources from that space (Figure 2). All cereal species included in the trial 

had a tufted, upright growth form and fibrous roots. Most legumes had prostrate or spreading 

growth forms, with a taproot and spreading lateral roots (with the exception of lupins, included in 

2016 only, which had a more upright growth form). The two brassica species (white mustard and 

forage radish) had upright growth forms and deep taproots, while the ‘other’ consisted of chicory) 

in 2016 and flax in 2017 (this substitution was made given the very poor establishment of chicory 

in 2016). Chicory forms a rosette with a deep taproot, while flax has a shallow root system and 

slender upright growth form. In accordance with limiting similarity, cover crops with specific 

growth forms and root architectures were expected to suppress weeds with similar growth forms 

and root architectures, given that they are more likely to compete for resources within the same 

space. Weeds were divided into functional types that corresponded with those of the cover 

crops: ‘grasses’ (similar root architecture and growth form to cereals), ‘short or prostrate herbs’ 

(similar to legumes), and ‘tall upright herbs’ (similar to brassicas).

2.3 Data collection

2.3.1 Cover crop and weed biomass, diversity and composition

Aboveground dry-weight biomass of both cover crops and weeds was sampled twice in each 

year of the trial, once at ‘mid-season’ approximately 65 days after emergence (DAE) and once at 

‘end-season’ approximately 140 DAE (just prior to termination). Biomass was not sampled prior 

to 65 DAE as competition between crops and weeds was not expected to be strong while plants 

were small and resources therefore not limiting (in the region, crop growth is typically slow in the 

cold winter months of June and July and begins to increase in August). A 0.5-m2 biomass sample 

was cut from each plot, from two 0.25-m2 sub-samples located a random number of paces from 

each end of the plot (placed either to the left or right to avoid cutting the same area in both 

sample events). To determine botanical composition, biomass was sorted into each species of 

cover crop and weed, then dried at 60˚C for at least 72 hours, then weighed. 
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For both cover crop and weed species diversity and functional diversity we used the Shannon 

index (Magurran 2004) based on the biomass of each species:

― ∑
𝑖
𝑝𝑖ln 𝑝𝑖

where p is the proportion of biomass in species i. For functional diversity, the Shannon index was 

calculated using the biomass of each of the four functional types of cereal, legume, brassica and 

chicory/flax, and the matching weed functional types of grasses (cf. cereals), short/prostrate 

herbs (cf. legumes), and tall upright herbs (cf. brassicas). The Shannon index was used because 

it is relatively sensitive to the presence of rare species, and the weed community in the trial 

locations was largely dominated by Lolium spp. (Magurran 2004). Mix composition was 

determined by the biomass of the different functional types in each sample, for both weeds and 

cover crops.

2.3.2 Resource availability and capture

To investigate resource use by different cover crop mixes, we measured soil gravimetric water 

content, total mineral nitrogen, and percent of the ground covered by cover crops and by weeds 

(canopy cover), in each plot at three points throughout the season: approximately 50, 85 and 110 

DAE. At each time point, four soil cores of a 4-cm diameter and 10-cm depth were taken from 

each plot and combined to form a representative soil sample. These soil samples were weighed 

wet, then dried at 60˚C for at least 72 hours, then weighed again to obtain the gravimetric water 

content. These samples were then tested for ammonium and nitrate content following 

indophenol-blue test (Keeney and Nelson 1982) and the salicylic acid method (Cataldo et al 

1975), respectively. These two values were added together to obtain a value for total mineral 

nitrogen. 

Canopy cover was visually estimated according to the Domin scale (Kent 2011) in three 1-m2 

quadrats in each plot, that were in fixed positions throughout the season to ensure biomass was 

not cut from these areas. Quadrats were located at 5-m intervals along each plot, 0.5-m in from 
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the edge (to avoid edge effects) on alternating sides of the plot; this meant quadrats were not 

disturbed during soil sampling down the centreline of the plots. Domin cover estimates were 

converted to the midpoint of each cover score (Lepš and Hadincová 1992), then these midpoints 

from the three quadrats were averaged to one representative value for each plot. Estimates were 

made by the same person to avoid observer bias.

In 2016, soil samples taken on the date of sowing in late April and again just prior to harvest in 

late September (one representative sample per plot per time point) were also tested for 

extractable phosphorus and sulphur, exchangeable calcium, magnesium and potassium, copper, 

zinc, manganese and boron content, according to methods set out by the Non-Affiliated Soil 

Analysis Work Committee (1990). These measurements were used to calculate differences in 

the soil nutrient content between the beginning and end of the season, to explore whether any 

treatments used more or less of each mineral, and thus to infer whether they may have played a 

role in competition between weeds and cover crops. 

2.3.4 Subsequent cash crop year

Just prior to cash crop planting (in late April 2017) and at approximately 80 DAE for each cash 

crop, ground cover by cover crop and weed residue from the previous year was visually 

estimated in each plot (using the average of Domin estimates of two 1 m2 randomly located 

quadrats). Also during the April pre-planting assessment, four soil cores (4-cm in diameter, 10-

cm deep) were collected and combined to form a representative sample, then tested for total 

mineral nitrogen (as in Section 2.3.2). 

In November, wheat grain from each plot at Langgewens was harvested using a plot combine 

harvester, with only a central 1m strip in each plot harvested to avoid edge effects. The grain 

was weighed to obtain a yield value in kg ha-1 (wet grain weight was standardized to 14% 

moisture). Final oat biomass samples were cut at Tygerhoek from three 0.25-m2 quadrats 

located randomly along the centre line of each plot; these were combined to form a single 
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representative sample for each plot. Oat biomass was separated from weed biomass, dried at 

60˚C for 72 hours, and weighed.

2.4 Data analysis

All analyses were undertaken in the software R, version 3.4.3 (R Core Team, 2017).  To detect 

differences between mid and end-season weed and cover crop biomass, composition, species 

diversity and functional diversity, type III analysis of variance (ANOVA) F tests on linear mixed 

effects regression models fitted with restricted maximium likelihood (REML) using Satterthwaite 

approximations for degrees of freedom (R package lmerTest) (Bolker et al 2008). For all models, 

block nested within farm and block nested within year were included as random intercept effects, 

and the relevant predictors for each hypothesis were included as fixed effects. Post-hoc pairwise 

comparisons were conducted from estimated marginal means using the Tukey adjustment (R 

package emmeans). Marginal and conditional R2 values for all models are provided in the results 

as an indication of how well variation in the data is described by both fixed and random effects in 

each model (R package MuMIn) (Nagasaka and Schielzeth 2014). The marginal R2 indicates the 

proportion of variance explained by the fixed effects, while the conditional R2 indicates variance 

explained by the entire model including both fixed effects and random effects. 

Prior to analyses, all explanatory and response variables were standardised by subtracting the 

dataset mean and dividing by the standard deviation, so increase ease of interpretability of the 

relative effects of different variables (Schielzeth 2010). All models were checked to ensure they 

fulfilled assumptions of normality and equal variance by assessing trends in the residuals, and 

where necessary log transformations were used to correct for these. Models were also checked 

for influential outliers; any issues are reported in the results. 

Differences between treatments are visualised using boxplots calculated in R’s graphics 

package. The centre band shows the group median, the box represents the interquartile range, 

and the whiskers show either the minimum and maximum values, or 1.5 times the interquartile 
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range on each side of the mean, where minimum and maximum values exceed this. Points 

indicate outliers that are more than 1.5 times the interquartile range away from the mean. Letters 

shown on the boxplots indicate pairwise differences according to the post-hoc comparisons (see 

above): treatments that are different to one another do not share a letter.

For those cover crop characteristics found to differ (P<0.05) between mixes, mixed effects linear 

regression models following the above procedure were then used to explore whether these were 

linked to differences in weed biomass (hypothesis A), and to resource levels: soil nitrogen 

content, moisture content, and cover crop canopy cover at different points throughout the 

season, and with differences in soil mineral levels between the start and end of the season. We 

also investigated whether weed biomass was related to these resource levels (hypothesis B). To 

explore limiting similarity (hypothesis C) we modelled whether the amount of each functional type 

of weed varied proportionally in response to the amount of different cover crop functional types in 

each mix, and we also tested whether weed diversity was linked to cover crop diversity 

(hypothesis D). To investigate cash crop yields in the subsequent years (hypothesis E), ANOVA 

and Tukey’s HSD were employed to test for differences between mixes, and regression models 

used to explore relationships between cover crop biomass and weed biomass in the cover crop 

year, residue cover at the start of the cash crop year, mid-season weed cover during the cash 

crop year, and cash crop yield. Relationships between these continuous variables are graphically 

presented using the functions of R’s effects package.

3. Results

3.1 Weed suppression by different mixes

Lower final weed biomass was observed in the cereal and diverse mixes compared with most 

legume mixes (ANOVA F = 13.42, P < 0.001) (Figure 3). Weed suppression was similar amongst 
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all cereal and diverse mixes, whilst none of the legume mixes had fewer weeds than the 

bareground control.

3.2. Diversity, composition and productivity of different mixes

The species diversity (Shannon index) of the cover crop mixes was as intended: the controls had 

low relative diversity, the four-species mixes had an intermediate diversity, and the high species 

mixes had a higher diversity (Figure 4a; ANOVA F = 95.11, P < 0.001). However, the HL mix did 

not have a higher diversity than the 4-species mixes, as many of the legume species did not 

establish well, whilst the 4C mix had higher diversity than both other four-species mixes, and the 

HL mix. The Shannon index of functional diversity confirms that the 4D mix and HD mix were the 

only two mixes containing functional diversity, and furthermore that the HD mix had a higher 

functional diversity than the 4D mix (Figure 4b; ANOVA F = 116.95, P < 0.001). Biomass 

production differed substantially among mixes, with the cereal and diverse mixes producing more 

cover crop biomass than the legume mixes (Figure 4c; ANOVA F = 142.24, P < 0.001). The 

composition of the mixes varied as intended, with legume (L) mixes containing only legumes and 

cereal (C) mixes containing only cereals. The diverse mixes contained a mixture of cereals, 

legumes and brassicas, but their cereal components tended to be over-represented (Figure 4d).

3.3 Mix characteristics and weed suppression

Of the cover crop characteristics of species diversity, functional diversity, composition and 

biomass production, both total biomass production and the proportion of cereal biomass were 

associated with a reduction in weed biomass (P<0.05, Table 3, Figures 5a and 5b). Weed 

biomass was log-transformed to reduce unequal variance in model residuals. The cover crop 

composition variables of cereal, legume and brassica proportional biomass were collinear with 

one another (variance inflation factor > 2.5), and were not included in the same model. Including 

cereal biomass resulted in the best model fit (lowest AIC), and so results from the model 

containing cover crop total biomass, cereal proportion, species diversity and functional diversity 
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as fixed effects are reported (Table 3). Increasing the proportion of brassica biomass had a 

similar effect to increasing the proportional of cereal biomass, resulting in reduced weed 

biomass, while increasing the proportion of legume biomass had the opposite effect and was 

linked to increased weed biomass (results not shown).

3.4 Mix characteristics and resource capture

Overall, the two cover crop characteristics associated with weed suppression, total cover crop 

biomass and the proportion of cereals, explained only a small amount of variance in nitrogen and 

moisture availability within the experiment (Table 4). The majority of variance was explained by 

differences between experiment blocks, farms and years. However, mixes containing a higher 

proportion of cereals did reduce nitrogen and moisture availability slightly at 50 DAE (Table 4, 

Figure 6). Further nitrogen and moisture capture later in the season may have been obscured as 

rainfall increased, which raises soil moisture and thus also stimulates the release of nitrogen 

through mineralisation of crop residue and soil organic matter. However, by 110 DAE cereal 

biomass proportion had a small but significant positive relationship with moisture availability 

(Table 4), suggesting that mixes containing more cereals were using less moisture toward the 

end of season.

Higher total cover crop biomass was associated with increased canopy cover throughout the 

season, although with stronger effects at 85 and 110 DAE (Table 4, Figure 6c). Mixes with more 

cereals also had a slightly higher canopy cover at 85 DAE (Table 4). None of the soil minerals 

measured apart from nitrogen were observed to decrease in response to cover crop biomass or 

composition (results not shown), indicating that the capacity of cover crops to suppress weeds 

was not related to the capture of any of these minerals. Overall, these results suggest that more 

productive cover crop mixes were more able to capture light throughout the season, and mixes 

with a higher cereal content were additionally able to capture more nitrogen and moisture early in 

the season.
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3.5 Weed biomass and resource availability

Resource availability at 50 DAE was used to predict the increase in weed biomass from mid-

season to end-season, to assess whether more weed biomass was produced where more 

resources were available. Weed biomass increased most where nitrogen was highest and where 

cover crop canopy was lowest at 50 DAE (Table 5), indicating that nitrogen and light availability 

allowed weeds to be more productive. The resource availability model predicted 20% of the 

observed variation in weed biomass between plots, with random location effects explaining 

another 50% of the variation (Table 5). 

3.6 Limiting similarity and weed diversity

Thirty-six weed species were recorded in this study (Table 6). The weed community was 

overwhelmingly dominated by Lolium spp., which contributed 67% of total weed biomass in this 

study, across both farms and years. Proportions of different weed functional types did not vary 

(P>0.05) in response to variation in the proportion of their corresponding cover crop functional 

types (results not shown), indicating that limiting similarity in terms of spatial resource capture 

traits did not occur. Cover crop diversity also did not increase weed diversity, either in terms of 

species or functional diversity (P>0.05, results not shown).

3.7 Cover crop effects on cash crop yield in the following year

There were no effects of cover crop biomass or composition on conditions at the start of the 

subsequent cash crop season, in terms of soil mineral nitrogen, cover crop residue or weed 

cover (results not shown). However, weed cover in the middle of the cash crop season was 

higher where weed biomass at the end of the cover crop year was higher (P<0.05), and where 

cover crop biomass and cereal proportion were lower (P<0.05) (Table 7). Cash crop yield was 

not affected by start-of-season nitrogen, residue or weeds (P>0.05, results not shown), but was 

reduced by mid-season weed cover. This effect was stronger on forage oat biomass yield at 
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Tygerhoek than on wheat grain yield at Langgewens (Table 8, Figure 7). The two were modelled 

separately due to the different types of crops grown at each site.

4. Discussion

4.1 Cover crop diversity, resource capture, weed suppression and weed diversity

This study confirms that cover crops can be effective in suppressing weed biomass through 

reducing the availability of resources to weeds. However, neither species diversity nor functional 

diversity (in terms of the spatial resource capture traits explored in this study) increased the 

efficacy of cover crops in this regard (hypotheses A and B). There was also no evidence to 

suggest that cover crops with a particular growth form and root architecture suppressed weeds 

with comparable traits, and thus no evidence for limiting similarity (hypothesis C), nor any 

evidence that diverse cover crop mixes promoted weed diversity (hypothesis D). Our results 

indicate that the cover crop mixes composed mostly or entirely of cereals produced more 

biomass, captured more resources, and suppressed more weed biomass.

These findings agree with previous trials of cover crops that found that species able to produce a 

large quantity of biomass quickly are most capable of suppressing weeds (Palmer and Maurer 

1997, Brennan and Smith 2005, Storkey et al 2011, Brust et al 2014, Smith et al 2014, Smith et 

al 2015), and that diversity does not necessarily result in increased function in this regard 

(Finney et al 2016). Additionally, recent studies on biotic resistance to alien plant invasions 

suggest that fitness differences between resident species and invaders determine resistance to a 

greater extent than resident diversity, or the functional similarity of dominant resident species to 

the invader (Byun et al 2013, Funk and Wolf 2016). In the context and conditions of this study, 

cereal and brassica species were most capable of capturing resources and producing biomass 

rapidly, and thus had the greatest fitness advantage against weeds.
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However, some studies of cover crop mixes have found an increased ability of diverse mixes to 

suppress weeds (Linares et al 2008, Döring et al 2012a), and several studies on plant invasions 

have found some evidence that functional group diversity increases resistance to invasion at 

scales comparable with this study, albeit less so than the fitness of dominant resident species 

(Richardson and Pyšek 2006, Byun et al 2013). It is possible that this effect of diversity would be 

seen in cover crops if all species included in a diverse mix are adequately competitive. This idea 

is supported by the findings of Wortmann et al (2012) and Smith et al (2014) that cover crop 

mixes typically have a Land Equivalent Ratio > 1, producing more biomass than can be 

accounted for by the productivity of each species grown in monoculture. Therefore, creating 

mixes containing only highly productive species may result in more effective weed suppression 

than a monoculture, whilst also increasing opportunities for cover crops to perform multiple 

functions through diversity. In this study both functionally diverse mixes contained at least two 

legume species, which produced substantially less biomass than the cereal and brassica 

species, and may therefore have negated any effect of diversity.

Previous trials on diverse cover crops and forage crops suggest that functional diversity in terms 

of phenology, rather than the spatial resource capture traits tested in this study, may be more 

important to weed suppression (Porqueddu et al 2008, Döring et al 2012b, Finn et al 2013). In 

this regard, it is the capacity of different species to capture resources and produce biomass at 

different points in the season (or in subsequent years in long-term leys) that results in greater 

overall weed suppression. This suggests that if limiting similarity does occur between crops and 

weeds, it may also be a largely phenological phenomenon, and that crops and weeds with high 

simultaneous resource demands may be most likely to compete with one another. 

4.2 Differences between cover crop types

The cereal species included in this study were found to suppress weeds more effectively than 

the legume species (the brassicas and ‘other’ species were included in too few treatments to 

draw conclusions on their overall competitiveness). A key mechanism that appeared to give 
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cereal cover crops a fitness advantage over weeds was rapid nitrogen, moisture and light 

capture early in the season, followed by restricting light availability to weeds later in the season. 

However, the availability of these resources could only explain approximately 20% of the 

variation in weed biomass between mixes (with a further 50% in variation linked to site and year 

effects), suggesting that competition for other resources, or allelopathy, may also have played a 

role in causing the remaining variation. There is evidence from other studies that several of the 

cover crop species included in this trial, particularly the cereals, are allelopathic (Jabran et al 

2015, Rueda-Ayala et al 2015). Thus, it is plausible that cover crops suppressed weeds through 

both allelopathy and competition for resources. It is also possible that legumes confounded the 

suppressive effects of cereals through a facilitative effect on weeds: although most nitrogen fixed 

by legumes becomes available in the following season as their residues decompose, some 

nitrogen can be transferred from legumes to other plants within the first growing season 

(Pirhofer-Walzl et al 2012). However, given the overall low biomass produced by legumes, it is 

expected that any facilitative effect would be small.

The faster resource uptake and greater weed suppression of cereals compared with legumes 

was linked to differences in biomass production. This may be explained by life-strategy 

differences between these two crop types, with cereals appearing to have a ‘faster’ life strategy 

(Reich 2014) than legumes, which may have been enhanced by breeding for yield and 

competitiveness. Typically, plant species with a faster growth rate invest fewer resources in 

resilience to stress and disturbance, and thus would be capable of using those resources to 

produce more biomass to further enhance resource uptake (Garnier and Navas 2012, Reich 

2014). Legumes may be constrained in their growth relative to cereals due to the need to direct 

sugars to feed their rhizobial mutualists and by investment in mechanisms that allow them to 

recover from grazing, as many of the legume species included in this trial were forage species. 

However, a study by Tribouillois et al (2015) on cover crop traits found no evidence to suggest 

that cereals inherently grow faster or capture more nitrogen than legume crops in conditions of 

non-limiting resources. This suggests that the conditions in this study may have disadvantaged 
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legumes compared with cereals, brassicas and weeds. Sowing depth may have been a 

constraint: in this trial the disc planter placed the seeds at approximately 15 mm below the soil 

surface, which is considered shallow for cereals but deep for legumes, apart from the larger-

seeded legumes (vetch and pea), which typically performed better. The weather conditions 

during the trial may also have played a role, with the first rainfall arriving later into winter in both 

years than is usual for the region. Legume varieties used in the region may not have been bred 

to tolerate such low soil temperatures when sufficient moisture becomes available for 

germination and establishment. Thus, we would not conclude from this study that cereal cover 

crops would always outperform legumes in competition against weeds. 

4.3 Weeds and resource availability

That we were able to predict a substantial proportion of variation in weed biomass based on 

resource availability confirms the need to consider resource uptake capacity when choosing 

which species to include in a mix. In this regard, a cover crop’s capacity to produce biomass is 

an important trait of interest, as shown in this study and confirmed by other trials of weed 

suppression by cover crops (Palmer and Maurer 1997, Brennan and Smith 2005, Storkey et al 

2011, Brust et al 2014, Smith et al 2014, Finney et al 2016). The timing of that productivity may 

also be important (Döring et al 2012b, Finn et al 2013), but was not investigated in this trial. Our 

results also indicate that the functional type of the cover crop may play an additional role to 

biomass production, given that both cover biomass and cereal proportion were associated with 

reduced weed biomass. This suggests that different types of crops capture more resources per 

unit biomass, which is supported by our finding that a higher proportion of cereal cover crops 

was linked to a decrease in nitrogen, but total cover crop biomass was not (Table 4). It is also 

possible that certain crop types increase their competitiveness through other tactics such as 

allelopathy.

The weed response to resource availability observed in this study also has implications for other 

farm management practices beyond cover cropping, suggesting that resource availability to 
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weeds should be considered and reduced wherever possible. The finding is also relevant to 

breeding of both cover crops and cash crops: rapid early growth and resource capture may be 

the best defence against weed competition throughout the season.

4.4 Cover crops, weeds, and cash crop yield in the following year 

This study suggested a weak link between cover crop performance in weed suppression and 

subsequent cash crop yield, mediated by reduced weed cover following productive cover crops 

(hypothesis E). That a stronger effect on yield was not observed may have been partially related 

to several of the most weed-suppressive cover crop species (the cereals) returning as volunteer 

weeds in the subsequent cash crop, thus countering their contribution to weed suppression. 

Cover crop mixes present a challenge for non-chemical termination, as the roller-crimper 

technique is only effective in a short time window when cover crop plants are mature enough to 

be vulnerable, but have not yet set seed, and this time window may not overlap between all 

species in a mix. This effect may have allowed the cereals in this trial to either produce viable 

seed before termination, or recover to set seed afterwards.

There are also other characteristics of cover crops that contribute to subsequent cash crop yields 

aside from weed suppression (Snapp et al 2005, Blanco-Canqui et al 2015, Wittwer et al 2017). 

The addition of nitrogen to the soil by legumes is an important factor (Bedoussac et al 2015), and 

thus what the legume mixes lacked in weed suppressive capacity they may have made up for by 

providing nitrogen, or by reducing pathogen survival. Although soil nitrogen content at the start of 

the cash crop season was not associated with cash crop yield, further nitrogen may have been 

released to the cash crop from legume residues throughout the season.

4.5 Implications for design of cover crop mixes

The results of this study indicate that the recent enthusiasm for diverse cover crop mixes should 

be tempered with a focus on including sufficient quantities of species that are known to perform 
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key functions effectively. In this regard, our results agree with those of Storkey et al (2015) who 

found that cover crop mixes best achieve their desired functions when species are included that 

each perform a specific function well. Finney et al (2016) suggest that biomass-driven functions 

of cover crops, such as weed suppression, are best achieved by selecting the most productive 

species rather than basing mixes on functional complementarity. 

A diverse cover crop mix can offer advantages to farmers in terms of their capacity to perform 

multiple functions, such as building soil organic matter, fixing nitrogen, and supporting beneficial 

insects (Malézieux et al 2009, Isbell et al 2017, Finney et al 2017). Therefore, rather than 

avoiding diversity for the sake of weed suppression, we recommend that multi-species mixes are 

composed with a strong emphasis on the competitive ability of each species included in the mix. 

This will ensure that diverse cover crop mixes planted for the purpose of providing multiple 

functions can also adequately suppress weeds. It is important that cover crop mixes 

recommended to farmers do not promote weeds, and thus risk discouraging farmers from using 

cover crops, given the advances in agricultural sustainability offered by cover crops (Anderson 

2015, Wittwer et al 17). Future research on improving cover crop mixes for weed suppression 

could therefore focus on the identification of highly productive (and therefore weed-suppressive) 

cover crop species and cultivars from a variety of plant families that could be combined in 

multispecies mixes that are appropriate to the farming systems in question. For example, our 

finding that cereals and perhaps brassicas are the most effective weed-suppressing cover crops 

in the Swartland and southern Cape of South Africa is not the most practical recommendation for 

the region’s farmers, whose main cash crops are wheat, barley and canola. Closely related cover 

crop species run the risk of bridging pests and pathogens between cash crop years (Krupinksy et 

al 2002), and avoiding legumes leaves farmers burdened with the environmental and economic 

costs of synthetic nitrogen fertiliser (Bedoussac et al 2015). Research on identifying and 

developing new cover crops is ongoing in central Europe (eg. Brust et al 2014, Thorup-

Kristensen and Rasmussen 2015), but similar efforts will be needed in other regions to develop 

cover crops that suit the different climates, soils and farming systems around the world.

Page 23 of 54 Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



24

Acknowledgements

We thank the Western Cape Department of Agriculture for providing space and facilities on the 

Langgewens and Tygerhoek Research Farms, and we are grateful for the advice and assistance 

from Johann Strauss, Samie Laubscher, and Willie Langenhoven. Thanks also to the research 

farm staff who assisted with the trials, and to all staff and students from the Stellenbosch 

University Agronomy Department who contributed to fieldwork and sample processing. Jaco 

Kellerman of Barenbrug and Simon Hodgson of Advance Seed advised on species selection, 

and Advance Seed and Overberg Agri donated some seed. This study was financially supported 

by the EcoDry Project (612686 FP7-PEOPLE-2013-IRSES), and CM is the recipient of a 

Coventry University Doctoral Studentship.

Author contributions

CM designed the study with contributions all authors. CM undertook the data collection and 

analysis with advice and assistance from PS, and CM drafted the article. All authors contributed 

to critically revising and improving the article.

Conflicts of interest: none.

References 

Anderson, R.L., 2015. Integrating a complex rotation with no-till improves weed management in 

organic farming. A review. Agron. Sustain. Dev. 35, 967–974. 

https://doi.org/10.1007/s13593-015-0292-3

Bedoussac, L., Journet, E., Hauggaard-Nielsen, H., Naudin, C., Corre-Hellou, G., Jensen, E.S., 

2015. Ecological principles underlying the increase of productivity achieved by cereal-grain 

Page 24 of 54Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



25

legume intercrops in organic farming. A review. Agron. Sustain. Dev. 35, 911–935. 

https://doi.org/10.1007/s13593-014-0277-7

Blanco-Canqui, H., Shaver, T.M., Lindquist, J.L., Shapiro, C.A., Elmore, R.W., Francis, C.A., 

Hergert, G.W., 2015. Cover crops and ecosystem services: insights from studies in 

temperate soils. Agron. J. 107, 2449–2474. https://doi.org/10.2134/agronj15.0086

Booth, S., Murphy, S.D., Swanton, C.J., 2003. Weed ecology in natural and agricultural systems. 

CABI Publishing.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & 

White, J. S. S. (2008). Generalized linear mixed models: a practical guide for ecology and 

evolution. Trends Ecol Evol 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008

Brennan, E.B., Smith, R.F., 2005. Winter Cover Crop Growth and Weed Suppression on the 

Central Coast of California. Weed Technol. 19, 1017–1024. https://doi.org/10.1614/WT-04-

246R1.1

Brust, J., Claupein, W., Gerhards, R., 2014. Growth and weed suppression ability of common 

and new cover crops in Germany. Crop Prot. 63, 1–8. 

https://doi.org/10.1016/j.cropro.2014.04.022

Byun, C., Blois, S. De, Brisson, J., 2013. Plant functional group identity and diversity determine 

biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139. 

https://doi.org/10.1111/1365-2745.12016

Cataldo, D., Haroon, H., Schrader, L., Young, V., 1975. Rapid colorometric determination of 

nitrate in plant tissue by nitrate of salicylic acid. Commun. Soil Sci. Plant Anal.71–80.

Diaz, S., Cabido, M., 2001. Vive la difference: plant functional diversity matters to ecosystem 

processes: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 

646–655.

Page 25 of 54 Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



26

Döring, T.F., Baddeley, J.A., Storkey, J., Crowley, O., Howlett, S.A., McCalman, H., Pearce, H., 

Roderick, S., Jones, H.E., 2012b. Legume based plant mixtures for delivery ecosystem 

services: an overview of benefits. Agric. Environ. IX, Valuing Ecosyst. Policy, Econ. Manag. 

Interact. 150–155.

Döring, T.F., Storkey, J., Baddeley, J.A., Crowley, O., Howlett, S.A., McCalman, H., Pearce, H., 

Roderick, S., Jones, H.E., 2012a. Legume based plant mixtures for delivery of multiple 

ecosystem services: weed diversity and weed control. Agric. Environ. 9, 163–168.

Elton, C.S. 1958: The ecology of invasions by animals and plants. Chicago: University of 

Chicago Press.

Ferreira, M. I., Reinhardt, C. F., Lamprecht, S. C., Sinclair, M., MacKenzie, L., & van Coller, G. 

(2015). Morphological identification of the ryegrass hybrid Lolium multiflorum× Lolium 

perenne and isolation of the pathogen Fusarium pseudograminearum in the Western 

Cape. South African Journal of Plant and Soil, 32(1), 9-15.

Finn, J.A., Kirwan, L., Connolly, J., Sebastia, M.T., Helgadottir, A., Baadshaug, O.H., Bélanger, 

G., Black, A., Brophy, C., Collins, R.P., Cop, J., Dalmannsdóttir, S., Delgado, I., Elgersma, 

A., Fothergill, M., Frankow-Lindberg, B.E., Ghesquiere, A., Golinska, B., Golinski, P., Grieu, 

P., Gustavsson, A.M., Höglind, M., Huguenin-Elie, O., Jørgensen, M., Kadziuliene, Z., Kurki, 

P., Llurba, R., Lunnan, T., Porqueddu, C., Suter, M., Thumm, U., Lüscher, A., 2013. 

Ecosystem function enhanced by combining four functional types of plant species in 

intensively managed grassland mixtures: a 3-year continental-scale field experiment. J. 

Appl. Ecol. 50, 365–375. https://doi.org/10.1111/1365-2664.12041

Finney, D.M., Murrell, E.G., White, C.M., Baraibar, B., Barbercheck, M.E., Bradley, B.A., 

Cornelisse, S., Hunter, M.C., Kaye, J.P., Mortensen, D.A., Mullen, C.A., Schipanski, M.E., 

2017. Ecosystem services and disservices are bundled in simple and diverse cover cropping 

systems. Agric. Environ. Lett. 2. https://doi.org/10.2134/ael2017.09.0033

Page 26 of 54Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



27

Finney, D.M., White, C.M., Kaye, J.P., 2016. Biomass production and carbon/nitrogen ratio 

influence ecosystem services from cover crop mixtures. Agron. J. 108, 39–52. 

https://doi.org/10.2134/agronj15.0182

Funk, J.L., Wolf, A., 2016. Testing the trait-based community framework: do functional traits 

predict competitive outcomes? Ecology 97, 2206–2211. https://doi.org/10.1002/ecy.1484

Funk, J.L., Cleland, E.E., Suding, K.N., Zavaleta, E.S., 2008. Restoration through reassembly: 

plant traits and invasion resistance. Trends Ecol. Evol. 23, 695–703. 

https://doi.org/10.1016/j.tree.2008.07.013

Garnier, E., Navas, M.L., 2012. A trait-based approach to comparative functional plant ecology: 

concepts, methods and applications for agroecology. A review. Agron. Sustain. Dev. 32, 

365–399. https://doi.org/10.1007/s13593-011-0036-y

Isbell, F., Adler, P.R., Eisenhauer, N., Fornara, D., Kimmel, K., Kremen, C., Letourneau, D.K., 

Liebman, M., Polley, H.W., Quijas, S., Scherer-Lorenzen, M., 2017. Benefits of increasing 

plant diversity in sustainable agroecosystems. J. Ecol. 105, 871–879. 

https://doi.org/10.1111/1365-2745.12789

Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W.S., Reich, P.B., Scherer-Lorenzen, 

M., Schmid, B., Tilman, D., Ruijven, J. Van, Weigelt, A., Wilsey, B.J., Zavaleta, E.S., Loreau, 

M., 2011. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–

203. https://doi.org/10.1038/nature10282

Jabran, K., Mahajan, G., Sardana, V., Chauhan, B.S., 2015. Allelopathy for weed control in 

agricultural systems. Crop Prot. 72, 57–65. https://doi.org/10.1016/j.cropro.2015.03.004

Jeschke, J.M., 2014. General hypotheses in invasion ecology. Divers. Distrib. 20, 1229–1234.

Kent, M. (2011) Vegetation Description and Data Analysis: A Practical Approach. 2nd edn. 

Chichester: Wiley-Blackwell.

Page 27 of 54 Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



28

Keeney, D. & Nelson, D., 1982. Ammonium by colorimetric methods. In A. Page, R. Miller, & D. 

Keeney, eds. Methods of Soil Analysis, Part 2; chemical and microbiological properties. 

American Society of Agronomy, pp. 643–698.

Krupinsky, JM, KL Bailey, MP McCullen, BD Gossen, and TK Turkington. 2002. Managing plant 

disease risk in diversified cropping systems. Agron. J. 94, 198–209.

Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Malik, A.A., Roy, 

J., Scheu, S., Steinbeiss, S., Mellado-va, P.G., Thomson, B.C., Trumbore, S.E., Gleixner, 

G., 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nat. 

Commun. 6, 6707. https://doi.org/10.1038/ncomms7707

Lepš, J., Hadincová, V., 1992. How reliable are our vegetation analyses? J. Veg. Sci. 3, 119–

124.

Levine, J.M., 2000. Species diversity and biological invasions: relating local process to 

community pattern. Science, 288, 852–854.

Levine, J.M., D’Antonio, C.M., 1999. Elton revisited: a review of evidence linking diversity and 

invasibility. Oikos 87, 15–26. https://doi.org/10.2307/3546992

Linares, J., Scholberg, J., Boote, K., Hall, N., Chase, C.A., Ferguson, J.J., Hall, F., McSorley, R., 

2008. Use of the cover crop weed index to evaluate weed suppression by cover crops in 

organic citrus orchards. HortScience 43, 27–34.

Magurran AE (2004) Measuring Biological Diversity. Blackwell, Oxford 

Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, B., Rapidel, 

B., De Tourdonnet, S., Valantin-Morison, M., 2009. Mixing plant species in cropping 

systems: concepts, tools and models. A review. Agron. Sustain. Dev. 29, 43–62. 

https://doi.org/10.1051/agro:2007057

Page 28 of 54Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



29

Non-Affiliated Soil Analysis Work Committee, 1990. Handbook of standard soil testing methods 

for advisory purposes. Soil Science Society of South Africa. Pretoria.

Nunez-Mir, G.C., Liebhold, A.M., Qinfeng, G., Brockerhoff, E.G., Jo, I., Ordonez, K., Fei, S., 

2017. Biotic resistance to exotic invasions: its role in forest ecosystems, confounding 

artifacts, and future directions. Biol. Invasions 19, 3287–3299. 

https://doi.org/10.1007/s10530-017-1413-5

Oelmann, Y., Richter, A.K., Roscher, C., Rosenkranz, S., Temperton, V.M., Weisser, W.W., 

Wilcke, W., 2011. Does plant diversity influence phosphorus cycling in experimental 

grasslands? Geoderma 167–168, 178–187. https://doi.org/10.1016/j.geoderma.2011.09.012

Palmer, M., Maurer, T., 1997. Does diversity beget diversity? A case study of crops and weeds. 

J. Veg. Sci. 8, 235–240.

Petit, S., Boursault, A., Guilloux, M., Munier-Jolain, N., Reboud, X., 2011. Weeds in agricultural 

landscapes. A review. Agron. Sustain. Dev. 31, 309–317. 

https://doi.org/10.1051/agro/2010020

Pirhofer-Walzl, K., Rasmussen, J., Høgh-Jensen, H., Eriksen, J., Søegaard, K., Rasmussen, J., 

2012. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species 

grassland. Plant Soil 350, 71–84. https://doi.org/10.1007/s11104-011-0882-z

Porqueddu C., Dettori G.P., Maltoni S., Brophy C., Connolly J. Pure stands vs four-species 

mixtures: agronomic and ecological implications in Mediterranean rainfed conditions. In : 

Porqueddu C. (ed.), Tavares de Sousa M.M. (ed.). Sustainable Mediterranean grasslands 

and their multi- functions . Zaragoza : CIHEAM / FAO / ENMP / SPPF, 2008. p. 153-156 

(Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 79)

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Page 29 of 54 Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



30

Reich, P.B., 2014. The world-wide “fast–slow” plant economics spectrum: a traits manifesto. J. 

Ecol. 102, 275–301. https://doi.org/10.1111/1365-2745.12211

Richardson, D.M., Pyšek, P., 2006. Plant invasions: merging the concepts of species 

invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431. 

https://doi.org/10.1191/0309133306pp490pr

Rueda-Ayala, V., Jaeck, O., Gerhards, R., 2015. Investigation of biochemical and competitive 

effects of cover crops on crops and weeds. Crop Prot. 71, 79–87. 

https://doi.org/10.1016/j.cropro.2015.01.023

Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Schulze, E.-D., Roscher, 

C., Weigelt, A., Allan, E., Beßler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, 

L.W., Ebeling, A., Engels, C., Fischer, M.S., Halle, S., Kertscher, I., Klein, A.-M., Koller, R., 

König, S., Kowalski, E., Kummer, V., Kuu, A., Lange, M., Lauterbach, D., Middelhoff, C., 

Migunova, V.D., Milcu, A., Müller, R., Partsch, S., Petermann, J.S., Renker, C., Rottstock, 

T., Sabais, A., Scheu, S., Schumacher, J., Temperton, V.M., Tscharntke, T., 2010. Bottom-

up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 

468, 553–556.

Schielzeth, H. 2010. Simple means to improve the interpretability of regression coefficients. 

Methods Ecol Evol 1, 103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

Shea, K., Chesson, P., 2002. Community ecology theory as a framework for biological invasions. 

Trends Ecol. Evol. 17, 170–176. https://doi.org/10.1016/S0169-5347(02)02495-3

Smith, R.G., Atwood, L.W., Pollnac, F.W., Warren, N.D., 2015. Cover-crop species as distinct 

biotic filters in weed community assembly. Weed Sci. 63, 282–295. 

https://doi.org/10.1614/WS-D-14-00071.1

Page 30 of 54Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



31

Smith, R.G., Atwood, L.W., Warren, N.D., 2014. Increased productivity of a cover crop mixture is 

not associated with enhanced agroecosystem services. PLoS One 9, e97351. 

https://doi.org/10.1371/journal.pone.0097351

Snapp, S.S., Swinton, S.M., Labarta, R., Mutch, D., Black, J.R., Leep, R., Nyiraneza, J., O’Neil, 

K., 2005. Evaluating cover crops for benefits, costs and performance within cropping system 

niches. Agron. J. 97, 322–332.

Storkey, J., Döring, T., Baddeley, J., Collins, R., Roderick, S., Jones, H., Watson, C., 2015. 

Engineering a plant community to deliver multiple ecosystem services. Ecol. Appl. 25, 1034–

1043. https://doi.org/10.1890/14-1605.1

Storkey, J., Doring, T., Baddeley, J., Marshall, A., Roderick, S., Jones, H., 2011. Modelling the 

ability of legumes to suppress weeds. Asp. Appl. Biol. 109, 53–58.

Tilman, D., 2001. Functional diversity, in: Levin, S.A. (Ed.), Encyclopaedia of Biodiversity. 

Academic Press, San Diego, pp. 109–120.

Tilman, D., Reich, P.B. & Isbell, F., 2012. Biodiversity impacts ecosystem productivity as much 

as resources, disturbance, or herbivory. PNAS, 109(26), pp.10394–10397.

Thorup-Kristensen, K., Rasmussen, C.R., 2015. Identifying new deep-rooted plant species 

suitable as undersown nitrogen catch crops. J. Soil Water Conserv. 70, 399–409.

Tribouillois, H., Fort, F., Cruz, P., Charles, R., Flores, O., Garnier, E., Justes, E., 2015. A 

functional characterisation of a wide range of cover crop species: growth and nitrogen 

acquisition rates, leaf traits and ecological strategies. PLoS One 10, 1–17. 

https://doi.org/10.1371/journal.pone.0122156

Wittwer, R.A., Dorn, B., Jossi, W., Van Der Heijden, M., 2017. Cover crops support ecological 

intensification of arable cropping systems. Sci. Rep. 7, 41911. 

https://doi.org/10.1038/srep41911

Page 31 of 54 Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



32

Wortman, S.E., Francis, C., Lindquist, J.L., 2012. Cover crop mixtures for the western corn belt: 

opportunities for increased productivity and stability. Agron. J. 104. 

https://doi.org/10.2134/agronj2011.0422

Page 32 of 54Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



33

FIGURES AND TABLES

Figure 1: The location of Langgewens and Tygerhoek Research Farms in South Africa.
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Cereal
Legume

Brassica

Cover crop species from
different functional types can
be combined in functionally
diverse mix ...

… or in functionally
similar mixes, e.g. an all-
cereal mix (above) or an
all-legume mix (below).

Different functional types
utilise space and access
resources around them in
different ways

Figure 2: An illustration of the functional types used in this study, and the expected effects of 

functionally diverse or similar multi-species mixes on spatial resource capture. The shapes in the 

diagram represent the space occupied by the foliage and root systems of each functional type: 

cereals tend to be upright (represented by a tall oval) with a spreading fibrous root system 

(rectangle), while legumes tend to be prostrate (short oval) with many adventitious roots (shallow 

triangle), while brassicas are tall and spreading (triangle) with a deep taproot (deep triangle). The 

different shades represent that mixes can be composed of different species within the same 

functional type (e.g. a cereal mix could contain rye, barley, oats and triticale; Table 1).

Page 34 of 54Crop Sci. Accepted Paper, posted 11/27/2018. doi:10.2135/cropsci2018.05.0329



35

Figure 3: Boxplot of the relative final weed biomass in each of the cover crop mixes. Letters at 

the base of the plot indicate pairwise differences: mixes that are different from one another do 

not share a letter. Cover crop mix acronyms refer to the treatments described in Table 1.
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Figure 4: Relative Shannon species diversity, Shannon functional diversity, biomass and 

proportional functional composition of biomass in different cover crop mixes at the end of the 

season. Cover crop mix acronyms refer to the treatments described in Table 1. In the top three 

panels, letters at the base of the plots indicate pairwise differences: mixes that are different from 

one another do not share a letter. The bottom panel shows the mean proportion of each cover 

crop functional type in the different mixes. All cereal mixes contained only cereals and all legume 

mixes contained only legumes. Plots sown with the 4D mix contained a mean cereal proportion 

of 0.69 (standard error, S.E. = 0.05), a mean legume proportion of 0.17 (S.E. = 0.06), and a 

mean brassica proportion of 0.13 (S.E. = 0.04). Plots sown with the HD mix contained a mean of 

0.61 cereals (S.E. = 0.04), 0.28 legumes (S.E. = 0.04), 0.1 brassicas (S.E. = 0.02), and 0.008 
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‘others’ (S.E. = 0.004; chicory or flax). This small proportion of ‘others’ is barely visible at the top 

of the HD bar.

Figure 5: Relationships between cover crop biomass, cereal biomass proportion and weed 

biomass (Table 3) at mid-season (a and b) and the end of the season (c and d). Cover crop 

acronyms in the legend refer to mixes described in Table 1. The points indicate each plot in the 

experiment. The black lines show the predicted weed biomass across the range of the cover 

crop predictor variable from the models presented in Table 3 (with all other variables in the 

model held constant) and the grey ribbons indicate the 95% confidence interval of these values. 

No line or ribbon is shown in panel (a) as the model did not identify any significant relationship 

(Table 3).
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Figure 6: Relationships between cover crop biomass and resource capture: (a) mid-season 

cereal proportion and log soil nitrogen at 50 DAE, (b) mid-season biomass and moisture at 50 

DAE, and (c) mid-season biomass and canopy cover at 85 DAE. Cover crop acronyms in the 

legend refer to mixes described in Table 1. The points indicate each plot in the experiment, while 

the black lines show the predicted resource level across the range of the cover crop predictor 

variable from the models presented in Table 4 (with all other variables in the model held 

constant). The grey ribbons indicate the 95% confidence interval of these values.
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Figure 7: Weed biomass in the cover crop year affects mid-season weed cover in the cash crop 

year (a) and mid-season weed cover in the cash crop year affects wheat yield (b). The points 

indicate each plot in the experiment, and the lines and ribbons indicate the predicted response 

from the models presented in Tables 7 and 8 and their 95% confidence intervals respectively. In 

panel (b), observations and model results from different farms are plotted in different shades due 

to the cash crop being wheat (grain yield) at Langgewens (pale grey ribbon) and forage oats 

(biomass yield) at Tygerhoek (dark grey ribbon), which may have affected the relationship 

between weeds and yield. Cover crop acronyms in the legend refer to mixes described in Table 

1, and the two farms are indicated by abbreviations: Ty = Tygerhoek and La = Langgewens.
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Table 1: cover crop species included in each of the mixes containing either one or four species, 

and their sowing rates in kg ha-1 (indicated in italics). Refer to Table 2 for species names, 

cultivars and functional types (NB. Sub. clover = Subterranean clover). Mixes were the same on 

both farms in each year, but differed between years (see main text). Mix names refer to the 

number of species (1 or 4), and to their functional composition, C = cereal, L = legume, and D = 

diverse (cereals, legumes and brassicas). 

Single species and four species mixes

1C 1L 4C 4L 4D

Triticale (140) Barrel medic (10) Triticale (35) Barrel medic (2.5) Barrel medic (2.5)

Rye (12.5) Burr medic (3.75) White mustard (2.5)

Barley (15) Persian clover (1.5) Sub. clover (3)

Year 1 
(2016)

Oats (25) Sub. clover (3) Triticale (35)

Triticale (140) Burr medic (15) Triticale (35) Burr medic (3.75) Burr medic (3.75)
Oats (25) Barrel medic (2.5) White mustard (2.5)
Barley (15) Field peas (30) Sub. clover (3)

Year 2 
(2017)

Rye (12.5) Woolly vetch (7.5) Triticale (35)

High species diversity mixes
HC HL HD

Burr medic (1.25) Oats (8.25)
Barrel medic (0.8) Chicory (0.6)
Serradella (3.6) Barley (5)
Berseem clover (0.8) Lupin (5.8)
Crimson clover (1) Barrel medic (0.8)
Balansa clover (0.6) Field peas (10)
Red clover (0.8) Forage radish (0.8)
White clover (0.8) White mustard (0.8)
Persian clover (0.5) Crimson clover (1)
Sub. clover (1) Sub. clover (1)
Arrowleaf clover (1.6) Triticale (11.7)

Year 1 
(2016)

Treatment not included in 
2016: insufficient cereal 
species available 

Woolly vetch (2.1) Woolly vetch (2.1)
Red oats (10) Burr medic (1.85) Oats (12.5)
Oats (12.5) Barrel medic (1.25) Flax (6.5)
Saia oats (12.5) Field peas (15) Burr medic (1.85)
Barley (7.5) Berseem clover (1.25) Field peas (15)
Rye, spring (6.25) Crimson clover (1.25) Forage radish (1.25)
Rye, stooling (7.5) Sub. clover (2.25) White mustard (1.25)
Triticale (17.5) Common vetch (3.75) Triticale (7.5)

Year 2 
(2017)

Wheat (15) Woolly vetch (3.75) Woolly vetch (3.75)
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Table 2: The species names, cultivars and functional type of all cover crops used in this study.

Cover crop Species name Variety Functional type
Arrowleaf clover Trifolium vesiculsum Zulu Legume

Balansa clover Trifolium michelianum Taipan Legume

Barley Hordeum vulgare Moby Cereal

Barrel medic Medicago truncatula Paraggio Legume

Berseem clover Trifolium alexandrinum Elite Legume

Burr medic Medicago polymorpha Santiago Legume

Chicory Cichorium intybus Commander Other

Common vetch Vicia sativa Timok Legume

Crimson clover Trifolium incarnatum Blaza Legume

Field peas Pisum sativa Arvika Legume

Flax Linum ussitatissimum (unknown) Other

Forage oats Avena sativa Outback Cereal

Forage radish Raphanus sativa Maximus Brassica

Lupins Lupinus angustifolius Bitter lupin Legume

Persian clover Trifolium resupinatum Lightning Legume

Red clover Trifolium pratense Barduro Legume

Red oats Avena byzantina Red dawn Cereal

Saia oats Avena strigosa Barsaia Cereal

Serradella Ornithopus sativa Emena Legume

Spring rye Cereale secale Arrow Cereal

Stooling rye Cereale secale Barpower Cereal

Subterranean clover Trifolium subterraneum Woogenellup Legume

Triticale x Triticosecale Usgen 19 Cereal

Wheat Triticum aestivum SST 056 Cereal

White clover Trifolium repens Kotare Legume

White mustard Sinapis alba Sito Brassica

Woolly vetch Vicia villosa Haymaker Legume
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Table 3: Model estimates and statistical significance of the effects of different cover crop 

characteristics on log weed biomass. The relationships of weed biomass with cover crop 

biomass and with cereal biomass proportion are illustrated in Figure 5.

Weed biomass dry weight kg ha-1 (log)

Mid-season Mid to end-season 
increase End-season

Cover crop characteristics† Estimate P-value Estimate P-value Estimate P-value

Biomass 0.17 0.089 -0.15 0.105 -0.23 0.033*
Species diversity 0.05 0.583 -0.15 0.096 -0.09 0.251
Functional diversity 0.09 0.357 -0.08 0.370 0.02 0.832
Cereal biomass proportion -0.54 <0.001* 0.38 <0.001* -0.46 <0.001*
Marginal (conditional) R2 0.16 (0.51) 0.27 (0.54) 0.33 (0.68)

*Significant at the 0.05 probability level.
†Mid-season weed biomass and weed biomass increase are modelled on mid-season cover 
crop characteristics, while end-season weed biomass is modelled on end-season cover crop 
characteristics.
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Table 4: Model estimates and statistical significance of the effects of cover crop biomass and 

cereal biomass proportion on soil nitrogen and moisture, and cover crop canopy cover (an 

indicator of light availability).

Resource at 50 DAE† Resource at 85 DAE† Resource at 110 DAE†
Estimate P-value Estimate P-value Estimate P-value

Nitrogen

Cover crop biomass -0.09 0.279 -0.10 0.083 0.03 0.605

Cereal biomass 
proportion -0.26 0.003* 0.127 0.033* -0.04 0.342

Marginal (conditional) R2 0.07 (0.66) <0.01 (0.87) <0.01 (0.94)

Moisture

Cover crop biomass 0.18 <0.001* 0.05 0.166 -0.07 0.070

Cereal biomass 
proportion -0.12 0.005* 0.01 0.717 0.08 0.011*

Marginal (conditional) R2 0.01 (0.93) <0.01 (0.95) <0.01 (0.97)

Cover crop canopy cover

Cover crop biomass 0.55 <0.001* 0.66 <0.001* 0.64 <0.001*

Cereal biomass 
proportion -0.03 0.620 0.14 0.036* 0.11 0.231

Marginal (conditional) R2 0.18 (0.79) 0.47 (0.75) 0.44 (0.59)

*Significant at the 0.05 probability level.
†For the models at 50 DAE and 85 DAE use mid-season cover crop characteristics, and the 
model at 100 DAE uses end-season cover crop characteristics.

Table 5: Model estimates and statistical significance of the effect of resource availability at 50 

DAE on the increase in weed biomass between the middle and end of the season.

Effect on mid-season weed biomass

Resources at 50 DAE Estimate P-value

Soil mineral nitrogen 0.28 0.006*

Soil moisture -0.22 0.088

Cover crop canopy cover -0.55 <0.001*

Marginal (conditional) R2 0.21 (0.70)

*Significant at the 0.05 probability level.
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Table 6: The weed species found, their functional type (see end of Section 2.2), and their 

average proportional biomass across all plots in the trial. Functional types are G = grass, SH = 

short, prostrate or rosette-forming herb, TH = tall upright herb. Some species are volunteers from 

the main crops grown on the research farms (wheat, canola, forage legumes). Both Lolium and 

Conyza species hybridise within their genus and were not identified to species level.

Species Functional type Average proportional biomass

Anagallis arvensis SH <0.01
Avena fatua G 0.03
Bromus catharticus G <0.01
Bromus diandrus G 0.04
Brassica napus TH 0.03
Chenopodium album TH <0.01
Conyza spp. TH <0.01
Erodium moschatum SH <0.01
Euphorbia inaequilatera SH <0.01
Fumaria officinalis SH <0.01
Helminotheca echioides SH <0.01
Hypochaeris radicata SH <0.01
Lactuca serriola SH <0.01
Lepidium africanum TH <0.01
Lolium spp. G 0.67
Malva parviflora TH <0.01
Medicago lupulina SH 0.01
Medicago polymorpha SH 0.01
Medicago truncatula SH <0.01
Plantago lanceolata SH <0.01
Polygonum aviculare SH <0.01
Pseudognaphalium 
luteoalbum TH <0.01

Raphanus raphanistrum TH <0.01
Rumex acetosella SH <0.01
Sonchus oleraceus SH 0.02
Taraxacum officinalis SH <0.01
Triticum aestivum G 0.12
Trifolium repens SH <0.01
Vicia sativa SH <0.01
Unknown species (8 
morphotypes) <0.01
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Table 7: Model estimates and statistical significance of the effects of end-season weed biomass, 

cover crop biomass and cover crop cereal proportion on mid-season weed cover in the cash crop 

year. Each of these variables were analysed in separate models due to collinearity among them, 

with each variable comprising a single fixed effect alongside the random effects of farm and year.

Model: Estimate P-value Marginal (conditional) R2

End-season weed biomass in cover crop year 0.94 0.001* 0.22 (0.29)

End season cover crop biomass -0.67 <0.001* 0.21 (0.40)

End-season cover crop cereal proportion -0.39 0.002* 0.13 (0.42)
*Significant at the 0.05 probability level.

Table 8: Model estimates and statistical significance of mid-season weed cover on cash crop 

yield, from separate regression models for each farm (as this data comprised a single year, 

simple regression rather than mixed effects models were used).

Model: Estimate P-value Marginal (conditional) R2

Effect on forage oat biomass yield of weed 
cover at Tygerhoek 0.94 0.001* 0.22 (0.29)

Effect on wheat grain yield of weed cover at 
Langgewens -0.67 <0.001* 0.21 (0.40)

 *Significant at the 0.05 probability level.
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Figure 3: Boxplot of the relative final weed biomass in each of the cover crop mixes. Letters at the base of 
the plot indicate pairwise differences: mixes that are different from one another do not share a letter. Cover 

crop mix acronyms refer to the treatments described in Table 1. 
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Figure 4: Relative Shannon species diversity, Shannon functional diversity, biomass and proportional 
functional composition of biomass in different cover crop mixes at the end of the season. Cover crop mix 
acronyms refer to the treatments described in Table 1. In the top three panels, letters at the base of the 
plots indicate pairwise differences: mixes that are different from one another do not share a letter. The 

bottom panel shows the mean proportion of each cover crop functional type in the different mixes. All cereal 
mixes contained only cereals and all legume mixes contained only legumes. Plots sown with the 4D mix 

contained a mean cereal proportion of 0.69 (standard error, S.E. = 0.05), a mean legume proportion of 0.17 
(S.E. = 0.06), and a mean brassica proportion of 0.13 (S.E. = 0.04). Plots sown with the HD mix contained 
a mean of 0.61 cereals (S.E. = 0.04), 0.28 legumes (S.E. = 0.04), 0.1 brassicas (S.E. = 0.02), and 0.008 

‘others’ (S.E. = 0.004; chicory or flax). This small proportion of ‘others’ is barely visible at the top of the HD 
bar. 
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Figure 5: Relationships between cover crop biomass, cereal biomass proportion and weed biomass (Table 3) 
at mid-season (a and b) and the end of the season (c and d). Cover crop acronyms in the legend refer to 

mixes described in Table 1. The points indicate each plot in the experiment. The black lines show the 
predicted weed biomass across the range of the cover crop predictor variable from the models presented in 

Table 3 (with all other variables in the model held constant) and the grey ribbons indicate the 95% 
confidence interval of these values. No line or ribbon is shown in panel (a) as the model did not identify any 

significant relationship (Table 3). 
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Figure 6: Relationships between cover crop biomass and resource capture: (a) mid-season cereal proportion 
and log soil nitrogen at 50 DAE, (b) mid-season biomass and moisture at 50 DAE, and (c) mid-season 

biomass and canopy cover at 85 DAE. Cover crop acronyms in the legend refer to mixes described in Table 
1. The points indicate each plot in the experiment, while the black lines show the predicted resource level 
across the range of the cover crop predictor variable from the models presented in Table 4 (with all other 

variables in the model held constant). The grey ribbons indicate the 95% confidence interval of these 
values. 
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Figure 7: Weed biomass in the cover crop year affects mid-season weed cover in the cash crop year (a) and 
mid-season weed cover in the cash crop year affects wheat yield (b). The points indicate each plot in the 

experiment, and the lines and ribbons indicate the predicted response from the models presented in Tables 
7 and 8 and their 95% confidence intervals respectively. In panel (b), observations and model results from 
different farms are plotted in different shades due to the cash crop being wheat (grain yield) at Langgewens 

(pale grey ribbon) and forage oats (biomass yield) at Tygerhoek (dark grey ribbon), which may have 
affected the relationship between weeds and yield. Cover crop acronyms in the legend refer to mixes 

described in Table 1, and the two farms are indicated by abbreviations: Ty = Tygerhoek and La = 
Langgewens. 
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