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In-season early mapping of rice area and flooding dynamics from optical and
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L. Busetto a and F. Holeczb
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Italy; bSARMAP, SA, Cascine di Barico, Purasca, Switzerland; cRothamsted, Harpenden, UK

ABSTRACT
Rice mapping products were derived from Sentinel-1A and Landsat-8 OLI multi-temporal
imagery over Northern Italy at the early stages of the 2015 growing season. A rule-based
algorithm was applied to synthetic statistical metrics (TSDs-Temporal Spectra Descriptors)
computed from temporal datasets of optical spectral indices and SAR backscattering coefficient.
Temporal series are available up to the tillering/full canopy cover stage which is identified as
the optimum timing for delivering in-season information on rice area (i.e. mid July). The
approach relies on a-priori knowledge on crop dynamics to adapt time horizons for TSD
computation and thresholds to local conditions. Output products consist of maps of rice
cultivated areas, rice seeding techniques (dry and flooded rice) and flooding practices.
Validation showed rice mapping overall accuracy to be 87.8% with commission and omission
errors of 3.5% and 24.7%, respectively. Mapping of rice seeding technique showed good
agreement with farmer declarations aggregated at the municipality scale (dry rice r2 = 0.71
and flooded rice r2 = 0.91). Finally, flood maps have an overall accuracy above 70%. Geo-
products on rice areas and flooding occurrence are relevant information for water management
at regional scale especially during summer in presence of multiple crops and water shortage.
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Introduction

Early and timely information on crop type and condi-
tions is crucial for agricultural monitoring and resource
planning by private and public decision-makers (Hao,
Zhan, Wang, Niu, & Shakir, 2015). In the European
Union (EU), Italy accounts for more than half of the
total rice production. In rice cultivations, water usage by
irrigation and/or agronomic flooding is relevant
although increasing use of direct dry seeding techniques
can significantly change timing of water needs by rice
farmers. These changes could affect water resource
management and planning and lead to conflicts with
other irrigated crops (Ranghetti et al., 2016).
Information on rice flooding dynamics is therefore
crucial for better understanding of agronomic and eco-
logic impacts of changes in water usage and for better
planning of water provision.

Remote sensing (RS) techniques have long been
exploited for land cover mapping since early 1970s with
the first NASA (National Aeronautics and Space
Administration) Landsat images with a specific interest
in agricultural monitoring. Specifically, for rice mapping
purposes, RS data proved to be valuable source of infor-
mation at regional to global scales (Dong & Xiao, 2016;
Fang,Wu, Liu, & Huang, 1998; Gumma et al., 2011). For

rice mapping applications, most of the literature has
grown in Asia due to the relevance that rice cultivations
have for food production and population survival. As
reference, Asia produced 90% of the global rice in 2011
(Kuenzer & Knauer, 2013).

Data acquired by passive optical satellite sensors such
as NOAA-AVHRR (National Oceanic and Atmospheric
Administration-Advanced Very High Resolution
Radiometer) (Fang et al., 1998), NASA MODIS
(Moderate-resolution Imaging Spectroradiometer) (Shi,
Huang, & Zhang, 2013; Sun, Huang, Huete, Peng, &
Zhang, 2009), SPOT VEGETATION (Kamthonkiat,
Honda, Turral, Tripathi, & Wuwongse, 2005; Xiao et
al., 2002), ENVISAT MERIS (MEdium Resolution
Imaging Spectrometer) (Kirches et al., 2014) and
Landsat TM/ETM+ (Thematic Mapper/Enhanced
Thematic Mapper) (Azar et al., 2016; Yu et al., 2013)
have long been used for assessing rice area extent from
land cover and/or crop map products.

At regional scale, ESA (European Space Agency)
Sentinel 2 and NASA Landsat satellite missions provide
suitable RS data for land use/land cover mapping;
despite the enhanced radiometric and geometric char-
acteristics of the Sentinel missions, at present, Landsat
data still constitute the longest archive available for
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monitoring land surface (Chakraborty, Sachdeva, &
Joshi, 2016). Since revisiting time might be drastically
reduced by cloud cover and cloud shadows, radar RS
relying on Synthetic Aperture Radar (SAR) sensors
mounted on satellite platforms offers the unique advan-
tage of not being affected by clouds and atmospheric
conditions. Several studies have been carried out to
investigate the potential of SAR backscatter information
for rice mapping and monitoring by exploiting imagery
acquired by ERS-1 (European Remote Sensing-1),
RADARSAT-1 and 2, ENVISAT ASAR (Advanced
Synthetic Aperture Radar) and PALSAR (Phased
Array type L-band Synthetic Aperture Radar) (Bouvet
& Le Toan, 2011; Cesari de Maria et al., 2016;
Choudhury & Chakraborty, 2006; Oguro et al., 2001;
Shao et al., 2001). However, major limitations with past
satellite SARmissions were: (i) lack of systematic acqui-
sitions, (ii) poor data availability and (iii) high cost for
large-scale mapping which jeopardized the develop-
ment of operational products (Bouvet & Le Toan,
2011; Dong & Xiao, 2016), until the advent of the ESA
Sentinel 1 missions. Dual-polarization Sentinel-1A data
are available every 12 days since the end of 2014 and the
launch of Sentinel-1B (2017) increased revisiting time
up to 6 days.

Multi-temporal datasets of RS images have been
widely exploited for crop mapping (Brown, Kastens,
Coutinho, Victoria, & Bishop, 2013). Time series of
satellite images offer the opportunity to retrieve
dynamic properties of target surfaces by investigating
their spectral properties (both reflectance and back-
scatter) combined with temporal information on their
changes. The availability of satellite imagery at key
times during the crop growing cycle is indeed essential
for more accurate discrimination. Dual-polarization
SAR imagery offers enhanced capability for discrimi-
nating rice crop areas from other land cover, which
were found to be characterized by very similar back-
scatter in single-polarization images (Mosleh, Hassan,
& Chowdhury, 2015). The availability of optical and
SAR data allows the scientific community to exploit
advantages offered by the two technologies separately
(Torbick et al., 2011). For full review of both optical
and radar RS techniques applied to rice mapping and
monitoring, the reader can refer to publications such as
Kuenzer and Knauer (2013) and Mosleh et al. (2015).

This study was carried out in the framework of
the ERMES (an Earth obseRvation Model based
RicE information Service) project (http://www.
ermes- p7space.eu/) that aimed to develop a pro-
totype of Copernicus downstream services assim-
ilating EO and in situ data in rice crop modelling
(Busetto et al., 2017). In the project’s framework,
rice area mapping was recognized as a major pro-
duct by private and institutional users for the
three study areas located in Italy, Spain and
Greece. Besides being key information for

agronomic management and planning by farmers,
estimating crop acreage at country scale is neces-
sary to address EU’s common agricultural policy
(CAP) objectives. Moreover, rice area is one of the
key input data to perform yearly based yield esti-
mation by crop modelling (Pagani et al., 2019).

In Italy, in particular, information on rice culti-
vated areas are provided by Ente Nazionale Risi
(ENR) on the basis of farmer declarations and dis-
tributed to users only later in the season. Moreover,
this database does not possess an explicit spatial
dimension and is provided aggregated at the admin-
istrative unit level (i.e. municipality). Spatially dis-
tributed information on crop cultivated areas at
regional scale (i.e. regional map) was produced
and delivered to the public with annual frequency
by “Ente Regionale per I Servizi all’Agricoltura e
alle Foreste” (ERSAF, Regione Lombardia) up to
2015. Maps were derived by processing official
ENR farmer declarations and by integrating them
with a land use map (“Destinazione d’Uso dei Suoli
Agricoli e forestali” – DUSAF) (http://www.ersaf.
lombardia.it/, last access January 2019). Due to the
elaboration time necessary to integrate source infor-
mation and to provide a reliable geo-spatial data-
base, annual crop maps used to be released several
months after the end of the summer growing sea-
son; this delay made the product of little use for real
time and operational monitoring. Moreover, this
operational service by ERSAF has not been funded
since 2015, thus no geo-spatial information on crop
areas in Italy is now regularly available.

In this work, SAR Sentinel-1A (S1A) and optical
Landsat 8 Operational Land Imager (L8-OLI) multi-
temporal imageries were used for early (in-season)
rice mapping and monitoring over Northern Italy
for the year 2015.

Three major objectives were addressed in this work:
(1) to map rice cultivated areas at the early stage of the
growing season, (2) to distinguish rice areas sown with
direct seeding on dry soil or broadcast seeding on
flooded fields and (3) to map agronomic flooding dur-
ing the season. Thematic accuracy was assessed by
comparison with reference data provided by field sur-
veys, official statistics and classification of higher reso-
lution satellite images for flooding occurrence.

Study area

The study area is located in Northern Italy crossing
Lombardy and Piedmont regions (Figure 1). Climate
is continental, annual temperature range is up to 20°
C between January and July and average precipitation
is about 850 mm/year. The territory is an intensive
agricultural region of approximately 11,250 Km2,
where the most economically valuable crops are
maize, rice and soybean; rice and maize are the
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most water demanding crops. Several rice varieties
are cropped over about 227,300 ha (http://www.enter
isi.it), which accounts for 90% of the total paddy rice
area cultivated in Italy. Traditionally rice is cultivated
in paddy fields, thus being a highly water demanding
crop; but in recent years, due to water shortage and
changes in timing of water availability, driven by
climatic and human factors, rice cultivation techni-
ques and systems are changing to make a more
rational and sustainable use of resource (Monaco et
al., 2016). Among alternative cultivation techniques is
rice dry seeding, for which flooding is delayed until
tillering, or rice growing as other crops with inter-
mittent irrigation (Monaco et al., 2016; Ranghetti et
al., 2016). According, to recent figures (ENR, 2016),
water seeding rice cultivated area has decreased of
about 38% in favour of dry seeding (+53%) reaching
more than 50,000 ha in 2015 (Monaco et al., 2016).
Ranghetti et al. (2018) investigated the variation in
irrigation dynamics over the last 17 years in the study
area.

Data and pre-processing

Remotely sensed data

The RS dataset is composed of both optical (L8-OLI and
SPOT 5) and SAR (S1A) images over the study area as
shown in Figure 1. The L8-OLI multi-temporal dataset
is composed of 13 scenes, from 30 September 2014 to 4
June 2015, over frames 194/029 and 194/028 (path/
row). Images in the autumn/winter seasonwere selected
to mask out winter crops and enhance the accuracy of
rice mapping. Rice is traditionally cultivated as summer
crop with no preceding crop, with the exception of
fields where cover crop practice is adopted. The use of
cover crops rather than leaving bare fields during
autumn/winter is a mean for ecological intensification
of arable systems and for enhancing productivity by

reducing the impact of anthropogenic inputs
(Wittwer, Dorn, Jossi, & van der Heijden, 2017).

L8-OLI Surface Reflectance High Level Data
Products images were downloaded from the USGS
Earth Resources Observation and Science (EROS)
Center Science Processing Architecture (ESPA) On
Demand Interface (https://espa.cr.usgs.gov, last access
January 2019) together with the Enhanced Vegetation
Index (EVI) (Huete et al., 2002) (Equation 1). Red
(band 4) and short wave infrared (SWIR, band 7)
reflectance bands at 30 m spatial resolution were
used to compute the Normalized Difference
Flooding Index (NDFI) (Equation 2) to distinguish
standing water from soil and vegetation (Boschetti,
Nutini, Manfron, Brivio, & Nelson, 2014). The L8-
OLI dataset was re-projected to ETRS89 LAEA
(Europe Lambert Azimuthal Equal Area).

EVI ¼ 2
ρNIR b5L8OLIð Þ�ρRED b4L8OLIð Þ

ρNIR b8OLIð Þþ6ρRED b4L8OLIð Þ�7:5ρBLUE b2L8OLIð Þ
(1)

NDFI ¼ ρRED b4L8OLIð Þ�ρSWIR b7L8OLIð Þ
ρRED b4L8OLIð ÞþρSWIR b7L8OLIð Þ

(2)

The S1A dataset is composed of 17 C-band dual-polar-
ization VV/VH scenes between 23 March and 1 July
2015. Image product is Ground Range Detected (GRD)
Level 1 (L1), acquired in Interferometric Wide Swath
(IW) mode. Since the S1A sensor acquires on the study
area with a very similar incidence angle (~35°) for the
ascending and descending passages, both configura-
tions were used, to enhance frequency of observation
up to 4 and 8 days from ascending and descending pass,
respectively. SAR images were pre-processed with
Sarmap MAPScape-RICE software following the steps:
(i) filtering with De Grandi multitemporal speckle filter
(De Grandi, Leysen, Lee, & Schuler, 1997), (ii) geocod-
ing to ETRS89 LAEA and (iii) radiometric calibration to
Sigma Nought (σ0) by using elevation data from the
Shuttle Radar Topography Mission (SRTM) 90 m
Digital Elevation Database v4.1 (SRTM DEM). After
pre-processing, S1A imagery is provided at 30 m spatial
resolution comparable with L8-OLI indices.

The satellite dataset is completed with images
acquired within the SPOT5 (Take5) (S5T5) experiment
jointly conducted by CNES (Centre National d’Etudes
Spatiales) and ESA to deliver simulated image time
series of ESA’s Sentinel-2 data (https://spot-take5.org/
client/#/home, last access January 2019). The S5T5
dataset is composed of 25 images available from the
High Geometric Resolution 2 (HRG2) instrument on
board the SPOT5 platform and delivered as Level2A
products (Top Of Atmosphere Reflectance) with 4
bands in the visible, near-infrared and shortwave infra-
red wavelengths and a spatial resolution of 10 m. The

Figure 1. Sentinel 1A, Landsat 8 OLI and SPOT5 (Take5) frames
covering the study area in Northern Italy. Background image is a
false colour composite of multi-temporal S1A images (R: 23/03/
2015, G: 15/06/2015, B: 02/08/2015).
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area covered by the S5T5 dataset is highlighted by the
red rectangle in Figure 1. Images covered the period 24
April to 9 September 2015. Cloud and cloud shadows
were removed and NDFI (Equation 2) was computed
from red and SWIR bands and used to produce refer-
ence flooding maps. Since S5T5 images cover only a
portion of the study area, they were used as an external
independent reference dataset to validate flooding map-
ping results.

Ancillary and in situ data

Land cover information was derived by mosaicking the
2014 Lombardy land cover map (http://www.ersaf.lom
bardia.it) and the 2008 Land Cover Piemonte (http://
www.regione.piemonte.it) at 30 m resolution and pro-
jected to ETRS89 LAEA. Pixels belonging to urban,
anthropic, forest, shrub and other minor classes have
been aggregated to produce a non-agriculture land
cover mask. This mask was combined with altitude
and slope information, computed from the SRTM
DEM (Shuttle Radar Topography Mission Digital
Elevation Database v4.1), to derive a mask of arable/
non-arable (AL) lands.

During the 2015 growing season (April–
September), in situ observations on crop type, crop
phenology and conditions were collected with a smart
application (Bordogna et al., 2016) during extensive
field campaigns over the study area. In the early
season, different regions of the study area were sur-
veyed in order to characterize rice conditions and rice
management over the entire study site. In the Smart-
App, geo-referenced observations, collected by pin-
pointing the field under observation, are automati-
cally assigned to field cadastral polygons. The smart
application stores semi-structured geo-referenced in
situ observations collected by field operators and/or
farmers to support processing and interpretation of
Earth Observation (EO) data for agricultural moni-
toring. Moreover, it offers functionalities for upload-
ing information on crop conditions such as free text,
photographs, crop type and phenology and agro-
nomic practices, which are observed in the field
and/or provided by the farmers. This ancillary infor-
mation collected by the field operator could be
further exploited for data interpretation. Polygons
were reviewed in order to represent the actual in
situ conditions (Villa, Stroppiana, Fontanelli, Azar,
& Brivio, 2015) leading to a reference polygon layer
composed of rice (542) and no rice (676) classes. The
no rice class covers different crop types: cereals,
forages, maize and soybean. This dataset was used
for accuracy assessment of the rice map.

In addition to field surveys, ENR provided statis-
tics, on rice cultivated area, varieties and yield, and
rice seeding technique (water or dry seeding), which
were used to assess the accuracy of dry and flooded

seeded rice mapping. These statistics, derived from
farmer declarations, are aggregated at the municipal-
ity scale; a total of 277 municipalities were part of the
dataset over the study area. The range of municipality
surface is 172.2–18,166.34 ha with median values of
about 1433 ha.

Methods

The flowchart of the processing steps for both optical
and SAR data is depicted in Figure 2 where the steps
for rice mapping are highlighted by the red rectangle
(“Rice mapping module”). The input features to the
rule-based algorithm and threshold values are sum-
marized in Tables 1 and 2.

Early rice mapping: temporal spectral descriptors
approach

In order to produce early season rice map, we applied
a pixel-level rule-based approach relying on features
derived from the temporal profiles of SAR backscat-
tering coefficient and optical spectral indices. The
within-season temporal dynamics of the signal mea-
sured by EO sensors are strictly related to physiolo-
gical changes during crop growing; the extraction of
key parameters from the temporal profile built from
multi-temporal datasets of satellite imagery is a
widely used approach for crop mapping and classifi-
cation (Ghazaryan et al., 2018). These approaches rely
on the use of spectral metrics related to phenology (e.
g. flowering period) and/or management (e.g.
changes from bare soil to vegetation cover) for build-
ing classification rules based on crop calendar and
phase-dependent crop conditions (Zhong, Hu, Gong,
& Biging, 2016 and references herein).

In these approaches, “local” a-priori knowledge on
rice calendar, crop practices and agro-ecological con-
ditions are necessary to perform accurate mapping
(Campos-Taberner et al., 2017). However, in our case
study, the challenge was to define diagnostic features
to map rice at the early stages (from bare soil condi-
tions to tillering/full canopy phase), thus “looking” at
a temporal window rather than the whole profile
depicting the entire rice growing cycle. Moreover,
the Italian rice district is a particularly complex agri-
cultural system with more than 100 varieties belong-
ing to both Indica and Japonica groups with either a
medium (120–130 days; e.g. Gladio, Thaibonet,
Selenio, Loto, etc.) or long growing cycle
(>150 days; e.g. Carnaroli, Volano, Baldo, etc.) (for
more details see Boschetti, Stroppiana, Brivio, &
Bocchi, 2009). In recent years, the diffusion of dry
seeding added further complexity in RS rice detection
usually based on the identification of flooding
(Boschetti et al., 2017; Nelson et al., 2014).
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Figure 2. The flowchart of the algorithm implemented to produce the rice/not rice and flooding maps. The “Rice mapping
module” (red rectangle) highlights the steps for producing the rice map. A region-growing algorithm is applied to derive
flooding maps.

Table 1. Temporal Spectral Descriptor (TSD); subscripts a and d stand for ascending or descending.
TSD Metric in relation to crop condition Description

Min σ0VVa=d
Max NDFI

Minimum value in the land preparation period1a

Maximum value in land preparation period1b
Flood status of paddy rice fields – unique feature for rice cultivation
detection

Max σ0VHa=d Maximum value at the end of stem elongation
phase2

High biomass of summer crops – typical of summer crops

Span σ0VVa=d Maximum-Minimum difference from tillering to
stem elongation phase3

Rapid crop growth after flooding – typical of rice

Max EVI Maximum value in the autumn/winter vegetative
phase4

Winter crop presence – typical of double crops; this agro practice is not
usual in temperate European rice

Typical calendar period in the study area
1aMarch/July;
1bApril/June;
2May–June;
3March–July;
4September–May.

Table 2. The rule-based algorithm for dry and flooded rice.
Rule Dry rice Flooded rice Description

1 Max EVI < 0.3 AND
(Max σ0VHa OR
Max σ0VHdÞ < −16 dB

Max EVI < 0.3 AND
(Max σ0VHa OR
Max σ0VHd) < −15 dB

Biomass low at both early stages and later being rice less
productive crop

2 Max NDFI > 0.3 AND
(Min σ0VVa OR Min σ0VVdÞ < −12.5 dB

Max NDFI > 0.3 AND
(Min σ0VVa OR Min σ0VVd) < −15.5 dB

Identification of rice flooding and/or field levelling

3 (Span σ0VVa OR
Span σ0VVdÞ > 4.0 dB

(Span σ0VVa OR
Span σ0VVd) > 4.0 dB

Rapid rice growth
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The selected features input to the rule-based algo-
rithm is synthetic statistical metrics (Temporal-
Spectral Descriptors, TSD) derived from the temporal
profiles of S1A backscattering coefficients σ0VV and
σ0VH and L8-OLI spectral indices EVI and NDFI.
TSD are defined over temporal windows related to
the agro practices (e.g. land preparation and agro-
nomic flooding) and/or to early phenological stages
of rice to make the algorithm flexible enough to be
adapted to different conditions with expert knowl-
edge on rice calendar (Table 1). TSD are related to
both crop growing features and field conditions at the
beginning of the rice season and during the preceding
winter season (i.e. relying on the fact that rice in the
study area is traditionally grown as single crop cycle).

Since S1A ascending and descending orbits have
different flight directions with respect to the North,
the same surface area is viewed with different geome-
tries; thus, the two temporal series were processed
separately to extract both co-polarized (VV) and
cross-polarized (VH) backscattering. The following
TSD were computed: minimum, maximum and dif-
ference between maximum and minimum values (i.e.
span), which are indicators of the presence of flooded
conditions, rice biomass accumulation and rapid rice
growth after flooding, respectively. As we specified
above, TSD are computed over different time hori-
zons to be diagnostic indicators of rice growing and/
or agronomic practices for the discrimination
between rice and other crops (Asilo et al., 2014;
Fontanelli et al., 2014; Villa et al., 2015) (Table 1).
Both time horizons and the threshold values can be
adapted and refined to different crop and environ-
mental conditions.

MaxEVI is an indicator of biomass accumulation
suitable for discriminating presence/absence of vege-
tation (i.e. crop); it is computed over the September–
May period when no other crop is traditionally culti-
vated if rice is foreseen for the following summer
season. On the contrary, as knowledge on agro-prac-
tices of the study area suggests, high MaxEVI during
winter identifies fields where winter cereals or forages
are traditionally cultivated; indeed, these crops are
not combined with rice in a double crop cycle.

In the recent years, this tendency has been slowly
changing with the introduction, for example, of cover
crops during the winter season preceding rice culti-
vation. If the use of winter cover crops in rice fields
spreads in the future, this TSD could be modified by
distinguishing between cover crops and winter cereals
or forages, which have greater biomass in spring (e.g.
higher EVI) and are harvested later in the season (i.e.
beginning of June), i.e. after rice seeding (April).

MaxNDFI and SAR co-polarized minimum value
of the backscattering coefficient (Min σ0VVa=d) are
complementary indicators of flooding, which is tradi-
tional practice for rice cultivation in Italy. Extremely

low value of SAR backscatter coefficient could also
characterized laser-levelled bare fields (i.e. very low
surface roughness) where specular-like backscattering
effect occurs; these conditions are also typical of rice
field preparation when dry seeding technique is used,
thus reinforcing the role of this feature in the algo-
rithm. SAR TSD maximum cross-polarized backscat-
tering coefficient (Max σ0VHa=d) and difference
between maximum and minimum values of co-polar-
ized backscattering (Span σ0VVa=d) over the spring/
summer period are, respectively, indicators of rice
biomass accumulation and rapid rice growth after
flooding. Clearly, this last condition is meaningful
only if used in combination with the preceding
ones, which identify the absence of high biomass (i.
e. winter crops) and the presence of flooding/laser-
levelled field conditions.

In the rule-based algorithm, a pixel is labelled as
rice if it is not covered by vegetation in winter (Rule
1), it is levelled and/or flooded at the beginning of the
season (Rule 2) and it is rapidly covered by vegetation
(Rule 3). Threshold values were defined with an
expert-based trial and repeat approach to identify
dry and flooded seeding rice classes (Table 2). The
rule-based algorithm was applied to all arable land
pixels in the AL mask.

Flooding mapping: region-growing algorithm

S1A σ0VV multi-temporal images were exploited to
generate flooding maps. Previous studies (Twele,
Cao, Plank, & Martinis, 2016) comparing the two
standard polarizations, VV/VH, showed that for
flooding mapping purposes, VV performed better,
hence only S1A backscattering images in VV config-
uration were exploited. Since rice flooding is a very
dynamic phenomenon related to agronomic prac-
tices, each satellite acquisition was processed sepa-
rately to identify the presence or absence of water.
This way, the frequency of observation is maximized
and flooding dynamics (presence, start and end
dates) can be monitored.

A region-growing (RG) algorithm was applied to
identify rice pixels where the surface is covered by
water. Seed pixels were identified by applying a con-
servative threshold (σ0VV < −14.5 dB) and grown over
neighbouring pixels with stopping criterion of ±2 stan-
dard deviations; the output is a binary flooded/not
flooded map. The RG algorithm allows the identifica-
tion of flooding conditions from highly probable
flooded pixels by connecting neighbouring pixels
with lower probability; this approach helps in balan-
cing commission and omission errors by exploiting the
spatial correlation (Bastarrika et al., 2011; Stroppiana
et al., 2012). The algorithm was implemented in ITT
HARRIS IDL ®.
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Accuracy assessment

The accuracy of the early rice map was assessed by
comparison with in situ observations collected during
the 2015 rice growing season (see section Ancillary
and in situ data). Reference polygons were labelled as
rice and no rice with a majority criterion over the full
resolution rice map; hence, the error/confusion
matrix shows the number of polygon for agreement/
disagreement. Accuracy metrics (Overall Accuracy,
OA; Kappa coefficient, Kappa; Commission and
Omission Errors, CE, OE) were then computed.
Since in situ observations do not provide detailed
information for dry and flooded rice, accuracy assess-
ment was performed for the rice class as a whole.

Evaluation of the dry and flooded rice classes was
done by correlation analysis between estimated sur-
faces and ENR statistics available at municipality
scale. For each municipality belonging to the study
area, EO-derived rice area estimates were compared

to ENR statistics for the dry, flooded and total rice
classes. The error was analysed as a function of the
size of the municipalities, which were aggregated into
three categories (hereafter named c1, c2 and c3)
based on break values computed from minimum,
maximum and 33% and 66% quantiles
(q1 = 1091.8 ha, q2 = 1820.5 ha). Both absolute and
per cent error were analysed, i.e. 100 * (total area
ENR – total area EO)/(total area ENR).

Flooding maps derived with the RG algorithm were
compared to reference maps derived by applying an
image-based threshold to S5T5 NDFI. Visual refine-
ment of S5T5 flooding maps was carried out by
photo-interpretation of RGB false colour composites
(R: SWIR, G: NIR, B: red) to obtain the most accurate
reference maps for the three dates of simultaneous
acquisitions with S1A images (5 May, 22 May, 1 July).
Figure 3 depicts example images and maps of the flood-
ing reference dataset derived from S5T5 imagery. Over
the area covered by the S5T5 frame, pixel-by-pixel

Figure 3. False colour composite (RGB: SWIR, NIR, red) of S5T5 images acquired on 12/05 (a), 22/05 (b) and 01/07 (c) and the
reference flooding maps derived by photo-interpretation for the same dates (light blue is flooded, dark grey is not flooded,
white is masked). Images are shown over zoom areas in the study area.
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comparison was carried out to derive the confusion/
error matrices and accuracy metrics. Since flooding can
be very dynamic process, no inference on the presence
of water in rice fields could be done for other S5T5
acquisition dates.

Results

Temporal spectral features

Figure 4 shows statistics of SAR and optical TSD over
geo-referenced in situ observations for rice (blue) and
no rice (red) pixels (see section 3.2): the no rice class was
sampled over different crop types, i.e. cereals, forages,
maize and soybean. Grey dots represent outliers and the
horizontal lines highlight threshold values of the rule-
based algorithm. Significance level of the difference
between means of rice and no rice class pairs derived
from the Tukey post hoc test are shown in Table 3.
MaxEVI in spring/winter period is lowest for rice and
significantly different from other crops (***p <0.001). In
fact, in the study region, maize is generally sown at the
same time as rice but often following a winter cereal
(double crop cycle). For this reason, although maize is
still at the early growing stages in April/May, the aver-
age maximum EVI is significantly greater than rice
since it is driven by the precedent winter crop. Lower
end values of the MaxEVI density distribution over

maize are due to the presence of fields where no winter
crop preceded summer maize (single crop cycle).
Forages have the highest values followed by winter
cereals and maize, which is sown at the same time as
rice but often following a winter cereal (double crop)
hence showing a greater MaxEVI.

Rice exhibits the highest maxNDFI (***p <0.001)
due to the presence of water during and after sowing
(Boschetti et al., 2014), which can be detected up to
canopy closure (Ranghetti et al., 2016). The elongated
shape of rice boxplot is due to dry seeding practise
which postpones flooding until the tillering phase. A
common threshold value for MaxEVI and MaxNDFI
has been selected for both dry and flooded rice classes.

For what concerns SAR TSD, rice span has the great-
est values because of the increase from the lowest values
(flooding and/or laser levelled fields before sowing) to
high backscattering due to double bounce between water
and rice canopy (Kuenzer & Knauer, 2013). Indeed, span
σ0VV is the only SAR feature significantly different for all
pair comparisons (***p <0.001). Min σ0VV is an indicator
of the presence of water and/or humidity of the surface
and, combined with information from L8 NDFI, helps in
discriminating flooded conditions; this feature is signifi-
cantly different between rice and maize/soybean whereas
no difference is observed for rice-cereals and rice-forages
comparisons. A more relaxed threshold was selected for
the dry rice class (min σ0VV< −12.5 dB) in order to deal

Figure 4. The TSD boxplot statistics for the rice (blue) and no rice (red) classes as derived from in situ data. In each boxplot, the
median value is the central bold line, extremes of the rectangle area are given by the first (Q1) and third (Q3) quartiles, whiskers
are Q1-1.5*IQR and Q3 + 1.5*IQR, where IQR is the inter-quartile range (Q3 – Q1), empty dots are the outliers.

Table 3. p-Adjusted value from the Tukey post hoc test of the significance between means (p < 0.001 ***; p < 0.01 **;
p < 0.05*). Not significant difference (n.s.) is p > 0.05.
Crop pairs Minσ0VVa Minσ0VVd Max σ0VHa Max σ0VHd Span σ0VVa Span σ0VVd Max EVI Max NDFI

Rice-Maize *** *** *** *** *** *** *** ***
Rice-Cereals n.s. n.s. *** n.s. *** *** *** ***
Rice-Forages n.s. n.s. *** *** *** *** *** ***
Rice-Soybean *** *** *** *** *** *** *** ***
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with intra-class variability. Finally, the maximum cross-
polarized backscattering coefficient for rice is lower than
other crops (***p <0.001) probably due to the lower
biomass amount. No significant difference was observed
between TSD from ascending and descending acquisi-
tions with the only exception of min σ0VH. As for the
minimum co-polarized backscatter, two threshold values
were employed for the rice classes. The selected TSD are
exploited in conjunction in the rule-based algorithm
hence, no single feature is expected to provide the highest
power for separating rice from the other crops.

Early rice and flooding mapping

Figure 5(a) shows the early rice map (mid-July) with
dry (yellow) and flooded seeding rice (orange) covering
112,300 ha and 64,570 ha, respectively: flooded rice
prevails in Piedmont (western part, orange) and dry
rice in Lombardy (eastern part, yellow). Figure 5(b)
shows the frequency of flooding computed with
respect to the total number of satellite images available
over the study period (i.e. 24).

Validation showed that out of 1218 fields (i.e.
polygons) surveyed in 2015, 408 and 661 were cor-
rectly identified as rice and no rice, respectively, lead-
ing to OA = 87.8%, Kappa = 0.75, rice CE = 3.5% and
rice OE = 24.7%.

Within the framework of the FP7 ERMES pro-
ject, the algorithm proposed in this work was
further applied to L8-OLI and S1A time series in
2016 over the same study area. The output product
was validated with in situ observations collected
with a smart application achieving OA = 88.2%
and kappa = 0.76 (number of in situ point observa-
tions over the study area ~3200) and confirming
the validity of the proposed approach. The 2016
rice map and validation points together with the

confusion matrix are provided in Supplementary
materials (S1). An example of the spatial agreement
of RG flooding maps and S5T5 reference flooding
maps for the simultaneous dates of acquisition is
depicted in Figure 6; in the first column, orange
and blue regions show correctly classified not
flooded and flooded pixels, respectively. In the fig-
ure non arable lands are grey whereas cloudy pixels
are white highlighting the limitation imposed by
optical satellite imagery and strengthening the con-
tribution of SAR data for operational monitoring.
In the same figure, the accuracy of the flooding
maps is compared to grey scale L8 NDFI (second
column) and reference flooding maps derived by
applying a threshold to L8 NDFI.

Pixel-by-pixel comparison provided OA across the
three dates of 88.5%, 70.2% and 99.4%. The highest
OA values are achieved at end of July when no flood-
ing is detected due to full canopy condition.
Furthermore, at later stages of the growing season,
both radar backscattering (S1A) and optical reflec-
tance (S5T5) coefficients are influenced by the pre-
sence of rice plants rather than water on the
background, thus preventing the detection of flood-
ing. Yet, information on flood are necessary for water
management mainly at the early stages of the rice
growth cycle, because they can also be diagnostic of
adopted sowing technique.

Comparison with official data

Figure 7 shows scatter plots between total, flooded
and dry rice area estimates and official ENR statistics
in each municipality of the study area as well as the
total rice per cent error [%] as a function of the actual
total rice area (ENR). In all panels, each point repre-
sents a municipality with filling colour given by its

Figure 5. Early maps of (a) dry and flooded seeding rice area and (b) flooding frequency over the study period. Grey regions are
non-arable lands and dark grey line shows the administrative border between regions.
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size, as reclassified into three classes based on the
histogram: smaller (larger) municipalities are blue
(yellow) and intermediate size is green.

Scatter plots show more than satisfactory agree-
ment with r2 of 0.91, 0.91 and 0.71 and Mean Average
Error (MAE) of 179.2, 129.2 and 142.5 ha for total,
flooded and dry rice estimates, respectively. The great-
est agreement occurs for flooded rice due to the pre-
sence of water before and during sowing that is
univocally detected by both optical and SAR TSD.
Even though dry rice detection is more challenging,
the rule-based algorithm performs significantly well-
being able to represent the variability of agro-prac-
tices in the different municipalities.

The distribution of the scatter points along the
domain of the x-axis (actual total rice area, ENR) con-
firms that larger municipalities not necessarily have
larger rice cultivated areas since the agricultural land-
scape can be fragmented (i.e. different crops in the same
area). In the graph (Figure 7(d)), the y-axis range was
set to [−100%, 100%]; all points fall within this interval
except for 10 municipalities where errors are above
100%. Among them, eight have total rice area below
25 ha, hence representing small and sparse fields

covered with very few pixels potentially in mixture
condition. None of the municipalities have errors
below −100%. Generally, EO approach underestimates
rice area and bias (actual-predicted) is positive: fewer
points fall below the red line in Figure 7(d).

Figure 8 depicts some statistics on the rice area and
errors of EO estimations aggregated over municipality
area; the size category of each municipality ios shown
in panel a. The distribution of the errors is shown in
panels b, d, f and actual total rice area and the propor-
tion of flooded rice in panels c, d. These maps show
that absolute errors are uniformly distributed over the
study area (mean = 121.2 ha, median = 62.2 ha).

Discussion

The rule-based algorithm relies on the multi-tem-
poral trend of both SAR and optical features (VIs
and backscattering coefficient) which are summarized
by synthetic statistical metrics such as minimum and
maximum values (TSD). Knowledge of both crop
characteristics and agro-practices are exploited to set
rules able to discriminate rice among other crops.
Rice is traditionally cultivated as single crop and in

Figure 6. Spatial distribution of the accuracy of flooding maps over three example areas for the dates of simultaneous
acquisitions: accuracy map (left), L8 NDFI (middle), reference flooding map (right).
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paddy fields; this unique condition is depicted by the
MaxEVI feature which allowed us to discard fields
where summer crop is preceded by winter cultiva-
tions. The spectral signal induced by the presence of
water over the field is identified in the most sensitive
SAR and optical features: NDFI and σ0VV , as con-
firmed by the analysis carried out over field observa-
tions (Figure 4 and Table 3).

The use of pheno-spectral metrics, which are derived
from a temporal profile depicting crop growing, in
classification algorithms has been widely exploited in
the literature; however, in our specific case study the
challenge was to define features based on the availability
of spectral data only from the early stages of the rice
growing cycle. In fact, we exploiting changes in the
time-spectral domain related to agro-practices and phe-
nological stages in order to deliver in-season informa-
tion for crop management and crop planning. TSD are,
indeed, defined based on the early rice phenological
stages which, in the study area, assume values proposed
in Table 1; however, values could be flexibly tuned over
different rice cropping systems and calendars.

The proposed TSD and the rule-based algorithm
can be exported and applied to different years and/or
regions as long as the necessary a-priori knowledge
on crop characteristics, agro-practices and environ-
mental conditions are known. Expert knowledge is
necessary to tune time horizons and thresholds to
specific conditions. It is not within the scope of our

work to provide a generally valid algorithm to be
applied in an automated and unsupervised way else-
where. Yet, the algorithm as proposed here could be
exploited as initial setting for trial and error for tun-
ing to specific conditions.

The combination of rules in the decision tree-like
algorithm produces a rice map with OA = 87.8%,
Kappa = 0.75, rice CE = 3.5% and rice OE = 24.7%,
which is more than acceptable being an early season
detection. As a term of comparison, Vaudour, Noirot-
Cosson and Membrive (2015) achieved a per-field OA
of 69% for early-season mapping of crops in France.
The greater value of the omission error might be due to
the small size of rice fields; the enhanced spatial resolu-
tion of ESA Sentinel 2 data, replacing and/or comple-
menting Landsat data for recent years could improve
the accuracy of detection of small fields. Another source
of omission could be the revisiting time of 4/8 days for
S1A (obtained by combining ascending and descending
acquisitions) and 16 days for L8-OLI that might lead to
a lack of observations at key stages of rice sowing,
flooding and growing; although only these RS datasets
were available when the work was carried out, the pre-
sent availability of S1B and Sentinel 2 (A&B) data will
mitigate this effect for future applications (Nguyen,
Gruber, & Wagner, 2016).

The algorithm was further applied to the 2016
rice season achieving comparable accuracy levels
(OA = 88.2% and kappa = 0.76) and confirming

Figure 7. Scatter plots of EO estimated (y-axis) and ENR statistics (x-axis) of total (a), dry (b) and flooded rice (c) area [ha] for
each municipality shown by the coloured circle markers; colour is the size category. In the bottom row, the per cent error (100 *
(total area ENR – total area EO)/(total area ENR)) as a function of the ENR total rice area for each municipality; each marker is
proportional to the size of the municipality and the colour represents the size category.
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robustness and exportability. The operational avail-
ability of Sentinel-1B data (from 2017) and Sentinel
2 A (from 2015) and B (from 2017) will further
improve the frequency of observation and spatial
resolution thus enhancing mapping accuracy.

Mapping flooding frequency was carried out by
applying a RG algorithm, which exploits the low back-
scattering coefficient of water and built on S1A σ0VV
multi-temporal images. Validation of flooded area
maps was done by comparison with simultaneous
dates of high-resolution SPOT5 (Take5) images show-
ing good agreement for flooding maps which provides
a picture of paddy fields at the date of data acquisition.
By applying the RG algorithm, pixel-level (10 m) flood-
ing mapping was performed with overall accuracy in
the range 70–88% before the stage of canopy closure
(first two dates available for validation: 5 May, 22 May
2015). On these early stages of rice growing, since
vegetation cover is low, surface spectral signal is influ-
enced also by the soil/water background; hence, the
presence of water can be more easily detected. At

later stages, when greater and/or full vegetation canopy
cover is reached, the spectral signal is influenced only
by crop canopy conditions and characteristics; thus, the
presence of water below the canopy cannot be detected.
On the last date available for validation of flooding
maps, an overall accuracy of 99% is reached but this
high value is driven by the agreement of not flooded
areas on both classified and reference datasets; how-
ever, given the full canopy closure at this stage, nothing
can be inferred on the presence/absence of water below
the canopy.

The comparison with official ENR statistics at the
municipality scale is of great interest to prove that EO-
based mapping could support the institutional task of
providing official figures on rice cultivated areas by
integrating farmer declarations; EO products could pro-
vide high-resolution spatial explicit crop information.
Results show good agreement between EO estimates
and ENR actual values of rice area at the municipality
scale. We observed negligible influence of the munici-
pality size on both the rice cultivated area (large

Figure 8. (a) Municipality size category as classified based on the histogram of the size distribution; (b) rice area aggregated at
the municipality scale in [100 * ha]; (c) percentage of dry rice within each municipality as estimated by ENR reference data; (d)
absolute difference between ENR and EO estimated total rice area aggregated over the municipality; (e) and (f) percent error
separated for the two classes dry rice and flooded rice. In the last two panels grey polygons show municipalities where either EO
or ENR rice area is equal to 0.
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municipalities could have small rice cultivated areas and
vice versa) and the accuracy of EO estimates. Generally,
our approach leads to underestimate the actual rice, and
larger per cent errors occur where rice cultivated surface
over the municipality is less than 25 ha.

Recent changes in management of rice cultiva-
tions, which foresee the introduction of winter cover
crops and the increase of dry seeding techniques,
reduce mapping accuracy of the dry rice class
although agreement coefficients at the municipality
scale are satisfactory (r2 = 0.71 and MAE = 142.5 ha).

Maps in Figure 8(a, b) clearly show that dry seeding
rice is mainly located in the eastern regions of the
study area where the agricultural landscape is also
more fragmented (small fields and different crops); in
fact, panel d in the same figure clearly shows that total
rice area is lower in these regions. On the contrary,
flooded rice is practised in the western regions
(towards the border with Piedmont). Looking at the
distribution of the absolute difference and per cent
errors between ENR and EO rice area aggregated at
the municipality scale (Figure 8(d–f), larger discrepan-
cies (green and red areas in Figure 8(d)) do not occur
over larger municipalities since the total rice cultivated
area is not related to the size of the administrative
level. In the eastern regions, devoted to dry seeding
rice, per cent error reaches higher values (~ 100%)
although this apparently significant underestimation
leads to les important absolute error (orange areas in
Figure 8(d)) where the landscape is very fragmented
and characterized by small fields cultivated with dif-
ferent crop specifies. Underestimation is confirmed
also by scatterplots shown in Figure 7.

In general, performance indicators show that the
accuracy of our results is satisfactory given the complex-
ity of the agricultural land management and crop prac-
tices and the fact that mapping is carried out early in the
season to better address water and crop management
during the season. Comparable estimates are provided
by official institution, such as ENR, but these databases
are available after rice harvesting and therefore are of
little utility for in-season management purposes.

Conclusions

Spatially distributed products on rice seeding technique
and flooding management are key information for
regional planning and management of water resources.
Early season rice mapping was carried out with
Sentinel-1A and Landsat OLI images over northern
Italy for the year 2015. A rule-based algorithm was
built on synthetic features derived from multi-temporal
series of both optical and SAR images. Rice mapping
overall accuracy is 87.8% with commission and omis-
sion errors of 3.5% and 24.7%, respectively. We further
discriminated between dry and flooded rice to provide
information on rice seeding technique with r2 >0.70

when compared to reference data at municipality scale.
Finally, flooding maps where extracted with a RG algo-
rithm with overall accuracy above 70%.

The rule-based algorithm developed in this work will
be applied in the future to the archive of Landsat ima-
gery for analysing changes in rice agronomic patterns (i.
e. rice area and flooding timing) in the framework of a
changing climate. Furthermore, the algorithm will be
tested with Sentinel 2 data and enhanced accuracy is
expected because of the increased spatial resolution and
revisiting time.
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