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Many migratory species have experienced substantial declines that resulted from rapid 
and massive expansions of human structures and activities, habitat alterations and 
climate change. Migrants are also recognized as an integral component of biodiversity 
and provide a multitude of services and disservices that are relevant to human agri-
culture, economy and health. The plethora of recently published studies reflects the 
need for better fundamental knowledge on migrations and for better management of 
their ecological and human-relevant effects. Yet, where are we in providing answers to 
fundamental questions and societal challenges?

Engaging a broad network of researchers worldwide, we used a horizon-scan approach 
to identify the most important challenges which need to be overcome in order to gain 
a fuller understanding of migration ecology, and which could be addressed using radar 
aeroecological and macroecological approaches. The top challenges include both long-
standing and novel topics, ranging from fundamental information on migration routes 
and phenology, orientation and navigation strategies, and the multitude of effects 
migrants may have on resident communities, to societal challenges, such as protecting 
or preventing migrant services and disservices, and the conservation of migrants in 
the face of environmental changes. We outline these challenges, identify the urgency 
of addressing them and the primary stakeholders – researchers, policy makers and 
practitioners, or funders of research.

Keywords: migration routes, phenology, migrant services and disservices

The grand challenges of migration ecology that radar aeroecology 
can help answer

Silke Bauer, Judy Shamoun-Baranes, Cecilia Nilsson, Andrew Farnsworth, Jeffrey F. Kelly, Don R. Reynolds, 
Adriaan M. Dokter, Jennifer F. Krauel, Lars B. Petterson, Kyle G. Horton and Jason W. Chapman

S. Bauer (https://orcid.org/0000-0002-0844-164X) (silke.s.bauer@gmail.com), Swiss Ornithological Inst., Sempach, Switzerland. – J. Shamoun-Baranes 
and A. M. Dokter, Inst. for Biodiversity and Ecosystem Dynamics, Univ. of Amsterdam. – AMD, C. Nilsson, A. Farnsworth and K. G. Horton, Cornell Lab 
of Ornithology, Ithaca, NY, USA. – J. F. Kelly, Corix Plains Inst., Univ. of Oklahoma, Norman, OK, USA. – D. R. Reynolds, Natural Resources Inst., Univ. 
of Greenwich, Chatham, Kent, UK and Rothamsted Research, Harpenden, Hertfordshire, UK. – J. F. Krauel, Ecology and Evolutionary Biology, Univ. of 
Tennessee, Knoxville, TN, USA. – L. B. Petterson, Biodiversity Unit, Dept of Biology, Lund Univ., Sweden. – J. W. Chapman, Centre for Ecology and 
Conservation, and Environment and Sustainability Inst., Univ. of Exeter, Penryn, Cornwall, UK and College of Plant Protection, Nanjing Agricultural 
Univ., Nanjing, P. R. China.

Research



2

Introduction

Over the past decades, many migratory populations have 
faced substantial declines, and these have mainly been a con-
sequence of rapid and massive expansions of human struc-
tures and activities, habitat alterations and climate change. 
Migratory animals might be particularly affected as they rely 
on multiple, distant sites throughout their annual or life-
cycles (Runge et al. 2014, 2015) and changes in any of those 
sites are fitness-relevant and may carry over to demographic 
rates and trends in their populations. There are also several 
evolutionarily novel factors such as artificial light at night 
(ALAN), electromagnetic noise, or wind energy installations, 
which have enormously expanded in recent years and now 
represent significant and ubiquitous distortions particularly 
to aerial migrations (Engels et al. 2014, Fijn et al. 2015, 
McLaren et al. 2018).

At the same time, migrants are an integral component 
of biodiversity and through their roles in community 
structure and dynamics, migrants shape the diversity in 
otherwise separated ecosystems (Bauer and Hoye 2014). 
Migrants also provide a multitude of services and disser-
vices that are relevant to human agriculture, economy and 
health (Bauer et al. 2017). For instance, the predation of 
insect pests by migratory birds, bats and predatory insects, 
and the pollination of plants by migratory insects and 
bats are highly desired and economically rewarding ser-
vices (Kunz et al. 2011, Frick et al. 2017a, Reynolds et al. 
2017). Conversely, disservices needing mitigation include 
the transport of zoonotic or agricultural parasites, or the 
consumption of crops by pests. Making better use of 
migrant services and reducing their disservices could save 
money and lives but we are still only at the beginning of 
getting a better understanding of migrant interactions with 
(resident) communities and their role in shaping ecosystem 
functions (Bauer et al. 2017).

The plethora of studies published recently within the realm 
of migration ecology reflects the need for better fundamental 
knowledge on migrants and migrations but also the need for 
better management of their ecological and human-relevant 
effects. Yet, what are the research priorities and where are 
we in providing answers to fundamental questions and soci-
etal challenges? Although important advances in answering 
these questions have been made with individual bio-logging 
devices (Kays et al. 2015, Wilmers et al. 2015), they can usu-
ally only be applied to relatively small numbers of individuals. 
However, if we are concerned with large-scale patterns typical 
of migrations and their long-term trends, a complementary, 
macroecology approach might be better suited (Kelly and 
Horton 2016). For aerial migrants, networks of radars can 
provide such an approach as they survey the airspace over 
large regions and entire continents and allow comprehen-
sive assessment and quantification of the biomass transport 
across, into and out of large geographic regions. Due to their 
much coarser taxonomic resolution, the scientific value of 
radar methods has often been questioned. Yet, the installation 
of new sensors and, more importantly, the compilation of 

data across entire networks of radars have led to a renaissance 
of radar aeroecology and increasing application within migra-
tion ecology (Kelly and Horton 2016, Chilson et al. 2017, 
Shamoun-Baranes et al. 2017).

To identify the significant medium- to long-term chal-
lenges that might not be well recognized or investigated, 
or have great relevance for many societal issues, we used a 
‘horizon scan-approach’ (Hays et al. 2016) and focused on 
challenges that can be addressed with a macrosystem-level 
approach using radar technology. Our aims were to iden-
tify basic research priorities for scientists, to inform policy 
makers, and to increase awareness of neglected or emerging 
issues.

To this end, we compiled a list of migration ecology chal-
lenges which can be tackled by radar during an international 
workshop with 50+ participants with professional back-
grounds ranging from fundamental movement research to 
applied conservation and management (Luzern, Switzerland, 
Feb 2014). This list was subsequently circulated among 135 
leading migration and movement ecologists worldwide, who 
were asked to identify the most relevant issues and score 
them according to priority. Approximately 1/3 of these 
questionnaires were returned, and we used the overall scores 
to select the highest-ranked questions and classified them 
post-hoc into broader themes: 1) migration characteristics;  
2) mechanisms of movement and environmental influences; 
3) effects of migrants; 4) human influences on migration; and 
5) technical and methodological challenges (Fig. 1). In the 
following, we briefly outline these challenges and highlight 
the developments within radar aeroecology that will facilitate 
the identified research or operational priorities. Additionally, 
the authors assessed the novelty of the challenges and the 
urgency of their answers post-hoc for the three major taxa 
of aerial migrants (birds, bats and insects) (Fig 2), identified 
their typical spatial and temporal scales, and the most rel-
evant stakeholders (Fig 3).

We would like to emphasize that we do not aim at provid-
ing a comprehensive review of the challenges within migra-
tion ecology in general. Instead, we focus on the subset of 
challenges that can meaningfully be addressed with a mac-
roecology approach using radar. Similarly we do not review 
the rich history of radar aeroecology as this has been done 
elsewhere (Drake and Reynolds 2012, Chilson et al. 2017), 
but focus on advances that have been made in the last decade 
or so.

1. Migration characteristics

a. What are the migration routes and important sites, 
and how can we produce continental-scale maps of 
flyways and migratory networks?

Most of our present understanding of bird migration routes 
originates from individual tracking or observation data 
(Thorup et al. 2014), based on which major avian flyways 
and important non-breeding sites have been suggested. 
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However, it is still unclear how general these suggested fly-
ways are and where the majority of migratory animals are 
during the different phases of their migration; this applies 
particularly to nocturnal, non-iconic and/or small migrants 
such as bats and insects.

Continuous large-scale surveillance with radar networks 
can generate maps of where large numbers of migrants pass 
and thereby identify migration corridors and their typical 
(topographical) characteristics (Nilsson et al. 2019). Such 
efforts will not only provide fundamental insights into migra-
tory processes and their large-scale patterns, but also iden-
tify bottlenecks, crucial stopover areas and sensitive times. 
An important step towards identifying important areas 
for migrants has been made by Buler and Dawson (2014), 
who used weather radar data from the eastern US to iden-
tify areas and habitats of high conservation value for large 
numbers of avian migrants. Radar data have also been com-
bined with large scale citizen science data in the USA (eBird) 
for a detailed view of the bird migration strategies at the 

flyway level (Horton et al. 2018) or with systematic ento-
mological surveys in investigations of the migration circuit 
of the painted lady butterfly Vanessa cardui in the Western 
Palaearctic (Stefanescu et al. 2013).

b. How can we quantify migrant biomass and numbers 
and their geographical variation?

Monitoring migrating animals over large spatial scales can 
estimate the abundances of their populations and show trends 
that indicate the vitality of the full migratory avifauna, or 
insect species assemblies at an ecosystem level. The biomass 
of aerial migrants that seasonally enter and leave a particular 
region could unravel patterns in recruitment (biomass gain) 
and mortality (biomass loss) (Chapman et al. 2012, Hu et al. 
2016) and be linked to environmental variables that drive the 
variability in long-term trends. Such information is critical 
for the early detection of population declines (Dokter et al. 
2018), and for installing timely remedial measures.

Figure 1. The major challenges identified in migration ecology cover long-standing and novel questions. Obviously, characterizing migra-
tion routes and timing and quantifying migrant numbers is fundamental to all other questions (central area). Understanding navigation and 
orientation as well as the influence of weather and climate on migrants and migrations is also fundamental to understanding how migrations 
are shaped and which consequences these have for (the abundance of ) migrant populations (blue boxes). The identified challenges also 
included those that highlight the direct and indirect influences of human structures and actions on aerial migrants as well as mitigation of 
human-wildlife conflicts or migrant disservices. For instance, sensory pollution through artificial light and noise can impact navigation and 
orientation and global climate changes can change the timing of migration. Background image modified after Nilsson et al. 2019.
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Quantification of migrant abundances, their biomass and 
nutrient transport into and out of regions can be first proxies for 
the influence of migrants on the structure and dynamics of resi-
dent communities, and ecosystem function (Bauer and Hoye 
2014, Hu et al. 2016). A key challenge for the quantification 
of migrant abundances and biomass across continents is that 
the ‘biological’ data resulting from radar networks should be 

comparable, across radar systems and countries (Dokter et al. 
2011, Nilsson et al. 2019). Meteorological and ecological 
research communities should therefore intensify their efforts 
towards standardization and calibration of radar systems.

2. Migration – mechanisms and environmental 
influences

a. How do free-flying migrants detect and respond to 
winds, and deal with ecological barriers?

The compass mechanisms used to set a suitable direction have 
been identified for many migrants (Mouritsen 2018), but 
much of our knowledge comes from experiments performed 
in highly artificial situations, such as birds constrained in 
Emlen funnels, or insects tethered in flight simulators, and 
in the absence of natural wind currents. By comparison, 
we know less about 1) how migrants use their compasses 
to maintain beneficial directions under natural conditions, 
where they are exposed to varying currents; and 2) how 
migrants detect currents (Chapman et al. 2011).

The ability to compensate for wind drift throughout 
migratory journeys has been extensively demonstrated by 
radar studies of nocturnal songbird migrants (Alerstam et al. 
2011, Chapman et al. 2016), which appear to follow a cost-
effective strategy of ‘drift when they can, but compensate 
when they must’ (Horton et al. 2016b). Songbirds indi-
rectly assess current speed and direction by visually assessing 
their wind-induced displacement relative to ground features 
(Chapman et al. 2015) and thus, will be influenced by 
ambient light levels from natural and anthropogenic light 
sources (see below). Coordinated radar studies of songbirds’ 
abilities to compensate for varying flows under different 
levels of natural light and ALAN will make a valuable con-
tribution to our knowledge of how birds measure and deal 
with wind drift.

Radar studies have also demonstrated that high-fly-
ing insect migrants are extremely efficient at selecting 
favourably-directed flows (Chapman et al. 2010); they 
also partially compensate for drift, albeit to a lesser degree 
than songbirds (Chapman et al. 2016). Nocturnal insect 
migrants directly assess the flow (Chapman et al. 2015), 
potentially via detection of wind-related micro-turbulence 
(Reynolds et al. 2016) – although so far this has only been 
tested in one locality (the UK). Comparative radar mea-
surements of insect headings in relation to wind at mul-
tiple locations are required to discover how insects assess 
the flow vector.

Extensive areas of unsuitable habitats (e.g. deserts and 
seas) or topographical barriers (mountain ranges) pose sig-
nificant problems for migratory animals. Individual tracking 
studies of large migrants, particularly soaring birds, sug-
gest that they have evolved migratory routes to avoid bar-
riers (Strandberg et al. 2010). The situation is less clear for 
smaller migrants (songbirds and insects), which are thought 
to migrate on a broad front. However, continental-scale 

Figure 2. The challenges in migration ecology along gradients of 
novelty and urgency – separately for birds, bats, and insects. Circled 
numbers refer to the challenges identified (and the corresponding 
sections in the main text).
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radar studies are providing evidence that, at least for noc-
turnal songbirds, this is not the case. For example, in west-
ern Europe, the main passerine migration largely avoids 
the Alps and long oversea crossings (Nilsson et al. 2019). 
Future studies using radar networks will allow researchers to 
characterise migration routes of a wide range of migrants and 
assess the frequency of routes which avoid barriers and long 
sea crossings.

b. What is the influence of (seasonally changing) weather 
conditions on (initiation, duration, termination of) 
migration and ultimately on survival and population 
dynamics?

A primary challenge for migratory animals is adjusting to 
temporally and spatially unpredictable weather phenomena 
en route, and the capacity to respond to them is a driving 
force behind the fitness of individual migrants. Beyond the 
individual, there is evidence that survival during the migra-
tory phase of the annual cycle limits populations of migrant 
birds (Finch et al. 2014) although this might not be the 
case for most insects (Chapman et al. 2012) due to their 
high intrinsic rates of reproduction. It is also possible that 
the inherent dangers of migration, including weather, place 
biogeographic limits on species distributions (Toews 2017). 
Understanding how migrants cope with weather en route 
is central to predicting the future of migrants in an era of 
global change.

For birds, there is ample evidence that individual 
migrants are highly attuned to key physical environmen-
tal variables such as wind speed and direction, air pres-
sure, temperature, and precipitation (Richardson 1990). 
Generally, wind conditions and precipitation are the largest 
factors determining migration conditions (La Sorte et al. 
2014a, Kranstauber et al. 2015, Shamoun-Baranes et al. 
2017). Migrants can assess favourable migration condi-
tions ahead as is evident in predictable mass movements of 
migrants, e.g. autumn migrants departed over the Gulf of 
Mexico with the passage of strong cold fronts (Cohen et al. 
2017).

Migratory birds also adjust to atmospheric conditions 
aloft while in flight (Horton et al. 2016a). If weather con-
ditions deteriorate, migrants ‘fall-out’ in high densities par-
ticularly near large geographic barriers (Moore et al. 1990). 
While these behaviours appear to provide fitness benefits, it 
is not uncommon for migrants to die ‘en route’ as a result of 
extreme or persistent unfavourable weather. While ‘en route’ 
weather clearly impacts the population dynamics of migrants 
(Newton 2007), there remain few studies in which these 
seasonal carry-over effects have been clearly demonstrated 
(Senner et al. 2015).

The capacity to integrate information from weather 
radars on system level patterns with data from sensors car-
ried by individual migrants is already possible – though 
rarely employed. This approach would benefit research even 
on taxa not otherwise suited to weather radar study, for 
example bats flying in low densities. Advanced biologging 

efforts promise to revolutionize our understanding of how 
individual migrants cope with changing weather in real time. 
The key role of weather radar data in this integration will be 
to provide a context around whether individual behaviours 
were typical or unusual relative to the mass flow of migrants 
in flight.

3. Effects of migrants

a. What is the effect of migrant-mediated transfer of 
biomass, nutrients, pathogens or genetic material on 
ecosystem processes?

It is increasingly recognized that migratory animals can alter 
the structure and dynamics of communities and ecosystem 
functions through a variety of transport and trophic effects 
(Bauer and Hoye 2014). These effects often also represent 
important services and disservices relevant for human agri-
culture, economy and health. For instance, bats pollinate 
fruit plants or consume insect pests; birds disperse plant 
seeds and invertebrates; and insects consume crops, trans-
port crop and livestock diseases, and pollinate crops. In some 
cases, migrants may represent several effects, for example 
migratory noctuid moths are serious agricultural pests but 
also an important food resource for migratory bats in Texas 
(Krauel et al. 2015, Frick et al. 2017a).

However, an understanding of the role of migrants in com-
munity dynamics and ecosystem function is as yet limited to 
a few iconic examples and hardly known for the majority of 
migrants. Radar monitoring of aerial migrants can provide 
fundamental information on migration routes and times (see 
1a and 1b above), which is also a prerequisite for identifying 
the role of migrants in ecosystem processes. A first step could 
be to estimate the nutrient and energy transfer by migrants 
from seasonal patterns of mortality and recruitment (Hu et al. 
2016). For the effect of migrants on other ecosystem pro-
cesses, we need to complement radar monitoring with a range 
of studies, e.g. epidemiological screening for the parasite load 
of migrants, or local studies for the consequences of nutrient 
and biomass transfer to local communities, etc.

b. How can radar assist in the development of warning 
systems for the invasions of migratory pests of crop, 
livestock, humans?

Warning systems for the invasion of migratory pests of crops, 
livestock or humans exist only to a limited degree, mainly 
for massive outbreaks of insect pests of agriculture. Special-
purpose entomological radars have been used for 50 years 
in programmes of applied research, which have contributed 
greatly to our understanding of the migration of many seri-
ous insect pests (Drake and Reynolds 2012). Additionally, 
inputs from monitoring radars are, or might be, useful for 
operational warning systems, e.g. pest aphids such as bird 
cherry-oat aphid Rhopalosiphum padi and diamondback 
moth Plutella xylostella (Nieminen et al. 2000, Leskinen et al. 
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2011), migrating corn earworm Helicoverpa zea and beet 
armyworm Spodoptera exigua moths in southern USA 
(Westbrook et al. 2014), and the exodus flights of spruce 
budworm Choristoneura fumiferana moths in eastern Canada 
(Boulanger et al. 2017).

Radar-derived variables alone can rarely identify migrants 
unambiguously – but the following criteria will assist recog-
nition. First, if pest insects have distinctive characteristics of 
size, body shape and/or wing-beat characteristics, perhaps 
combined with a seasonal occurrence, this tends to limit the 
likelihood of confusion with non-focal species. An example 
for this are Australian plague locusts Chortoicetes termin-
ifera, for which entomological monitoring radars have pro-
vided inputs into the Australian Plague Locust Commission’s 
operational monitoring and forecasting system (Drake and 
Reynolds 2012, Drake and Wang 2013). Second, if insects 
of interest predominate in the airspace over a region, at least 
during certain seasons or years, it can reasonably be assumed 
that they are the major component of the biological scatter-
ers detected by radars. The putative radar-observed migra-
tions need to be confirmed by insect trapping or surveys. 
Situations where a single or few species dominate the aerial 
fauna more likely occur in faunistically-simple regions, e.g. 
at high latitudes or in arid regions, or during major insect 
outbreaks.

Pest warning systems using non-biological radars are 
currently rather dependent on operator experience to dis-
tinguish between insect, birds and precipitation, although 
algorithms for distinguishing insect targets (particularly those 
appearing on dual-polarization weather radars) are being 
devised (Chilson et al. 2017).

c. How can we utilize radar studies and radar data for 
generating and disseminating real-time radar-based 
analysis and forecast products to serve the human 
community?

To reduce the risk of bird-aircraft collisions, radar is being 
used in an operational capacity by military aviation in several 
countries for (near) real-time monitoring of avian migration, 
and to develop migration forecast models used operationally 
(Shamoun-Baranes et al. 2018, Van Gasteren et al. 2019). 
Both are used to alter flight planning under high colli-
sion risk, saving money and lives. Although the benefits of 
radar-based monitoring and forecasting for flight safety are 
obvious, to date such systems are operational only in a few 
regions (< www.flysafe-birdtam.eu >, Van Gasteren et al. 
2019). Upscaling to larger geographical ranges and 
developing improved forecast models at continental scales 
(Van Doren and Horton 2018) or across national borders 
could constitute an enormous societal benefit.

Another rapidly growing application of radar products 
and migration forecasts is the wind energy sector – in par-
ticular, to assess, and possibly mitigate, their impact on aerial 
migrants (Fijn et al. 2015, Köpel 2017). Real-time infor-
mation from radars can be used to initiate temporary shut-
down procedures, inform models to assess collision risk in 

a given area (Liechti et al. 2013a) and/or to develop other 
mitigation measures. Forecast models can be extremely valu-
able in reducing the economic impact of curtailment on the 
energy grid, by enabling market adjustments in advance (e.g. 
48 hours in advance). However, operational systems and 
baseline information needed for the development of reliable 
forecast models are still lacking for many areas, especially off-
shore. While wind energy also represents a significant threat 
to migratory bats (Hein and Schirmacher 2016), radar has 
been overlooked as a potential conservation tool.

Near-real time data on migration fluxes and forecast mod-
els can also be enjoyed and utilized by nature enthusiasts. 
While not systematically documented, birders are known to 
regularly explore the military forecast system to get informa-
tion on migration (H van Gasteren, personal communica-
tion). Social media outlets such as twitter as well as projects 
like BirdCast (http://birdcast.info) provide an exciting new 
outlet for sharing radar observations of migration beyond the 
scientific community.

4. Human influences on migrants and migrations

a. How does climate change affect migration?

Among myriad ecological phenomena, migration is a par-
ticularly insightful proxy for climate-change effects because it 
is tightly coupled with Earth’s system dynamics (Helm et al. 
2013). There is good evidence that the timing of avian migra-
tions is changing in response to climate change (James and 
Abbott 2014, Gilroy et al. 2016). These changes may dis-
rupt ecosystem functions if they result in broad mismatches 
between migration timing and the timing of seasonal produc-
tivity (Jones and Cresswell 2010). A more complete under-
standing of how migrants respond to environmental change 
would be useful for predicting impacts of climate change on 
migration systems, and how these may carry over to com-
munities and ecosystems. Many studies have documented 
changes in migration phenology associated with climate 
change (Carey 2009, La Sorte et al. 2014b), yet large gaps 
remain in our understanding of migration phenology and its 
relationship to climate (Cohen et al. 2018).

Substantial research effort has been invested in attempts 
to scale-up organism-focused research approaches to answer 
these questions. These attempts have used numerous meth-
ods such as massive bird banding efforts, broad-scale stable 
isotope and genetic sampling, and individual tracking studies 
(Hobson 2008, Thorup et al. 2014). Particularly the latter 
often reveal spectacular migratory behaviours (Liechti et al. 
2013b). Although valuable in their own context, all of these 
approaches fail to sample broadly and densely enough to 
support coherent system-level inferences about continental-
scale migration systems.

It would be desirable to have a measure of migration 
phenology that enables comparisons with existing phenology 
network data and individual migrant tracking data. Linking 
phenology across levels of biological organization from 
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individuals to ecosystems through time and space would help 
us understand the scaling of biological impacts of climate 
change (Kelly and Horton 2016). A data-science research 
program centred on use of the weather surveillance radar 
archive could provide this inference. This approach offers 
key advantages, such as nearly continuous, continent-scale 
sampling, that make it capable of addressing the challenge 
of advancing our understanding of migration at the system-
level (Kelly and Horton 2016). Automated workflows mine 
NEXRAD and other data archives to produce robust metrics 
for quantifying migration systems, which are scalable across 
time and space (Van Doren and Horton 2018). A key inno-
vation is to capture the complexity of migration systems anal-
ysis while focusing on easily interpreted and universal metrics 
of migration systems: migratory intensity and migratory tra-
jectory. Most of the diverse methods employed by organismal 
ecologists to study migration are motivated by efforts to mea-
sure these two parameters. Progress in this direction is occur-
ring rapidly and it is likely that we will achieve this vision in 
North America by 2020.

b. What is the effect of sensory pollution on migration?

Globally, light pollution (ALAN) has increased dramatically 
during the 20th century (Falchi et al. 2016) and numerous 
aerial migrants from diverse taxa pass through photo-pol-
luted skies annually (La Sorte et al. 2017, Cabrera-Cruz et al. 
2018). ALAN represents a powerful stimulus, which could 
interfere with avian sensory systems such as the magnetic and 
celestial compasses, that can entrain attraction to and dis-
orientation from light or avoidance of illuminated stopover 
habitat across diverse spatial scales (Van Doren et al. 2017, 
McLaren et al. 2018). While light pollution is not novel in 
the environment, it is still a relatively new stimulus from an 
evolutionary perspective. The possibility to measure light 
pollution globally using remote sensing enables scientists to 
study its relationships to behaviour and ecology from local to 
macroscales. ALAN’s effects can be disruptive (Winkler et al. 
2014) or even deadly (Jones and Francis 2003), ranging from 
significant alterations of body condition, disruptions of life 
histories or increased mortality through collisions with struc-
tures (Gaston et al. 2013), and may depend on proximate 
situations in which birds experience this. Less is known about 
the impact of ALAN on insect and bat migrations, but nega-
tive effects, such as reductions in moth feeding behaviours 
(van Langevelde et al. 2017, Grubisic et al. 2018) and bat 
species diversity in urban areas (Ancillotto 2015), appear 
likely. Future research should elucidate ALAN-effects at local 
to continental scales, during different phases of the annual 
cycle and with respect to vertical and horizontal lights, 
ground-based and aerial-based light, and combined effects of 
light intensity, spectra, location, and atmosphere.

Similar to artificial light, anthropogenic electromag-
netic noise has reached unprecedented levels. Its effects 
on aerial migrants are largely unclear, although it has been 
demonstrated that, e.g. electromagnetic noise disrupts mag-
netic compass orientation in caged birds under laboratory 

conditions (Engels et al. 2014) and new research efforts are 
clearly needed.

Large-scale radar studies spanning a range of urbanised 
and rural habitats could therefore test the ideas that anthro-
pogenic light and electromagnetic noise represent insidious 
new threats to the survival of nocturnal migrants, by com-
parative analyses of large-scale migration patterns, individual 
flight behaviour and orientation performance under a range 
of carefully measured ALAN and electromagnetic noise levels 
at local to continental spatial scales and nightly to decadal 
temporal scales.

c. What are the effect of man-made structures on 
migration routes and flight behaviour?

Collisions with man-made structures such as power lines, 
wind turbines, tall towers, masts and buildings kill large 
numbers of birds and bats annually, although there is great 
variation in estimates of fatalities and their ecological signifi-
cance (Cryan et al. 2014, Lambertucci et al. 2014). However, 
for poorly-studied species such as migratory tree bats, mortal-
ity from wind turbines in North America appears to represent 
a substantial population-level threat (Frick et al. 2017b) and 
further research is urgently needed. Radar-based approaches 
have emerged as key tools to detect, monitor and counteract 
these effects (Fijn et al. 2015, May et al. 2015), and have been 
employed particularly in wind farms. Large-scale radar map-
ping of migration now allows careful spatial prioritization at 
the planning phase of wind turbine installations. Interestingly, 
when investigating effects of manmade structures, mobile 
radars can complement and extend results from larger radar 
networks by increasing resolution locally as has been shown 
in studies of foraging behaviour and fine-scale variation in 
habitat use of bats around wind turbines (Cryan et al. 2014). 
The influence of man-made structures on insect migration 
and flight behaviour has been considerably less explored. But 
like responses to natural topographic features, insects may 
follow man-made linear structures and can accumulate in 
streams of air flowing downwind from wind turbines, build-
ings and other tall structures. Indirect evidence for such con-
centrating effects at wind farms comes from the attraction of 
foraging insectivorous bats to these sites (Cryan et al. 2014, 
Foo et al. 2017). Additionally, tall buildings can influence 
insect flight behaviour through effects on microclimate and 
sunlight availability but responses of migratory insects to 
urbanisation may differ from those of non-migratory insects 
(Luder et al. 2018).

d. Conservation of migrants and migrations

The conservation of small, long-distance migrants such as 
songbirds, bats, and insects, and their migration systems, 
pose specific challenges (Runge et al. 2014, Hüppop et al. 
2019). Migrants are dependent on multiple, potentially 
scattered or fragmented stopover sites (Fraser et al. 2012). 
Continental monitoring systems based on weather radar net-
works (Chilson et al. 2012b, Shamoun-Baranes et al. 2014) 
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have emerged as one of the few techniques that can provide 
basic data on the use of specific habitats by large numbers of 
small passerine birds over very large spatial scales. For exam-
ple, by examining spatial variation in dusk departure activity 
of nocturnal songbird migrants along the eastern seaboard 
of the USA (which reflects stopover decisions from the ces-
sation of migration the previous night), Buler and Dawson 
(2014) demonstrated the huge importance of highly-local-
ised floodplain hardwood forests for migratory passerines. 
Continuous, large-scale monitoring using weather radar also 
has a great potential in mapping key areas for some bat species 
(Chilson et al. 2012b) as well as sites and routes important 
for migrating moths and butterflies (Stefanescu et al. 2013, 
Krauel et al. 2015). Such information is invaluable for the 
prioritization of conservation measures in migratory systems, 
where actions in one location are likely to affect the situa-
tion at other locations along the route, especially across inter-
national borders (López-Hoffman et al. 2017). Establishing 
migratory patterns and the relative importance of paths and 
stopover sites emerges as more important than ever for con-
servation now that the connectedness of migratory popula-
tions becomes evident (Fraser et al. 2012). Migrants are likely 
to face difficulties adapting their migration strategies to keep 
up with a changing climate (Schmaljohann and Both 2017). 
Establishing the key stopover sites to ensure the long-term 
conservation of systems with migrating birds, bats, butter-
flies and moths is therefore a key challenge for radar aeroecol-
ogy in years to come. However, securing the key sites on the 
ground may not be enough. The airspace connecting them is 
a central part of aerial migration systems and the concept of 
aerial protected areas, similar to marine protected areas, has 
recently emerged as a promising new tool to protect bird, 
bat and insect migration systems (Chilson et al. 2012a, Diehl 
2013, Davy et al. 2017). Future efforts are therefore needed 
to explicitly add a vertical, airspace dimension to the conser-
vation of long-distance migrants.

5. Technical and methodological challenges for 
improving the utility of radar data

a. Which classification and identification methods 
improve the taxonomic resolution of radar data?

Distinguishing different biological targets, especially when 
they are mixed in the same observation remains a major chal-
lenge for radar aeroecology and is critical for improving the 
quality and quantity of biological information that can be 
extracted from radar signals. As dual polarization weather 
radars are replacing single polarization radars, i.e. they trans-
mit radio waves in horizontal AND vertical polarizations and 
can thus determines target size and shape, new opportuni-
ties arise for improving target identification. Researchers have 
only started to explore the full potential of dual-polarization 
radars, utilizing the additional information provided by these 
radars and meteorological data products to improve target 
identification (Stepanian et al. 2016). Theoretical simulations 

can be used to predict, which polarimetric signals are expected 
for various combinations of species and size distributions of 
migrating animals (Mirkovic et al. 2016, 2018). Such pre-
dictions will be very helpful in interpreting observed polari-
metric radar signals and may provide insight of how to pin 
down the identity of migrating animals aloft based on their 
polarimetric signature.

Although polarimetric techniques are not expected to 
refine identification of targets to the species level, there is 
great potential for identifying size distributions and spe-
cies communities. Another challenge will be the harnessing 
of deep-learning techniques for radar studies, which have 
already revolutionized the field of general image recognition 
(LeCun et al. 2015). These techniques will be extremely valu-
able in identifying and extracting complex biological features 
in radar imagery. Currently a major hurdle to this break-
through is amassing the extensive training datasets that power 
these algorithms. Supervised labelling of data by experts is 
essential to validate these techniques against canonical work-
flows. Machine learning also has great potential to improve 
taxonomic identification based on wing-beat patterns 
(Zaugg et al. 2008). Wing-beat pattern detection is still lim-
ited to dedicated bird and insect radar systems but could be 
implemented on a much wider range of sensors. For example, 
several modern dual-polarization weather radars already per-
form vertical looking scans, during which wing-beat detec-
tion could be implemented. Finally, cross-validation of data 
from co-located radars of different types as well as with other 
aerial sampling methods (Nilsson et al. 2018, Krauel et al. 
2018b, Liechti et al. 2019, see also section 5c) will be crucial 
to ensure robust interpretation of results.

b. Long-term data storage, access, visualisations

The large volumes of radar data and their efficient storage, 
access, processing, analyses and visualization require appro-
priate e-science infrastructure. Such infrastructure is not only 
needed to support research but also for the development 
and dissemination of sustainable services for different 
stakeholders.

In recent years, one of the greatest advances for radar 
research is the possibility to access operational weather 
radar data. For the United States, a freely available archive 
of weather radar data going back to the 1990s exists on a 
cloud data storage platform (Ansari et al. 2018). In Europe, 
the harmonization of meteorological data across nations is in 
progress (Huuskonen et al. 2014). However, long-term data 
storage for biological applications is still a major challenge, 
including hardware and software solutions but also interna-
tional agreements for the system’s maintenance and access 
to data. In collaboration with the operational programme 
for the exchange of weather radar information (OPERA) 
a prototype data pipeline is operational, in which weather 
radar data are processed using an automated bird detection 
algorithm (Dokter et al. 2019) at a central meteorological 
data hub (Michelson et al. 2018), with bird migration data 
output stored in an online repository. Finally, visualizations 
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can be powerful tools for disseminating information within 
and outside the research community. Open source tools 
have been developed to create novel flow visualizations of 
migration across large spatial scales and integrating data 
from multiple radar sites (Shamoun-Baranes et al. 2016, 
Nilsson et al. 2019).

The development of an e-science infrastructure for radar 
monitoring of bird movement is probably most feasible for 
similar radar systems (e.g. weather radar networks), however 
they would be highly valuable for integrating data from bird 
detection radars which are used for research and monitoring 
for risk assessment and mitigation in aviation safety and wind 
energy. Perhaps the greatest bottleneck at this time is acquir-
ing seed funding to set up such a system and then developing 
a business model for sustainable services.

c. Integration of radar with other data

Radar aeroecological studies provide access to previously 
inaccessible aspects of migration ecology, in particular 
behaviours at night and aloft as well as behaviours and pat-
terns across large spatial and temporal scales. Radar data 
at such scales and for such purposes rarely, if ever, include 
species-specific information, and robust interpretation of 
radar data requires integration with additional data sources. 
So, a fundamental concern for radar studies is the inability 
to characterize patterns and behaviours at the species-level. 
There is broad agreement that a general characterisation 
of (bird) movements across scales is highly valuable and 
provides important information complementary to indi-
vidual- or species-level studies, but the integration of tech-
niques is paramount to enhance such research toward a 
more complete understanding of aerial animal migration 
(Robinson et al. 2010) and addressing the new multi-scale 
and big data approaches. The rapid pace of data collection, 
across a multitude of platforms, including citizen science 
(Sullivan et al. 2014), tracking technologies (Kays et al. 
2015), and molecular (Krauel et al. 2018a), affords a myriad 
of opportunities to relate system-based properties, as mea-
sured by radar, with individual or species-level observations 
(Dokter et al. 2013, Laughlin et al. 2013, La Sorte et al. 
2015, Kelly and Horton 2016). Although avian studies that 
integrate radar data with other sources, such as acoustic 
(Farnsworth et al. 2004) and eBird (La Sorte et al. 2015, 
Kelly et al. 2016, Horton et al. 2018) data are becoming 
more common, there is still much room for improvement. 
Additionally, other data sources are and will continue to be 
useful for validation of radar data to study other biologi-
cal taxa, including sampling of insects both directly and via 
fecal sampling from predators as well as acoustic recording 
of bats at specific altitudes (Krauel et al. 2018a, b). Finally, 
integration of radar data with diverse remote sensing data 
(e.g. weather, habitat) and individual tracking data (e.g. 
from Motus or ICARUS, Kays et al. 2015, Taylor et al. 
2017) provides an opportunity to link broad-scale patterns 
of animal behaviour with similarly scaled environmental 
patterns and individual behaviours.

Synthesis and outlook

We have identified the most pertinent challenges within 
migration ecology that can be tackled with radar aeroecology. 
These challenges are a mix of long-standing and novel ques-
tions, indicative of a fast-moving field, and cover the range 
from fundamental to applied research (Fig. 1). Particularly 
the latter shows that various stakeholders become increas-
ingly more important and reflects the societal responsibility 
of research (Fig 3). It is also a response to the multitude of 
man-made factors that threaten migratory animals and the 
increased awareness of the role of migrants for ecosystem 
functions and for human economy and agriculture.

Our post-hoc analyses of scoring the challenges along 
a novelty and urgency gradient yielded several important 
insights (Fig. 2). First, the novelty-urgency scores were sur-
prisingly similar between the US and Europe (not shown) –  
suggesting that the identified challenges are shared glob-
ally. The greatest differences in scores emerged between the 
three major taxa of aerial migrants – birds, bats and insects 
(Fig. 2). Most challenges scored less novel or urgent for birds, 
bats were intermediate, and for insects, the majority of chal-
lenges was scored either urgent or novel. This pattern clearly 
reflects, and is probably a consequence of, the research his-
tory in these taxonomic fields: For birds, radar aeroecology 
has already provided insights into biomasses, abundances, 
large-scale or long-term patterns (Box 1) – information that 
cannot be attained from individual tracking devices (Kelly 
and Horton 2016). For bats, radar is a vastly underused 
research tool and very little is known about bat migratory 
behaviour, for example flight altitude or the use of migration 
corridors. Unlike birds, bats are not thought to migrate in 
large aggregations that would facilitate detection on weather 
radar. Thus, the few studies of bat behaviour using weather 
radar are of high-flying species using large communal roosts 
(Horn and Kunz 2008, Frick et al. 2012, Stepanian and 
Wainwright 2018). For insects, the individual tracking 
perspective has hardly ever been an option and therefore, 
dedicated insect radars have been used for decades but have 
mainly been employed for economically important applica-
tions of pest insects (Drake and Reynolds 2012).

The high-scoring challenges and their overarching pat-
terns have also identified where future research in radar aero-
ecology should be targeted, namely at a) challenges that have 
generally scored high, b) extending the range of spatial and 
temporal scales, c) fundamental ‘catch-up’ research in insects 
and bats and comparative studies between taxa, and d) pro-
viding various stakeholders with knowledge for efficiently 
mitigating human-wildlife conflicts.

High-scoring challenges

Challenges that have generally scored ‘urgent’ were those 
that identify human influences on fitness-relevant aspects of 
migration or attempts to mitigate them – from the degree to 
which artificial structures such as high buildings, power lines, 
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Box 1. Selected recent key works from within radar aeroecology and their contribution to answering the challenges that 
were identified in our horizon scan, separately for the three major taxa of aerial migrants.
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Nilsson et al. (2019): Europe-
an-wide patterns of avian migration along the 
West European flyway from weather radar data.

Dokter et al. (2019): seasonal abundance and 
survival of North America's migratory avifauna 
from weather radar. 

Horn and Kunz (2008): estimation 
of colony size, direction of 
movement, speed of dispersion, 
and altitude gradients of bats 
emerging at night from colonies.

Stepanian and Wainwright (2018): 
quantification of bat population 
fluctuations at a roost.

Chapman et al. (2012): numbers of insects 
immigrating into UK each spring. 

Chapman et al. (2010): migration route of 
silver-Y moth in western Europe.

Hu et al. (2016): quantification of insect bio-
flows over southern UK, their seasonal and 
annual variation over a 10-year period. 

Horton et al. (2016b): migrants in flight often 
drifted sideways on crosswinds, and 
compensation for drift varied geographically 
and over time.

Many studies, e.g. Kemp et al. (2013): wind 
conditions influence flight altitude selection 
during migration.  

Frick et al. (2012): migratory bats 
emerged earlier to forage under 
drought conditions during maternity 
season.

Reynolds et al. (2016): orientation in
high-flying migrant insects in relation to flows. 
Chapman et al. (2015b): comparisons of 
orientation strategies of songbirds and moths.
Chapman et al. (2015a): strategies in 
nocturnally migrating insects and songbirds 
and their responses to wind.

Leskinen et al. (2011): warning system for 
immigration of pest insects
(bird-cherry aphid).
Westbrook et al. (2014): radar-detection of 
emigratory flights of noctuids during a major 
pest outbreak.
Boulanger et al. (2017): monitoring of 
spruce budworm exodus flights.

Horn and Kunz (2011): General 
over- view of bat services.

Van Belle et al. (2007): operational model for 
prediction of bird migration intensities three 
days ahead, used to issue warning to flight 
safety and in rescheduling of training flights.

Stepanian and Wainwright (2018): 
quantification of changes in bat 
migration phenology over 20-year 
period.

Kelly et al. (2012): phenology of purple martins at 
a summer roost.

McLaren et al. (2018): broad-scale attraction of 
migratory birds to artificial light at regional scales, 
which decreased within a few kilometers of 
brightly-lit sources.
Van Doren et al. (2017): urban light installation 
dramatically altered behaviours of nocturnally 
migrating birds; effects disappeared when lights 
were extinguished.

Fijn et al. (2015): daily, monthly and seasonal 
patterns in fluxes at rotor heights and influence of 
wind direction on flight intensity.

Buler and Dawson (2014): identification of locally 
important stopover sites and habitat associations 
of migratory landbirds in the northeastern U.S. 

Mirkovic et al. (2016): prediction of  
radio scattering properties from an 
anatomical model to improve 
identification of bat targets.

Drake et al. (2017): compilation of all 
available insect radar cross-section results.

Dokter et al. (2011): fully automated method for 
detection and quantification of bird migration from 
operational C-band weather radar.

Shamoun-Baranes et al. (2016): visualization of 
dynamic radar data for an intuitive representation 
of scale and dynamics.
Ansari et al. (2018): big-data partnership and 
collective effort among federal government, 
private industry, and academia for applications of 
NEXRAD data.
Horton et al (2018): combination of radar and 
citizen science data for avian flight strategies 
during spring migration over USA. 
Laughlin et al. (2013): combination of radar, 
citizen science and individual tracking data to 
identify flight strategies, habitat use over the year. 
Dokter et al. (2013), Komenda-Zehnder et al.  
(2010): Ground-truthing of radar data using field 
observations and mist-netting.

McCracken et al. (2008): presence of 
insects confirmed at altitudes where 
bat echolocation calls were recorded. 
Cryan et al. (2014): combination of 
radar with echolocation and thermal 
imaging at wind energy site.
Smith and McWilliams (2016): incorpo-
ration of reflectivity data in analysis of 
bat echolocation data.
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and wind energy installations pose substantial mortality risks, 
the role of artificial light and noise in distorting migration 
routes and survival, or the role of climatic changes in altering 
migration phenology. Also the technical and methodologi-
cal challenges of classifying radar targets, data infrastructure 
and integration with other data scored high. This shows that 
researchers recognize the big-data nature inherent to conti-
nental-scale radar data, the specific approaches required, and 
the greatest limitations of radar data namely its limited taxo-
nomic resolution.

The effects of migrants scored somewhat intermediate, 
indicating that understanding the effects of migrants on eco-
logical communities and their services and disservices are 
deemed important. However, in many cases it is not clear 
yet how specific applications should be designed (with the 
exception of insect warnings) and which auxiliary studies are 
needed at which spatial and temporal scales. For instance, if 
a future warning system would be desired for the dispersal of 
zoonotic parasites by migrants, where and when would an 
epidemiological screening be needed?

Although not scoring as highly novel or urgent in itself, 
research on basic migration knowledge such as routes, tim-
ing, numbers and biomasses is recognized as fundamental to 
many of the more applied challenges and should therefore be 
continued.

Range of spatial and temporal scales

The scales in the majority of radar aeroecological studies to 
date do not cover the full spectrum of spatial and temporal 
scales possible but are biased towards studies at local to 
regional spatial scales or short time-scales (Supplementary 
material Appendix 1 Table A1). Research that focuses on 
large-scale AND long-term scales is still largely missing, 
yet, urgently required for factors that act mainly over larger 
spatial or long time-scales, e.g. land-use change and cli-
mate change. The NEXRAD archive is probably unique 
in that it already provides the opportunity to attain this 
whereas for other continental radar networks national dif-
ferences in radar systems need to be harmonized and legal 
agreements produced for the access and use of radar data 
across nations.

‘Catch-up’ research in bats and insects and cross-taxon 
studies

Although it will be unrealistic to expect that the level of 
knowledge on insect and bat migration will soon catch up 
with the level of knowledge of bird migration, studies on 
fundamental migration characteristics in insects and bats are 
urgently required. While it is inherently difficult to iden-
tify bats in radar signals, it is possible that bats using cor-
ridors may be detected using weather radar networks, for 
example movements of Leptonycteris long-nosed nectar bats 
from Mexico into the southwestern U.S. Perhaps a better 
application of radar in studying bat migration might be 
deployment of specialized fixed-beam radar (Schmidt et al. 

2017) near suspected migratory stopovers such as Long 
Point (McGuire et al. 2012) or corridors such as the Baltic  
coastline (Ijäs et al. 2017). Such radar systems could  
also be an important monitoring tool in cases where 
bats do not always use echolocation during migration 
(Gorresen et al. 2017).

In parallel to taxon-specific advances, we need comparative 
studies across taxa that identify common patterns and mech-
anisms in, e.g., the movement strategies of flying animals and 
their responses to environmental factors and human-induced 
changes.

Stakeholders and target audiences

A variety of stakeholders can benefit from better knowledge, 
real-time information or forecasts of timing, extent and inten-
sity of aerial migrations (Fig. 3, Bauer et al. 2017). Obviously, 
the specific information that can support the work and 
products of stakeholders also varies: Habitat associations of 
migrants, demographic trends and the influence of weather 
on migrations are crucial information for conservationists 
developing efficient management and protection measures or 
for national and international legislation and policy makers 
passing bills.

The general public is probably the most numerous 
stakeholder that we hope to reach – not only to spark the 
interest in migration as an iconic natural phenomenon but 
also to raise the awareness of the threats that migrants are 
facing. Making real-time information about aerial migrations 
publicly accessible (e.g. < http://birdcast.info/live-migra-
tion-maps/ >) can enthral a broad audience from laymen to 
professionals but also making use of observational data can 
engage citizen scientists and provide positive feedback to 
their contributions.

Our analysis has shown that radar methods have signifi-
cantly contributed to advance our knowledge of aerial migra-
tions in the past and can do so even more in a variety of 
present and future, fundamental and applied challenges. 
Particularly, the large spatial and long temporal scales that 
radar monitoring can cover are a unique feature that cannot 
be attained by any other technology.

We are also aware of the strong geographical bias in using 
radar data with the US and Europe being highly studied 
regions whereas the situation is different in many other areas 
of the world. Although there are large numbers of migrants 
in these regions as well, very little is known about their move-
ments and fates. Thus, our call for using existing radar data 
for monitoring aerial migrants applies even more to regions 
where very basic knowledge about migratory systems is lack-
ing. For these areas, issues no longer considered novel in the 
US and Europe may be both novel and urgent, and this par-
ticularly applies to regions undergoing rapid environmental 
change.
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