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to examine some of the different types of distance used in multivariate
analysis.
Many multivariate methods may be regarded as two-step processes. First
a set of distances d; (i, j=1, 2, ..., n) between n points, representing samples
or populations, is defined. Examples are D2, crL, Hiernaux’s A,, Penrose’s
Cé, Sanghvi and Balkrishnan’s B and G, and various dissimilarity coeflicients
all discussed by Gower (1970). Second, these distances are mapped onto a
set of n points (preferably in few dimensions) with Euclidean distances df.
The techniques used here include canonical variate analysis, principal
components, multi-dimensional scaling, and so on, where di% is chosen to
minimize some function of d;; and d. Alternatively, the mapping is onto a
dendrogram (scaled hierarchical representation) using some form of nested
cluster analysis. In this case, the dendrogram can be regarded as defining
ultra-metric distances d;5 ideally chosen to minimize some function of d;;

and d,-; :
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Figurc 1. Relation of D2 to c¢RrL distances between six populations, five forming
a homogeneous set and one being an outlier

The derivation, described below, of ultra-metric distances from a dendro-
gram scems first to have been suggested by Sokal and Rohlf (1962) when
defining co-phenctic correlation, but was first set out more formally by
Hartigan (1967).

Figure 2 is a simple dendrogram illustrating the hierarchical representation
of 5 populations by points 4, B, C, D, E, with a scale labelling the branching
points or nodes. The distance between any two points is given by the scale
value corresponding to the node where they first join. Thus, in figure 2 the
distance 4, Bis 1 and the distance 4, D is 7. Also from figure 2, concentrating
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on the points 4 and C, we
(B, for example) that
AC=max (4 X, XC)

However, for an i i
o i Y point X outside 4 and ¢ (D, for example) then 4 ¥ = XcC

can see that for any point X between 4 and C

AC<max (4 X, X0)
Thus, for all points 4 BC

distance, but I conjecture that ultra

distances. [This conject
1971).] Jecture has now been proved true (Buneman and Gower

T—

A4 B C D E

{];Igll_l:c] ?{.{Simp{}c dendrogram illustrating properties of ultrametric distances:
as=ldyc=dpc=4;d, D'—"d(‘D:7;dAC=max(dA8»dECJ§dAC<maX(dAD;dCD)

Thus, many forms of multivariate analysis can be re

computed distances d;; on to Euclidean distances

df. As there are many ways of computing

X garded as mapping
d% or ultra-metric distances
o 4 - d;; and of analyzing it, we are
: §S problems of comparing two different

nir sets of
.dlslances pertalpmg to the same samples or populations. The following are
Important practical problems of this type.

1
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(1) Comparing different distances derived from the same observations on
the same samples (as with D2 and crL discussed above). An archaeological
example is where an archaeologist (or two different archacologists) have
scored hand-axe data in different ways or decided to examine different
measures of distance based on the same hand-axe data.

(2) Comparing different distances (possibly using the same statistical
formulae) derived from different observations on the same samples. For
example, comparing D2 as evaluated on one set of variates (say concerned
with the jaw-bone) with D2 evaluated on another set (say from the frontal
region of the skull). An analysis of this kind is given below in the section
‘Anthropometric example’. In archaeology we may wish to compare
different criteria (or graves), first on biological properties (skeletal measure-
ments), and secondly on artifacts.

(3) Comparing the original distances d;; with those obtained by analysis,
say df or dij. That is to say, we want to see how well the distances derived
from the analysis agree with the original values. In fact d% or dit are often
defined by optimizing a function of d;; with these fitted values.

(4) Comparing distance di% and d** derived from two different analyses
of the same distances. For example, a set of D2 values may be expressed in
two dimensions by (a) canonical variate analysis, giving di% and (b) non-
metric multi-dimensional scaling giving d¥*. Under this heading we can
include comparison of 4% with 45 and comparison of df with d}*. An
analysis of this kind is given below in the section ‘Anthropometric example’.
(5) Comparing distances derived from different samples from the same
populations. Thus, we may evaluate D2 from one set of samples and then
re-sample to obtain a second set of D2 values, pertaining to the same popula-
tions. Problems of this kind are theoretically important, for their solution
forms the basis of any statistical inference.

Just as some authors have correlated d% with d* others have suggested
correlating di% with di} * or with d;;. I have already explained why I think this
can be misleading and shall now outline the derivation of an alternative
statistic.

RoraTioNAL FiTS

Rather than concentrate on the distances themselves, consider geometric
points P;(i=1,2, ..., n) that give rise to all the inter-distances d;;. With any
Euclidean distance, the coordinates of these points can be evaluated by
principal coordinates analysis (Gower 1967). The required coordinates are
given by the canonical means in canonical variate analysis and by the data
themselves in principal components analysis. Thus, the problem is to compare
two sets of distances arising from points P; and Q, (say). Clearly we can
move the points Q relative to P with translations and rotations. Reflection
must also be considered as can be seen from figure 3, which shows how two
congruent triangles best fit without reflection. The criterion of best fit
adopted is to move the points Q; relative to the points P; until the ‘residual’

n
sum of squares R2= Y A2(P;Q;) is minimum. It can be shown that the best
i=1
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fit occurs when the two sets of points have the same centroid and this takes

c&llrc of translation. To determine the required rotation, we need some matrix
algebra.

| /

f
]
|

!
4
Cl

Fi_gure 3. The effect of rotating two congruent triangles in a plane. The two
trmr}glcs on the left hand side fit exactly. On the right hand side one triangle is
a mirror image of the other and the best fit when rotating in a plane is poor; if
one is allowed to rotate in three dimensions the fit is again exact '

Let X be the nx p matrix of the coordinates of the points P; (referred to
orthogonal axes and with zero means) and ¥ the nx g matrix of the coordi-
nates of the points Q; (also orthogonal axes and zero means); where we have
assumed that the ith row of both matrices refers to the same samples or
populations. There is no loss of generality in assuming that p>¢ and, to
avoid discussing the cases p=¢ and p>q separately, I shall further assume
that p=gq; if necessary extra zero columns must be appended to Y until it has
a total of p columns. Any rotation of Y relative to X can be expressed as an
orthogonal matrix H. After rotation, the coordinates of Q) are given by the
rows of YH. The best estimate of H requires R=X'Y and the solutions to
the equation R=UZ ¥V’ to be computed where U and V¥ are orthogonal
matrices and X is a diagonal matrix whose elements are known as the zeros
of R. The values of U, ¥, and X are probably best computed by the method
recently given by Golub and Reinsch (1970), but in the example given below
they have been computed as the latent vectors of RR’ and R'R. The required
rotation is given by H=VU".

After rotation we have
R2=Trace (XX'+YY' -2YHX’)
We have to consider the effect of the arbitrary signs of the latent vectors
which are the columns of U and V. These signs determine different reflections
ol the rotated Y and the best out of the 2" different possibilities is required.
To find the best reflection suppose S is a diagonal matrix whose elements
arc all +1 or —1, in an order to be determined. To change the signs of the
columns ol ¥ relative to those of U we can write H=VSU". Thus, to minimize
R? above, we must select S so that the Trace (YVSU'X') is maximum.
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This is the same as maximizing Tracec (U'X’'YVS) (that is, Trace [ZS])
which occurs when the elements of S have the same signs as those of Z.
The elements of .S determine the signs to be associated with the columns of V'
and take care of reflection.

A reflection in 7 dimensions is the same as a rotation in (n4- 1) dimensions.
So it seems that the above method of dealing with reflections could be avoided
merely by adding an extra zero column to X and Y, but the arbitrariness of
the signs of the latent vectors still remains a problem; so nothing is,gained.

A further complication must be considered when the scales of the two sets
of distances are arbitrary. For example, in problem (5) above, dj; and d**
are on the same scales but this is not so in problem (1). To take care of
scale changes, we could scale the coordinates in the matrix Y by a factor o
and estimate J by A to get minimum R2, Luckily this estimation proceeds
independently of translation and rotation, to give A Trace ( YY')=Trace
(YHX)=Trace (X). It can be shown that after rotation:

A2 Trace (YY')+ R2;,,=Trace (XX")
This may be used as the basis for an analysis of variance, interpreted as
equating the total sum of squares amongst the variates of Y, after scaling,
plus the residual sum of squares, to the total sum of squares amongst the
variates of X.

Clearly the best system of scaling Y relative to X is not the inverse of the
best system of scaling X relative to Y. This unfortunate property needs
further investigation, but to avoid it in the numerical problem discussed
below, I have scaled both sets of points to have unit total squared distance
from their respective centroids, that is, Trace (XX')=Trace (YY')=1.
With this unit scaling, the analysis of variance simplifies to A2+ R2,,=1
where A2=Trace (¥), a value independent of whether we rotate X to Y or
vice versa.

A more difficult problem occurs when we do not know how the rows of X
match with the rows of Y, that is, we believe that some permutation of the
rows Y may match those of X. Suppose P is a permulation matrix such that
YP matches X without regard to rotation. A permutation matrix has a single
unit in every row and column, and zeros everywhere else. To estimate P,
consider the class of doubly stochastic matrices (that is, those which have
non-negative elements and whose rows and columns all sum to unity).
A permutation matrix is a special case of this class. To maximize the sum of
squares

R2=Trace [(X— YP)(X— YP)]
subject to the n2+2n linear restrictions 0<p;; < 1.

n n

2 pi= 2 pi=1

i=1 ji=1
is a quadratic programming problem which can in theory be solved by the
standard methods available. That the optimum must occur on a vertex of
the feasible region ensures that a true permutation matrix is found. It seems
worth mentioning this version of the problem in case it occurs in an archaco-
logical or historical context.

The problem of seriating the u rows of a matrix X whose clements relate
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to presence/absence or frequencies of different grave articles can be put into
the same framework. We require to find an n x n permutation matrix P which
permutes the rows of X into an optimum for Y=PX. A suitable optimality
criterion S might be to minimize the sum of squares of the differences
between adjacerllt rows of Y, that is, choose:
i
S:.'Z'l jZl (Y,;— Yi+1,j)2

subject to the same linear restrictions as before.

Even more complicated problems would occur if we were to combine
permutations with rotation and scaling, and so on, but these problems are
not considered any further here.

ANTHROPOMETRIC EXAMPLE

I am indebted to Mr A.Bilsborough, of the Department of Anthropology,
Cambridge, for permission to use the extensive set of data he has collected on
skull measurements of ancient human populations. To illustrate the methods
discussed above, without giving a thorough anthropometric account here,
[ have selected six of the hominoid populations, namely:
. Modern Homo Sapiens
Upper Palaeolithic Homo Sapiens
Middle East Neanderthal
European Wiirm Neanderthal
Late (Pekin) Homo Erectus
Australopithecus Africanus;
measurements from eight different regions of the skull, namely:
. Upper Face (16)
. Upper Jaw (15)
Articular Region (8)
. Balance (14)
Basicranial Region (12)
Cranial Vault (16)
Lower Jaw (16)

8. Overall (16).
Each region was characterized by a set of variates referred to as a constel-
lation. The number of variates at each constellation is given in brackets in
the above list. For each constellation the Mahalanobis D2 distances were
compuled for all 15 population diflerences, giving eight such matrices in all.
For cach pair u, v of constellations, the best rotational fit can be found using
the canonical variate means as the coordinates representing the populations;
this gives the residential fit R2,. The analysis is that required for problem
(2) above. When all constellations have been rotated to fit all other constel-
lations we have an 8 x 8 symmetric matrix of R2 values, shown in table 1.

The present analysis has similarities to the INDSCAL method discussed
by Wish and Carroll (1971). In their analysis, each individual constellation is
represented relative to the axes of an overall analysis. In the above, each
constcllation is represented by its own canonical analysis and then combined
in a separate constellation analysis. To get a metric equivalent to INDSCAL

V)
=
BEovhwN -

Novhs W -
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all that would be required is, first, to provide an overall (canonical) analysis
using all the varieties (regardless of what constellation they belonged to),
and then to rotate each separate constellation canonical analysis to fit this
overall analysis. The R2 analysis may be taken further, as described in the
remainder of this section.

o 2 3 4 5 6 7

1. U_pper Face
2. Upper Jaw 1-0012

3. Articular
Region | 1-0753 0-5766
4. Balance 10530 0-6324 1:0997
5. Basicranial |
Region 0-3485 0-5736 0:6533 0-5486
6. Cranial
Vault 0-8332 05596 0-8034 0-2582 0-3466
7. Lower Jaw 1-0275 0-8155 04385 0-5952 0-5541 0-3309
8. Overall 0-8498 0-2147 0:5483 0:4580 0-3504 04155 0-5075

Table 1. Values of R2 between eight constellations, based on best
rotational fits of canonical variate means for six hominoid populations

These R2 values may now themselves be regarded as squared distances.
(In this example these distances turned out to be Euclidean but I have been
unable to prove that this is necessary.) The R2 distances were analyzed in
two ways to give low-dimensional representations of the eight different
constellations,

The first analysis using principal coordinates (Gower 1967) gave figure 4.
Psychologists refer to this type of analysis as a metric multi-dimensional
scaling.

The second analysis using non-metric multi-dimensional scaling (Kruskal
1964) gave figure 5.

Both methods needed three dimensions to express the distances of table 1
adequately (two and three dimensions accounted respectively for 629 and
849, of the total squared distance from the centroid with principal coordinates
and gaverespective stresses of 0-146 and 0-044 with multi-dimensional scaling).
The third dimension is represented in the figures by a horizontal arrowed line
of appropriate length (to the right if positive, to the left if negative). It is
hard to say how figures 4 and 5 compare. Their general agreement becomes
clearer when both figures are referred to their principal axes and it would
ease such comparisons if all multi-dimensional coordinates of maps produced
by whatever method of analysis were presented in this way. To get more
information on this comparison, the coordinate values depicted in figures 4
and 5 were used as starting points for an analysis [of the type discussed in
problem (4) above] rotating one analysis of the distances of table 1 (principal
coordinates) to fit best another analysis of the same distances (non-metric
scaling). This was done (see figure 6) and gave an R2 value of 0-066. Although
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&>

cc8(lower jaw) cc6(basicranial region)

ccl (upper face)
cC2(upper jaw)

ccd(articular region)
€— - -0

Figure 4. 3-dimensional principle coordinate fit of the R2 matrix
cc2(upper jaw)

S cc9(overall)
' ? cc7(cranial vault)

&«
—e
cc6(basicranial region) cc5(balance)
& a

Ny
>

cc8(lower jaw)

cc4(articular region)

a
i Fd

ccl(upper face)

Figure 5. 3-dimensional MpDscAL (r=3) fit of the R2 matrix. This figure does not
obviously agree with figure 4

as yet we know nothing of the sampling propertics of R2, this value scems
satisfactorily small.

The multi-dimensional scaling program when asked to give a fit in r
dimensions also gives a fit in all lower dimensions, using the coordinates
found at the sth stage as starting values for the solution in one fewer
dimension at the (s+ 1)th stage. With this example T set r=3 and 4, and so
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----- > Principal co-ordinates

Figure 6. MDSCAL (r=3) rotated to fit 3-dimensional principal coordinates
solution, The two solutions are seen to agree very well

got two different 3-dimensional solutions (and two 2-dimensional solutions
too). Figure 5 is the solution for r=3. Although ideally the 3-dimensional
solutions for r=3 and r=4 should fit each other exactly after a suitable
rotation, they will differ because of the effects of whatever stopping rule is
used to define convergence, and also because convergence may be to different
local optima. In fact r=3 gave a 3-dimensional fit with stress 0-044 and
r=4 gave a'3-dimensional fit with stress 0-042 which, although close, did not
give obviously similar representations. When the two results were rotated
to best fit, it was clear that both solutions were much the same, but the value
0-091 of R2 was worse than the R2 for figure 6, indicating that R2=0-066 is
satisfactory and that principal coordinates and non-metric scaling have given,
effectively, the same results with these data. The 3-dimensional solutions for
r=3,4, 8 are compared with the principal coordinates solution in table 2.
It is remarkable that each of the three MDSCAL solutions fit the principal
coordinates solution better than any of the other 3-dimensional MDSCAL
solutions,

From figures 4, 5, or 6 it seems that different constellations of characters
give different interpretations of the differences between the six populations
in terms of D2, To be more precise we would like to be able to construct
confidence regions about each point. Statements like ‘the balance and cranial
vault regions of the skull determine a set of D2 values more alike than do the
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- T 2 3 4
1. Principal coordinates — - B
2. MDSCAL (r=3) | 0066 —
3. MDSCAL (r=4) [ 0027 0-091 -
4. MDSCAL (r=28) 0-043 0-120 0-048 -

Table 2. R2 values obtained when rotating various 3-dimensional analyses

lower jaw and upper face’ can be made.
Thus the analysis has aided visual comparison of two representations and
put a figure on their agreement.

STATISTICAL PROBLEMS

Although the rotational fit technique as outlined in the section above is
applicable mathematically to all the problems listed in the introduction,
specifically statistical problems have not been discussed. Individual R2
values are interesting in themselves, and to some extent can be used to express
relative magnitudes of differences, as was done in the anthropometric
example above. Rotating pairs of multi-dimensional maps to fit one another
simplifies visual comparisons, but the distributional properties of R2 are
needed for a truly objective analysis. When it is realized that each problem
in the introduction poses a different statistical distributional problem it is
clear that much work remains to be done. Problem (5) seems most likely to
yield to analytical treatment. Assuming multi-normal populations with equal
covariance matrices, the distribution of R2 is required when sample values of
the canonical variate means are rotated to fit the true values of these means.
The next step would be to find the distribution when canonical variate means
obtained from two different samples are rotated to fit. Problem (2) requires
an extension to consider the effect of using different or overlapping sets of
variates for the different analyses. The latter problem would still be meaningful
when assessing distances between individual samples drawn from a single
multi-normal population.

Whether any of these distributional problems can be solved remains to be
seen, but large sample asymptotic y2 approximations should be available.
I am less hopeful of any analytical solution for distributional problems
involving ultrametric distances, where it seems that the best hope is to get
information from Monte Carlo sampling experiments. I hope to tackle some
of these problems soon.
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