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Human milk fat substitute (HMFS) is a class of structured lipid that
is widely used as an ingredient in infant formulas. Like human
milk fat, HMFS is characterised by enrichment of palmitoyl (C16:0)
groups specifically at the middle (sn-2 or β) position on the glycerol
backbone, and there is evidence that triacylglycerol (TAG) with
this unusual stereoisomeric structure provides nutritional benefits.
HMFS production currently relies on enzyme-based catalysis since
there is no appropriate biological source of fat with the equivalent
structure, other than humans. Most of the fat currently used in
infant formulas is obtained from plants, which exclude C16:0 from
the middle position. In this study we have modified the metabolic
pathway for TAG biosynthesis in the model oilseed Arabidopsis
thaliana to increase the percentage of C16:0 at the middle (versus
outer) positions by more than 20-fold (i.e. from ∼3% in wild type
to >70% in our final iteration). This level of C16:0 enrichment is
comparable to human milk fat. We achieved this by relocating the
C16:0-specific chloroplast isoform of the enzyme lysophosphatidic
acid acyltransferase (LPAT) to the endoplasmic reticulum so that it
functions within the cytosolic glycerolipid biosynthetic pathway
to esterify C16:0 to the middle position. We then suppressed
endogenous LPAT activity to relieve competition and knocked out
phosphatidylcholine:diacylglycerol cholinephosphotransferase ac-
tivity to promote the flux of newly-made diacylglycerol directly
into TAG. Applying this technology to oilseed crops might provide
a new source of HMFS for infant formula.

metabolic engineering | oilseeds | structured triacylglycerols | human
milk fat

Introduction

Infant formula is a manufactured food designed to substitute
for human breast milk. Around half the calories in human milk
are provided by fat (triacylglycerol; TAG) and in infant formula
this fat is mainly sourced from plants (1). Although blended
vegetable fats can replicate the fatty acyl composition of human
milk fat (HMF), which mainly comprises palmitate (C16:0) and
oleate (C18:1), the arrangement of acyl groups esterified to the
glycerol backbone (i.e. the stereoisomeric structure) is profoundly
different (2,3). In vegetable fats, saturated long-chain fatty acyl
groups such as C16:0 occupy the outer stereospecific numbering
(sn) positions (sn-1/3) and are virtually excluded from the middle
(sn-2 or β) position (4,5). Whereas in HMF more than 70% of the
C16:0 is present at the sn-2 position, with unsaturated fatty acyl
groups (mainly C18:1) occupying the outer sn-1/3 positions (2,3).

Multiple clinical trials on preterm and term infants have
suggested that the unusual stereoisomeric structure of HMF is
important for nutrient absorption in the neonatal gut (1,3,6). The
proposed mechanism is as follows. During the intestinal phase of
digestion lipases attack ingested fat at the sn-1/3 positions yielding
2-monoacylglycerols, which are easily absorbed (1,3,6). When
unsaturated fatty acids are released from sn-1/3 positions they
are also absorbed easily, but release of long-chain saturated fatty
acids such as C16:0 presents a problem. Their melting point is
higher than body temperature and, at intestinal pH they are prone
to form hydrated fatty acid soaps with minerals such as calcium
and magnesium (1,3,6). The arrangement of C16:0 at the sn-1/3
positions of vegetable fats thus means that they are more poorly

absorbed than HMF (1,3). There is evidence that the formation
of C16:0 soaps also reduces calcium absorption, thus impairing
early bone development, and accumulation of these soaps in the
intestine also disrupts transit, causing infants discomfort (1,3,6).

To mimic the stereoisomeric structure of HMF several com-
panies have developed HMF substitutes (HMFS) (1). HMFS
are made by enzyme-catalyzed acidolysis (or alcoholysis and
esterification) using tripalmitin, unsaturated free fatty acids
(mainly C18:1) together with an immobilized recombinant sn-
1/3-regioselective lipase (1). The price of HMFS is substantially
higher than that of conventional vegetable fat blends, primarily
reflecting the added cost of enzyme-based catalysis, including
the generation of organic solvent waste (7). Different grades of
HMFS are also available, providing a complete fat phase with
between ∼40 and ∼70% of C16:0 at the sn-2 position. True HMF
mimetics (with >70% of C16:0 at sn-2) are most expensive to
produce because they require a two-step catalytic process and
a pure tripalmitin feedstock derived from palm oil by special
fractionation procedures and chemical randomisation (1,7). The
tension between price and quality is one factor that has likely re-
stricted the use of HMFS and despite mounting clinical evidence
that this ingredient is beneficial (1,3,6), it is currently only found
in around 10% of infant formula, particularly premium products
formulated and marketed for ease-of-digestion. Even in these
products, there remains a substantial gap in C16:0 enrichment at
the sn-2 position versus HMF (1).

The aim of this study was to explore whether the stereoiso-
meric structure of vegetable fat can be altered by iterative
metabolic engineering, so that it mimics HMF. To our knowledge,
no land plant (Embryophyta) produces TAG enriched in C16:0 at
the sn-2 (verses sn-1/3 positions) and C16:0 is largely excluded

Significance

In human milk fat, saturated fatty acids are esterified to the
middle position on the glycerol backbone giving the triacyl-
glycerol molecules an unusual stereochemistry that assists
nutrient absorption in the infant gut. However, the fat used
in most infant formulas is derived from plants, which esterify
saturated fatty acids to the outer positions. Here we have
engineered the metabolism of an oilseed plant so that it accu-
mulates triacylglycerol with more than 70% of the saturated
fatty acid palmitate in the middle position, thereby mimicking
human milk fat stereoisomeric structure. Applying this tech-
nology to oilseed crops (or oleaginous microorganisms) might
provide a new source of human milk fat substitute for infant
nutrition.
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Fig. 1. A simplified diagram illustrating the cytosolic and chloroplastic
pathways for de novo glycerolipid biosynthesis in Arabidopsis. Three modifi-
cations enabled palmitoyl (C16:0) groups (white bars) to be incorporated into
the sn-2 (or β) position of TAG in developing seeds. (1) Retargeting of LPAT1
to the ER, (2) knock down of LPAT2 and (3) knock out of PDCT. C18:x, long-
chain mono- or polyunsaturated fatty acyl groups (black bars); C16:0 and
C18:x groups (hatched bars); CoA, Coenzyme A; ACP, acyl carrier protein; G3P,
glycerol-3-phosphate; 1-LPA, sn-1 lysophosphatidic acid; PA, phosphatidic
acid, DAG, diacylglycerol, TAG, triacylglycerol; PC, phosphatidylcholine; 1-
LPC, sn-1 lysophosphatidylcholine; FFA, free fatty acid; LPAT, 1-LPA acyltrans-
ferase; PDCT, PC:DAG cholinephosphotransferase.

from this position in virtually all cases (4,5,8). Even in palm oil
that contains ∼48% C16:0 in total, only 9% of this occupies
the sn-2 position (5). Here we describe a method for modifying
TAG biosynthesis, in the model oilseed Arabidopsis thaliana, that
results in a stereoisomeric redistribution of acyl groups such that
the amount of C16:0 at the sn-2 position increases more than
20-fold to over 70% of the total; a level of enrichment that is
comparable to HMF. Applying this technology to oilseed crops
might provide a new source of HMFS for infant formula.

Results and Discussion
LPAT1 can be redirected to the ER by removing its chloroplast
targeting signal

In plant cells, triacylglycerol (TAG) is formed by a cytosolic
glycerolipid biosynthetic pathway situated on the endoplasmic
reticulum (ER) and the enzyme responsible for acylation of the
sn-2 position is lysophosphatidic acid acyltransferase (LPAT) (9)
(Fig. 1). ER-resident isoforms of LPAT commonly discriminate
against C16:0-Coenzyme A (CoA) as a substrate and this may be
why C16:0 is excluded from the sn-2 position (9,10). To overcome
this limitation, we decided to express an LPAT with specificity for
C16:0-CoA (Fig. 1). Several candidate transgenes have been de-
scribed from cyanobacteria (11), mammals (12) and algae (13,14).
However, plants already possess an LPAT with the appropriate

Fig. 2. Chloroplast LPAT1 can be retargeted to the cytosolic glycerolipid
biosynthetic pathway to incorporate C16:0 into the sn-2 position of TAG. (A)
Laser scanning confocal microscopy image of a N. benthamiana epidermal
cell transiently expressing RFP-∆CTS-LPAT1 and m-GFP5-ER marker. Scale bar
= 20 µm. (B) Effect of seed-specific ∆CTS-LPAT1 expression in Arabidopsis
on the percentage of C16:0 esterified to the sn-2 position of TAG, verses
sn-1+3. WT = wild type; L30, L6 and L11 = three independent homozygous
ProGLY:∆CTS-LPAT1 lines. Values are the mean ±SE of measurements made on
separate seed batches from three plants of each genotype (n = 3). a, b and
c denote values significantly (P < 0.05) different from WT (ANOVA + Tukey
HSD test).

selectivity, that resides in the chloroplast (15,16) (Fig. 1). This
LPAT uses a C16:0-acyl carrier protein (ACP) substrate but will
also accept C16:0-CoA in vitro (17,18). We therefore decided to
test whether chloroplast LPAT could be relocated to the ER (Fig.
1). Chloroplast LPAT is an integral membrane protein that is
nuclear encoded and contains an N-terminal chloroplast targeting
signal (CTS) (19). CTS deletion has previously been used to alter
protein localisation (20). Using transient expression in Nicotiana
benthamiana leaves, we found that when 101 amino acid residues
containing the CTS are deleted from Brassica napus LPAT1 (17)
(SI Appendix, Fig. S1) and replaced with a red fluorescent protein
(RFP) marker the RFP-ΔCTS-LPAT1 fusion protein localises to
the ER (Fig. 2A).

∆CTS-LPAT1 expression drives C16:0 incorporation into the
sn-2 position of TAG

Truncated versions of LPAT1 that lack the CTS are known to
be active when expressed in Escherichia coli (18,19). To determine
whether∆CTS-LPAT1 functions in plants and can enable C16:0 to
be incorporated into the sn-2 position of TAG, we expressed this
truncated protein under the control of the seed-specific soybean
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Fig. 3. Disruption of ER-resident LPAT2 increases C16:0 incorporation into
the sn-2 position of TAG. (A) Diagram of LPAT2 locus showing positions of
T-DNA insertions in mutant alleles. Effect of lpat2 mutant backgrounds on
(B) the percentage of C16:0 esterified to the sn-2 position of TAG, verses
sn-1+3, and (C) LPAT2 transcript abundance in seeds expressing ∆CTS-LPAT1.
WT = wild type; L11 = homozygous ProGLY:∆CTS-LPAT1 line. Values are the
mean ±SE of measurements made on separate batches of dry seeds in B and
developing siliques in C from three plants of each genotype (n = 3). LPAT2
expression was normalised to the geometric mean of three reference genes
and expressed relative to WT. a, b & c denote values significantly (P < 0.05)
different from L11 (ANOVA + Tukey HSD test).

glycinin-1 promoter (ProGLY) in the model oilseed Arabidopsis
thaliana (21). We selected more than forty primary transformants

Fig. 4. Bypassing flux through PC increases C16:0 incorporation into the
sn-2 position of TAG. (A) Effect of pdct mutant background on percent-
age of C16:0 esterified to the sn-2 position of TAG in ProGLY:∆CTS-LPAT1
and ProGLY:∆CTS-LPAT1 lpat2-3 seeds. WT = wild type; L11 = homozygous
ProGLY:∆CTS-LPAT1 line. (B) Seed weight and (C) percentage oil content
of WT and ProGLY:∆CTS-LPAT1 lpat2-3 pdct (All). Values are the mean ±SE
of measurements on separate seed batches from between three and six
plants in A and five plants in B and C of each genotype (n = 3 to 6). a
and b denote values significantly (P < 0.05) different from L11 and pdct,
respectively (ANOVA + Tukey HSD test) and c from WT (two-tailed Student’s
t test).

(T1) using a DsRed fluorescent marker system (21) and analysed
the total fatty acyl composition of T2 seed batches. We found that
several lines exhibited an increase in total C16:0 content, which
suggested that the transgene was promoting C16:0 incorporation
into TAG (SI Appendix, Table S1). We selected three independent
single copy T2 lines (L30, L6 and L11) with high C16:0 content
and obtained homozygous T3 seed. When we purified TAG from
these homozygous seed batches and determined its stereochem-
istry using lipase digestion (22), we found that the percentage
of C16:0 at the sn-2 position (versus sn-1+3), had increased
more than 16-fold, from only ∼2% in wild type to values ranging
between∼32 and∼39% in the three independent ProGLY:∆CTS-
LPAT1 lines (Fig. 2B and SI Appendix, Table S2). ∆CTS-LPAT1
expression was therefore sufficient to allow incorporation of
C16:0 into the sn-2 position of TAG, but not to achieve positive
enrichment at this position verses the sn-1/3 positions, which can
already incorporate a low proportion of C16:0 (9) (Fig. 1).
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Fig. 5. Effect of genetic modifications on seed vigour at 20oC. Percentage
(A) seed germination, (B) cotyledons expanded by day 4 and (C) true leaves
developing by day 7. (D) Representative images of seedlings with expanded
cotyledons and developing true leaves. (E) Seed/seedling TAG content at day
0 and 4. WT = wild type; All = ProGLY:∆CTS-LPAT1 lpat2-3 pdct. Values are
the mean ±SE of measurements made on separate seed batches from three
plants of each genotype (n = 3). In D, scale bar = 2 mm.a and b denote values
significantly (P < 0.05) different from WT (two-tailed Student’s t tests).

Disruption of LPAT2 enhances C16:0 incorporation into the
sn-2 position of TAG

Competition between heterologous and native acyltrans-
ferases is one factor that may limit the incorporation of spe-
cific fatty acyl groups into TAG (23). We therefore investigated
whether ∆CTS-LPAT1-dependent incorporation of C16:0 into
the sn-2 position of TAG could be enhanced by disrupting the
function of the native ER-resident LPAT; believed to be LPAT2
in Arabidopsis (10) (Fig. 1). The lpat2-1 null mutant is embryo
lethal (10). However, T-DNA insertions in non-coding regions
of essential genes can be used to produce viable hypomorphic
alleles (24,25). We therefore isolated two T-DNA mutants (lpat2-
2 and lpat2-3) with insertions 302 and 139 bp 5’ of the LPAT2
translational start site (Fig. 3A). We then crossed ProGLY:∆CTS-
LPAT1 L11 into each of the new lpat2 alleles and recovered
homozygous seed batches. When we purified TAG from these
seed batches and performed positional analysis, we found that
the percentage of C16:0 at the sn-2 position had increased from
∼33% in the parental ProGLY:∆CTS-LPAT1 line to ∼51% in the
lpat2-3 background, whereas the effect in the lpat2-2 background
was not significant (P > 0.05) (Fig. 3B and SI Appendix, Table S3).
qRT-PCR analysis showed that LPAT2 expression is reduced by
∼83% in developing lpat2-3 siliques, but only by ∼24% in lpat2-
2. (Fig. 3B). These data support the hypothesis that LPAT2 con-
tributes to TAG biosynthesis in Arabidopsis seeds (10) and that
its competes with ΔCTS-LPAT1. The level of C16:0 enrichment at

sn-2 also appears to respond to the strength of LPAT2 repression
and achieving a greater reduction than ∼83% might therefore
lead to even stronger enrichment.

Disruption of PDCT also enhances C16:0 incorporation into
the sn-2 position of TAG

In developing Arabidopsis seeds >90% of the glycerol back-
bone in TAG is derived from the membrane lipid phosphatidyl-
choline (PC), owing to rapid diacylglycerol (DAG)-PC intercon-
version (26), catalysed mainly by the plant-specific head group
exchange enzyme PC:DAG cholinephosphotransferase (PDCT)
(27,28) (Fig. 1). Although LPAT is responsible for the initial
acylation of glycerolipids at sn-2, once these acyl groups are in
PC they may be removed and replaced by acyl editing activities
(26,29,30) (Fig. 1). To determine whether bypassing glycerolipid
flux through PC (Fig. 1) might increase ∆CTS-LPAT1-dependent
incorporation of C16:0 into the sn-2 position of TAG, we crossed
ProGLY:∆CTS-LPAT1 L11 into the pdct (reduced oleate desatura-
tion1) mutant (27). When we purified TAG from ProGLY:∆CTS-
LPAT1 pdct seed batches and performed positional analysis, we
found that the percentage of C16:0 at sn-2 had increased from
∼30% in the parental ProGLY:∆CTS-LPAT1 line to ∼56% in
the pdct background (Fig. 4A and SI Appendix, Table S4). These
data suggest that a more direct flux of newly made DAG into
TAG (28) (Fig. 1) favours C16:0 incorporation and/or retention
at the sn-2 position. In WT seeds it is conceivable that C16:0
entering the sn-2 position of PC might either be edited from
it by the action of lysophosphatidylcholine acyltransferase (LP-
CAT) or a phospholipase A2 (28). Interestingly, Lager et al.,
(29) have provided in vitro evidence that the reverse activities of
Arabidopsis LPCAT1 and LPCAT2 can selectively remove certain
fatty acyl groups from PC, but C16:0 was not tested. Although
rapid DAG-PC interconversion occurs in Arabidopsis seeds (26),
it is noteworthy that considerable interspecific variation has been
reported in this flux (31) and so the effect of PDCT disruption on
C16:0 enrichment at the sn-2 of TAG may differ between oilseeds.

Disruption of LPAT2 and PDCT has an additive effect on
incorporation of C16:0 at sn-2

To determine whether the combination of reducing LPAT
competition and bypassing flux through PC would have an ad-
ditive effect on ∆CTS-LPAT1-dependent incorporation of C16:0
into the sn-2 position of TAG (Fig. 1), we crossed ProGLY:∆CTS-
LPAT1 lpat2-3 with ProGLY:∆CTS-LPAT1 pdct. When we pu-
rified TAG from homozygous seed batches and performed po-
sitional analysis, we found that the percentage of C16:0 at sn-
2 had increased from ∼56% in ProGLY:∆CTS-LPAT1 pdct to
∼71% in ProGLY:∆CTS-LPAT1 lpat2-3 pdct (Fig. 4A and SI Ap-
pendix, Table S4). The combination of just three modifications to
the TAG biosynthetic pathway in Arabidopsis (i.e. ∆CTS-LPAT1
expression, plus LPAT2 and PDCT suppression) is therefore
sufficient to replicate the level of C16:0 enrichment at the sn-2
position (versus sn-1+3) that is found in HMF (1,2,3). Analysis
of TAG composition in ProGLY:∆CTS-LPAT1 lpat2-3 pdct (All)
seeds using high resolution / accurate mass (HR/AM) lipidomics
(32) also confirmed the presence of C16:0 groups at the sn-2
position, since tripalmitin was 27-fold more abundant than in
WT (SI Appendix, Fig. S2A). By contrast, no dipalmitoyl PC
was detected in ProGLY:∆CTS-LPAT1 lpat2-3 pdct seeds and
molecular species of PC containing one C16:0 group were not
increased (SI Appendix, Fig. S2B). These data suggest that an
asymmetrical distribution of saturated and unsaturated fatty acyl
groups in PC is maintained in ProGLY:∆CTS-LPAT1 lpat2-3 pdct
seeds and this may be important to prevent membranes assuming
the gel phase at physiological temperatures (33,34).

Redistribution of C16:0 reduces seed oil content, but not
germination or establishment

Many studies have shown that modifying fatty acyl composi-
tion can reduce TAG accumulation in oilseeds and in some cases
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can also impair seed germination and seedling establishment
(35,36). Our primary objective in this study was not to alter fatty
acyl composition per se, but to change the stereoisomeric structure
of TAG. To examine the physiological impact of C16:0 enrichment
at the sn-2 position of TAG, we compared seed batches from
wild type and ProGLY:∆CTS-LPAT1 lpat2-3 pdct plants that had
been grown together under standard laboratory conditions. We
found no significant difference (P > 0.05) in seed weight between
the two genotypes (Fig. 4B). However, the fatty acid content of
ProGLY:∆CTS-LPAT1 lpat2-3 pdct seeds was significantly (P <
0.05) lower than that of wild type, when expressed as a percentage
of seed weight (Fig. 4C). These data suggest that the modifica-
tions leading to incorporation of C16:0 into the sn-2 position,
reduce TAG biosynthetic flux. This finding is consistent with pre-
vious studies in which seed TAG composition has been modified
either using genetic engineering or mutant breeding methods
(35,36). In warm conditions (20oC), ProGLY:∆CTS-LPAT1 lpat2-
3 pdct seed germination, scored as radicle emergence (Fig. 5A)
and seedling establishment, scored as cotyledon expansion (Fig.
5B) and true leaf development (Fig. 5C), did not appear to be
significantly (P < 0.05) impaired, relative to wild type. TAG
breakdown also was not impeded in ProGLY:∆CTS-LPAT1 lpat2-
3 pdct seeds following germination in warm conditions (Fig. 5D),
and this contrasts with some studies where seeds have been
modified to incorporate uncommon fatty acyl groups into TAG
(35). In cool conditions (10oC), ProGLY:∆CTS-LPAT1 lpat2-3
pdct seed germination and seedling establishment also appeared
not to be significantly (P < 0.05) impaired, relative to wild type (SI
Appendix, Fig. S3). Finally, although ProGLY:∆CTS-LPAT1 lpat2-
3 pdct carries a hypomorphic allele of the essential gene LPAT2
(10) (Fig. 3), this does not appear to adversely affect growth and
morphology at the rosette stage (SI Appendix, Fig. S4).

Conclusions
In this study we show that the TAG biosynthetic pathway in plants
can be engineered so that the stereoisomeric structure of seed
storage oil is altered to mimic that of HMF, with >70% of C16:0

concentrated at the middle (sn-2 or β) position on the glycerol
backbone. There is mounting evidence that this configuration
is beneficial for infant nutrition (1,3,6), but it has not been
found to occur naturally in vegetable fats where C16:0 is virtually
excluded from the sn-2 position (4,5,9). Many infant formulas
contain HMFS that are made by restructuring vegetable fats using
enzyme-based catalysis, but they are relatively costly to produce;
particularly for the manufacture of true mimetics with >70% of
C16:0 at the sn-2 position (1,7). Translation of our technology
from the model species Arabidopsis to an oilseed crop might
conceivably provide a cheaper and more sustainable source of
HMFS for infant formula, but further research would be required
to test this supposition. If HMFS could be obtained directly from
a vegetable source this would abrogate the need for enzyme-based
catalysis. The infant formula market is currently estimated to
use nearly half a million metric tons of vegetable-derived fat per
year. Several oilseed crops may be considered as possible hosts
for HMFS production, and it is noteworthy that conventional
sunflower and genetically modified oilseed rape varieties have
already been developed that have the appropriate fatty acyl com-
position (37,38). Even an oilseed crop with more modest C16:0
enrichment at the sn-2 position that we have achieved here may
still be desirable since clinical trials have reported benefits with
as little as 43% of C16:0 at the sn-2 position (1,3,6) and product
surveys have found that this level of enrichment is common in
infant formulas that are supplemented with HMFS (1).

Materials and Methods
Detailed descriptions of plant material and growth conditions, cloning and
Agrobacterium mediated transformation, microscopy, mutant genotyping,
lipid analysis, qRT-PCR analysis of gene expression, germination and seedling

establishment assays and statistical analysis are provided in SI Appendix, SI
Materials and Methods. Primers used are listed in SI Appendix, Table S5.
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