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Abstract

Agricultural landscapes provide many functions simultaneously including food production, regulation
of waterand regulation of greenhouse gases. Thus, itis challenging to make land management
decisions, particularly transformative changes, thatimprove on one function without unintended
consequences on otherfunctions. To make informed decisions the trade -offs between different
landscape functions must be considered. Here, we use a multi-objective optimization algorithm with
a model of crop production that also simulates environmental effects such as nitrous oxide
emissions to identify trade-off frontiers and associated possibilities foragricultural management.
Trade-offs are identified in three soiltypes, using wheat productionin the UKas an example, then
the trade-off for combined management of the three soilsis considered. The optimisation algorithm
identifies trade-offs between different objectives and allows themto be visualised. Forexample, we

observed ahighly non-linear trade-off between wheat yield and nitrous oxide emissions, illustrating
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where small changes might have alarge impact. We used a cluster analysis to identify distinct
management strategies with similar management actions and use these clustersto link the trade -off
curves to possibilities for management. There were more possible strategies for achieving desirable
environmental outcomes and remaining profitable when the management of different soil types was
considered together. Interestingly, it was on the soil capable of the highest potential profit that
lower profit strategies were identified as useful for combined management. Meanwhile, to maintain
average profitability across the soils, it was necessary to maximise the profit from the soil with the
lowest potential profit. These results are somewhat counterintuitive and so the range of strategies
supplied by the model could be used to stimulate discussion amongst stakeholders. In particular, as
some key objectives can be metin different ways, stakeholders could discuss the impact of these

management strategies on other objectives not quantified by the model.

Highlights

e Trade-offs between different objectivesin agricultural landscapes are complex

e Clusteranalysis helped visualise effects of management on trade-offs

e  Minimum N,O emissionsscaled linearly with yield until ~85-90% of maximumyield
e A more fertile soil could be managed more flexibly and remain profitable

e Achieving profitability on the leastfertile soil was key for overall profitability

Graphical Abstract
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Introduction

The United Nations Sustainable Development Goals (SDGs) set outan ambitious suite of targetsto
stimulate effort to improve sustainability globally. Core to the SDGs is that these targets should not
be considered inisolation, but that the interlinkages between the goals should be accounted for. The
agricultural sector plays animportantrole in achieving many of the goals, most obviously ‘zero
hunger'which cannot be achieved without food production, but also impacts on goals relatingto the
environment (Gil etal., 2018) such as ‘life on land’, ‘climate action’ and ‘end poverty . Indeed,
agricultural production systems have been identified as a major contributorto key global issues such
as biodiversity loss, climate change and unsustainable nutrient cycling (Steffen et al, 2015; Burns et
al., 2016; Campbell etal., 2017). This hasled to increasinginterestin understanding how agricultural
production systems could be transformed to reduce negative environmental impacts whilst
providing nutritious food and prosperous livelihoods within the sector (Kanteretal., 2018). Yet the
complexity of thesesystems, their globalscale and even theirvariability at local scale is a barrierto
transformative change because itis difficult to identify alternatives to the current situation that take
account of all the processes that might be affected by change and the multiple functions of

agricultural landscapes.

One particularchallenge isto stimulate informed stakeholder discussion about trade -offs within
agricultural landscapes so that priorities can be identified collectively. This requires information

aboutthe likely trade-offs within agricultural systems and associated possibilities for managing these



systems to meet different combinations of objectives. Various methods have been used for
identifying trade-offs in agricultural systems, including participatory methods, empirical methods,
the use of multi-objective algorithms with models of agricultural systems and combinations of the
above (Klapwijk etal., 2014). Multi-objective algorithms are appealing because they can make use of
the current understanding of systems thatis embedded in models. They may need to be combined

with other methods where key processes and objectives are not adequately represented in models.

Optimization algorithms strategically try different configurations of land management (the inputs to
a model of an agricultural system) to identify an optimal value of a quantifiable objective or
objectives (the outputs from the model). Multi-objective algorithms (e.g. Deb et al., 2002; Cao etal.,
2011; Huang etal., 2013) are particularly usefulbecause they avoid the need to weight different
objectives. Such approaches have been used to identify scenarios of land-use change between an
agricultural use and a range of otheruses (Polaskyetal., 2008; Hu et al., 2015; Esteset al., 2016). In
these, the spatial configuration of the relevantland-use categories is optimised using objectives such
as agricultural production and environmental factors, including biodiversity and water retention.
However, the different possible practices within each land-use category are not considered. Other
studies, however, have also optimised the spatial configuration of agriculturalland managed using
different practices using a multi-objective approach (Groot et al., 2007; Zhang etal., 2012; Kennedy
etal., 2016; Groot etal.,2018). Multi-objective algorithms therefore provide a useful way to explore
the effect of both land use and management practices on different objectives simultaneously.
Algorithms play aparticularly interesting role in identifying possibilities because, whilst the
objectives and search options are set by people, within this range the computeralgorithm can
search dispassionately and so consider options that might otherwise be discounted without due
consideration due to preconceptions. Forexample, in astudy focussed on land use possibilitiesin

lowa, Nassauerand Corry (2004) noted that whilst citizens mightimagine futurelandscapes without



perceiving unintended consequences, experts might limit their creativity based on what behavioural

change they deem possible.

One challenge in using multi-objective algorithms is that the results are complex and can be difficult
to interpret. If two objectives are considered and there is atrade-off between thesetwo objectives,
the multi-objective algorithm will identify a number of optimal points along atrade -off frontier. The
pointsalongthis frontier have Pareto optimality, thatis to say that at every pointonthe curve, an
improvementin one objective would be associated with a negative effecton the other objective (see
for example Lautenbach etal. 2013 for furtherexplanation of pareto optimality). Such results can be
plotted easilyona2-D plot(e.g. Zhanget al., 2012; Kennedyetal., 2016). If the algorithm considered
three objectives, the Pareto frontier could be shown as a 3-D surface. However. as more objectives
are included, the multi-dimensional surface becomes harderto plotand visualise. Avariety of
approaches have been considered to visualise results, including the use of different colours and sizes
of pointsto representadditional dimensions and using heat maps (Lautenbach etal, 2013; Tusar and
Filipi¢, 2015; Ibrahim et al., 2016). For high dimensions, however, itisintuitiveto project the surface
ontoa series of 2-D plots representing the different pairs of dimensions (Groot etal., 2012). This
allows the frontiers between each pair of objectives to be visualised. Still, such plots do not show the
link fromthe land managementactions to the associated outcomes (i.e. the associated point on the
trade-off frontier). Thiscan be done to a limited extent by illustrating afew key points, forexample
with a map of the land use that leadsto a particularresult (Polasky etal., 2008; Lautenbachetal.,
2013). However, itis not possible to do this fora frontier with hundreds of points; thus, new

approachesto enable thiswould aid interpretation of results.

Challengesin determining trade-offs within agricultural landscapes lie in the complexity of these
systems, both interms of the need to consider multiple functions of the system from economic,
social and environmental perspectives and the need to consider different spatial scales. The spatial

componentof these systemsisimportantto consider both because of the connectivity of landscape
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and landscape heterogeneity. The connectivity of the landscape means that alteringa management
practice in one location may directly affect contiguous locations due to physical flows (e.g. water,
nutrients). Meanwhile the heterogeneity of landscapes means that actions taken to optimise
objectivesin one place may not be optimal inanother(e.g. due to differencesin soil types).
However, this heterogeneity is also an opportunity, because different areas of land could be
managed to take best advantage of their specific characteristics. Thisis the idea behind the concept
of land sparing, the suggestion that environmental and food production might be best met by
removing some land from agricultural production and using it to meet environmental objectives
whilstincreasing production on the land thatremainsin production (Phalan etal., 2011). Ultimately,
to identify trade-offsin agricultural landscapes using multi-objective optimization, it would be
desirable to use asingle model that represents all relevant economic, social and environmental
objectives aswell as spatial variability and interactions. Such amodel does not exist, but
development of models and model frameworks that are able to represent multiple dimensions and
spatial interactionsin agriculturallandscapes simultaneously is ongoing (van Ittersum et al, 2008;
Schénhartet al., 2011; Groot etal., 2012; Schonhart etal., 2016). Meanwhile the Rothamsted
Landscape model (Coleman et al., 2017) captures another part of this complexity. It focusses on
agricultural production as well as the environmental component of agricultural landscapes,
specifically simulating nitrous oxide emissions and leaching from the soil, allowing the spatial

heterogeneity of the landscapeto be considered.

In this paperthe Rothamsted Landscape model (Coleman et al., 2017) is used to investigate and
visualise trade-offs, using wheat production in the south east of the United Kingdom (UK) as an
example. Aspecificaimisto considerthe importance of spatial heterogeneity within the landscape,
which we do by comparing trade-offsin three soil types (clay, sandy clay and sandy loam) and then
identifying how the trade-offs change when these threesoils are managed collectively, representing

a small heterogeneous landscape. Thisincludes management approachesin which some soils are



managed for production objectives and others forenvironmental objectives within the search space
for the multi-objectivealgorithm. The algorithm can thenidentify when objectives might be best
achieved by sharing production and environmental objectives across sites and when they might be
betterachieved by reducing production at one site and maximising it at anotherto compensate thus
making use of landscape heterogeneity. The intentionis that such results would be used toinform
and stimulate stakeholder discussion, although we do not report the results of such an interaction
here, focusinginstead on the development of this modelling approach. We considerthis asan
illustrative example, with arelatively simple set of possible management possibilities that could be
expandedinfuture work to furtherunderstand the importance of spatial heterogeneity and even
landscape connectivity in managing trade-offs across the landscape. Using this example of wheat
productioninthe UK, we develop aclustering approach to identify distinct management strategies
and how these relate to different outcomes forthe multiple optimization objectives. Thisaims to
facilitate the interpretation of the results by associating possible land management strategies (i.e.
similartypes of managementactions) with different regions of the trade-off curves. This helps to
addressthe issue that for complex sets of objectives and land use and management options multi-

objective algorithms can identify numerous possibilities which may become overwhelming.

Methods

Optimization algorithm

We coupledthe Rothamsted Landscape model with an optimization algorithm to determine Pareto
optimal fronts between multiple objectives defined in terms of outputs from the model as has been
done previously (Colemanetal., 2017). The optimised Pareto fronts describe the synergies and
trade-offs between objective variables such as crop yield and nitrous oxide emissions. In orderto use
such algorithms the user must define the optimization objectives and the control variables (in this

case a number of different farm managementactions). The algorithm varies the control variables



and uses a simulation model (inthis case the Rothamsted Landscape model) to calculate the effect
of these controls on the objectives. The algorithm must be able to identify which sets of control
variablesresultin better outcomes of the objectives and strategically identify new sets of control
variablestotry to seeif even better outcomes can be achieved. NSGA-II (Deb et al., 2002) isan
established algorithm to do this. Here, we combined the non-dominated sorting routine from NSGA-
Il with differential evolution (Storn and Price, 1997) to identify new sets of options to try. Differential
evolution adds adirectional componentto the identification of new control variables which is useful
for numerical control variables, as gradients can be used toinform the search direction. This
approach is not relevant when the control variables are categorical and there isno ‘gradient’
between categories as they are distinctly different options. Inthis application, as the controls were

numerical, the differential evolution approach was appropriate.

To run, the algorithm requires aninitial list of management options to try; this forms the initial
population of management strategies. This initial population can be formed by randomly selecting
valuesfor each of the managementvariables within each strategy. Todo thisa range or set of all the
values possible foreach managementvariable is defined. Alternatively, the initial population could
be based on managementstrategies thatare of interest, perhaps because they represent current
practice or an extreme managementoption. Here, the initial population was predominantly random

but was also seeded with some strategies representing current practice and extremes.

The algorithm then implements each of the management strategies from the initial population in the
simulation model and records the effect on each of the multiple objectives. Non-dominated sorting
thenidentifies the managementoptionsthat resultinthe ‘best’ objectives, i.e. thosethatare non-

dominated. A pointissaidto be dominated by anotherifitis worse forevery single objective.

The processis iterated in directions that the differential evolution algorithm suggests willbe an
improvement, until the results converge and produce asimilar Pareto front with each iteration. The

algorithmwas run for 1500 iterations and convergence was judged manually by visually comparing
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the frontier over multipleiterations. Runningthe algorithm for this application took around 1-2 days
for each soil, although the time depends on the control variables that are chosen as some

combinations take longerto runthan others.

When considering the management of multiple units of land with different characteristics and
management possibilities, there was also asecond stage of optimization to combine the three
frontiers across the land uses. This used the pareto fronts generated for each soil using the
simulation model asaninputto the NSGA-II multi-objective optimization algorithm algorithm (i.e.
without differential evolution beingimplemented, as the control variables are categorical and a
directional searchis not helpful in this context). By using the pareto frontiers identified in the first
step (i.e. the sets of points identified for each soil), we assumed that there were nointeractions
between the sites and that what was optimal at one site was not affected by actions at other sites.
The algorithm was then used to consider how three sites with known individual trade-off curves
could be managedtogetherto produce the bestaverage values of the objectives. There wasone
control variable for each unit of land, this control variable was anindex value identifying the point
on the trade-off curve forthatsite. As the optimal trade-off curves for each soil consisted of 100
points, there are a million possible combinations of management practices. The algorithmthus
effectively searchesforthe best way in which the trade-off curves from different locations could be
combined by takingintoaccount the strengths of each location and where they can best contribute
to specificobjectives. A geneticpopulation of 1000 points was usedin this search, primarily to better

represent the resulting trade-off frontier as the shape of the surface becomes more complex.

Simulation model scenario

The optimization algorithm used outputs from the Rothamsted Landscape model (Colemanetal.,
2017) tosimulate the effect of the management options described by the control variables on the
objectives. Thismodel has been calibrated and validated in South-East England, within the climatic

zone of the study, (Colemanetal., 2017). It operates at a daily time step and simulates agricultural
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yield as well as the effect of production on environmental processes including nutrient leaching and
nitrous oxide emissions. The Landscape modelis also able to simulate nutrient flows across the
landscape, however this feature of the model was not used here. Instead, the modelwas used to

simulate the trade-offs between multiple objectives at asingle location ata time.

The model was used to simulate wheat production using weather data that represents conditionsin
the climaticzonesinthe west and centre of England. To do this weather data from Chivenor, Devon,
was used. The simulations were initialised with soil textural data representing Clay, Sand Clay and

Sandy-Loam soils (Table 1).

In the second stage of the paper, when combined managements of the soils were considered, equal
areas of each of the three soil types were assumed. Thus the objectives were quantified by taking

the arithmeticmeans of the values at each site.

Table 1: Soil properties (0-23cm) of the three soil types used in simulations

Clay SandyClay | SandylLoam

Clay (%) 76 36 14

Silt (%) 14 15 18

Sand (%) 10 49 68

SOC (%) 2.49 1.83 0.96

pH 7.63 7.14 6.03

Bulk density 1.23 1.38 1.33
Control variables

The identification and implementation of appropriate control variables s critical asit sets the range
of possibilities that the optimization algorithm can explore. Whilstitis thereforetempting to make

the scope wide, this can slow down the optimization algorithm or preventit from finding global
10



optima. Here, we used 11 control variables—the first 9 of these represented the amounts of
ammonium nitrate fertiliser applications. Each application could vary between 0-100kgN/ha. The
firstapplication can be made on 1°* March with possible subsequent applications at 2 week intervals.
Ifit rained onthe day that any application was scheduled, that application was delayed untilthe next
day. The expectation here, was that several of the possible 9applications would be 0. If the initial
valuesforthese application rates were drawn from a uniform distribution it would be highly unlikely
that the value zerowould be selected repeatedly. Thus, to improve the convergence of the
algorithm, up to half of the initial population was settoinclude members that had 6-8 zerovalues
for N application control variables whilst the remaining members of the population had 9 randomly
sampled application rates. The 10" control variable was a farm yard manure (FYM) application (0-3
t/ha) and the 11" control variable determined the time at which this manure application was applied

from 0-3 weeks before sowing.

Objectives

The optimization objectives wereselected to representindicators that are relevant to the
contribution of agriculture tothe SDGs, eitherdirectly by production or due to the effects of
production onthe surrounding environment. Anumber of possible SDGindicators foragriculture
have been proposed (Gil etal., 2018), here however, we focused on those for which it was possible
to quantify with the model. Thesewere; crop yield, nitrogen use efficiency (NUE), nitrogen surplus,
nitrous oxide emissions, and change in soil organiccarbon (SOC). The yield and nitrous oxide
emissions weresimulated for each yearand then calculated as the average overthe nine seasons of
the simulation. The change in SOC was calculated as the difference between the value at the start
and the end of the simulation. These values are clearly sensitive to the initial SOC. The NUE and
nitrogen surplus objectives were calculated by first summing the inputs and outputsin the crop grain

and straw overthe whole simulation. The NUE was then calculated as the ratio between the outputs
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and inputs, and the surplus as the difference between inputs and outputs. All sources of nitrogen

enteringthe soil were accounted for, soincluding atmospheric deposition (Coleman et al., 2017).

In addition, a profitfunctionis calculated, as the sum of the yield each year multiplied by the farm
price of the crop, minus the total cost of the N fertiliserapplied (both the mineral Nand Nin FYM),
minus the total cost of the P fertiliser applied, minus the cost of applyingthe N fertiliser. This is

divided by the number of yearsto give the average profit.

Clustering

To identify common management strategies, the sets of control variables found to be optimal were
furtheranalysed usingaclusteranalysis. Priorto clustering, the nine inorganicfertiliser application
valueswere summarised into 3values; the total amount of N applied, the number of N applications
(i.e.numberof non-zerovalues), and the timing of the first application. The clusteranalysis was then
performed onsets of variables representing the three values summarising nitrogen fertiliser and the
amount of FYM applied. The clusteranalysis used a minimum variance, hierarchical clustering
approach following the Ward (1963) method. This wasimplemented in MATLAB (version R2018a)
using the standardised Euclidean distance. To aid visualisation, the mean profitability factor foreach
clusterwas calculated, and only the most profitable strategies were highlighted in th e trade-off

curves.

Results

The optimization approach identified trade-off frontiers between the different objectives. Scatter
appearsinthe frontiers because the plots shown a multi-dimensional surface projected ontoa 2-D
plot. Trade-offs occur when animprovementin one objective has adetrimental effectonanother
objective. Meanwhile synergies occur when objectives improve concurrently. In the clay soil, this
approach identified trade-offs between the yield and N,O emissions and the N,O emissions and the

changein SOC(Fig1a-f). Asthere were synergies between the N,0 emissions, NUE and the N surplus

12



(Fig. 2), the trade-offs between NUEand N surplusindicators with other objectives were the same as
those forthe N,0 objective (Supplementary information, Fig. S2). Meanwhile synergies were
observed between the yield and profitability, yield and change in SOC, and the profitability and the
change in SOC. Itisinstructive to focusonthe N,0 data because these results emphasise the non-
linearity of certain trade-offs (Fig 1d). Specifically, the line that would represent the 2-D frontier
between N,O and each of the otherobjectivesis non-linear. The frontier between the profitability
and the N,0 emissions suggests asynergy at high emission values and atrade-off atloweremission
values (Fig. 1le), howeverthereisalso alot of scatter behind the frontier correspondingtothe other
objectives. As such, to meet these otherobjectives it may not be desirable to optimisethe N,0

emissions per unit profit.

The clusteranalysis approach was applied to look for similarities in the control variables from within
the optimal population identified by the optimization algorithm. We referto these clusters as
‘management strategies’ as they group togethersimilarsets of management actions allowingthem
to be associated with their effect on the objectives. Forthe clay soil, hierarchical clustering was used
to divide the sets of managementactionsinto9clusters (Fig 3). Lookingat the mean of the

profitability objective inthe clusters, three profitable strategies were identified:

1. ApplyingnoFYMand relatively high fertiliser N over 3 applications
2. Applyingalittle FYMand a slightly less N fertiliser over 2 applications

3. Applying much FYM and rather less N fertiliserover2applications

Notably, inthese strategies, fertiliser applications tended to start later (from the 4™ possible
application date) than otherless-profitable strategies (Supplementary Information, Fig S2). The first
two strategies were associated with highyield, whilst for the third profitable strategy the yield was
slightly less and the profitability arose from lower fertiliser costs. FYMapplication was,
unsurprisingly, associated withincreases in SOC. Most of the profitable strategies were associated

with high N,0 emissions, except fora subset of the first strategy (when no FYM and loweramounts
13



of Nfertiliserwere applied). Also, in the clay soil the maximum yield was higherthan the sandy clay

and sandy loam soils.
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Figure 1: Trade-off frontiers (a-f) and cluster characteristics (g-r) in clay soil. Units are: Yield (t/ha),
Profitability (x10° £/ ha /year), N,O ( x10° CO, equivalentyr™), change in SOC- 6SOC (%). Note that
for N,O, increasing values are shown fromright to left ortop to bottom because this objective was
minimised in the optimisation process. This means that, consistentlyacross the plots, trade-offs
show trends fromthe top left to the bottom right of the plotsand synergies trends from the bottom
lefttothe topright. Points within the most profitable clusters are highlighted; all other points are
shown as small grey circles. Histograms of the cluster variates show the fraction of the pointsin each
clusterwith a particular managementvalue, where nisthe number of management strategies (i.e.
points) in each cluster, N Fertis the total N appliedinfertiliser, First N isthe week of the firstN
application, #Appsisthe number of fertiliser applications and FYM is the amount of farm yard

manure applied.
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top lefttothe bottomright of the plots and synergies trends fromthe bottom leftto the top right.
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In the sandy clay soil the same trade-offs and synergies between objectives were observed asinthe

clay soil (Fig 4a-f). Two profitable management strategies wereidentified (Fig 4g-n):

1. Highapplication of FYM, 1-3 applications of asmall amount of N fertiliser

2. Low or Medium application of FYM, 1-3 applications of amedium amount of N fertiliser

In this soil, most of the pointsin the optimal set were highyielding (Fig 4f). Profitable strategies were

alsoassociated with highyields. The greatest possible profitability was less thanin the clay soil.
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(t/ha), Profitability (x10° £/ ha / year), N,O ( x10° CO, equivalent), Change in SOC - §SOC (%). Note
that for N,O, increasing values are shown fromright to left or top to bottom because this objective
was minimised inthe optimisation process. This means that, consistently across the plots, trade-offs
show trends fromthe top left tothe bottom right of the plots and synergies trends fromthe bottom
lefttothe topright. Points withinthe most profitable clusters are highlighted; all other points are
shown as small grey circles. Histograms of the clustervariates show the fraction of the pointsineach
clusterwith a particular managementvalue, where nisthe number of management strategies (i.e.
points)ineach cluster, N Fertisthe total N appliedinfertiliser, First N is the week of the first N
application, #Appsis the number of fertiliser applications and FYM is the amount of farm yard

manure applied.

For the sandy loam soil (Fig. 5), the highest possible profitability was £390 ha™ yr*, lowerthan the
sandy clay and clay soils (£458 and £624 ha'yr respectively). Meanwhile, the maximum possible
yield 7.5t ha™ for the sandy loam soil, was higherthan possible forthe sand clay (7.0t ha™) but

lowerthan for the clay soil (8.7t ha™).

The 3 profitable strategies identified were:
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1. HighFYM, high N fertiliserin 2-3applications, starting early
2. HighFYM, medium N fertiliser, typically 2-3 applications, starting slightly later

3. No FYM, medium N fertiliser, typically 3-4applications, startingeven later
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Figure 5: Trade-off frontiers (1-f) and cluster characteristics (g-r) in sandy loam soil. Units are: Yield
(t/ha), Profitability (x10° £ / ha / year), N,O (x10® CO, equivalent), Change in SOC- §SOC (%). Note
that for N,O, increasing values are shown fromright to left or top to bottom because this objective
was minimised in the optimisation process. This means that, consistently across the plots, trade-offs
show trends fromthe top left tothe bottom right of the plots and synergies trends fromthe bottom
lefttothe top right. Points within the most profitable clusters are highlighted; all other points are
shown as small grey circles. Histograms of the clustervariates show the fraction of the pointsineach
clusterwith a particular managementvalue, where nisthe number of management strategies (i.e.
points)ineach cluster, N Fertisthe total N appliedinfertiliser, First Nisthe week of the firstN
application, #Appsisthe number of fertiliser applications and FYM is the amount of farm yard

manure applied.
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Combiningthe objectives across three fields of equal area but differingin soil texture (clay, sandy
clay, sandy loam) led to a combined trade-offfrontier (Fig. 6). Notably, for the combined
management, itbecomes more clear that the frontieris a multi-dimensional surface with the Pareto
optimal points more spread out compared to the management for each of the soilsindividually (Figs.
1, 4 and 5). The relationship between the profitability and N,O emissions was synergisticfor high
emissions, but becomes atrade-off at loweremissions. This change at the frontier, from synergy to
trade-off, was clearerthanin the individual soils and indicated that areductionin nitrous oxide
emissions beyond a certain point would be associated with alarge reduction in profitability (Fig. 6e).
Multiple profitable strategies perform similarly with respect to multiple objectives (e.g. greenand
yellow clustersin Fig. 6) meaningthat there is freedom to make choices between these strategies
based on additional objectives not captured by the model. The most profitable strategies (the blue
clusterinFig. 6) produced lower nitrous oxide emissions than the other profitable clusters, all of

which resultedinanincreasein SOC.

Interestingly, all of the more profitable clusters in the combined management included the most
profitable management strategies for the sandy clay soil, which had the lowest maximumyield (Fig.
8). Furthermore, only one of the five management strategies on the sandy loam soil (which had the
medium maximum yield) included less profitable management strategies on this soil. On the clay soil
(which had the highest maximumyyield), there were a widerrange of management strategies that
resultedin profitable overall management. Comparedtothe strategiesidentified for the clay soil
alone (Fig1.), the strategies that were profitableon clay in the case of combined management
included more in which manure was applied to the clay soil, and more numerous fertiliser

applications (Fig. 7).

This shiftto less profitable strategies occursin the clay soil but not inthe sandy clay when combined
managementis considered. The reasons for this are complex but occur because of the effectthata

decrease in profitability has on the otherobjectivesin each of the soils. Forexample, inthe sandy
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clay soil, most of the possible reductionin N,O emissions can be achieved whilst remaining
profitable (i.e. the frontier has afairly straight vertical edge in Fig. 4e). Inthe clay soil however, there
isa discernible trade-off that emerges to reach the lowest possible emissions (i.e. the top edge of
the frontieris more roundedin Fig. 1e). Additionally, in the clay soil the differences between
profitability of the more profitable strategies was smaller thaninthe sandy clay soil (i.e. with respect
to profitability, the points are grouped together predominantly in the high profitability region forthe
clay soil —Fig. 1, but are more spread out for the sandy clay soil —Fig. 4). This means that, to
maintain overall profitability foradecrease in the profitability in the sandy clay soil, arelatively large
increase in profitability on another soil would be necessary. Hence optimal combined strategies

maintain profitin the sandy clay soil.
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Figure 6: Trade-off frontiers when managing three fields each of equal area but each of a different
soil texture (clay, sandy clay, sandy loam). Units are: Yield (t/ha), Profitability (x10° £/ ha / year), N,O
(x10° CO, equivalent), Change in SOC- 6SOC (%). Note that for N,0, increasing values are shown
fromright to left or top to bottom because this objective was minimised in the optimisation process.

This means that, consistently across the plots, trade-offs show trends from the top left to the

20



bottom right of the plots and synergiestrendsfromthe bottom lefttothe top right. Points within
the most profitable clusters are highlighted; all other points are shown as small grey circles.

Histograms of the cluster characteristics for the most profitable clusters are showninFig. 7.
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number of fertiliser applications and FYMis the amount of farm yard manure applied.
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are defined as the 30% of most profitable points forthat soil type.

Discussion

Trade-offs between objectives

One distinctive feature of the resultsis the non-linearity of the trade-off between yield and N,O
emissions. Thisis not unexpected as high yields are associated with high N application, eitherin the
form of fertiliser ormanure, butisimportantto note because many national greenhouse gas
inventories follow an emissions factor approach that effectively assumes this relationshipislinear
(Egglestonetal., 2006; Shcherbak etal., 2014).. Recent work has suggested that the increase in N,0O
emissions with increasing N applicationis non-linear (Shcherbak etal., 2014), and here, when the
trade-offis considered with respecttoyield, this non-linearity is exacerbated as at high N application
furtherincreasesin N applied resultinonly amarginal increase inyield. Linquist et al. (2012)
consideredthe trade-off between greenhouse gas and cereal crop production. They concluded that

the lowest global warming potential per unityield occurred at 91% of potential yield for wheat. This
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iscomparable to the pointat which we observed the non-linearincrease in GHG production (90% of
the maximumyieldinthe clay soil, 85% in the sandy clay and 88% in the sandy loamsoil). Asimilar
findingwas alsoreported by Nguyen etal., (2018) who suggested that 90% of potential production
can be achieved with minimal impacts, including greenhouse gas emissions. Itisinterestingto note
that this non-linear pointis comparable to the 80% of potential yield thatis often considered as the
‘exploitableyield’ inyield gap analysis (Lobell et al., 2009; van Ittersum et al., 2013). Whilst this
exploitableyield has beenreached from aresource use and profitability persp ective, in ouranalysis
iscorresponds more to the threshold that limits a negative environmental impact, as some of these

high emission management strategies stillappearto be profitable inouranalysis.

The results also highlight atrade-off between N,O emissions and increasing SOCin the soil. Thisisin
part due to the control options by which the SOC can be increasedin the simulations; either by
manure addition orby increasing N application insuch away thatyieldincreased and hence crop
residues also. Both mechanisms are typically associated with anincrease in N,O emissions. Bos et al.
(2017) showed that net GHG emission reductions could not be obtained with manure application,
and only the application of compostresultedinlarger emission reductions because of SOCincrease
comparedto N,0 emissionincrease. Thereare alsoindications that N,O emissions may be inherently
higherfrom soils with higher SOC (Palmeretal., 2017; Charlesetal., 2017), as thiswould reduce the
chance that N,0 emissions are limited by C availability in soil (Charles etal., 2017). Otherstudies,
however, have notfound asignificant effect of SOC (Buckinghametal., 2014). When considering
carbon sequestration to mitigate GHG production, the net effect of sequestration and emissions
must be considered. Other studies have also suggested that, in terms of global warming potential
carbon sequestration may be offset by N,O emissions (Powlson etal. 2011; Zhou etal., 2017). A
systems perspective is also clearly necessary as, if manure was not applied to the soil, it would still

emitgreenhouse gases elsewhere (Hou etal., 2015). However, increasesin SOCare also desirable
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for otherreasonssuch as increasing future soil fertility (Garratt et al., 2018) and reducing erosion

risk.

The EU nitrogen panel has made recommendations for NUEand N surplus (EU Nitrogen Expert
Panel., 2015), suggesting arange of NUE from 0.5 - 0.9 combined with an N surplus of less than 80 kg
ha™ yr. In our study these ranges were met by using strategies in which very little manure was
applied, forexample the blue square cluster (Fig. 2) in which no manure was applied orvery few of
the red triangle clusterin which asmall amount of manure was applied. This corresponds to the fact
that manure applications were associated with anincrease in N,O emissions in the simulations, and
alsowithincreased N leaching. Some thought must be giventohow NUEand N surplusis calculated
when applying organic matterto the soil, as nitrogen applied in one year may benefitcropsin future
years. For thisreason N inputs and outputs were calculated for the whole simulation, however,
there was alsolikely a build up of soil nitrogen in this period. Indeed, anincrease in SOCwould
require this (Van Groenigenetal., 2017); Soif increasing SOCis an objective, the NUEand N surplus

targets or calculation approaches may need to be reconsidered concurrently.

Management across soil types

As expected, the model simulated differences between the soilsin terms of the yield and N,0
emissions. The N,O emissions from the sandy loam soil were notably |ess than from the othertwo
soils, particularly at greater N application rates. This corresponds to the findings from otherstudies
which suggest that emissions from fine textured soils are greater than from coarse textures (Charles
et al., 2017) and that waterfilled pore space is a key factor affecting emissions ( Garcia-Marco et al.,
2014). Thus soils which retained more water, emitted more N,O. The lower NUE values and higherN
surplusvaluesinthissoil also suggest that more N is lost from the soil profile by leaching, as would

be expected.
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Interestingly, the maximum possible increase in SOC was comparable forall three soils. The
simulated potential is of course related to the initial SOCin the simulations. In this case, the
simulations were based on soils underlong-term arable management with low initial SOC and in this
situationitseemsthat, forthe soil textures we considered, the soil texture had little effect onthe

possible increase in SOC.

In general, profitable strategies were associated with large yields. At the highest yields, we might
have expected to see atrade-off between these two objectives; indeed, in yield gap analysis, 80% of
the potential yield is considered as the ‘exploitableyield’ (Lobelletal., 2009; van Ittersumetal.,
2013), representing a point at which there starts to be a trade-off between the two objectives
because the cost of inputs outweighsthe increase in sale price due tothe increase inyield. Here,
however, asinotherstudies (Silvaetal., 2017), we did not observe this trade -off. Nevertheless, in
the clay soil, areduction of yield to around 70% of the maximum could be achieved with very little
impact on the profitability (Fig. 1). In the sandy clay, reductionsinyield resultedinalinearreduction
in profitability (Fig. 4). In both case, strategies that reduced yield but maintained profitability were
associated with large manure application rates and small amounts of N fertiliser. This strategy was
not identified as a possibility in the sandy clay soil, which also had the lowest yield potential. In this
soil, all the profitable strategies were associated with high yields. This suggests thatthereisless

opportunity to adapt management strategies whilst remaining profitable.

On many farms, such as those in the UK, different soil types are present and these soils must be
managed simultaneously. Considering the combined options across these different soils means that
additional strategies can be identified to deliver the same objectives overall. Here, for example, the
clay soil could be managed in a way that was not necessarily the most profitable for that soil, but
contributed toimproving the otherobjectives. The lossinthe likely profit fromthis soil could then

be compensated foronanothersoil in which the other objectives wereless desirable.
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One ongoing debate regarding sustainable agriculture relates to the notion of sharing or sparingland
inagricultural production (Phalan etal., 2011; Fischeretal., 2014). Thisrelatesto considering
whether environmental objectives might be best achieved by reducing production (and thus
negative environmentalimpacts) across all agricultural land (sharing) orwhetherit would be
preferable to remove some agricultural land from production entirely and use remaining agricultural
land even more intensively (sparing). Most researchin this area has focussed on the trade-off
between biodiversity and production. However, recent studies suggestthatland-sparing might help

mitigate leaching and GHG emissions aswell (Lamb etal., 2016; Balmford et al., 2018).

Generally, forland sparing it might be expected that the least productive agriculturalland be
removed from production because the focusis onyield and profit. Contrary to this, however, the
results here suggest thatitis management of the most productive soil that should be targeted to
improve the multi-objective performance. Biodiversity is not a part of this analysis, noris carbon
sequestrationinspared land. In this study, land cannot be entirely removed from productionin the
way the control variablesin this study have beenimplemented, and the environmental objectives
focus mainly on nitrogen. However, given the typical nitrogen response curve of crops, itis
unsurprisingthat spreading nitrogen thinly overalargerarea will be preferableto putting the same
amounton a smallerarea. This takes advantage of the largeryield increase perunit nitrogen that
occurs at low application rates compared to those that occur at higherapplication rates. This means,
however, thatina land sparing scenario, the agricultural land thatis managed more intensively is
likely toresultinhighernitrous oxide emissions perunityield. A natural extension of this work
would therefore be toinclude biodiversity objectives within the optimization. Any trade-off between

these objectives and nitrogen cycling objectives should then become apparent.

Envisioning future landscapes

One core aim of this paperisto illustrate the potential of of this approach to identify possibilities for

possible strategies for managing agricultural landscapes. Notably the approach identifies many
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possibilities, the intention being that these can be presented to and discussed with stakeholders.
Specifically, this approach could be used as a tool within avisioning and backcasting exercise (i.e.
envisioning the future and then working backwards from this vision untilthe current state is
reached). Visioning and backcastingis an approach that was developedinthe energy sectorasa tool
to identify transformation pathways (Robinson, 1982) and has subsequently been usedin other
sectors as a tool for considering transformative change within complexsystems (Dreborg, 1996;
Vergragt and Quist, 2011). The firststepisto envisage adesirable futureand thisis often done using
a participatory that brings together multiple stakeholders with different perspectives. The ideain the
visioning stepistofocus onthe key factors that are important to the different stakeholders for the
future, ratherthan discussing the current problems and barriers to change (as can easily happenina
forecastingapproach, orwhenthe currentsituationis the focus of discussion). Gil etal. (2018)
representan example, where priorities for SDG-2 (‘End Hunger’) were set by comparing SDG-2
indicatortargetvalues for 2030 with currentvalues. With the end visioninsight, the backcasting
processthen allows stakeholders to be more creative in considering how any barriers might be
overcome. Thus, intheory, the approach should allow more room fora truly transformative pathway

to be identified.

Such approaches encourage idealism, the philosophy being that ourvisions provide the motivation
to develop new approachesand therefore reshape whatis possible (Wright, 2010). Yet thisidealism
must be balanced with realismin orderto generate visions that are also plausible and tangible so
that action can be taken (Wiek and Iwaniec, 2014). Without this, there isarisk that an idealistic
future vision may include multiple objectives that are not physically possible to achieve concurrently.
Trade-off frontiers identified by multi-objective algorithms could therefore be used as atool to
encourage stakeholders to discuss trade-offs whilst they are developing this future vision. This would
allow challenging discussions about trade-offs to occur during the visioning process, ratherthan

during the backcasting process, thus with lessfocus on challenges that occur within the current
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system and more focus on what would be desirablein future. Forinstance, the example presented in
this study could be used to inform stakeholder discussion about the relative importance of
minimising nitrous oxide emissions from soil compared to maximisingyield, without the idealistic
assumption that both can be achieved simultaneously and without apportioning blame with regards

to the current state of the system.

In this example the focus was on wheat productioninasmall landscape and with a defined set of
control variablesrelating tofertiliser and manure application. Thus, thereis clearly scope to expand
the method to consider more diverse agricultural practicesin more complex landscapes as the scale
and context will affect the trade-offs that can be achieved. These couldinclude practices that are of
interestto stakeholders within a particular context and things that are technically possible and the
scales (field, farm, region) at which different options could be implemented. Evenso,the approach
highlighted the range of possibilities that might be achievable with simple changes and the

opportunitiesin considering the heterogeneity of the landscape.

There are various technical challenges in the optimization approach, including the risk of the
algorithm becoming stuck in local minimaand the inconvenience of the algorithm converging slowly
because extreme control variables are selected and are difficult to simulate. Theserisks would be
even more presentin more complex modelling scenarios considering more complex landscapes and
management possibilities. However, we found that seeding some of the initial population with a
number of likely scenarios was effective at reducing the number of steps needed for convergence,
an approach that has been useful elsewhere (Milneetal., inreview). Within the initial population,
several possible fertiliser applications were set to arate of zero. When using more complex sets of
control variables, subgroups of the se control could be optimised initially in orderto be able to seed

optimization of the complete set.

The clusteranalysis was used as a tool to relate the control variables to the resulting sets of

objectives. This allowed the management strategies to be associated with different regions of the
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Paretofront. It is particularly interesting that for some pairs of objectives similar trade -offs can be
achieved by alternative strategies (e.g. those from different clusters). For example, similaryields and
GHG emissions occur for strategiesidentified by the clusters of red squares and green crossesin Fig.
6. In this case, more pointsoccurin the red square clusterand fewerin green cross cluster. In
general, the pointsinthe green cross cluster dominate those in the red square cluster with respect
to the indicators of SOC. Without this dominance in anotherfactor, itis likely that this management
strategy would occur less frequently inthe population. Indeed, if the algorithm were optimised
based on yield and GHG objectives aloneit may even be overlooked entirely, if astrategy fromthe
red square cluster marginally outperforms the strategy of the green cross cluster. Thus inclusion of
anotherobjective enabled the identification of an alternative management approach with similar

performance foranotherobjective.

To capture the complexity and the multiple stakeholderobjectives and to identify adiverse range of
strategies, it may seem desirable toinclude more objectives. However, with more objectives it
becomesincreasingly difficult to visualise the results and communicate them clearly. Additionally,
models are unlikely to be able to simulate all of stakeholders’ priorities. We suggest, therefore, that
the objectives simulated and optimised by the model are viewed as asubset of the stakeholders’
priorities. In this case the objectives used in the model were asubset of those identified by Gil et al.
(2018) whichincluded NUE, N surplus and greenhouse gas emissions intensity as priorities for
agriculture inthe Netherlands as well as pesticide use and geneticdiversity which cannot currently
be representedinthe model. In most situations there will also exist additional objectives that have
not been quantified by the model which stakeholders will be considering when they interpretthe
results. Foreach managementstrategy, anotheranalysis exercise (e.g. a participatory method with
the stakeholders orempirical evidence) could then be used to identify how the management
strategies would likely affectunmodelled objectives. However, there may also be distinct

management strategies that are appealingto stakeholders that exist close tothe frontier but are
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neglected by the optimization algorithm. Althoughitislikely toincrease convergence time, future
algorithms should retain solutions that are ‘almost’ optimal within achosen tolerance, particularly if
they are associated with distinctly different management strategies. Given complex control
variables, this should increase the number of distinct management strategies that might be of
interestforstakeholderdiscussion and might meet other, untested objectives such as those relating

to biodiversity.
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