
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Comber, A., Collins, A. L., Haro-Monteagudo, D., Hess, T., Zhang, Y., 

Smith, A. and Turner, A. 2019. A Generic Approach for Live prediction of 

the risk of agricultural field runoff and delivery to watercourses: linking 

parsimonious soil-water-connectivity models with live weather data APIs 

in decision tools. Frontiers in Sustainable Food Systems. 3, p. Article 42. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.3389/fsufs.2019.00042

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8wvx3.

© 4 June 2019, Please contact library@rothamsted.ac.uk for copyright queries.

05/06/2019 16:27 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.3389/fsufs.2019.00042
https://repository.rothamsted.ac.uk/item/8wvx3
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


ORIGINAL RESEARCH
published: 04 June 2019

doi: 10.3389/fsufs.2019.00042

Frontiers in Sustainable Food Systems | www.frontiersin.org 1 June 2019 | Volume 3 | Article 42

Edited by:

Stephen James Ramsden,

University of Nottingham,

United Kingdom

Reviewed by:

John Michael Lynch,

University of Oxford, United Kingdom

Luca Brocca,

Italian National Research Council

(CNR), Italy

*Correspondence:

Alexis Comber

a.comber@leeds.ac.uk

Specialty section:

This article was submitted to

Agroecology and Ecosystem Services,

a section of the journal

Frontiers in Sustainable Food Systems

Received: 30 October 2018

Accepted: 15 May 2019

Published: 04 June 2019

Citation:

Comber A, Collins AL,

Haro-Monteagudo D, Hess T,

Zhang Y, Smith A and Turner A (2019)

A Generic Approach for Live

Prediction of the Risk of Agricultural

Field Runoff and Delivery to

Watercourses: Linking Parsimonious

Soil-Water-Connectivity Models With

Live Weather Data Apis in Decision

Tools. Front. Sustain. Food Syst. 3:42.

doi: 10.3389/fsufs.2019.00042

A Generic Approach for Live
Prediction of the Risk of Agricultural
Field Runoff and Delivery to
Watercourses: Linking Parsimonious
Soil-Water-Connectivity Models With
Live Weather Data Apis in Decision
Tools
Alexis Comber 1*, Adrian L. Collins 2, David Haro-Monteagudo 3,4, Tim Hess 3,

Yusheng Zhang 2, Andrew Smith 5 and Andrew Turner 6

1 Leeds Institute for Data Analytics (LIDA) and School of Geography, University of Leeds, Leeds, United Kingdom,
2 Sustainable Agriculture Sciences Department, Rothamsted Research, Okehampton, United Kingdom, 3Cranfield Water

Science Institute, Cranfield University, Cranfield, United Kingdom, 4 Estación Experimental de Aula Dei, Zaragoza, Spain,
5 School of Natural Sciences, Bangor University, Bangor, United Kingdom, 6 School of Geography, University of Leeds, Leeds,

United Kingdom

This paper describes the development and application of a novel and generic framework

for parsimonious soil-water interaction models to predict the risk of agro-chemical

runoff. The underpinning models represent two scales to predict runoff risk in fields and

the delivery of mobilized pesticides to river channel networks. Parsimonious field and

landscape scale runoff risk models were constructed using a number of pre-computed

parameters in combination with live rainfall data. The precomputed parameters included

spatially-distributed historical rainfall data to determine long term average soil water

content and the sensitivity of land use and soil type combinations to runoff. These were

combined with real-time live rainfall data, freely available through open data portals and

APIs, to determine runoff risk using SCS Curve Numbers. The rainfall data was stored

to provide antecedent, current and future rainfall inputs. For the landscape scale model,

the delivery risk of mobilized pesticides to the river network included intrinsic landscape

factors. The application of the framework is illustrated for two case studies at field and

catchment scales, covering acid herbicide at field scale and metaldehyde at landscape

scale. Web tools were developed and the outputs provide spatially and temporally explicit

predictions of runoff and pesticide delivery risk at 1 km2 resolution. The model parsimony

reflects the driving nature of rainfall and soil saturation for runoff risk and the critical

influence of both surface and drain flow connectivity for the risk of mobilized pesticide

being delivered to watercourses. The novelty of this research lies in the coupling of live
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spatially-distributed weather data with precomputed runoff and delivery risk parameters

for crop and soil types and historical rainfall trends. The generic nature of the framework

supports the ability to model the runoff and field-to-channel delivery risk associated with

any in-field agricultural application assuming application rate data are available.

Keywords: big data & analytics, spatial data integration, pesticides, metaldehyde, web-based model, R, API

(application program interface), United Kingdom

INTRODUCTION

Rainfall-induced surface and subsurface runoff mobilizes
and transports the chemicals used for in-field agricultural
applications (fertilizers, herbicides, and pesticides) from land
to receiving freshwaters. Agriculture is therefore a significant
source of water pollution, affecting drinking water quality and
treatment costs. In England, for example, water companies spent
£92 million in 2008–09 removing pollutants from water supplies
to meet drinking water standards (National Audit Office,
2010). However, for some pollutants, such as metaldehyde,
there are currently no cost-effective methods of removal,
although the UK’s first treatment plant has recently been
constructed at significant cost to the water company in question1

Concentrations of such agrochemicals above safe limits in
surface and groundwaters creates not only environmental risk,
but also a risk to human health.

Agricultural applications can enter surface water via a
number of pathways. Spills, spray-drift and illegal disposal are
generally managed by best practice guidance and prosecution.
Surface and subsurface runoff can transport agrochemicals in
dissolved and particulate form, from the field to watercourses.
The proportion that is removed in solution relative to that
attached to mobilized soil particles depends on the intrinsic
soil properties, topography/slope and the characteristics of the
agrochemicals such as pesticides, including their sorption and
solubility properties (Guo et al., 2000; Louchart, 2001; Newell-
Price et al., 2011).

The biggest driver of surface and subsurface runoff is
precipitation and the timing and characteristics of the first
rainfall event after application are very important. Antecedent
weather determines the wetness of the soil and therefore the
degree to which the chemical is “held” by the soil. Applications
made to wet soil (at field capacity or wetter), or just before
heavy rainfall, are more likely to be lost in surface runoff or
by-pass flow to field drains, with negative environmental and
water quality impacts as they are transferred to surface or
groundwater (Mitchell et al., 2005; Gao et al., 2008; Lapworth
et al., 2012), although the propensity for mobilized pollution to
reach watercourses also depends on additional factors affecting
delivery (e.g., the status and maintenance of field drains, the
topology of the landscape, distance to watercourses). Thus,
water pollution risk is enhanced by poor timing of applications
in relation to weather events which can result in pollutant

1https://wwtonline.co.uk/features/project-focus-hall-claims-uk-first-in-water-

treatment.

concentrations in surface waters that exceed drinking water
standards (Pretty et al., 2003).

In addition to the environmental benefits, the efficacy of any
agricultural application is severely reduced if runoff washes it
from the crop or the field. For the farmer, the reduced efficacy
leads to risks of reduced yields (income) and/or increased costs
(and thereby lower gross margins) if the treatment has to be
re-applied to protect the crop. The annual cost to farmers of
agricultural runoff has been estimated at £238m (Jacobs UK
Ltd, 2008) a significant part of which can be attributed to the
impact of runoff losses associated with compromised pesticide
and herbicide effectiveness. There are additional environmental
(damage) costs and, in future, there may be financial penalties
for pesticides and herbicides being washed into watercourses.
Preventing agro-chemicals reaching surface and groundwaters by
imparting source control measures is more cost-effective than
water treatment and some initial research has identified a benefit-
to-cost ratio of 65:1 for prevention over treatment (Defra, 2013).

Direct detection of the source of pesticides and herbicides
carried by runoff is difficult due to the diffuse nature
and temporal variability of the sources and the high cost
of instrumentation (Meyer et al., 2019) and with some
pollutants, the length of time taken to analyse water samples
makes real-time risk mapping impractical. Consequently,
modeling water pollution risk is the only practical option in
most cases.

This paper describes the development of two decision tools
operating over different scales of decision making. The tools
provide interfaces to two parsimonious soil-water runoff models;
one supporting on-farm decisions at the field scale and another
supporting landscape scale management. Both include inputs
and outputs at a1 km2 spatial scale, but their aims are very
different and their outputs should be interpreted in very different
ways. The field scale tool provides the end-user with point-based
information of runoff risk derived from a model operating over
each 1 km2 independently. It uses a meta-model to forecast
surface runoff risk for a given land use on a given soil from recent
recorded and forecast rainfall alone. It aims to support farmers
and land managers to better manage pesticide applications. The
catchment scale model also uses a 1 km2 scale (in part because
most of the data available to support such analyses and models
are at best at 1 km2 resolution). However, the inputs and
outputs do not describe processes that operate independently
over each 1 km2. Rather, the inputs describe landscape processes
that are topologically connected such as field drain and surface
flows as well as landscape connectivity between fields and
watercourses. In this case, the outputs provide Tier 1 screening
to identify hotspots requiring further investigation, with the aim
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of supporting informed on-the-ground catchment management
by environmental agencies and water companies.

BACKGROUND

This research is informed by two limitations arising from
previous work: the difficulties of determining antecedent soil
water status (and thereby the potential for soil to hold water)
and the temporally static nature of many landscape scale decision
support tools in this domain.

Modeling Runoff
The SCS Curve Number (CN) method (USDA SCS, 1972) is
commonly used to model surface runoff depth from rainfall
amount, soil surface characteristics and antecedent wetness. It
is also used to predict runoff and infiltration (USDA, 2004). It
is applicable to small catchments (≤ 6,500 ha) (NRCS, 2002)
and has been implemented in models to estimate agrochemical
transport to water (e.g., SWAT—Arnold et al., 1998; PRZM—
Carsel et al., 2003; APEX—Williams et al., 2006; CREAMS—
Knisel, 1980) and has been shown to be robust for a range
of climates, soil types and land uses (e.g., Gassman et al.,
2007). It has been found to perform better than an infiltration
model in modeling runoff in an agricultural catchment in
England (Kannan et al., 2007). Many CN models predict
runoff depths for individual weather events using an empirical
relationship between direct runoff depth, rainfall amount, soil
surface characteristics and antecedent wetness (USDA, 2004).
The rainfall amount at which runoff starts depends on the
maximum potential retention, which in turn, depends on land
use and soil type. The CN approach provides a widely used
and effective method for estimating direct runoff due to rainfall.
Despite its simplicity, and the availability of CNs for various
land use and soil type combinations (Chow et al., 1988; Pilgrim
and Cordery, 1993; USDA, 2004), operationally it can be difficult
to estimate the antecedent soil moisture conditions. Although
the antecedent soil water status has been estimated from 5-
day antecedent rainfall (e.g., Mishra et al., 2005), this has been
shown to be poorly correlated with maximum potential retention
(USDA, 2004).

Decision Support Tools
User-facing decision tools started to emerge with the advent
of easily programmable GISs with graphical user interfaces.
These were developed to support farming compliance under
newly legislated environmental directives, such as the Water
Framework Directive (WFD Water Framework Directive, 2000)
in Europe, and sought to minimize the externalities of
agricultural activity on waterbodies. Decision tools, for use
by both farmers and policy makers, were developed over a
range of spatial scales: nationally, at typical scales of 1, 5,
and 10 km2 and Europe-wide at scales of 10, 20 and 50
km2. Examples of UK models include those of Webb and
Misselbrook (2004), Chadwick et al. (2005), Chambers et al.
(1999), Davison et al. (2008), Lord and Anthony (2000) and
Lord (1992) many of which are summarized in Anthony et al.
(2008). At the European scale, similar models include PyCatch

(Schmitz et al., 2017) and the FOOTPRINT (Functional Tools
for Pesticide Risk Assessment and Management) framework
which integrates pesticide use information with a physically
based field scale soil water model (Jarvis et al., 2000) for
drainage and leaching pathways and PRZM (Suarez, 2005)
for runoff and erosion pathways. Hydrological modeling
frameworks have also been used to simulate agrochemical
runoff (Kannan et al., 2006; Ficklin et al., 2013; Bannwarth
et al., 2014; Zhang et al., 2018). A key and unavoidable
characteristic of existing landscape process-based models is
that their outputs and the scales they report over are spatially
and temporally incompatible with the expectations and needs
of land managers. Here, a key limitation is the fact they
are underpinned by highly static, spatially and temporally
aggregated data by way of model inputs such as underlying
soil types, drainage, land use, climate, terrain characteristics and
farming practice.

Research Aims
The critical gap, common to SCN models and decision support
tools, regardless of scale, is that they do not incorporate live
and dynamically updated data on soil condition or rainfall. Very
detailed and precise predictionmodels for soil water balances and
associated runoff, leaching and pollution risks (e.g., Pullan et al.,
2016; Morselli et al., 2018) require specific, local information that
cannot be obtained from generalized GIS layers, often requiring
in situ parameterisation and measurement. This is because data
may not be freely available (e.g., soils data), are dis-aggregates of
coarser scale data (e.g., agricultural land use) or are themselves
modeled outputs (e.g., landscape connectivity data). A further
key issue across scales and model types is that they commonly
suffer from poor performance when evaluated using monitoring
data despite being very heavily parameterized (Bieger et al., 2014;
Gassmann et al., 2014; Zeiger and Hubbart, 2016). For this
reason, recent research has explored the use of parsimonious
tools for pesticide risk (e.g., Gaßmann et al., 2013; Steffens et al.,
2015; Pullan et al., 2016).

It is against this background, that this paper describes the
development of two decision tools providing real-time, spatially-
explicit and temporally-dynamic field runoff and field-to-channel
pesticide delivery risk information for supporting decisions
regarding pesticide application (field scale) or management of
surface water withdrawal for public water supply (catchment
scale). These are demonstrated for two example agro-chemical
applications in two differing environmental settings in the
UK. The tools incorporate parsimonious field runoff and
field-to-channel delivery models that combine real-time data
of antecedent, current and predicted rainfall obtained from
a national meteorological institute API. Both tools generate
real-time predictions of current and future agro-chemical
field runoff or field-to-channel delivery risk over a 5-day
window. A key distinction is that the field scale tool has
a focus on quantifying runoff risk, whereas the catchment
scale tool focuses on quantifying the risk of delivery to
the channel network—i.e., pesticide delivery risk rather than
runoff risk.
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METHODS AND NEW MODELS

Two case-study catchments were selected. TheWissey catchment
in eastern England is dominated by arable cropping and has
a potential risk of metaldehyde in waterbodies. Metaldehyde is
used to treat slugs on oil seed rape, potatoes and horticultural
crops and was responsible for 23% of failures to meet drinking
water standards in the 4th quarter of 2016 in England and Wales
(Defra, 2017a). Metaldehyde also topped the list of pesticides
which breached the 0.1 µg/l drinking water safety limit between
2013 and 2015 (Defra, 2017b). In contrast, the Teifi catchment
in mid-Wales, is dominated by grassland used for livestock.
Here, acid herbicide applications for managing weeds in pastures
represents a risk for drinking water quality. Field and landscape
(catchment) scale models were developed for both case studies
using the methods described below. For illustration in this paper,
the results present the application of the field model and tool for
runoff risk in the Teifi catchment in Wales, and the landscape
scale model and tool for metaldehyde delivery risk in the Wissey
catchment in England.

Field Scale Model
Overview

The aim of the field scale model was to provide location specific
information of current and predicted future (5 day) runoff risks,
at a 1 km2 grid cell scale representing the field. It sought to
support on-farm decisions about agro-chemical applications and
to provide forecasts of whether any surface runoff is expected
at the field scale. Although a soil water balance model could be
used to antecedent soil water conditions and the CN method
(USDA, 2004) to assess potential field runoff in real-time, data
and computational requirements are an important limitation. In
addition, fully parameterized soil water balance models require
a known starting condition and are prone to cumulative errors,
particularly during periods of low rainfall. From an operation
point of view, using a soil water balance model to estimate
antecedent soil water conditions also requires the user (farmer)
to collect and process rainfall data even during periods when
runoff risk forecasts are not required. To overcome this, a
meta-modeling approach was used to estimate antecedent soil
conditions from soil type, long-term average soil water content
for the day of year, recent recorded rainfall and short-term
forecast rainfall. An overview of the field scale model is shown
in Figure 1.

Data and Model

The soil water balance model, WaSim (Hess and Counsell, 2000),
was used to estimate daily soil water condition (θ) using the
approach described by Hess et al. (2010) and Holman et al.
(2011). It used a long time-series (1961 to 2015) of daily rainfall
and reference evapotranspiration data at 1 km2 resolution from
the CEH CHESS dataset (Robinson et al., 2016, 2017) for each
of the 28 hydrology of soil type (HOST) (Boorman et al.,
1995) classes found in England and Wales, and three land
cover classes.

WaSim is a daily soil water balance model that simulates
changes in root zone soil water content and water table position

in response to weather and water management. It estimates
changes in soil water content by combining data on rainfall,
crop specific evapotranspiration, soil characteristics and field
drainage. It estimates daily surface runoff using a CN approach
based on the soil water content using the approach of Hawkins
et al. (1985) and Garen (1996).

The water content of the upper (0–0.15m) layer (θ0) is
estimated from daily effective rainfall, evapotranspiration and
drainage to a lower layer. The proportion of the soil water stored
above field capacity (θFC) that is released from a saturated soil
increases from zero at θFC to a maximum at saturation (θSAT)
following an exponential function (Raes and van Aelst, 1985)
dependent on the texture of the upper soil layer. Validation
of predicted field-scale runoff is difficult due to the paucity of
field-scale runoff data for a sufficient range of soil, crop and
climate conditions for national application. However, Holman
et al. (2011) evaluated partitioning of hydrologically effective
rainfall between slow and quick flow-paths in the WaSim model
by upscaling to the catchment scale across all of England and
Wales. For 27 out of the 29 HOST soil classes (Boorman
et al., 1995) (peat soils excepted). The WaSim estimates of
baseflow index (BFI) were within the 95% confidence intervals
of the national-average BFI , suggesting that the model is
adequately capturing the effect of soil type and wetness on
runoff generation.

Using linear regression on a subset of the data (1961–2000),
the daily soil water condition was modeled from the 10 previous
days’ accumulated rainfall (P10), the number of days since the
last day with rainfall>2mm (P2) and long-term averagemodeled

daily soil water condition (θi) for each the day of the year, i. The
resulting linear regression models were shown to fit well to the
soil water conditions modeled by the soil water balance model for
an independent timeseries (2001-2015), summarized in Section
Model Validation and as described in Comber et al. (2018). The
parameterized regression model was then used with recent and
short-term forecast rainfall data to forecast runoff, R, using the
CNmethod of Hawkins et al. (1985) and Garen (1996) as follows:
for rainfall, P (mm d−1), greater than a threshold value, I (mm),
direct runoff, R (mm d−1), is estimated from:

R =
(P − λS)2

(P + (1− λ) S)
for P > λS (1)

R = 0 for P≤λS (2)

where S is the maximum retention, mm and the threshold I is
defined as

I = λS (3)

Note that λ (dimensionless) is an empirical value that represents
the proportion of rainfall on a soil at average antecedent
conditions that can fall without generating runoff, and is typically
set to 0.2.

On a particular day, S was estimated from the retention at dry
antecedent conditions, S1 (mm), the relative saturation of the top
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FIGURE 1 | The field scale runoff risk model.

0.15m of the soil, fs (dimensionless) and two weighting factors,
W1 andW2 for retention (Hawkins et al., 1985):

S = S1

[

1−
fs

fs + exp
(

W1 −W2fs
)

]

(4)

fs =
θi

θs
(5)

W1 = ln

[

1

1− S3
S1

− 1

]

+W2 (6)

W2 = 2

[

ln

(

0.5

1− S2
S1

− 0.5

)

− ln

(

1

1− S3
S1

− 1

)]

(7)

The retention, Sn (mm), at dry (n = 1), average (n = 2) and
wet (n=3) antecedent conditions, is estimated from the curve
number, N2 (dimensionless) at average antecedent conditions
(Garen, 1996).

Sn = 250

(

100

Nn
− 1

)

(8)

N1 =
N2

2.281− 0.01281N2
(9)

N3 =
N2

0.427+ 0.00573N2
(10)

Model Validation

Hess et al. (2010) used a continuous water balance model,
WaSim (Hess and Counsell, 2000) to model daily soil water
content and estimate daily surface runoff using a CN approach.
WaSim is a one-dimensional, field-scale layered soil-water

balance model that operates on a daily timestep. The water
content of the upper (0–0.15m) layer, θ0 (dimensionless), is
estimated from daily effective rainfall (P - R), evapotranspiration,
E (mm d−1) and drainage to a lower layer, D (mm d−1).
D increases with θ0 from zero at field capacity, θFC, to a
maximum at saturation, θSAT , following an exponential function
(Raes and van Aelst, 1985):

D = τ (θ0 − θFC)
e(θ0−θFC) − 1

e(θSAT−θFC) − 1
150 (11)

Where τ (d−1) is the proportion of the soil water
stored above field capacity that is released from a
saturated soil in 1 day and is dependent on the soil
texture, and 150 (mm) is the thickness of the upper
soil layer.

Three linear regression models, M1 to M3, were calibrated
against θ0 for each soil and climate combination in each of the
two study areas:

• M1 is a simple linear regression of θ0 against the 5-day
accumulated antecedent rainfall, P5 under the expectation that
for a given location and soil type, θ0 will be correlated with the
antecedent rainfall;

• M2 considered the 10-day accumulated antecedent rainfall,
P10, and the number of days since the last rainfall
>2mm, JP >2;

• M3 considered the 10-day accumulated antecedent rainfall,
P10, the number of days since the last rainfall >2mm,
JP>2 and also considers the long-term average value of

θ0 for the day of the year, (θi). This assumed that the
effect of antecedent rainfall on θ0 may vary with seasonal
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variation in θ0. For example, a small P10 on at a time
of year when the soil is generally wet would result in
wetter antecedent conditions than at a time when the soil is
generally drier.

Each model is summarized in Table 1 and was calibrated
against the WaSim continuous model and then used to
estimate θ0.

Table 2 shows the coefficient estimates of the three locally
calibrated linear models to estimate antecedent soil moisture
conditions, adjusted for each site and soil type. It also includes
the root mean squared error (RMSE), mm d−1, between
upper layer soil water content from a continuous model and
the three meta-models for the calibration (1961-2000) and
validation (2001-2015) periods. For the two models relying
only on antecedent rainfall (M1 and M2) the intercept is
the most important coefficient of the model, taking values
close to the volume water fraction at field capacity. The M3
coefficients demonstrate the importance of including average
soil moisture conditions and the major difference between
parameters is driven by weather conditions rather than by soil
type. Similarly the validation results show that M3 achieves the
best results for both soil types and both climates. Moreover,
the results suggest that introducing the daily average soil
moisture content has an important impact on the quality
of the model.

Landscape Scale Model
Overview

The landscape scale model provides spatially distributed
information on pesticide delivery risk. The overarching aim was
to identify field-to-channel delivery risk hotspots to support and
inform catchment management and on-the-ground follow up
by environmental agencies and water companies. It therefore
identifies locations of high risk that may require further
investigation. The landscape scale tool generates a spatially-
distributed field-to-channel delivery risk surface to inform
drinking water abstraction decisions. The output predicts the
spatial pattern of mobilized pesticide loadings delivered to
receiving watercourses. The parsimonious approach combines
layers of intrinsic landscape scale factors, runoff and pollutant
transfer, national historical daily rainfall data from the CEH
Gridded Estimates of Areal Rainfall dataset (Keller et al., 2015), as
well as live data of current and antecedent rainfall, as summarized
in Figure 2.

A source-mobilization-delivery-impact model of the water
pollutant transfer continuum (Lemunyon and Gilbert, 1993;
Haygarth et al., 2005; Zhang et al., 2017b) was adopted. In
this framework, runoff following rainfall is the key mobilization
force and the proportion of pesticide load available for
mobilization into the runoff moving down the soil profile to
field drains or downslope across the land surface is assumed
to be the same as the ratio of runoff amount to event
rainfall total. Pesticides are therefore partly absorbed by the
soil and non-binding pesticides are mobilized in runoff. This
multiplicative correction approach is similar to that used by
Verro et al. (2002). The landscape model recognizes that

rainfall can reach watercourses via different delivery pathways
(e.g., surface runoff, drain flow) and measures of hydrological
connectivity between agricultural fields and the river channel
network influence the propensity for mobilized pollution (e.g.,
pesticides) to reach the watercourses. In the case of the latter,
surface runoff connectivity is calculated using distance to river
channel and the downslope average slope gradient using a
high resolution digital elevation model (DEM) and channel
network data layer (Prosser and Rustomji, 2000; Walling and
Zhang, 2004), whereas drain flow connectivity uses farm-type
specific estimates based on recent surveys of drain maintenance
associated with the upkeep of the permeable backfill or drain
freeboard, as well as the frequency of supportive mole plowing
(Zhang et al., 2016).

Data and Model

Data at 1 km2 resolution were assembled for each case study area.
The proportions of different land use including crop types in each
grid cell (Comber et al., 2008) were matched with freely available
data on pesticide application rates to determine pesticide
loadings to farmed land. The land use data described in Comber
et al. (2008) uses advanced spatial disaggregation methods to
robustly allocate agricultural census data from the June Survey
of Agriculture and Horticulture (JAS). JAS data are reported at
coarse spatial units (such as Parish level) and the disaggregation
is to finer spatial units such as 1 km2. This data underpins
many tools supporting national level policy support. Garthwaite
et al. (2013, 2014, 2015) describe pesticide usage on different
agricultural land uses and spatially distributed pesticide loadings
to agricultural land were estimated by linking the land use
proportions of each 1 km2 to the reported pesticide usage for that
land use.

The loadings from all applications to agricultural land
are then modified to estimate the loading susceptible to
runoff mobilization and delivery from field-to-channel by
the soil sorption capacity for the pesticide in question,
which is modeled as a function of known pesticide
behavior and soil organic carbon content (% OC).
Accordingly, the proportion of chemical loading susceptible
to mobilization and runoff loss with rainfall, K is calculated
as follows:

K =
1

1+ Koc × OC/100
(12)

where Koc is a measure of the tendency of a chemical to bind to
soils (an adsorption coefficient) set at 67 in the Wissey and 20 in
the Teifi study catchments.

Runoff was estimated using the Mishra-Singh model (Mishra
et al., 2005), a modified CN method, that accounts for event
rainfall and antecedent soil moisture conditions. To estimate
runoff (R, mm), event rainfall (P, mm) and the antecedent
5-day rainfall (P5,mm) are required, as well as an estimate
of storage depth (S, mm), initial abstraction (Ia) and an
intermediary term,M:
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TABLE 1 | A summary of the different models that were evaluated.

Model

Coefficients

Model 1 (M1) Model 2 (M2) Model 3 (M3)

X1 Accumulated 5-day antecedent rainfall, P5 Accumulated 10-day antecedent rainfall, P10 Accumulated 10-day antecedent rainfall, P10

X2 Number of days since the last rainfall >2 mm, JP>2 Number of days since the last rainfall >2 mm, JP>2

X3 Long-term average value of θ0 for the day of the

year, (θi )

TABLE 2 | Coefficients of the three linear models and the root mean squared error (RMSE), mm d−1, for the calibration (1961–2000) and validation (2001–2015) periods.

Case study Soil type Model Coefficients RMSE

Intercept X1 X2 X3 Calibration Validation

Teifi Clay Loam M1 0.376 0.002 0.030 0.031

M2 0.393 0.001 −0.004 0.027 0.029

M3 0.126 0.001 −0.004 0.675 0.024 0.025

Sandy Loam M1 0.266 0.002 0.033 0.033

M2 0.284 0.001 −0.004 0.030 0.031

M3 0.090 0.001 −0.004 0.664 0.026 0.026

Wissey Clay Loam M1 0.351 0.003 0.035 0.032

M2 0.361 0.002 −0.002 0.031 0.028

M3 0.029 0.002 −0.002 0.875 0.023 0.020

Sandy Loam M1 0.241 0.004 0.033 0.033

M2 0.252 0.002 −0.003 0.030 0.031

M3 0.027 0.002 −0.002 0.833 0.026 0.026

S =
25400

CN
− 254 (13)

Ia = λS (14)

M = −

(

(1+ λ)

2

)

S+

√

(1− λ)2S24P5S (15)

R =

(

(P − Ia) (P − Ia+M

P − Ia+M + S

)

(16)

where λ is an empirical value which typically set to 0.2. The CN
values for different soil types, land use and surface conditions are
based on Hess et al. (2010) using the UK Hydrology of Soil Type
(HOST) classification (Boorman et al., 1995). These weremapped
into four hydrological soil groups (A, B, C, D) to reflect the
minimum rate of rainfall infiltration for bare soil after prolonged
wetting and the transmission rate within the soil profile, under
five land use types; grass, row crops, small grains, semi-naturals
and woodlands (Table 3).

The JAS classes were linked to pesticide survey usage
categories and, in turn, the CN categories in Hess et al. (2010).
Hess et al. (2010) proposed appropriate CNs for each unique
combination of grouped soil type and land cover, dependent
upon the surface condition which is classified as either “good”
or “poor”. A CN of 0 represents maximum storage, whilst a
score of 100 suggests zero storage (i.e., a totally impermeable
soil). The hydrological soil groups reflect the minimum rate
of rainfall infiltration for bare soil after prolonged wetting and
the transmission rate within the soil profile. Group A soils are
characterized by low runoff potential and high infiltration rate

even when wetted, with a transmission rate of >7.6 mm/hr.
Group B soils have a moderate infiltration rate and are typified
by moderate to well drained soils with transmission rates of 3.8–
7.6 mm/hr. Group C soils have low infiltration rates and are
typified by moderately fine to fine texture and a layer impeding
downward water movement, yielding transmission rates of 1.3–
3.8 mm/hr. Finally, group D soils have high runoff potential
and very low infiltration rates, typifying clay soils with very low
transmission rates of 0–1.3 mm/hr. CN values recommended by
Hess et al. (2010) are presented in Table 4.

Finally, hydrology outputs from a process-based model
developed for national policy support, namely PSYCHIC (Collins
et al., 2007, 2009; Collins and Anthony, 2008; Davison et al.,
2008; Stromqvist et al., 2008; Comber et al., 2013; Collins and
Zhang, 2016; Phosphorus and Sediment Yield CHaracterisation
In Catchments), were used to derive monthly soil runoff
partitioning between surface and drain flow pathways for each
1 km2. The PSYCHIC model runs use a combination of baseline
climate conditions (1961 to 1990) and 2010 JAS.

Model Validation

The validation of a landscape scale model predicting 1 km2 risk
surfaces, i.e., providing information to support Tier 1 screening
of risk, is inherently difficult. The model reported here provides
information on landscape scale risk and empirical pesticide data,
collected at an appropriate resolution, simply does not exist at
appropriate scales for validating the modeled patterns of spatial
risk. However, previous research (e.g., Collins and Anthony,
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FIGURE 2 | The parsimonious landscape scale model. OM, organic matter.

2008; Stromqvist et al., 2008; Collins and Zhang, 2016; Collins
et al., 2016; Zhang et al., 2017a,b) has evaluated the catchment
and broader scale spatial patterns predicted for aggregated diffuse
pollution (nutrients and sediment, not pesticides) delivery to
watercourses using the underlying algorithms from PSYCHIC
that are incorporated in the landscape model, using available
local (i.e., original PSYCHIC model research project) or strategic
monitoring data in the form of 1991-2010 PARCOM (Neal
and Davies, 2003) reporting and the Harmonized Monitoring
Scheme (https://data.gov.uk/dataset/b17a2efa-bdd6-4740-8030-
fb87f7f2bcff/historic-uk-water-quality-sampling-harmonized-
monitoring-scheme-detailed-data) at 33 stations for the period
1980-2010. Paris Commission (PARCOM) monitoring is
undertaken as part of the 1992 OSPAR (Oslo–Paris) Convention
which combined the 1972 Oslo Convention on dumping waste
at sea and the 1974 Paris Convention on land-based sources
of marine pollution. PARCOM monitoring is undertaken to
report the delivery of terrestrial pollutants to the maritime area
in accordance with the OSPAR Convention. The Harmonized
Monitoring Scheme is a long-term water quality scheme in the
UK that was initiated by the Department of the Environment
in 1974.

RESULTS

The field and catchment scale models were coded in R and
interactive web tools with an Open Street Map front end
were created in RMarkdown using the leaflet, flexdashboard,
shiny, sp, dygraphs and reshape2 R packages. Recent and short-
term forecast rainfall was recognized as a critical input for
each scale in order to determine field runoff and field-to-
channel delivery risk. For each study catchment, live weather
data and precipitation forecasts from the Meteorological Office

(the UK’s national weather service) DataPoint API (The Met
Office, 2018) were downloaded for each day, interpolated
into a 1 km2 grid and stored in raster stack. These were
used to serve the online models with antecedent, current and
predicted rainfall data for each 1 km2. The online web tools
are dynamic, calculating field runoff or field-to-channel delivery
risk at each location from the live precipitation data and the
user inputs. A zoomable OpenStreetMap layer provided the
background mapping.

Field Scale Tool
The intention of the field scale tool was that it would be
used by farmers and farm managers to inform their day-to-
day decision making around agricultural chemical applications.
The web interface asks users to enter a postcode, and then
to click on an individual 1 km2 grid cell. For the purposes
of the models demonstrated here, the interface in Wales
assumes an Acid herbicide application decision and in the
East of England a Metaldehyde application (only the Wales
tool is illustrated). The runoff risk for the selected grid cell
for the next 5 days is shown in text format below the
map and there are a number of tabs containing additional
information. A screen grab of the catchment scale tool is
shown in Figure 3. Here rainfall and runoff risk are not
quantified, they are simply stated if predicted to be present at
the selected location for the selected time period +5 days, as
described above.

Catchment Scale Tool
The catchment scale tool was aimed at land and environmental
managers with catchment / sub-catchment and watershed remits,
including local water companies. Runoff and pesticide field-to-
channel delivery risk is mapped and indicates locations with
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TABLE 3 | Pesticide usage and Curve Number (CN) groups for different land

use categories.

June agricultural

census

description1

Pesticide usage

group2
CN group3

Wheat Cereals Row crops

Early potatoes Potatoes Row crops

Late potatoes Potatoes Row crops

Sugar beet Beet crops Row crops

Leguminous forage

crops

Other fodder crops Row crops

All Other crops for

stockfeeding

Other fodder crops Row crops

Root crops, brassicas

& fodder beet

Vegetable brassicas Row crops

Winter barley Cereals Row crops

Borage Other arable crops Row crops

Field beans Peas & beans Row crops

Peas for harvesting dry Peas & beans Row crops

Maize Maize & sweetcorn Row crops

Maize—grain Maize & sweetcorn Row crops

Maize—fodder Maize & sweetcorn Row crops

Winter oilseed rape Oilseeds Row crops

Spring oilseed rape Oilseeds Row crops

Linseed Other arable crops Row crops

Spring barley Cereals Row crops

All Other crops Other arable crops Small grains

Bare fallow Set aside Semi-natural

Short rotation coppice Other arable crops Row crops

Miscanthus Other arable crops Row crops

Crops for aromatic or

medicinal use

Other arable crops Row crops

Oats Cereals Row crops

Mixed corn Other arable crops Small grains

Rye Other arable crops Small grains

Triticale Other arable crops Small grains

Other peas and beans Other outdoor vegetables Row crops

Culinary plants for

human consumption

(e.g., herbs)

Lettuce & other leafy salads Row crops

All other veg and salad

including carrots and

onions

Lettuce & other leafy salads Row crops

Vining peas for

processing

Other outdoor vegetables Row crops

Orchards commercial Top fruit & hops Row crops

Wine grapes Other soft fruit Small grains

All other small fruit Other soft fruit Small grains

Orchards

non-commercial

Top fruit & hops Row crops

Orchards Top fruit & hops Row crops

Strawberries Strawberries Small grains

Raspberries Other soft fruit Small grains

Blackcurrants Other soft fruit Small grains

Temporary Grass Grassland Grass

(Continued)

TABLE 3 | Continued

June agricultural

census

description1

Pesticide usage

group2
CN group3

Woodland Woodland Woodland

Land used for outdoor

pigs

Set aside Semi-natural

Other non-agricultural

land

Set aside Semi-natural

Permanent Grass Set aside Grass

Rough Grazing Set aside Semi-natural

1The June Survey of Agriculture and Horticulture (JAS) is an annual survey which

collects detailed information on arable and horticultural cropping activities, land usage,

livestock populations and farming labor force figures—https://data.gov.uk/dataset/

june_survey_of_agriculture_and_horticulture_uk.
2The pesticide usage group reflects the key groups used in surveys reporting publicly

available data on pesticide applications (e.g., Garthwaite et al., 2013, 2014, 2015.)
3Taken from Hess et al. (2010).

varying risk, given current and antecedent rainfall conditions,
with the aim of supporting drinking water abstraction operations.
The on-line tool asks users to indicate the agro-chemical they are
interested in, the status of the soil and the date for which they
require field-to-channel delivery risk estimates. For this proof
of concept tool, the choices for agro-chemicals are limited to
“Metaldehyde” and “Acid Herbicide,” and the choices for soil
status to “Good” or “Poor.” The runoff risk is R (mm) from
Equation 15 was categorized into 4 classes of risk:Nonewhen R=

0, Low when 0 < R <= 0.02, Moderate when 0.02 < R <= 0.05
and High when R > 0.05. In contrast to the field scale tool, the
aim here was to provide users with landscape and catchment scale
policy responsibilities with some information about the degree of
pesticide delivery risk across the 1 km2 grid cells comprising the
study area. The user can pick any date between current date and
October 2017 with the aim of allowing users to explore known
runoff events and the degree to which the tool predicted any
locally observed runoff and this is supported by an interactive
(dy)graph of the mean rainfall in this period for this area. When
the user selects a date, the current and previous 5-day rainfall
for each 1 km2 are extracted and the model is run generating a
surface of predicted pesticide delivery risk. The boxplots show
the rainfall for the previous 5 days and the date being queried.
A screen grab of the catchment scale model application to the
Wissey catchment is shown in Figure 4.

CONCLUDING REMARKS

The effective use of agrochemicals in modern agriculture
contributes to sustained crop yields and quality. However,
agrochemicals are less effective when they “run off” into surface
and groundwaters soon after they are applied. The risk of this
happening increases when agrochemicals are applied to wet
(saturated) soils and when rainfall occurs soon after application.
Runoff and associated pollutant delivery from field-to-channel
also has negative impacts on environmental and drinking
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TABLE 4 | Curve Numbers (CN) for surface runoff generation based on

Hess et al. (2010).

Hydrological Vegetation Surface condition

soil group type Good1 Poor2

A Grass 39 68

A Row crops 65 72

A Small grains 61 65

A Semi-natural 39 68

A Woodland 30 45

B Grass 39 79

B Row crops 65 81

B Small grains 61 76

B Semi-natural 39 79

B Woodland 30 66

C Grass 74 86

C Row crops 82 88

C Small grains 81 84

C Semi-natural 74 86

C Woodland 70 77

D Grass 80 89

D Row crops 86 91

D Small grains 85 88

D Semi-natural 80 89

D Woodland 77 83

1Good soil structure, limited management activities (e.g. contour plowing) to reduce runoff

transmission from the field.
2Degraded soil structure resulting in enhanced runoff generation, plus evidence

of management activities increasing runoff transmission (e.g. downslope tramlines,

compaction due to livestock trampling or use of heavy farm machinery, fine seed beds).

water quality when agrochemicals are transferred to surface
or groundwater.

This paper describes a novel, generic and parsimonious
modeling framework that integrates dual-scale soil water
interaction models with real-time weather data. It addresses
a number of impediments to the use of existing runoff
risk models to inform on-farm management decisions and
catchment management.

i) Most soil-water interactionmodels have high data and input
parameter requirements to generate daily time-step simulations
of processes related plant and crop growth.

ii) Consequently they require in-depth knowledge about input
process parameters.

iii) They frequently require data which may not be available,
for example to non-academic or non-research organizations, or
to farmers and commercial companies.

iv)Many of thesemodels perform poorly when compared with
observed monitoring data (e.g., Zeiger and Hubbart, 2016).

v) Finally, because of these issues, existing models are not
easily integrated into tools able to quantify the real-time field
runoff and field-to-channel delivery risks which are required to
support more reactive and effective agrochemical management
decisions on the ground.

The dynamic, real-time decision tools developed in this
research do not address all of these issues (there remain

difficulties in validating the detailed spatial patterns predicted by
any catchment scale model, for example). However, the provision
of spatially- and temporally- explicit runoff and pesticide delivery
risk information using parsimonious models is novel. We have
demonstrated their applicability for two spatial scales of decision
making: on-farm and catchment. The individual components of
the parsimonious tools are not new: field and catchment scale
models of pesticide and herbicide runoff have existed for a long
time. But, critically, existing tools fail to provide timely and
thereby useful information to managers. There are many live
and location specific weather forecasting websites, smartphone
apps and tools. As yet, however, real-time forecasting and soil
water models have not been linked in an accessible and user-
friendly way. In most decision tools, the model data inputs are
relatively static (e.g., cropping systems, soil conditions, measures
of catchment scale field drainage, etc) and do not support
location- and time-specific queries. The result is that the modeled
soil-water interactions and pesticide persistence represent some
kind of generalized overall runoff trend rather than a specific local
runoff measure.

There are a number of areas of potential future work emerging
from this research for the further development of this modeling
framework. The field and catchment scale models are very
much proofs of concept and demonstrate how parsimonious
but sensitive runoff risk models could be included in such
frameworks. The utility of the tools and the interfaces from the
end user perspective could be enhanced and the scope of the tools
could be expanded in a number of ways. In our generic approach
for both field and catchment scales, the critical variables driving
field runoff and field-to-channel delivery risk are those related
to antecedent, current and forecast rainfall in combination with
fundamental intrinsic controls. In previous models, these have
been assumed under a suite of potential scenarios that the user
has to choose from. However, the ability to link to spatially-
and temporally- explicit data for the rainfall variables through
APIs offers a new avenue for enhancing the wider application
and utility of soil-water-connectivity models. The future ability
to serve many different types of geo-spatial data in this way
via distributed data portals will only increase, reducing the
dependency on locally held data. The landscape scale tool could
be expanded to include nested watershed, catchment and sub-
catchment scales and any corresponding aggregation associated
with instream transfer processes. A further area for development
would be to account for “noise” in runoff from agricultural
applications, not least of which are point pollution due to poor
on farm practice (incidental spillages, etc), runoff from domestic
and managed green space applications as well as pesticide spray
drift. A final and critical area of further work in the context
of the approaches described is the inclusion of high accuracy
rainfall data. This project used publicly available rainfall data
served through the UK Met Office’s API and interpolated over
a 1 km2 grid. Higher quality data is not provided for free.
As the models inherently depend on rainfall (to parameterise
the soil wetness factors through antecedent rainfall, to model
current risk and determine future risk projections), the greatest
influence on the quality of the model outputs is driven by
this data.
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FIGURE 3 | A screenshot of output from the Teifi catchment field scale runoff risk model at https://github.com/lexcomber/saric.

FIGURE 4 | A screenshot of output from the Wissey catchment scale field-to-channel delivery risk model at https://github.com/lexcomber/saric.

In summary, the tools developed in this research provide
user interfaces to stripped down, parsimonious soil-water-
connectivity models that take advantage of the availability of

live rainfall data. Their components reflect the importance
of knowledge of past and current rainfall as drivers of
field runoff and field-to-channel delivery. To this end, each
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model pre-computed long-term water content for different
soil types and crops, was linked to a live rainfall data
feed and requested a very small amount of information
from users (date, soil status, crop type) from which field
runoff and field-to-channel delivery risk was computed using
antecedent and current rainfall. The wider applicability of
this research is underpinned by the generic nature of the
parsimonious modeling framework. Assuming the availability
of relevant mechanistic understanding and information on
application doses, the models could easily be extended to
predict risks to water quality and the wider environment for
any agricultural application at the farm decision scale or at
the landscape management scale. Future work will develop a
more strategic and commercial framework for a wider suite of
parsimonious models.
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