
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Te Beest, D. E., Paveley, N. D., Shaw, M. W. and Van Den Bosch, F. 

2013. Accounting for the Economic Risk Caused by Variation in Disease 

Severity in Fungicide Dose Decisions, Exemplified for Mycosphaerella 

graminicola on Winter Wheat. Phytopathology. 103 (7), pp. 666-672. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1094/PHYTO-05-12-0119-R

The output can be accessed at: 

https://repository.rothamsted.ac.uk/item/95xz6/accounting-for-the-economic-risk-caused-

by-variation-in-disease-severity-in-fungicide-dose-decisions-exemplified-for-

mycosphaerella-graminicola-on-winter-wheat.

© Please contact library@rothamsted.ac.uk for copyright queries.

06/09/2019 09:16 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1094/PHYTO-05-12-0119-R
https://repository.rothamsted.ac.uk/item/95xz6/accounting-for-the-economic-risk-caused-by-variation-in-disease-severity-in-fungicide-dose-decisions-exemplified-for-mycosphaerella-graminicola-on-winter-wheat
https://repository.rothamsted.ac.uk/item/95xz6/accounting-for-the-economic-risk-caused-by-variation-in-disease-severity-in-fungicide-dose-decisions-exemplified-for-mycosphaerella-graminicola-on-winter-wheat
https://repository.rothamsted.ac.uk/item/95xz6/accounting-for-the-economic-risk-caused-by-variation-in-disease-severity-in-fungicide-dose-decisions-exemplified-for-mycosphaerella-graminicola-on-winter-wheat
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


666 PHYTOPATHOLOGY 
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ABSTRACT 

te Beest, D. E., Paveley, N. D., Shaw, M. W., and van den Bosch, F. 2013. 
Accounting for the economic risk caused by variation in disease severity 
in fungicide dose decisions, exemplified for Mycosphaerella graminicola 
on winter wheat. Phytopathology 103:666-672. 

A method is presented to calculate economic optimum fungicide doses 
accounting for the risk aversion of growers responding to variability in 
disease severity between crops. Simple dose-response and disease-yield 
loss functions are used to estimate net disease-related costs (fungicide 
cost plus disease-induced yield loss) as a function of dose and untreated 
severity. With fairly general assumptions about the shapes of the prob-
ability distribution of disease severity and the other functions involved, 
we show that a choice of fungicide dose which minimizes net costs, on 
average, across seasons results in occasional large net costs caused by 
inadequate control in high disease seasons. This may be unacceptable to a 
grower with limited capital. A risk-averse grower can choose to reduce 
the size and frequency of such losses by applying a higher dose as in-

surance. For example, a grower may decide to accept “high-loss” years  
1 year in 10 or 1 year in 20 (i.e., specifying a proportion of years in which 
disease severity and net costs will be above a specified level). Our analy-
sis shows that taking into account disease severity variation and risk aver-
sion will usually increase the dose applied by an economically rational 
grower. The analysis is illustrated with data on Septoria tritici leaf blotch 
of wheat caused by Mycosphaerella graminicola. Observations from un-
treated field plots at sites across England over 3 years were used to 
estimate the probability distribution of disease severities at mid-grain 
filling. In the absence of a fully reliable disease forecasting scheme, re-
ducing the frequency of high-loss years requires substantially higher 
doses to be applied to all crops. Disease-resistant cultivars reduce both 
the optimal dose at all levels of risk and the disease-related costs at all 
doses. 

Additional keywords: disease risk. 

 
Foliar-applied fungicides are used to control diseases of a wide 

range of crops. The total fungicide dose applied during a cropping 
season may be varied by altering the spray interval or by adjust-
ing the dose applied per spray application. The economic opti-
mum fungicide dose for a particular field and year is that dose 
which minimizes the combined cost of fungicide sprays and 
disease-induced loss of marketable product. It has been argued 
that growers use higher doses than are justified by the resulting 
increases in yield (5,17). However, the economically optimum 
dose depends on disease severity, which varies greatly between 
seasons. If disease is severe and a fungicide dose is used that is 
optimal under average conditions, a grower will suffer a large 
financial loss in that year. They may be willing to pay the addi-
tional cost of a higher fungicide dose each year as a risk-reducing 
investment (i.e., “insurance”) in order to be protected from occa-
sional large costs. Hence, growers may not necessarily aim to 
maximize their mean gross margin over the years. Instead, they 
may aim to minimize the risk of a severe financial loss which 
might threaten their business. By quantifying the relationship 
between risk and dose, advice on optimal fungicide dose could 
take into account this risk aversion. 

This article develops a method by which optimal fungicide 
dose can be calculated for a predefined level of risk, if the distri-
bution of disease severity between years is known. This allows the 
dose to be identified at which risk is reduced to a level acceptable 
to a particular grower. The method developed is exemplified with 
the case of Mycosphaerella graminicola (Septoria tritici leaf 
blotch [STB]) on winter wheat, which is one of the main drivers 
of fungicide use on this crop in the United Kingdom (3,5). 

THEORY AND APPROACHES 

Disease data. The disease data used to quantify the probability 
distribution of severity over years were from the Crop Monitor 
program (www.cropmonitor.co.uk), in which disease severity was 
assessed each year in replicated field plots of winter wheat at a 
range of sites across England. This data set has been analyzed 
previously, as described by te Beest et al. (15), but sites that had 
to be excluded in that previous article (because there was no 
nearby weather station available) were included in the present 
analysis. The data cover the years 2003 to 2005 and 18 experi-
mental sites; in total, 44 year–site combinations (Table 1). In each 
year–site, observations were made on cultivars that differed in 
their resistance to M. graminicola. The observations were cate-
gorized into a resistant and a susceptible group according to the 
resistance ratings of the cultivars (1). Ratings were on a scale of 1 
to 9, with 1 being very susceptible and 9 very resistant. The high-
est resistance rating in the data set was 7 and the lowest was 3. A 
resistant group was defined that consisted of cultivars with ratings 
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6 and 7 and a susceptible group of cultivars with ratings 3, 4, and 
5. Disease severity on leaf 2 at growth stage (GS) 75 (medium 
milk stage of grain maturity), which has been used as an indicator 
for likely yield loss (6,16), was used here to summarize the 
observations (Table 2). All observations were from plots untreated 
with fungicides. 

In commercial practice, a grower would want to control risk for 
their particular site and the cultivars they grow. However, for the 
analysis presented here, there is a trade-off between the specifi-
city of the data set to a particular location and cultivar and the 
size of the data set (and, hence, the reliability of parameters esti-
mated from it). Hence, the data were subdivided into susceptible 
and resistant cultivars but not into high- or low-risk regions of 
England. Nevertheless, the results should provide an acceptable 
approximation for most locations, given that seasonal STB 
variation is greater than regional variation (4). 

The active substance epoxiconazole (as the commercial product 
Opus; BASF) was used as an example fungicide with efficacy 
against M. graminicola. One full fungicide dose (Opus at 1 
liter/ha) is one recommended manufacturer’s dose as described by 
Finney (2). The product label limits the maximum total dose 
applied in any one season to 2 liters/ha. In the United Kingdom, 
typical practice is to apply fungicide at approximately GS 31 or 
32 (first or second node detectable, typically mid-April), at GS 39 
(flag leave visible, typically end of May), and at GS 59 (emergence 
head complete, typically mid-June). 

Disease risk. The probability that disease severity S at GS 75 
will develop in a given year–site was summarized by fitting an 
exponential distribution by maximum likelihood to the disease 
severity data. Therefore, the probability density of S, p(S), obeyed 

p(S) = αe–αS (1) 

where 1/α is the mean disease severity. Larger values of α thus 
correspond to smaller probabilities of severe disease. Fitting was 

done with Genstat (11) over all cultivars (Fig. 1A) and separately 
over resistant cultivars (Fig. 1B) and susceptible cultivars (Fig. 
1C). A Kolmogorov-Smirnov goodness of fit test was used (11) to 
test whether the data differed significantly from the fitted 
exponential distribution. 

Disease costs and economic best optimum dose. The cost 
attributable to disease, CM, consists of (i) the costs of the appli-
cation of fungicides, CF, and (ii) the costs incurred due to disease-
induced yield loss, CY. Both costs depend on the fungicide dose 
used, D; therefore, we can write 

CM(D) = CF(D) + CY(D) (2) 

The cost of fungicide treatment is the product of fungicide dose 
and the fungicide price per unit dose, PD(£), resulting in CF(D) = 
D × PD. The cost of yield loss, CY(D), is calculated as the product 
of the price of the crop (PW) (£ per metric ton), the yield in the 
absence of disease (Y, metric tons per hectare), and the fraction of 
the yield lost due to the disease (YL). 

The yield loss (YL) is a function L × g[S × f(D)], where S is the 
disease severity (measured appropriately for the pathosystem) in a 
season where no fungicide was applied, [1 – f(D)] is the control 
achieved when fungicides are applied at dose D, L is the propor-
tion of yield lost when severity is at its maximum value of 100%, 
and g is the function that relates intermediate values of severity to 
a proportion of yield lost. In the simplest case, yield loss is 
linearly related to disease severity: 

YL(D,S) = L × S × f(D) (3) 

but other relations are easily substituted in equation 3. In the 
sensitivity analysis (Table 3), we test the effect of alternative 
relationships. 

Within the range of doses around an economic optimum, any 
plausible function to model the fungicide dose response curve 
would have to be monotonically decreasing towards some asymp-
tote and have a steadily decreasing slope. Therefore, following 
Paveley et al. (8–10), the fraction of the severity remaining after 
fungicide application at dose D is modeled by 

f(D) = 1 – RD + RD × exp(–k × D) (4) 

The parameter RD is the proportional control if a very large 
dose is used and the parameter k defines the curvature of the dose 
response curve. Combining these relationships, we obtain 

CM(D,S) = D × PD + L × S × [1 – RD + RD ×  
exp(–k × D)] × PW × Y 

(5) 

Clearly, the disease severity that would develop if no fungicides 
were applied, S, differs between years (Fig. 1). The mean cost, 
averaging the costs over a long run of years where dose D is 
applied every year, can be calculated from 

E[CM(D)] = D × PD + L × E[S] × [1 – RD + RD ×  
exp(–k × D)]× PW ×Y 

(6) 

TABLE 1. Overview of the years and sites used to derive the distribution of
severitiesa 

Site 2003 2004 2005 

Andover … X X 
Ashford X X X 
Askham Bryan X X … 
Boxworth X X X 
Bridgets X … … 
Cirencester … X X 
Drayton X X X 
Exeter X X X 
Gleadthorpe X X X 
High Mowthorpe X X X 
Kirton … X X 
Lavenham X X X 
Morley X X X 
Newcastle … X X 
Rosemaund X X X 
Tadcaster X … … 
Terrington X X X 
Wye X … … 
York … … X 

a Data were available from site–year combinations indicated with an X. 

TABLE 2. Summary of disease data and exponential probability distributions fitted across all sites and years 

Cultivars Mean severity (%) Number of observations Year–sites   αa P a 

All 11 146 44 8.8 0.14 
Resistant 7 76 31 14.2 0.11 
Susceptible 16 70 42 6.2 0.70 

a Parameter of the exponential probability distribution fitted to the disease data (α) and P value of a Kolmogorov-Smirnov goodness-of-fit test for the exponential 
probability distribution fitted to the disease data. None of the fitted distributions is significantly different from the exponential distribution. 
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where E[S] is the severity that develops without fungicides, 
averaged over years. If the fungicide dose is increased, the costs 
of fungicide will increase and the costs of disease-induced yield 
loss will decrease; therefore, there is a minimum to the cost curve. 
The dose at which the costs are minimal, DE, can be calculated by 
differentiating equation 6 and equating the derivative to zero, to 
obtain the equation 

 (7) 

Optimum dose accounting for risk. Equations 6 and 7 use the 
mean severity of an epidemic to derive the dose that minimizes 
average costs for disease control. Risk-averse growers may aim, 
instead, to minimize the costs of extreme seasons. The dose 
required to achieve this was calculated as follows. 

We suppose that a grower is only prepared to accept a loss 
greater than some critical amount—perhaps that amount which 
could cause some risk to the survival of the business—in a small 
proportion K of years. Once the critical loss CMK is specified, 
equation 5 can be rearranged to calculate the equivalent critical 
severity, SK, as a function of the dose, D, of fungicide applied: 

 
Y ×  P× e × R + R  ×L 

 P× D  C
= S

W
D × k

DD

DMK
K

)(1 −−
−

 (8) 

If the cumulative probability distribution of severity over seasons 
is a known function P(S), then K can be calculated as K = P(SK). 
It is simplest to explain the procedure assuming a particular 
parametric form for P(S), such as the exponential distribution for 
M. graminicola introduced above. Other forms could be substi-
tuted and we discuss the consequences of various forms in the 
supplementary information. Assuming that—as in the M. gramini-
cola case—disease severity is exponentially distributed (equation 
1), then K is  

 (9) 

where α is the parameter of the exponential probability distri-
bution describing variation in disease from season to season. 
Substituting equation 8 (SK) in equation 9 results in 



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
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Rearranging this to express CMK as a function of K, we obtain 

CMK(D,K) = D × PD – L ×  
(1 – RD + RD × e–k × D) × PW × Y × [log(K)/α] 

(11) 
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TABLE 3. Sensitivity analysisa  

Parameter Change DE E[CM(DE)] DK CMK(DK) E[CM(DK)] DK – DE 

Default values … 0.80 29.3 1.35 44.1 35.9 0.54 
PW or P or L Increased by 10% 0.87 31.0 1.41 46.1 37.6 – 
PW or P or L Decreased by 10% 0.72 27.2 1.27 41.8 33.9 – 
PD Increased by 10% 0.74 33.1 1.28 50.7 41.1 – 
PD Decreased by 10% 0.88 25.1 1.43 37.2 30.4 – 
RD Decreased to 0.75 0.70 47.6 1.25 137.0 54.1 – 
k Decreased to 1.4 1.10 45.9 2.20 74.3 59.1 1.09 
RD  and k Decreased to 0.75 and 1.4 0.90 61.6 2.00 164.7 74.8 1.09 
Alternative YL functionb … 1.19 39.6 1.46 47.6 33.5 0.27 

a Symbols: – indicates that value did not change; other abbreviations relate to equations 6, 7, 11, and 12. The risk level K was set at 0.01. Default values for the
parameters can be found in Table 4. 

b YL(D,S) = L × S0.5 × f(D). 

Fig. 1. Histograms of the frequency of Mycosphaerella graminicola severity 
in crops grown at 44 site–years during 2003 to 2005. Solid line: best-fitting 
exponential distribution fitted (α⋅e–αS). The α and the goodness of fit statistics
are given in Table 2.  
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Equation 11 is similar to the equation for expected costs (equation 
6) but with the expected severity E[S] replaced by –log(K)/α. A 
similar derivation would follow for any parametrically defined 
probability distribution of disease severity, simply substituting the 
relevant distribution in equation 8 for the exponential distribution 
E[S] = 1/α; therefore, equations 11 and 6 are the same when  
–log(K) = α; that is, when a grower is prepared to tolerate losses 
above the specified level in K = e–1 = 37% of years. 

By differentiating equation 11 with respect to dose D, setting 
the derivative to 0, and solving the resulting equation for D, the 

fungicide dose at which CMK is minimal for a given K, DK, can be 
calculated as  

 (12) 

If a grower wishes to reach a particular low risk level, KL, from a 
certain high risk level, KH, then, for a severity distribution ap-
proximated by an exponential, the difference between the dose 
providing a risk of KL (DKL) and the dose providing a risk of KH 
(DKH) is independent of yield in the absence of disease or the 
price of the crop. To see this, the difference can be expressed as  

 (13) 

which simplifies to 

 (14) 
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Fig. 2. Probabilities of the net disease-related costs at four fungicide doses, averaged over resistant and susceptible cultivar groupings. The area under each curve
represents a probability of one. Standard deviation (sd) in costs associated with each curve is marked on the curve. On each curve, the total probability of costs in 
excess of the points marked  and  are 10 and 37%, respectively. A farmer prepared to accept higher yield loss in 1 year in 10 should choose the dose which
places the  mark as far to the left as possible (in the example, that is the dose of 1.1).  

TABLE 4. Parameters used in Figures 2 to 4 and Table 5a  

Variable name Symbol Value Dimension 

Wheat production Y 9.15 metric ton/ha 
Wheat price PW 100 £/metric ton 
Fungicide price per dose PD 25 £/dose 
Yield loss coefficient L 0.81 – 
Dose response factor k 2.8 ha/dose 
Maximum disease reduction RD 0.996 – 

a Taken from te Beest et al.(14). 
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which depends only on risk levels KL and KH and the dose re-
sponse parameter (k). However, this property depends on the form 
of the exponential distribution and is likely not be true in general. 

The variance in costs due to the variance in disease severity can 
be calculated from equation 1. Assuming that all parameters ex-
cept the disease severity are constant, we can use the rule that 
relates the variance in an arbitrary variable y to that in the same 
variable multiplied by some constant a, var(a⋅y) = a2⋅var(y) or, 
rewritten to the standard deviation sd, sd(a⋅y) = a⋅sd(y) gives 

sd(CM) = L × sd(S) × (1 – RD + RD × e–k × D) × PW × Y (15) 

The parameter values used to illustrate application of the model 
were estimated in (equation 15) and summarized in (Table 4). 

Sensitivity analysis. To test the generality of our conclusions, 
we examined how robust our results were to changes in the 
parameter values (Table 3). More broadly, we tested how sensitive 
our results are to the functional forms that we chose to model 

yield loss (Appendix). As a numerical example of a change in the 
yield loss model, we examined loss relationships g(S) that related 
the yield loss to the square root of disease severity: 

YL(D,S) = L × S0.5 × f(D) (16) 

Equation 16 represents situations in which either physiology or 
market factors make small disease severity disproportionately 
damaging, as may be the case for M. graminicola in some settings 
(13) or for pathogens of horticultural crops, where low levels of 
blemish may render produce unmarketable. 

RESULTS 

None of the fits of the distribution frequency of severity in 
different seasons differed significantly from an exponential distri-
bution. The parameter of the best-fitting exponential distribution 
differed between the resistant and susceptible cultivar groupings 
(Fig. 1; Table 2). Using equations 4 and 5, the probability distri-
bution of disease severity was transformed into a probability 
distribution of net cost at a range of fungicide doses (Fig. 2). The 
standard deviation in costs decreases greatly with increasing 
fungicide dose, because the probability of extremely high costs 
decreases. For each fungicide dose shown in Figure 2, the cost 
cannot be less than the cost of that dose. Costs higher than this 
arise because of disease-induced yield losses. The probability of 
incurring a particular cost decreases as that cost increases be-
cause, for M. graminicola, more-severe epidemics are less prob-
able than less-severe epidemics. A low dose is less effective at 
controlling disease, and the probability of substantial yield loss is 
greater than at higher dose; therefore, the probability of substan-
tial costs is greater at lower than at higher doses. 

Using the cumulative form of the exponential probability distri-
bution, a function was derived for the net cost of disease which 
will be exceeded only in a specified proportion K of years (equa-
tion 11). Equation 12 was used to find the dose which minimizes 
this cost given the grower’s choice of K. To clarify the meaning of 
K, we can think of the grower deciding to accept disease-related 
costs above a specified level in “high-loss” years of high severity, 

TABLE 5. Optimal fungicide dose and related costs in relation to acceptable
risk, K 

Cultivars Ka Dose E(CM)b CMK
c 

All 0.37 0.80 29.3 29.3 
 0.10 1.10 31.7 37.1 
 0.01 1.35 35.9 44.1 
Resistant 0.37 0.63 24.9 24.9 
 0.10 0.93 27.3 32.6 
 0.01 1.17 31.5 39.3 
Susceptible 0.37 0.93 32.5 32.5 
 0.10 1.22 34.9 40.5 
 0.01 1.47 39.1 47.8 

a Risk level. A risk level of 0.37 corresponds to the long-run minimal net cost.
A risk level of 0.37, 0.1, or 0.01 corresponds to a probability of 0.37, 0.1, or
0.01, respectively, that CMK will be exceeded in a given year. 

b Long-run expected Mycosphaerella graminicola related costs at the given
dose. 

c Costs which will be exceeded in a given year with probability K. 

Fig. 4. Expected costs and costs which will not be exceeded with probability 
K = 0.10 versus the total fungicide dose applied during the season for both 
resistant and susceptible cultivars (Table 2). The  marks the optimum dose.
Cost analyses were done using units of British pounds. These values were
converted to American dollars at an exchange rate of 1 pound = 1.60 dollars. 

Fig. 3. Minimum long-term average costs (K = 0.37) and the costs which will
not be exceeded with probability K for K = 0.10 and K = 0.01 plotted as a
function of the total fungicide dose applied during the season, in liters of the
commercial product Opus (active substance, epoxiconazole; BASF) per
hectare. Disease severity distribution averaged over susceptible and resistant
cultivar groupings. The  marks the optimum dose. Cost analyses were done
using units of British pounds. These values were converted to American
dollars at an exchange rate of 1 pound = 1.60 dollars. 
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which will occur in a proportion K of years. The dose applied 
each year will then be calculated to minimize costs in the 
remaining years (1 – K). 

Increased risk aversion increases the optimal fungicide dose 
and, for plausible values of K, the effect is considerable (Fig. 3). 
For example, if the acceptable risk to a grower for resistant culti-
vars is increased from K = 0.37 to K = 0.10, then the optimal 
fungicide dose increases from 0.6 to 0.9 (Table 5). A further de-
crease in acceptable risk to K = 0.01 leads to a fungicide dose of 
1.2. 

The absolute differences in optimal dose at different values of 
K differ substantially between the resistant and susceptible culti-
var groups, due to differences in disease severity distribution (Fig. 
1; Table 2). Differences between cultivars and risk levels become 
smaller if the fungicide dose is increased further (Figs. 3 and 4). 
For all cost curves (Figs. 3 and 4), costs increase faster below the 
optimum dose than above it. The increase in costs below the 
optimum dose is the result of yield loss. The increase in costs 
above the optimum dose is the result of the cost of fungicide. 

In the sensitivity analysis (Table 3), we show how our results 
are influenced by selected changes in the parameter values. In-
creases or decreases in the price of wheat (PW), production (P), 
yield loss (L), or price of a fungicide dose (PD) cause changes in 
the optimal fungicide dose. However, the form of the cost curves 
and the dose needed to achieve a certain risk reduction are un-
changed (equation 15). When dose response parameter k is 
reduced (so that the change in severity in response to a small 
reduction in dose from full is larger), the fungicide dose needed to 
achieve a certain risk reduction is increased. When the yield loss 
function is proportional to the square root of disease severity, thus 
giving disproportionately large losses at low severities, the opti-
mal fungicide dose increases. The increase in fungicide dose 
needed to reduce the risk further decreases. 

The general conclusion that a risk-averse grower will rationally 
adopt a higher dose than the dose which maximizes long-run 
profit holds under rather general conditions (Appendix). 

DISCUSSION 

Despite efforts to forecast epidemics, predictions of future 
disease severity made at the time of fungicide treatment decisions 
remain prone to considerable uncertainty (14,15). As a conse-
quence, growers have to make fungicide treatment decisions 
which account for the wide range of possible disease severities 
which may occur during the yield-forming period. The method 
introduced here shows how variation in disease severity can be 
quantified, translated into financial risk, and used to calculate an 
optimal fungicide dose that takes into account grower risk 
aversion. Increasing the fungicide dose can lead to a considerable 
reduction in risk and reduces the variability in the expected 
disease-related costs, in exchange for an insurance cost of lower 
long-term profit. 

The analysis presented here is quite generally applicable to the 
control of diseases, weeds, and invertebrate pests by pesticide 
treatment. The numerical scenario studied was a relatively simple 
case involving one disease and one fungicide product. In commer-
cial crops, growers often use formulated or tank mixtures of 
different active substances against a combination of diseases. The 
general principle and method of our analysis can be expanded to 
include more diseases and more fungicide products on a range of 
crops, provided data on severity distributions and fungicide dose 
responses are available. The concept of “dose” used here is quite 
general; in U.K. practice on wheat, it is literally the concentration 
of fungicide used at a predetermined spray point but, in other 
crops, it could refer to the spray interval. 

The disease data used for the example in this article represent 
U.K. disease severities for M. graminicola over the years 2003 to 
2005. For different regions or different periods in time, the 

disease probability distributions might differ. Although seasonal 
and local variation in disease severity (S) is likely to be the 
predominant source of uncertainty, there are other parameters in 
the model that have a natural variation that was not studied here. 
There is natural variation in yield loss per unit disease (L) 
(7,13,16), fungicide dose response (k and RD), and yield (P). In 
Peterson et al. (12), the variances of such input parameters were 
combined using a Monte Carlo simulation. In a similar way, un-
certainty in dose response, yield loss, and disease severity could 
also be combined, providing good estimates are available. 

By associating a fungicide dose level with a risk level (chosen 
as a proportion of high-loss years, when higher-than-specified net 
costs will be accepted), decisions on what fungicide dose to use 
become more insightful. Instead of looking only at the financial 
cost and benefit of fungicide, a third aspect, risk and risk aver-
sion, can also be taken quantitatively into account to optimize 
profit. The analysis here explains why growers use greater doses 
than might seem justified. An increased awareness of the relation-
ship between dose and risk may ultimately lead to better decisions 
on the number of fungicide treatments and dose per treatment, 
and to more sophisticated advisory tools. If disease forecasting 
schemes or breeding for improved host resistance can constrain 
the probability distribution of disease severity, then the amount of 
fungicide applied as “insurance” could be substantially reduced. 

APPENDIX 

For simplicity, the main body of the text uses specific functions 
for p(S), g(S), and f(D). However, the results hold more generally, 
as we show here. The loss in a year with severity S and fungicide 
D is 

CM(D,S) = DPD + Lg[Sf(D)] × PW × Y (A1) 

The critical level SK as a function of dose can be found by 
specifying a value for MC and rearranging equation A1, in the 
same way as equation 8 is derived from equation 5. Inserting this 
value of SK into equation A1, differentiating with respect to D and 
equating to zero gives 

–[PD/(L × PW × Y)] = [d/dD]{g[SKf(D)]} (A2) 

By the chain rule, and denoting differentiation by an apostrophe 

–(PD/[L × PW × Y × f′(D)]) = g′[f(D) × SK] (A3) 

If g is the identity function, so that loss is simply proportional to 
severity, as in the main text, then 

–(PD/[L × PW × Y × f′(D)]) = SK (A4) 

By comparison, still assuming that g is linear, the dose giving the 
highest average return is 

–(PD/[L × PW × Y × f′(D)]) = E(S) (A5) 

If f′, the slope of the graph of disease severity against dose, 
decreases steadily with dose, then equation A4 will have at most 
one solution for D. If SK > E(S), the dose DS will be greater than 
the dose required to give the greatest average returns because 1/f′ 
increases with D. That is, the dose required to give protection 
against a level of disease which should be exceeded only in a 
proportion K of years (say 10%) will be greater than that required 
to maximize average returns if that critical level is greater than the 
average level of disease. For plausible disease distributions and 
choices of K, this condition SK > E(S) will always be true. 
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Fungicides which did not give decreasing disease with increas-
ing dose over the practical range would never reach the market; 
thus, f′ can be assumed to be negative. However, if f′ initially in-
creases at very low doses (because of removing competing or-
ganisms more than the pathogen, for example), then equations A4 
and A5 would acquire more than one solution; however, the lower 
dose would represent a maximum rather than minimum cost. In 
the region around cost minima, the argument above would 
continue to hold. 

If g is not proportional to disease, it need not be true that the 
risk-averse dose will be greater than the dose giving the greatest 
average return. In particular, if loss sets in only at very high 
severity (for example, because of compensation, or a feature of 
the scoring system for the disease), then there could be a low 
probability (say 1%) of very large losses. In that case doses which 
minimized average losses may be greater than the doses which 
ensured that a lower—but still critical—level of loss is exceeded 
only 1 in 1/K years. However, if loss rises disproportionately with 
severity (as with diseases which cause cosmetic damage, such as 
Venturia inaequalis on apple) the contrary argument holds and the 
risk-averse dose may be much larger than the apparently economi-
cally optimal dose. 
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