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1 Abstract 

Uncertainty in estimating fertiliser N requirements is large, with differences between recommended 

and measured N optima frequently exceeding 50 kg/ha.  Precision farming technologies including 

yield mapping, canopy sensing, satellite imaging and soil mapping are now common-place on 

farm.  The Auto-N project sought to apply the information readily available from these technologies 

within an ‘Auto-N logic’ to improve the precision of N fertiliser decision making.  The ‘Auto-N logic’ 

was derived from that used to estimate fertiliser N requirements as set out in the AHDB Cereals & 

Oilseeds guide Nitrogen for winter wheat – management guidelines; this guide suggests that N 

requirements should be calculated by subtracting Soil N Supply (SNS) from Crop N Demand 

(CND: grain yield x crop N content) and dividing by Fertiliser N Recovery (FNR); thus the ‘Auto-N 

logic’ uses yield and protein maps to inform estimates of CND, canopy sensing to inform estimates 

of SNS and soil sensing to inform estimates of FNR. 

 

Novel chessboard N response experiments were set up on six commercial fields between harvest 

years 2010 and 2012 to quantify spatial variation in N requirement, to explain it in terms of CND, 

SNS and FNR, hence to develop the ‘Auto-N logic’.  At each site, each farmer applied N as liquid 

urea plus ammonium nitrate (UAN) using the farm sprayer twice, in perpendicular directions, to 

create a systematic grid of ~400 plots (~12m × 12m) fertilised with N rates of 0, 120, 240 or 

360 kg/ha; the area of each experiment exceeded 4 ha.  Grain yields were measured by small-plot 

combine, grain samples were analysed for protein, and N harvest index and total N uptake were 

determined from pre-harvest grab samples.  Values were then estimated for all variates and all N 

levels for all plots by kriging. Response curves were fitted, and N optima and their components 

(SNS, CND, FNR) were derived assuming 5 kg grain would pay for 1 kg fertiliser N.  Within field 

variation in optimum N exceeded 100 kg/ha at all sites; spatial variation in optimal yield was 

greater than 2 t/ha at all sites and variation in SNS was generally greater than 50 kg/ha.  Some of 

the spatial variation in optimum N was explained in terms of SNS and CND. However, the 

tendency for positive correlations between SNS and optimum yield was striking, and hindered 

complete explanation of spatial variation in optimum N: i.e. high yielding areas tended to have 

greater SNS, so the increased requirement from higher crop N demand was counteracted by the 

reduced requirement from higher SNS.   

 

Spatial variation in CND and SNS was reasonably well estimated from the use of past yield maps 

and crop sensing, respectively; often, similar within-field patterns showed through for both.  

However, variation in FNR was also large and was unpredictable.  Using clustering techniques, 

zoning, performance mapping or simple averaging of data from five farms, it was shown that past 

yield maps could be used usefully to estimate variation in CND. In addition, variation in SNS could 

be predicted from canopy sensing in early spring (an algorithm was developed based on sensed 

NDVI and thermal time since sowing).  Calibrations for crop N uptake, biomass and crop N status 
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(Nitrogen Nutrition Index) from canopy sensing were explored, but no rational basis could be found 

to justify their inclusion in the ‘Auto-N logic’. 

 

Validation trials were set up with farmers on 11 fields in 2013 & 2014; these used adjacent 

tramlines to compare the Auto-N logic with the farm’s own practice, 50 kg/ha more N and 50 kg/ha 

less N.  Evaluation of these trials along with economic analysis of the chessboard trials showed the 

benefits of precision in judging N requirements to be modest, whereas benefits of accuracy 

(proximity to the measured mean) were much greater.  Whilst this work demonstrated the feasibility 

of automating judgements of N requirements within fields using precision information, the variability 

in CND, SNS and FNR, and crucially the interactions between them, meant that the use of such 

systems would not guarantee increased accuracy or precision of N use.  The evidence suggests 

that variable rate N management can give only modest returns, even with a system making perfect 

predictions, if the field is already receiving the right average N rate. 

 

The results showed that the most important decisions concern N use for whole farms, then for 

whole fields, then for areas within fields.  Precision technologies can help with all of these, 

especially through comparisons of crops between and within farms.  However, the most effective 

aspect of precision farming technologies is probably the empowerment of farmers to test 

retrospectively the effects of their N decisions (or indeed any decisions) on-farm.  Given the 

variation in and unpredictability of N requirements between fields and between farms the only way 

farmers can know for sure whether their chosen N rates were right is to test yield effects of 

different N rates – this is relatively easy now, by simply applying (say) 60 kg/ha more and 60 kg/ha 

less to adjacent tramlines.  

 

The chessboard trials initiated here have transformed our understanding of N responses and 

shown new possibilities for spatial experimentation, not only to empower on-farm testing, but to 

understand how soil variation affects husbandry outcomes.  These trials show that N use is not the 

major cause of the very large spatial variation seen in yield.  Thus, understanding the soil-related 

causes of yield variation should, and can, now become a priority for soil and agronomic research.   
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2 Introduction 

The use of nitrogen fertiliser is crucial to modern arable crop production in achieving the yields 

required to meet the increasing global demands for food, feed and fuel from a rapidly expanding 

global population (Tilman et al., 2011). However, N fertiliser is associated with a range of 

environmental impacts (Sutton et al., 2011) including nitrate leaching, energy use through 

manufacture and greenhouse gas (GHG) emissions, predominantly through nitrous oxide (N2O) 

emissions from soils (Brentrup et al., 2004; 2008).  Indeed, N fertiliser and N2O can be responsible 

for more than 70% of GHG costs of arable crops such as wheat and oilseed rape (Berry et al., 

2010; Sylvester-Bradley et al., 2014; 2015). Yields per hectare are also important to GHG 

emissions at a global scale through their indirect effects on land-use-change (Kindred et al., 2008); 

if reduced production from reduced yields in the UK are met by new production via land use 

change from natural habitat elsewhere in the world the GHG consequences from that land use 

change can be overwhelming (Carlton et al., 2012). Nitrogen fertiliser forms the biggest single cost 

in gross margins for wheat production, and it is the input that can have the single biggest influence 

on yield. Judging the right amount of N fertiliser to apply for the farm, field and within-field is 

therefore of importance for the farmer to maximise profits, the local environment to minimise 

leaching and eutrophication risks, the wider environment to minimise GHG emissions and the 

wider global population to maximise food production and reduce pressure on land use change.  

 

This project aims to use information available from new technologies to develop new approaches 

to judging N fertiliser requirements in order to improve N management decision making for winter 

cereals at the within-field to across-farms scales. This should reduce GHG and nitrate emissions 

and improve crop productivity.  

 

2.1 N fertiliser Decision making 

The supporting evidence for wheat & barley (Sylvester-Bradley et al. 2008) and sugar beet 

(Jaggard et al. 2009) from the last update of the Fertiliser Manual (RB209: Defra, 2010) reveal the 

difficulties in accounting for variation in optimum N amounts. They show how any recommendation 

inevitably has considerable uncertainty and hence that in practice fertiliser N is applied with 

considerable imprecision.  

 

Current cereal nitrogen recommendations are imprecise, and at a field by field and metre by metre 

level they can be very inaccurate. This is not through lack of effort from N researchers & advisors 

or negligence on the part of farmers, it is the result of a complex system where only partial 

information is known when decisions are made. Relevant information is unavailable or too onerous 

to collate on farms; this indicates a need for automation.   
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A recent programme of N response experiments showed that the Field Assessment Method (FAM) 

recommendation system (MAFF, 2000) predicted the N optima to be within 50kg N/ha of the 

measured N optima in less than 50% of cases (Sylvester-Bradley et al., 2008a). Indeed, applying a 

fixed level of N across all experiments was found to give a better outcome than use of FAM alone 

(12kg N/ha out on average vs 23kg N/ha out, respectively). The use of soil mineral N to inform 

prediction of soil N supply was found to improve the prediction of N optima significantly (average 

10kg/ha from the measured optimum). However, imprecision is large and SMN analysis of every 

field is economically unfeasible (Kindred et al., 2012a). The imprecision and inaccuracies in the 

conventional recommendation system and application management not only have large economic 

costs through wasted fertiliser and foregone yields; they also have large environmental costs. 

Applications of nitrogen above the optimum increase risks of nitrate leaching into watercourses, 

potentially resulting in eutrophication and failure to meet legislative water quality limits (NVZs, WFD 

etc). Wasted N fertiliser also contributes to GHG emissions through emissions associated with 

fertiliser manufacture and from nitrous oxide emissions from soil without increasing productivity, 

hence increases GHG emissions per tonne of production. Where N applications are sub-optimal, 

an opportunity is missed to provide extra grain at marginal economic and environmental cost; this 

‘lost’ productivity could exacerbate pressures for indirect land use change (ILUC) (Kindred et al., 

2008) in a world where food production needs to double by 2050 (FAO, 2009). 

 

It is therefore clear that a better system for N management is needed urgently. Although the 

imprecision of the majority of N recommendations is larger than might be liked, the consequences 

of small imprecisions (<50kg N/ha) are relatively minor in economic and environmental terms.  The 

major economic and environmental gains come from identifying and eliminating the larger errors, 

where current recommendations would differ by >100kg N/ha from the true N optima; the 

consequences of getting N management badly wrong in a small number of cases are much worse 

than those from being a little wrong in the majority of cases (Sylvester-Bradley et al., 2008a). 

 

One reason for the poor performance of recommendations is unavailability of relevant information; 

usable information has normally been limited to soil type, previous crop (which indicates soil N 

supply), over-winter rainfall, past crop yield and (perhaps) grain N% (which indicates N demand). 

Ideally, recommendations would be based on direct knowledge of soil N supply, including likely N 

available from mineralisation and deposition, N demand from the crop and likely fertiliser N 

recovery. Crucially, it is also important to monitor success of an N management strategy, through 

grain yields, grain protein contents and occurrence of lodging. TheNitrogen for winter wheat – 

management guidelines (AHDB Cereals & Oilseeds, 2009) sets out how to use information to 

calculate fertiliser N requirements by estimating crop N demand, soil N supply and fertiliser N 

recovery with an approach that is compatible with the Fertiliser Manual RB209 (Defra, 2010). This 

is explained in detail in Chapter 2.  
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2.2 Precision Farming technologies 

Precision Agriculture has long held the promise of improving the management of nitrogen (N) 

fertilisers for arable cropping (Sylvester-Bradley et al., 1999), and its use on-farm is now common-

place. Fertiliser spreaders and sprayers capable of variable rate application are now used widely 

and many farms use GPS systems for auto-steering of farm machinery, if nothing else. Modern 

combines all have the capability to monitor yield, though fewer have GPS systems to enable yields 

to be mapped. Whilst a range of approaches are now being used on-farm to address spatial 

variation in N fertiliser application to cereal crops, there is not yet a comprehensive system that 

determines absolute N amounts and timings for winter cereals. 

 

The 2012 Defra Farm Practices Survey assessed use of precision agriculture technologies by 

farmers in England. It found that 46% of cereal farm respondents used GPS, 38% used soil 

mapping, 25% had used yield mapping and 31% used some form of variable rate application.  

 

2.2.1 Precision Technologies for Auto-N 

In principle, precision agriculture technologies now offer the opportunity to gather information of 

use for the N Management Guide approach described in previous section and in Chapter 2 and, 

further, to process it and determine appropriate N management automatically, not only on a field by 

field basis, but also at a finer within-field scale. For example, grain yield monitors and yield 

mapping are now common-place on modern combine harvesters. Grain protein sensors and hence 

grain protein mapping are also commercially available, though uptake in the UK to date is limited. 

Electro-magnetic induction (EMI) sensors are widely used to produce maps of soil characters, and 

a host of crop sensing technologies are available to assess growth of the crop, remotely by satellite 

or with sensors on the tractor. Whilst approaches to use these technologies to inform cereal N 

management are being used commercially (especially using crop canopy sensing), these are 

mostly used to vary applications around a preset field norm, they do not currently help determine 

the absolute N rate to apply for cereals. Furthermore, no system has yet integrated all the available 

technologies to give an automated system with the best chance of improving N decision making. 

 

The consortium in this project integrated expertise in automatic crop sensing with expertise in 

determination of N advice, in order to develop and validate, as far as possible, fully automated 

systems for N management.  Our starting point was that these systems should use the same 

principles that underlie best field-by-field N advice, but that they should be modified according to 

the character of data available from commercially-available automatic sources. 
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2.2.1.1 Variable N management 

A major goal for precision agriculture has been to improve the management of N fertiliser within 

fields. Much academic research work has been undertaken across the world over the past 20 

years to meet this goal (e.g. Lukina et al., 2001; Welsh et al., 2003; Shanahan et al., 2008; Mistele 

& Schmidhalter, 2008; Samborski et al., 2009; Basso et al, 2011). In addition, there has been much 

commercial development, for example by Yara with the N sensor (Reusch, 2005; Heege et al., 

2008). A range of technologies are potentially useful for precision N management including soil 

sensing by EMI, yield mapping, canopy sensing and grain protein sensing. The most widely 

developed and widely adopted of these measures for precision N management to date are canopy 

sensing measures. Approaches generally use sensor information (eg NDVI) as a gauge of crop N 

demand to adjust N applications upwards where growth is less, and reduce N applications where 

crops are lush with increased lodging risks assumed (Bernsten et al., 2006, Zilman et al., 2006). In 

the UK over 800 farmers are thought to be currently using such sensing technologies. However, 

relatively little public research has supported the use of these sensor technologies in the UK.  

 

A large AHDB Cereals & Oilseeds-funded study (Godwin et al., 2002, 2003a,b;c Welsh et al 

2003a,b; Wood et al., 2003a,b) investigated the application of precision agriculture technologies for 

crop management, including N fertiliser. Experiments demonstrated that large difference in N 

optima exist within fields, but that these vary between years (Welsh et al., 2003). It was concluded 

that the simple use of past yield maps to set N recommendations was not appropriate, but that 

within season measures, in this case aerial digital photography, could be used to successfully 

apply variable N application rates. The approach developed by Wood et al. (2003) used remote 

sensing of NDVI to gauge shoot numbers or green area index (GAI) on a relative basis, with 

ground truthed measures to allow benchmarking against target GAI as set out in the Wheat Growth 

Guide (AHDB Cereals & Oilseeds). A similar system is now used commercially by SOYL using 

satellite imagery.     

 

Whilst Yara market an absolute calibration for oilseed rape using the N sensor, as yet there are no 

systems available in the UK that give absolute N recommendations for cereals, ie current practice 

on UK cereals is that the farmer sets the appropriate rate for the field and the system applies this in 

a spatially variable manner, usually with more N applied to thinner crop areas and less to thicker 

crop areas.  

 

Most approaches for variable rate N fertiliser management are based on canopy sensing, adjusting 

N applications by a range of approaches including empirical calibrations, use of nil-N or N rich 

strips (Samborski et al., 2009), a concept of nitrogen status or nitrogen nutrition index (Mistele & 

Schmidhalter, 2008) or a concept of target GAI (Wood et al., 2003). These systems have 

limitations: most do not give absolute recommendations; calibrations and algorithms may be 
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relatively site specific (Samborski et al, 2009); and systems may only work efficiently where N is 

the major limiting factor (Zilman et al., 2006). It is still not proven whether fertiliser N amounts 

should be (i) related to estimated yield potential, and / or (ii) increased or decreased in relation to 

sensed canopy differences (Wiltshire et al., 2002;.Welsh et al., 2003; Zilman et al., 2006).  

Moreover, precision farming research has not so far tried to reconcile and integrate in full all key 

aspects of N management invoked field-by-field.  

 

Shanahan et al. (2008) advocate that an integrated approach to variable N management should be 

taken, using information on soil, past yields and present canopy together. It seems likely that 

development of a system that can set absolute N amounts for the full range of situations will 

require separate assessments of crop N demand, soil N supply and fertiliser N recovery. From 

such a perspective it should be possible to use the available information and technologies to match 

N fertiliser requirements with accuracy. 

2.2.1.2 Canopy sensing 

Over 300 farmers in the UK use the Yara N sensor for in field variable rate applications of N 

fertiliser, over 500 farmers use satellite sensing services from SOYL, whilst there are smaller 

numbers of other sensing units such as Crop Circle, Optrx, Greenseeker and Rapidscan used on 

farm. 

 

Spectral reflectance is widely used to gauge canopy characters such as plant/shoot population, 

ground cover/GAI, chlorophyll/greeness and biomass, though these characters cannot necessarily 

be sensed separately from each other (Scotford & Miller, 2004). Commonly, reflectance is sensed 

at the infra-red and near infra-red wavelengths, allowing various vegetation indices to be calculated 

(Wiegand et al., 1991; Raun et al., 1998), most commonly Normalised Difference Vegetation Index 

(NDVI). Ground based sensors such as Greenseeker and Crop Circle measure two or three 

wavelengths (Govaerts et al., 2007; Havrankova et al., 2008; Raun et al., 2002;2008) whilst the N 

sensor can measure several wavelengths (Zillman et al., 2006) and spectroradiometers measure 

many wavelengths (Wiltshire et al., 2002). The use of a colour component in addition to structural 

information from vegetation indices could give useful extra information (Miller, 2009; 2013). 

Spectral information can also be gathered remotely from aerial photography (Wood et al., 2003) or 

satellite imagery (Metternicht, 2004). Each of these systems is used commercially on farm to some 

extent. Whilst the different sensor platforms give subtlely different values for vegetation indices 

such as NDVI they are all capable of differentiating crop size and N status (Samborski et al., 2009). 

Simple digital photographs can also be used to generate vegetation indices (Tillett, 1991), and can 

be used to predict ground cover or GAI. This is in use commercially for oilseed rape and has been 

developed for cereals by BASF (Canopy Analyser Tool; www.totaloilseedcare.co.uk) and Yara 

(ImageIT smartphone App).  
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In addition, a range of other sensors have been suggested as being useful in detecting canopy 

characters, including fluorescence (Malenovsky et al., 2009), LIDAR (Omasa et al., 2007) and 

ultrasonic sensors (Scotford & Miller, 2004). Whilst such technologies may prove to give superior 

sensing of crop characters in the future, perhaps in multiple sensor arrays (Scotford  Miller, 2004b; 

Miller et al., 2013), this project deals only with proven technologies which are already in 

commercial use.   

 

An AHDB Cereals & Oilseeds scoping study has shown that canopy sensing over-winter can 

effectively distinguish between cereal crops with different levels of soil N supply (Sylvester-Bradley 

et al., 2009b). This is developed in Chapter 2 and Chapter 6. 

2.2.1.3 Soil sensors 

Electro-Magnetic Induction (EMI) has been shown to be a useful and reliable method of 

characterising soil variation in fields (King et al., 2003; 2005). EMI sensors measure the apparent 

electrical conductivity of the soil, hence indicating available water content and soil texture. If used 

when the soil has reached field capacity they can be especially useful for interpretation of yield 

maps and delineation of management zones (King et al., 2005). EMI scanning is conducted 

commercially in the UK by precision farming providers such as Agrii Soil Quest, SOYL, Soil 

Essentials and Precision Decisions.  

 

Sensing of soil organic matter and other soil properties has been under development over many 

years along with other soil characters (Quraishi & Mouazen, 2013; Kuang & Mouazen, 2013; Tekin 

et al., 2014; Kuang et al., 2015). Such sensors are only recently available for commercial use but 

could offer a major step forward in estimation of potential mineralisation of N on a spatial basis. 

2.2.1.4 Grain protein sensors 

NIR sensors that will monitor grain protein on the combine have been developed by a number of 

companies and the AccuHarvest sensor has been commercially available from the company Zeltex 

since 2006 (Taylor & Whelan, 2009). As well as allowing segregation of grain for quality markets, 

such sensors allow grain protein maps to be generated which, when combined with grain yield, 

enable the success of N management to be evaluated (Whelan et al., 2009). This could represent 

a major step forward in tailoring N management strategy on-farm, allowing grain protein to be used 

as a retrospective guide to whether the crop has been under or over-fertilised in a more 

sophisticated way than has hitherto been possible (Sylvester-Bradley & Clark, 2009). Other on-

farm NIR protein sensors are also commercially available that could be used in a similar vein, such 

as the FOSS Sofia instrument. Uptake of such protein sensors in the UK has been limited to date, 

but sales have been greater in USA and Australia. 
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2.2.1.5 Yield maps  

Yield mapping equipment is now readily available, and comes as standard on many combine 

harvesters. Whilst some difficulties exist with the accuracy of yield monitoring data, especially due 

to variable bout widths and long lead-in times at the start of bouts, these can be overcome with 

appropriate adjustments (Blackmore & Moore, 1999).  The principal limitation on the use of yield 

map data is the substantial spatio-temporal complexity that yield maps commonly display.  

Extracting an underlying signal from these somewhat noisy data is a challenge, but there are 

statistical methodologies to deal with them.  There are two broad approaches.  One (e.g. 

Blackmore et al., 2003; Kleinjan et al., 2006) considers local mean yield and its variability, 

identifying regions where yield is relatively stable and regions where it is less predictable.  Another 

approach (Lark & Stafford, 1997; Perez-Quezada et al. 2003) uses a more flexible ‘clustering’ 

approach in which locations in a field are grouped into classes which show more or less uniform 

season-to-season patterns of variation (e.g. consistently above-average yields, above average 

yields except in dry seasons, consistently below-average yields, etc.).  These classes have been 

shown to account for substantial soil variation (e.g. King et al., 2005), since a region with a more-

or-less uniform season-to-season pattern of yield variation is likely to be subject to more-or-less 

uniform constraints on crop performance (e.g. small available water capacity, poor soil structure 

leading to poor establishment and greater slug damage, etc.).  Fridgen et al. (2004) describe a 

software tool developed to generate management zones for precision agriculture using the 

approach of Lark & Stafford (1997). 

 

2.3 Project objectives 

In summary, the main challenges in automating N management of cereal crops in the UK were 

deemed to be: evaluation of automated grain N% sensor data (Taylor et al., 2005; Long et al., 

2008; Whelan et al., 2009) for UK cereals, improved interpretation of previous soil and yield maps 

(Lark & Stafford, 1997; Blackmore et al., 2003; King et al., 2005; Ross et al., 2008), testing the 

extent to which N balances predict soil N supplies after both cereals and oilseed rape (Whelan et 

al., 2009), improved prediction of NDVI with unlimited N supply (accounting for any effects of soil, 

genotype, sowing date and seed rate), measurement and interpretation of canopy colour in spring 

as distinct from canopy size (Heege et al., 2008), using variation in canopy size to predict grain 

yield, and indentifying appropriate predictive relationships between yield potential and other spatial 

variables that can be applied at different spatial scales (Milne et al., 2006a).  This project aimed to 

address these challenges, then to develop appropriate automated N management systems, 

validate these on commercial farms, and ensure their commercial viability.   

 

In addressing these challenges it was expected that findings would benefit N management both 

metre-by-metre and field-by-field because it will prove possible to make more precise tests of 
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relationships within fields than have previously been possible in field trials e.g. the effects of soil 

variation on fertiliser N recovery and the relationship between yield potential and N requirement. 

 

Spatially intensive measurements of SMN and potentially mineralisable N in the chessboard trials 

in this project, together with spatially intensive measures of grain yield, N uptake (including N 

uptake without N applied, hence true SNS) and N optima offer the opportunity to explore this 

variability in greater detail, potentially allowing better understanding, and hence prediction, of the 

contribution of SMN and mineralisation to true soil nitrogen supply.  

 

The chessboard trials in this project offer a unique opportunity to better understand the causes of 

differences in protein content at the optima, and the extent to which N optima are related to yield 

potential. 

 

2.4 Objectives 

1. To develop a logic for N fertiliser decision-making that integrates existing ‘N balance’ and ‘canopy 

management’ recommendation systems using (as far as possible) criteria available from 

commercial automated, spatially-referenced sensors. 

2. To develop new protocols (or extend existing approaches) for predicting crop N demands, based 

on previous yield maps and associated physical data. 

3. To test the extent to which the ‘N balance’ approach explains in-field variation in soil N supplies 

and optimum fertiliser N amounts.   

4. To develop a spring N scheduling system by defining maximum (unlimited by N supply) GAI 

trajectories (based on thermal time) for autumn-sown cereals, and to calibrate commercial 

canopy sensors.  

5. To validate automated applications of fertiliser N for their effects on gross margins, N Use 

Efficiency, and N emissions to the environment. 

 

2.5 Work Programme 

The objectives above were tackled in the 5 Work Packages described below. The first addresses 

the formulation of the logic in the round; Task 2 deals with issues in judging N demand, using yield 

and protein maps; Task 3 assesses the impacts of soil N supply and crop N demand on fertiliser N 

requirements; Task 4 develops calibrations and systems to transfer canopy sensor signals into 

useable information; and Task 5 tests the value of the systems in commercial practice. 

 

In these tasks, a range of resources were used, with some cross-over between Tasks;  

 

A. Scientific literature and data-sets from recent research 
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B. Liaison with international groups working on these issues 

C. Commercial farm data from 5 farmers who have been using appropriate precision 

technologies. 

i. Historic yield maps for 5 years for 5 fields.  

ii. Soil maps, EMI maps for these fields to be taken in the project. 

iii. Yield & protein maps (on-board combine protein sensors to be provided in the 

project) recorded in the first 3 years of the project, with SMN & mineralisable N 

measured in each field. 

iv. Satellite imagery of crop canopy from February to May to be provided by SOYL 

for each field. Canopy data from other canopy sensors (eg Crop Circle, N sensor) 

to be used as available. 

D. Chessboard experiments (Task 3) allowing ~400 N optima to be determined spatially 

per experiment, which can be related to soil N supply, grain yield, grain protein, 

canopy sensor signals and other measures. 

E. Sensor calibration experiments (Task 4) including seed rate, sowing date, variety, N 

rate and N timing comparisons. 

F. System validation trials (Task 5) to give half-field comparisons between ‘conventional’ 

(i.e. not spatially adjusted) & ‘automated’ N management systems. 

The issues to be addressed in the 5 tasks of the project, and the proposed approaches to these, 

are set out in more detail below. 

 

2.6 Work Programme 

The objectives above were tackled in the 5 Work Packages described below. The first addresses 

the formulation of the logic in the round; Task 2 deals with issues in judging N demand, using yield 

and protein maps; Task 3 assesses the impacts of soil N supply and crop N demand on fertiliser N 

requirements; Task 4 develops calibrations and systems to transfer canopy sensor signals into 

useable information; and Task 5 tests the value of the systems in commercial practice. 

In these tasks, a range of resources were used, with some cross-over between Tasks;  

G. Scientific literature and data-sets from recent research. 

H. Liaison with international groups working on these issues. 

I. Commercial farm data from 5 farmers who have been using appropriate precision 

technologies. 

v. Historic yield maps for 5 years for 5 fields.  

vi. Soil maps, EMI maps for these fields to be taken in the project. 

vii. Yield & protein maps (on-board combine protein sensors to be provided in the 

project) recorded in the first 3 years of the project, with SMN & mineralisable N 

measured in each field. 
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viii. Satellite imagery of crop canopy from February to May to be provided by SOYL 

for each field. Canopy data from other canopy sensors (eg Crop Cirlce, N sensor) 

to be used as available. 

J. Chessboard experiments (Task 3) allowing ~400 N optima to be determined spatially 

per experiment, which can be related to soil N supply, grain yield, grain protein, 

canopy sensor signals and other measures. 

K. Sensor calibration experiments (Task 4) including seed rate, sowing date, variety, N 

rate and N timing comparisons. 

L. System validation trials (Task 5) to give half-field comparisons between ‘conventional’ 

(i.e. not spatially adjusted) & ‘automated’ N management systems. 

The issues to be addressed in the 5 tasks of the project, and the proposed approaches to these, 

are set out in more detail below. 

 

2.6.1 Task 1: Developing a logic for automation  

A spreadsheet-based model was developed to demonstrate the feasibility of integrating 

automatically sensed data on soils, past yields, grain protein, field and weather information, and 

real-time canopy signals to produce predictions of fertiliser N requirements.  This model was 

developed and refined throughout the project, using literature, previous datasets and on-going 

work (Tasks 2-4) to:  

• Confirm the contribution to soil N supply from atmospheric deposition, soil mineral nitrogen and 

mineralisation, net of losses due to leaching, denitrification & immobilisation, and whether 

estimates are improved with knowledge of soil type, weather, geographic location etc.  

• Evaluate N%, nitrogen harvest indices & fertiliser N recoveries of a range of crops to inform N 

balance calculations for previous crops, and whether such balances usefully inform subsequent 

SNS. 

• Evaluate whether grain yield is a useful determinant of grain N demand, hence N requirement, 

or whether its relationship with N recovery counteracts the usefulness in determining fertiliser N 

requirement.  

• Evaluate the crop fertiliser recovery of modern cereal crops and quantify the effect of soil type, 

fertiliser & weather on these recoveries. 

• Quantify the soil-N limitation of the crop over time from October to March – i.e. to determine at 

what level of topsoil SNS does N become limiting to crop growth? 

• Evaluate whether topsoil SNS assessed by canopy sensing can reasonably be related to SNS 

for 0–90cm depth. 

• Quantify Benchmark GAI through the season to monitor whether growth is ‘on-target’. 

• Quantify dynamics of N uptake to predict how much previously applied N is still likely to be 

taken up at the time of subsequent N application.  
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• Evaluate the use of grain protein and grain yield as a measure of success of N application. 

 

Use was made of past datasets in tackling the questions above including HGCA Optimum N 

project, report No.438 (RD-3084: Sylvester-Bradley et al., 2008) and associated Defra project 

IS0223 (especially with regard to crop NHI, N yields, N recoveries & N balances), SNS Best 

Practice (PR490;; Kindred et al., 2012); (especially with regard to predicting soil N supply, 

mineralisation, relation between topsoil and subsoil N), Grain signatures project (PR458; Sylvester-

Bradley & Clark, 2009) with regard to using yield and protein to predict N demand & hence N 

requirements, Wheat Growth Guide data sets (Sylvester-Bradley et al., 2008) with regard to GAI 

and growth over time and thermal time.  

 

2.6.2 Task 2: Judging expected yield & N demand  

Key issues here were: 

 Evaluating best methods for predicting yields 

 Evaluating the consistency of grain protein & N demand (kg N/per kg grain) across & within 

fields, soil types, years etc. 

 Evaluating the usefulness of canopy sensors to judge non-N limited grain yields at the time of 

final N application (~GS 37, May), in order to inform estimates of N demand.  

 

Studies in the literature (e.g. Kleinjan et al., 2006) were firstly reviewed. New datasets were then 

created by identifying and working with 5 farmers with good field records of grain yield from at least 

5 fields going back at least 5 years. Apparent electrical conductivity (EMI) was measured on these 

soils to map soil properties. Yield, soil and weather data was collated and analysed together to 

develop methods to predict expected yield. In particular, the potential of a flexible statistical model 

(multivariate clustering, as proposed by Lark & Stafford, 1997) approaches were explored.  This 

approach identifies the principal patterns of temporal yield variation in a field, which might include 

consistently large or small yields, but will also include any patterns that reveal susceptibility of 

regions of a field to particular problems such as drought or poor establishment.  This provides a 

basis for predicting local relative yield and its uncertainty.  This task will therefore derive the best 

means of predicting, on an absolute basis, future grain yield and hence crop N demand of cereals 

both between and within fields.  

 

The relationships between yield, protein and N demand will also be assessed from the literature. 

Commercial protein sensors will be fitted to combines of the 5 farmers identified above to allow the 

spatial relationships to be tested further through the project, as well as from the trials in Tasks 3 & 

4.  
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Past satellite canopy sensed data was also related to yield data to evaluate how well canopy 

measures at mid growth (~GS37) can predict non-N limiting yield differences and hence final N 

demand.  

 

2.6.3 Task 3: Explaining in-field variation in soil N supplies and optimum N  

The core experiments for the Project were the chess-board trials (see below; Lark & Wheeler, 

2003; Pringle et al., 2004) in which nitrogen rates are varied within a field with greater replication 

than in conventional fertiliser experiments. Because these trials can be analysed to model the local 

nitrogen response of the crop, they allow us to quantify the spatial variation of N requirements 

(including whether normal field trials accurately reflect N requirements of whole fields), and they 

provide a test of whether in-field variation in grain N% provides a useful post-mortem on optimum 

N use (as recommended in the Fertiliser Manual; Defra, 2009).  They also allow the evaluation of 

the use of previous grain yields and protein contents to predict soil N supplies and optimum N 

amounts of the current crop.   

 

Key issues were to: 

 Evaluate the consistency of protein content at the measured N optima. 

 Evaluate the usefulness of grain protein and grain yield as a measure of success of N strategy, 

where high protein indicates super–optimal N applications; low protein/low yield indicates sub-

optimal N application.  

 Test effects of within-field differences in soil type on N requirements. 

 Assess the contribution differences in soil type, organic matter and mineralisation make to 

differences in soil N supply, and infer differences in leaching/ immobilisation etc. 

 Assess relationships between N supply (from soil and fertiliser), canopy signals, growth, green 

area index, canopy nitrogen requirement, colour and N uptake.  

 Test value of EMI (and soil organic matter sensors, if available) for measuring soil characters 

and informing N management.  

 

One chess-board nitrogen experiment was set up in 2010 growing season, 2 in 2011 and 3 in 

2012. Plot size in each experiment was around 10m by 10m, with 4 N rates including zero applied 

N, applied using 24m spreader with half boom shut off and tramlines both across and up & down 

the experiment. The design of the experiments means that each plot is always in a grid containing 

all 4 N rates, allowing N optima to be determined for each plot, but (as noted in the legend to the 

figure above) model-based estimation of the local response function uses information from 

neighbouring plots via block kriging, and so achieves greater precision than if each local function 

were estimated directly from just four yield measurements. This approach can be taken not only to 

yield, but to other measured responses such as grain N content.  
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Extensive measurements were taken on the experiments, including sufficient measurements of soil 

mineral N, potentially mineralisable N, shoots m2, canopy progress, canopy reflectance, GAI, crop 

DM, N uptake, grain yield, grain protein and nitrogen harvest index to allow causes of differences 

in N requirements to be evaluated. Regular measurements of canopy signals helped allow 

calibrations for the above measures to be developed, where appropriate. Grain yield 

measurements were made by plot combine harvester to ensure greatest possible precision in the 

experiments.  

 

Where practical sensor assessments of chess-board trials were continued into the succeeding crop 

to test the capacity of sensors to detect residual or ‘ghost’ effects, particularly on SMN.   

Chess-board trial design (using a tramline grid) to test spatial patterns of N responses.  
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Figure 1. Chessboard trial: The diagram shows how each component of the ‘chess-board’ tramline 

grid includes a mini-trial with N levels of 0, 1, 2 & 3 (2 being the expected N optimum).  Hence a N 

optimum can be determined at each point in the grid, and these can be mapped over the whole field, 

revealing the spatial variation in N requirements and achievable yields (unconstrained by N) over the 

whole field, at a maximum spatial resolution of 12-24 metres (depending on the width of the fertiliser 

spreader used, and the variability in the trial). Note that the methods for analysing such trials (Pringle 

et al., 2004; Lark and Wheeler, 2003) use model-based methods to map the local N response.  This 

exploits information on the response in neighbouring plots, and so ensures that the local response 

functions are estimated with less sampling variance than they would be in direct modelling of just 

four plot yields. 
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2.6.4 Task 4: Calibrating & interpreting canopy sensor signals 

An AHDB Cereals & Oilseeds Scoping Study (Sylvester-Bradley et al., 2009) demonstrated that 

over winter and early spring NDVI signals for bare ground and fully-fertilised wheat canopies were 

reasonably consistent over sites and seasons, hence promising scope for absolute calibration of 

sensor signals.  More specific further work was undertaken to account for effects of genotypes 

(varieties of wheat and barley with contrasting leaf colours and canopy structures), sowing dates 

and plant establishment on GAI and soil-adjusted vegetation indices (Rondeau et al., 1996; 

Steven, 1997).   

 

Key issues were to: 

 Collate & develop benchmark data for crop growth, GAI, crop N uptake and canopy signals in 

N unlimited wheat crops, in terms of thermal time after sowing, as affected by variety, sowing 

date, seed rate and establishment. 

 Develop reliable calibrations for canopy signals to gauge crop growth/GAI/crop N uptake, 

taking account of differences in soil characters etc.  

 Develop a reliable system for predicting N-unlimited-growth (dry matter, GAI, N uptake & 

canopy signals) from sowing date, plant establishment and thermal time.  

 Develop a system to quantify soil N limitation over-winter by relating current canopy signals to 

predicted signals from N unlimited growth, hence allowing estimation of soil N supply.  

 Evaluate whether crop colour (or spectral properties) can be used as a measure of crop N 

status, hence develop a system using canopy sensors to gauge residual N availability after N 

has previously been applied.  

 

Bespoke experiments were established with sowing date, seed rate, N rate & timing treatments  to 

set-up canopies with different levels of N uptake and N status to be compared, and differences in 

the dynamics of uptake be assessed. 

 

Digital images were taken and canopy reflectance measured with commercial sensors (e.g. 

research versions of Crop Circle, N Sensor) through the season.  

 

Data collated in these trials was combined with data from other trials with canopy sensing into a 

large ‘calibration’ dataset from which relationships were evaluated. 

 

2.6.5 Task 5: System validation 

A commercialisation group made up of representatives of each of the industry partners convened 

regularly through the project to ensure that project outcomes could be used commercially. A 

generic spreadsheet-based system was developed by the project, which partners could use to 
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develop their own software applications to drive variable rate application technology, through factor 

maps or zone maps using their own systems. Whilst the underlying decision principles are freely 

available to all and are published in this report, the application of those principles in any 

commercial software remains the property of the industry partners to allow full exploitation. Whilst 

not all partners may seek to take outcomes from the project to the market place, all partners 

committed to not restricting the right of others to do so. Soilessentials, Agleader, Yara, Precision 

Decisions & Soyl provided application systems developed in the project that can be tested on farm 

in Task 5. 

 

Tramline comparisons were set up with several growers in 2013 and 2014 comparing ‘automated 

N management’ applications with uniform N management.   

 

The potential benefits of automated N management on gross margins were evaluated. As well as 

economic impacts of such automated-N systems, the potential environmental benefits accrued 

through reduced GHG emissions from N fertiliser manufacture and soil N2O emissions, reduced N 

leaching and ammonia volatilisation were quantified, as well as any land use implications through 

improved productivity. 

 

2.7 Working with 5 farms and 5 fields on each 

Real commercial farm data and field sites to answer all the questions above were made available 

by working closely with 5 precision farmers. On each farm 5 fields were selected to give interesting 

variability in soil characters, yields and canopy sensing within each field 
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3 A Rational Logic for N Decision Making 

Nitrogen (N) management is important for profitability and compliance with legislation; 

environmental consequences for climate change and water quality are serious. Knowledge of the 

appropriate rate of N fertiliser to apply to UK arable crops is derived empirically from N response 

experiments conducted over the past 75+ years (Crowther & Yates, 1941).  This knowledge is 

summarised as recommendations in the Fertiliser Manual (RB209; Defra 2010) and TN625 in 

Scotland (Sinclair et al., 2009). These use information on previous cropping, soil type and over 

winter rainfall to give N recommendations through look up tables, known as the “field assessment 

method”. Whilst these recommendations work on average, there is large variation around the 

averages which cannot currently be predicted; Sylvester-Bradley et al. (2008) found that 50% of N 

recommendations deviated by more than 50 kg ha-1 from measured optima.  

 

The Nitrogen for winter wheat – management guidelines (AHDB Cereals & Oilseeds, 2009) 

developed an approach whereby N requirements could be calculated incorporating best estimates 

of crop N demand, soil N supply and fertiliser recovery for the farm, field, crop and season. This 

also advocates monitoring success in order to make better estimates in future years. However, the 

full guidance for this approach has not been fully developed or validated. 

 

In addition, farmers in nitrate vulnerable zones (comprising the majority of UK arable area) must 

comply with Nmax rules on the total N rates applied to crop species within the farm. 

 

3.1 N responses and the economic N optima 

Many N response experiments have been conducted over the past hundred years to determine 

fertiliser nitrogen (N) requirements of wheat (Board of Agriculture and Fisheries, 1905; Russell 

1939; Crowther & Yates 1941; Garner, 1957; Boyd, 1976; Bloom, 1987, Sylvester-Bradley & 

Kindred, 2009). Early experiments such as those of Lawes & Gilbert (Johnston, 1996) were 

principally to demonstrate that artificial fertilisers were worthwhile. Since the 1970s the N optima 

for individual experiments have been determined empirically from fitting an N response curve to 

yield data from at least four N application rates (including zero) and interpolating the point at which 

profit to the farmer is maximised (Boyd et al., 1976). This point is dependent on two factors 

external to the crop experiment, namely the choice of fitted curve and the relative price of grain to 

fertiliser N (the breakeven ratio: BER). Since George (1984) the standard approach to curve fitting 

in the UK has been to fit a linear plus exponential function (Equation 1), but other responses are 

commonly fitted elsewhere and in the literature (Bachmeier et al., 2009). The BER describes the 

quantity of grain required to pay for a quantity of fertiliser N, and is typically around 5:1 but has 

varied between 2:1 to 9:1 in recent decades (Sylvester-Bradley & Kindred, 2009). The economic 

optimum (Equation 2) is the point on the response curve where the slope equals the BER; i.e. the 
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point at which increasing the fertiliser N applied by 1 unit would not increase grain yields 

sufficiently to pay for the cost of that N fertiliser. 

 

Equation 1: LEXP: Y = a + b.rN + c.N 

Equation 2:  Nopt = [Ln{(P/1000 − c)/(b × Ln r)}]/Ln r 

 

Where Y = Yield, N = N applied, P = Price ratio of N (£/kg) and grain (£/kg) and a, b, c & r are 

parameters determined by statistical fitting. 

 

3.1.1 Components of N requirement 

By considering crop N uptake as well as yield (Figure 2) the fertiliser N requirement can be 

considered as a function of 3 components. Crop N uptake with zero fertiliser N applied can be 

considered as our best estimate of soil N supply (by definition this is N that has got into the crop 

from soil, not from fertiliser) and can be termed harvested SNS (Kindred et al., 2012). The slope of 

the increase in crop N uptake with applied N is the apparent fertiliser N recovery (AFR). The 

maximum crop N uptake is the Crop N Demand. Where crop N uptake intersects the economic N 

optimum from the yield response can be considered to be the economic crop N demand; i.e. how 

much N it is worth getting into the crop. In practice the economic CND tends to be similar to the 

maximum CND. 
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Figure 2. Schematic of N response with N optima (triangle) and crop N uptake showing Soil N Supply 

(y intercept),  Apparent Fertiliser Recovery (AFR; angle of slope) & Crop N Demand (Crop N uptake at 

plateau, or at optima) 

 

By thinking about the yield response and crop N uptake in this way it is possible to both quantify 

the components to assess their importance in explaining variation in N requirement, and to use 

estimates of each component to independently estimate an N requirement using Equation 3 below. 

 

3.2 AHDB Cereals & Oilseeds Nitrogen Management Guide approach 

The basis of field-by-field advice, as set out in the Nitrogen for winter wheat – management 

guidelines, is to:  

1. Judge N demand (from expected yield and optimal N content), 

2. Judge N supply (using soil mineral N analysis, or from previous crop N balance, adjusting for 

any N losses, plus some N deposition), 

3. Determine Fertiliser N requirement (the N shortfall, adjusted by fertiliser recovery), 

4. Schedule applications (to manage the canopy, accounting for lodging and take-all risks), 

5. Monitor Success (by measuring grain yield and grain N content). 

 

Fertiliser N requirements are calculated from the three components: 

N applied (kg/ha)

Crop N (kg/ha) 

Optimum N Grain yield (t/ha) 

N applied (kg/ha)

Optimum N Grain yield (t/ha) 

SNS 

  

AFR
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Equation 3: 

 N requirement (kg N/ha)  =  Crop N Demand (kg N/ha) – Soil N Supply (kg N/ha) 

          Fertiliser Recovery (%) 

where Crop N Demand (CND) is the amount of N that it is needed by the crop to optimise yield, 

grain protein and straw N requirements (assumed to be 23 kg N t grain for feed wheats); Soil N 

Supply (SNS) is the amount of N available from the soil and fertiliser recovery is the proportion of 

fertiliser N applied that gets into the crop.  

 

TheNitrogen for winter wheat – management guidelines (AHDB Cereals & Oilseeds, 2009) 

advocates stepwise estimation of each of these components to determine N requirements of wheat 

crops.  This gives comparable recommendations to RB209, but allows quantitative ‘sliding-scale’ 

adjustments to be made if yields, proteins, SNSs, or fertiliser recoveries are expected to differ from 

standard assumptions.  It is thus applicable to intra-field variation, as well as to between field 

variation.  In principle, each of the three components on N requirements could be estimated (or at 

least informed) by information available through precision farming technologies – thus it ought to 

be possible to automate the estimation of absolute N recommendations for cereals where 

Precision Farming is practised.  The Auto-N project seeks to test this assertion and so provide a 

system for automated N decision making for use within as well as between fields. 

 

3.2.1 Crop N Demand 

Crops need N to build green canopy (green area index; GAI) to intercept sufficient light to achieve 

optimal yields.  For wheat, 95% interception of light is achieved with a GAI of 6 or 7, (i.e. 6–7 ha-1 

green leaf and stem area per ha-1). Each unit of GAI contains ~30 kg N ha-1; thus 180–210 kg N ha-

1 in the crop should produce sufficient green canopy. However, crops also need N to satisfy the 

protein requirements of the seed which, in wheat, are higher for breadmaking varieties than for 

feed varieties; with optimal N supply, the grain protein of feed wheats is around 11% (1.9%N), that 

of milling varieties is 12% (2.2%N) (Sylvester-Bradley & Clarke, 2009). It has been shown 

experimentally that higher protein breadmaking varieties require more fertiliser N for yield than feed 

varieties (Sylvester-Bradley & Kindred, 2009). Allowing for the N remaining in straw at harvest, 

23 kg N is required for each fresh (85% DM) tonne of grain yield for feed wheat, but 25 kg N/t for 

bread wheat. It is therefore apparent that, with yields above ~9 t ha-1, more N is required to satisfy 

grain protein demand than is needed to build an optimum crop canopy.   

 

3.2.2 Soil N supply 

Variation in SNS is generally taken to be the major driver of variation in N requirement. Soil N 

supply is variable spatially and temporally (Dampney & Goodlass, 1997; Baxter et al., 2003), and is 

currently predicted or measured with poor precision (Harrison, 1995; Sylvester-Bradley et al., 



Page 32 of 196 

2008). This is due in part to differences in the amount of N mineralised or immobilised through the 

season which affects N available to the crop (Shepherd et al., 1996; Bhogal et al., 1998; Goulding 

et al., 2008). 

 

Measured SNS has conventionally been assumed to be used by crops with 100% ‘efficiency’ 

(compared to 60% efficiency for fertiliser N; Sylvester-Bradley et al., 2001), though this assumption 

has been questioned (Knight et al., 2008). The chessboard trials should allow the uptake efficiency 

of soil N to be assessed across the range of SMN in a field, other factors being constant. 

 

In the field assessment method, SNS is estimated from previous crop, soil type and over-winter 

rainfall. SNS is all the N that becomes available to the crop from the soil (i.e. not fertiliser or 

manure N) throughout its growing season, so SNS includes N that will mineralise as well as 

residual soil N available as nitrate or ammonium.  We use the measure of N in an unfertilised crop 

at harvest as our best measure of total SNS, and we call this ‘harvested SNS’. It is possible to 

measure SNS in autumn or spring before fertiliser N is applied, by testing soil mineral N, as well as 

using incubation tests to estimate mineralisation.  In this sense SNS should be considered as the 

mineral N in the soil, plus the N already in the crop, plus an estimate of likely N mineralisation. 

Whilst such testing is useful where SNS is expected to be high or uncertain, and to give an 

indication of where a field or farm lies in relation to RB209 SNS indices, it does not by itself 

radically improve predictions of N requirements in ‘normal’ arable fields (Kindred et al., 2012; 

Orson, 2010).  

 

The Nitrogen for winter wheat – management guidelines (AHDB Cereals & Oilseeds, 2009) sets 

out a quantitative basis for predicting SNS using previous crop to set the size of likely N residues in 

autumn, and soil type with winter rainfall to estimate retention of that residue through to spring 

(Sylvester-Bradley, 2009).  We have formalised this within a spreadsheet tool to give a rational 

basis to quantify SNS at the field level, but we have also enabled assessments of crops over winter 

and in early spring to help to adjust or validate predicted levels of SNS.  Estimation of N in the crop 

is an important part of estimating SNS, especially for oilseed rape where more than 100 kg N ha-1 

can be taken up over winter. In wheat uptake over winter rarely exceeds ~30 kg N ha-1. Tools from 

BASF and Yara are available online and via smart phones to estimate canopy size (GAI) and N 

uptake for cereals and OSR for the purposes of N and plant growth regulator (PGR) management. 

The large crop N uptake of OSR is part of the reason why crop sensing techniques (e.g. N sensor) 

are used successfully to determine its N requirements, perhaps assisted by the weaker influence of 

seed N content on OSR N demand.  
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3.2.3 Fertiliser N recovery 

Whilst fertiliser recovery is known to vary substantially between N response experiments and 

fertiliser types (Sylvester-Bradley et al., 2014), the majority of this variation is not predictable. 

Fertiliser recovery is therefore assumed to be 60% for most soils, 70% for sandy and silty soils and 

55% for shallow soils over chalk, as in the Fertiliser Manual (RB209; Defra., 2010).  

 

3.3 An integrated Auto-N approach 

Figure 3 illustrates our initial view of how this N Management Cycle might be integrated with 

information from precision technologies. Widely used ‘precision farming’ technologies could 

provide information on likely N demand and N supply even before the crop is sown, through yield 

maps, grain protein maps and soil maps.  Past yields and soil data should together provide a guide 

to likely future yields (King et al., 2005; Kleinjan et al., 2006) and are routinely mapped on many 

farms.  The current field-by-field approach is to assume a crop N content at the optimum of 23 kg N 

per tonne of grain [1.9% N in grain (Defra, 2009; Sylvester-Bradley & Clarke, 2009) and 0.7 N 

harvest index (Sylvester-Bradley & Kindred, 2009)], allowing N demand to be estimated.  Soil N 

supply can be estimated initially from the N balance of the previous crop (fertiliser N used less crop 

N off-take; Taylor & Whelan, 2007), modified by estimates of additions and losses due to 

atmospheric exchange, soil organic matter turnover and leaching; these can all be informed by 

mapped soil data.  
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Figure 3. The N management cycle (yellow), indicating data sources for automation (orange, green & 

grey), and issues researched in this project (stars). 

Initial estimates of crop N demand and soil N supply can be used to make initial estimates of 

fertiliser N requirements using fertiliser N recoveries dependent on soil type.  Canopy signals over 

winter and through spring can then be used to refine these estimates, firstly of soil N supply, and 

later of crop N demand.  

 

3.3.1 Initial Auto-N approach for Estimating Crop N Demand 

The estimation of CND is possible from estimation of likely yields and protein requirements. Yield 

maps from previous harvests should enable estimates of yield to be made on a spatial basis, 

recognising that these estimates can be compromised because, as an extreme example, weather 

variation can mean that areas that yield best in one year yield worst in another. To deal with this, 

statistical approaches such as ‘fuzzy k means clustering’ can be used to group areas into those 

that behave in a similar manner (Milne et al., 2011). Commercially, simpler functions are used in 

precision farming software and by service providers to give yield performance maps, zoning areas 

that consistently perform well, badly or are inconsistent. Alternatively, zones can be defined by 

growers from any (or a combination of) prior knowledge such as soil surveys, aerial and satellite 

imagery, electromagnetic induction (EMI) mapping of soil conductivity, digital elevation maps, past 
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field boundaries as well as yield maps. Yield estimates can then be made for each zone.  It is also 

possible that in-season satellite sensing can help fine-tune spatial yield expectations. 

 

Whilst protein sensors on the combine are available (Whelan et al., 2009) they have not so far 

been widely adopted commercially. Understanding spatial variation in grain protein content and its 

relationship with grain yield and N supply could improve our estimation of N requirements. The 

fertiliser manual includes allowance for adjustments to N fertiliser use based on past grain protein 

results, and many growers use this as a measure of the success of their N management. However, 

thus far, the dynamics of protein variation have proved too complex to formalise the use of grain 

protein information into the estimation of N requirement, beyond the well-established impact of 

variety type (bread vs feed). 

 

3.3.2 Initial Auto-N approaches for Estimating Soil N Supply 

The crop can be an indicator of available soil N, especially in terms of indicating spatial variation. 

Sylvester-Bradley et al. (2008;2009) showed that canopy sensing at visible and near infrared 

wavelengths (expressed as NDVI: Normalised Difference Vegetation Index) using a Crop Circle 

(from Holland Scientific) could consistently distinguish plots where previous N response 

experiments had caused different residual N levels, hence differing SNS. Thus, based on known 

NDVI values adjusted through thermal time from crops grown with no N-limitation, it is possible to 

develop calibrations that indicate spatial variation in SNS from their NDVI (or other spectral 

reflectance measures) in spring. 

 

The AHDB Cereals & Oilseeds study (Sylvester-Bradley et al., 2008; 2009) has shown that, as 

predicted from classical models of plant growth (Hunt, 1982) and light reflectance by canopies 

(Wiltshire et al. 2002) the NDVI (normalised difference vegetation index) of wheat crops with 

unlimited N increases quite consistently with thermal time across sites and seasons (Fig. 4).   

 

Thus, from the difference between measured NDVI and that with unlimited N, crops with small N 

supplies may be identified by canopy sensors early in the season (Fig. 4), whilst crops with larger 

N supplies may be identified later.  Initial estimates of soil N supply based on previous crop data 

may thus be verified or modified in spring.  However, possible interfering and interacting effects (on 

sensing signals) of soil colour, stones, genotype, sowing date and seed rate need to be assessed 

and accommodated (Heege et al., 2008).  
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Figure 4. Two example time-courses for NDVI (by Crop Circle) of unfertilised wheat crops compared 

to the range of NDVI for crops with unlimited N at 4 sites over 2 seasons, showing how N limitation 

becomes apparent over time.  Symbols show initials of months of measurement: J=January, etc. 

AHDB Cereals & Oilseeds Project No. 3285 (Sylvester-Bradley et al. 2009).     

 

3.3.3 Initial Auto-N approach for Estimating Fertiliser recovery 

In principle soil sensing techniques such as EMI and soil brightness could be used to identify 

zones in fields where different estimates of fertiliser recovery are evident. However, there is only a 

minority of fields containing sufficiently contrasting soil types for good distinctions to be made. 

Currently, evidence is insufficient to assume any quantitative direct relationship of fertiliser 

recovery with quantitative soil characteristics. 

 

3.3.4 Initial Auto-N approach for Scheduling N applications 

Monitoring of canopies in later spring with appropriate sensors should enable progress towards a 

target canopy size (set according to Canopy Management principles; Sylvester-Bradley et al., 

1997; Wood et al., 2003) to be gauged, and should also allow initial estimates of crop N demand to 

be adjusted.  Canopy colour is expected to indicate the immediate balance between supply and 

demand (Lemaire et al., 2008; Heege et al., 2008), hence allowing re-estimation of residual N 

availability.  On this basis N fertiliser decisions may be adjusted automatically at each of three 

spring application timings.  
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1. The first N application (0 to ~60 kg N/ha in Feb/March) is used to manage the canopy potential, 

applying more where tillering is poor and take-all risk high, and applying none where the crop is 

large and SNS is high, indicating high lodging risk.  

2. The main N application (~50% of total N requirement, in April) provides for further canopy 

expansion, N rates being reduced if a large canopy is sensed.  

3. The final N application is the most important as it determines final N rate, and is the most 

challenging because three features of N requirement need to be estimated; (i) N already in the 

crop, sensed from canopy size assuming a default canopy N ratio (30 kg N per ha green area; 

Sylvester-Bradley et al. 1997), and (ii) N still available from the soil including fertiliser N still to 

be taken up from previous applications, sensed by canopy colour, and (iii) expected yield, 

hence crop N demand, assuming that a larger crop indicates higher yield potential. Each of 

these issues requires investigation. 

 

Bread-making crops may require additional late-N to boost grain protein; automation is potentially 

applicable but this project will mainly target optimisation of grain production, rather than quality.  

 

3.3.5 Initial Auto-N approach to Monitor Success 

Monitoring of grain yield and protein (as well as any lodging) at harvest will indicate the success of 

N use, e.g. low grain yield and high grain N% indicating excess N use due to non-N factors limiting 

yield.  This information should inform future N management (Norng et al., 2005).  

 

However, we don’t yet properly understand the relationships between grain yield and N optima, 

and grain protein and N optima (Sylvester-Bradley & Clarke, 2009), hence the best methods for 

setting N recommendations remain contentious. Grain N% remains the favoured yardstick by 

which accuracy of N use on wheat should be judged on farms, though recent work has shown that 

whilst grain protein is a useful measure of success on average, it can’t be taken as a definitive 

gauge in all situations (Sylvester-Bradley & Clarke, 2009). For example, season-specific conditions 

and geographic location can impact protein content at the optima in a way which has not yet been 

explained.  

 

3.4 Using past N response data to compare N recommendations 

The approach of the N Management Guide has never before been validated by comparison 

against RB209 or SMN measurement. Data were collated from 53 cereal N response experiments 

(Figure 5) since 2003 across the UK where Linear plus Exponential response curves (Equation 1) 

could be fitted and N optima determined (Equation 2) using a break-even ratio of 6:1.  
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Figure 5. Responses and optima (triangles) of 53 N response curves from ADAS experiments 

conducted between 2003 to 2010 

 

Recommended N rates were determined using 3 approaches: 

A. RB209 field assessment method using information on previous crop, soil type and over-winter 

rainfall.  

B. Soil mineral N tests to estimate SNS for the RB209 recommendation. 

C. Soil mineral N tests combined with simple crop N demand estimates using the N 

management guide approach. Yield estimates were reduced for older varieties and a higher 

crop N content was used for breadmaking varieties. 
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A B 

C 

 
 

Figure 6. Measured and predicted N requirements from various N response experiments conducted 

since 2000 predicted using RB209 field assessment method (A), SMN measurement with RB209 (B) 

and using the  N management Guide approach with SMN (C). 

 

This shows an improvement in using the N Management Guide approach with SMN over using 

SMN with RB209 (Figure 6). Detailed ‘farmer experience’ needs to incorporated into estimates of 

SNS and fertiliser recovery to fairly compare the N Management Guide approach. 

 

The dataset can also be used to explore the components of N requirement from estimates of 

harvested SNS, Crop N Demand and Fertiliser recovery and their importance in driving the 

variation seen in N optima (Figure 7).  

  

y = 0.6227x + 49.233

R2 = 0.0366

0

50

100

150

200

250

300

350

400

0 100 200 300 400

RB209 FAM rec (2010)

M
e

a
s

u
re

d
 N

 o
p

ti
m

a

y = 1.1168x - 31.862

R2 = 0.3985

0

50

100

150

200

250

300

350

400

0 100 200 300 400

RB209 SMN rec (2010)

M
e

a
s

u
re

d
 N

 o
p

ti
m

a

y = 1.0494x - 44.579

R2 = 0.5455

0

50

100

150

200

250

300

350

400

0 100 200 300 400

N Guide method rec (SMN)

M
e

a
s

u
re

d
 N

 o
p

ti
m

a



Page 40 of 196 

 

A B 

C 

 
 

 

Figure 7. Relationship between N optima and its components Crop N Demand (A), Soil N Supply (B) 

and Apparent Fertiliser Recovery (C) for the 53 responses shown in Figure 5. 

 

This shows that of the components, SNS explains most of the variation in the N optima (r2 = 0.63). 

Whilst there is a slight positive relationship with Crop N Demand (Figure 7-A), there is no 

relationship at all with yield at N optima (r2 = 0.01; data not shown). There is no relationship with 

fertiliser recovery, though it varies greatly.   

 

This indicates that assessing variation in SNS is the most important factor for improving N 

applications on a field by field basis.   

 

In order to assess the importance of the 3 components in variation in N requirements within fields, 

and to see if this variation could be detected by precision technologies, chessboard experiments 

were set up.  
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4 Chessboard trials to understand variation in N requirements 

4.1 Spatial experiments 

Spatial N response experiments at a field scale have previously been conducted in the UK (Lark & 

Wheeler, 2003; Bishop & Lark; 2006; 2007) and Australia (Pringle et al., 2004; 2010; Whelan et al., 

2012). By setting up replicated differential rates of N across fields, measuring yields (or other 

factors, e.g. NDVI), kriging to assess spatial variation at each N rate, then fitting an N response 

function, the spatial variation in N requirements can be seen. Some of these studies have tended 

to aim at developing techniques for farmers to generate local response functions using combine 

yield mapping which they can use for variable rate site specific management in future years 

(Pringle et al., 2004). Bishop & Lark (2006) recognise the potential for new spatial experimentation 

techniques to help learn about underlying soil effects on the response of treatments, which is 

deliberately inhibited by the classical randomised block design and analysis of variance 

established by Fisher (1930). By measuring the components of N requirement (Crop N Demand, 

SNS, Fertiliser recovery) along with other crop and soil measures, this spatial experimentation 

should be able to tell us about soil effects on N requirements generally, not just for the specific site. 

 

4.2 Chessboard Experiments  

Whilst there are statistical benefits from including randomisation within an experimental design, 

there are major logistical, practical and management advantages in adopting a simple systematic 

chessboard (or checkerboard) design as shown in Figure 8. This design is relatively simple to set 

up using commercial application equipment (sprayer or pneumatic spreader), with half boom shut 

off and tramlines both across and up & down the experiment.  In one direction N rate 1 is applied to 

one side of the tramline, N rate 0 on the other. In the perpendicular direction N rate 2 is applied to 

one side and again N rate 0 to the other. This sets up the chessboard pattern (actually a gingham 

pattern) of alternating squares of N0 (N0+N0) and N1 (N1+N0) plus N2 (N0+N2) and N3 (N1+N2) 

across the applied area. The size of each square depends on tramline width, a common 24m 

tramline width giving 12m squares.   
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Figure 8. Chessboard trial: The diagram shows how each N rate of the ‘chess-board’ tramline grid is 

attained from cross applications of N rates 0, 1 & 2 to give repeating pattern of N levels of 0, 1, 2 & 3. 

 

4.2.1 Chessboard Sites 

Fields in winter wheat were selected as candidates from 5 fields of the 5 Auto-N farms. Fields were 

sought with interesting underlying variation in yields or crop sensing which might give rise to 

variation in N requirements. Final decisions on which fields to use were made by the Steering 

Group. The fields had to be large enough to accommodate the chessboard design of 250 to 500 

plots (3 to 5ha plus headlands). Fields where manure had been applied to the current crop were 

excluded, as were fields recently ploughed out of grass. 
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Table 1. Sites and details for the six chessboard trials. 

Field 

ID 

Parish Grid Ref Harvest 

year 

Plot # Plot 

length 

Soil types Soil series 

F1 Flawborough, 

Notts 

SK777427 2010 528 10m Clay loam Worcester, 

Evesham, 

Fladbury 

F6 Flawborough, 

Notts 

SK781412 2011 432 9m Clay loam Evesham, 

Fladbury 

A2 Burford, 

Oxon 

SP236111 2011 376 11m Cotswold 

brash 

Elmton, 

Aberford,  

A3 Burford, 

Oxon 

SP242112 2012 400 11m Cotswold 

brash 

Elmton 

B2 Sharnbrook, 

Beds 

SP990589 2012 270 10m Clay loam St Lawrence, 
Wickham, 
Efford, Aberford 

C Shipton,   

N Yorks 

SE561576 2012 250 12m Sandy clay 

loam 

 

 

4.2.2 Setting up plots 

Plot size was a minimum of 10m x 10m allowing half of each plot to be used for destructive 

sampling whilst the other half was used for non-destructive assessments and harvest by plot 

combine. Harvest lengths were defined by removing tramlines in one direction by plot combine and 

a single ‘burn out’ mid-way between tramlines using a herbicide application by hand.  

 

4.2.3 Nitrogen Applications 

Nitrogen treatments were applied by the farmer either pneumatically or as liquid (not by a spinner) 

using a grid system of tramlines in accordance with the plan (appendix 1a). Nitrogen fertiliser 

application was applied in two equal doses in March and April (approx. GS30 and 32). At each 

application date, normal farm tramlines were used to apply Rate 1 (normally 60kg/ha) in one 

direction on half the tramline, and zero on other half. On tramlines at right angles to these Rate 2 

(normally 120 kg/ha) was applied to half the tramline, and zero on other half.   

 

All chessboard trials had treatments of 0, 120, 240, 360 except F6 which had 0, 100, 200, 300 due 

to high measured SMN and high expected (& achieved) SNS. 
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4.2.4 Measurements 

4.2.4.1 Soil sampling.  

Soils were sampled in Autumn or Spring (prior to any fertiliser application) using Eijkelkamp 

“Stepwise” gouge augurs to 90cm depth in increments of 0–30cm, 30–60cm and 60–90cm. Each 

sample consisted of 5 cores the first being at the intersection of 4 treatment ‘squares’(GPS 

referenced) and the remaining 4 from the centre of each square. Sampling was carried out either in 

a grid pattern, or was stratified according to known soil and past yield variations (where sufficient 

information was available). All samples were analysed for SMN. The 0–30cm sample was also 

analysed for, total N% by Dumas, SOM (Walkley Black – RB427) and potentially mineralisable-N 

by anaerobic digestion. 

4.2.4.2 Canopy sensing 

We aimed to measure canopy reflectance of all plots using a Crop Circle sensor on at least four 

occasions per trial, once in autumn or before end February, once 2-3 weeks after first N application 

(mid-March), once 2–3 weeks after second N application (late April) and once at flag leaf 

emergence (mid-May). In practice waiting for suitable weather conditions, technical problems with 

the sensors, and delivery delays between sites meant that exact timings were not always as 

planned. 

 

On selected plots at each date, canopy measurements were also taken using a hand-held version 

of the Yara N Sensor, Cropscan, Minolta SPAD (and Yara N tester) and, after GS30, a Sunscan 

ceptometer. Digital photos were also taken looking vertically down into the crop for use with the 

BASF canopy assessment tool. 

 

Where possible, sensor assessments of chess-board trials were continued into the succeeding 

crop to test the capacity of sensors to detect residual or ‘ghost’ effects, particularly on SMN.   

4.2.4.3 Crop dry matter and N uptake. 

Crop dry matter and nutrient uptake was measured on the same selections of plots and timings as 

the soil samples. Three 0.25m2 quadrats were taken from each plot. Prior to sampling, digital 

photographs were taken of each quadrat area, chlorophyll content measured by SPAD and light 

interception measured using the Sunscan ceptometer. The numbers of plants and shoots in each 

quadrat were counted before the plants were cut at ground level and taken back to the laboratory 

for drying and weighing. Dried samples were then analysed for N%.  
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4.2.4.4 Harvest 

At selected plots at each site whole tiller grab samples were taken from each plot immediately prior 

to harvest, shoots counted then ears separated from straw dried & weighed. Ears were threshed 

and grain weighed. Chaff was returned to straw samples and sent for analysis of N% by Dumas at 

Hill Court laboratory. Due to resource limitations and some sample losses not all samples were 

fully processed at all sites.   

 

To eliminate effects of combine harvest direction being confounded with N treatment two harvest 

cuts were taken per plot in opposite directions parallel to farm wheelings, using a Sampo plot 

combine. Cross wheelings were removed prior to harvest cuts being taken and plot lengths 

measured. A single sample was taken from each plot for grain moisture and specific weight 

determination by Dickey John Grain meter. Plot yields were calculated at 85% dry matter using 

averaged yields from the two cuts per plot. Grain samples were analysed for protein by FOSS 

Infratec NIR analyser.  

 

4.2.5 Post-harvest  

Where the experimental crop was followed by cereal or oilseed rape, semi-permanent markers 

were placed in the field and GPS references recorded to allow easy relocation of plots. Crop 

sensors were then used on every plot in the autumn and in spring before fertiliser application.  

 

4.2.6 Statistical analysis 

Harvest index (HI) was calculated for each plot by dividing the grain dry matter per shoot by the 

total dry matter per shoot. Grain N uptake was calculated by multiplying the grain yield by grain 

protein content divided by 5.7, which is the conversion factor in wheat from grain N% to grain 

protein content (% dry matter). N harvest index (NHI) was calculated by division of the grain N per 

shoot by the total N per shoot (straw N plus grain N). Total N uptake was calculated by dividing 

Grain N uptake by the NHI. 

 

Block kriging was used in Genstat or Matlab to interpolate measures at each N rate for each plot, 

so that for each plot measures were available for each N rate, even though each plot was 

conducted at only one N rate. Kriging was conducted for grain yield, grain protein content on all 

plots at all N rates. HI and straw N% were kriged where sufficient data was available within an N 

rate. This allowed calculation of grain N yield, NHI and total N uptake for each plot at each N rate 

(where kriging NHI was not possible it was assumed at the fixed average level per N rate per site, 

allowing total N uptake still to be estimated from grain N yield). 
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At each site N responses were fitted to yield for each plot in Genstat using Exponential and Linear 

plus Exponential (LpE; Equation 1) curves sequentially allowing more parameters to vary within a 

site and assessing the parsimonious increase in variation explained. N optima were calculated 

using Equation 2 and a breakeven ratio of 5kg grain per kg N. After examining curves and fits at 

each site it was decided that the LpE with a fitted common R parameter at each site gave the most 

representative fits and estimates of N optima. The exponential model is statistically more justifiable 

for fitting to four N rates given its use of 3 parameters rather than 4 with LpE, but the exponential 

cannot give a decline at higher N rates and does not allow as much flexibility in the shoulder of the 

curve where N optima are low. By fixing the R parameter within each site only 3 parameters need 

to be fitted, leaving one degree of freedom. 

 

Quadratic curves were fitted in Genstat to grain protein concentration. However, these were found 

to give unsatisfactory responses in many instances. To calculate protein content at the optima 

simple interpolation was performed in Excel using the forecast function between the N rates either 

side of the optima for yield. 

 

A broken stick (or split-line) regression analysis was conducted in Genstat on the total N uptake 

data for each plot. The slope of the second line was restricted to zero so that the Y breakpoint 

could be used as an estimate of crop N demand and the slope an estimate of fertiliser recovery.  

 

All presentation of spatial data is in ArcGIS. 

 

4.3 Chessboard results 

4.3.1 Weather comments 

Both 2010 and 2011 were characterised by having very dry springs (Table 1); it is likely in both 

years that yields were limited by water availability where soil did not contain sufficient available 

water. It also meant that fertiliser was not readily taken up after application in April. This was 

especially evident at Flawborough in 2011 where little visual difference was evident from N 

applications following only 16.5mm rainfall in all of March and April (Table 2). Such dry conditions 

could have killed soil microbial activity, giving mineralisation once substantial rainfall fell in late May 

2011. The 2012 season began with a continuing drought but became very wet from April onwards. 

The Shipton site in Yorkshire suffered water-logging for much of the spring and summer. 2012 was 

also marked by having a very dull late spring and summer, which together with relatively high night 

time temperatures (7.0°C and 9.7°C for May and June, respectively, compared to long term 

average mean minimum temperatures of 6.4 and 9.2°C) meant crop respiration was high relative 

to photosynthesis.  
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Table 2. Weather Summary for the three years from Met Office for England 

Period 2010 2011 2012 

Rainfall (mm/month)    

Oct–Dec 110.7 66.6 71.8 

Jan–Mar 66.7 58.6 40.1 

Apr–May 27.0 30.0 95.3 

Jun–Jul 48.9 64.8 130.8 

Solar Radiation (hrs/month)    

Oct–Dec 74.4 77.9 75.7 

Jan–Mar 81.2 78.0 103.7 

Apr–May 202.3 211.9 161.9 

Jun–Jul 198.4 186.4 139.4 

Mean Temperature (°C)    

Oct–Dec 7.5 5.0 9.1 

Jan–Mar 3.2 5.5 5.8 

Apr–May 9.7 11.9 9.3 

Jun–Jul 16.1 14.5 14.4 
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Table 3.  Weather Summary for Flawborough from John Hawthorne’s weather station, Notts 

Period 2010 2011 2012 

Rainfall    

January 41.4 32.8 38.6 

February 50.8 51.8 9.6 

March 40.9 9.1 24.8 

April 29.7 7.4 130.7 

May 28.2 47.8 36.2 

June 40.1 35.8 110.5 

July 36.8 54.9 103.4 

August 110.2 56.6 96.8 

    

Mean Temperature    

January 1.6 3.2 5.2 

February 2.4 6.1 4.1 

March 5.3 6.3 7.3 

April 8.3 10.9 7.2 

May 10.2 11.9 11.5 

June 14.6 14.1 13.4 

July 16.7 15.1 15.3 

August 14.6 15.5 16.5 

 

4.3.2 Chessboard sites info 

All chessboard trials were set-up successfully. A few minor over-applications of fertiliser in Burford 

2011 meant a 2 plots were excluded from analyses. Figure 9 shows the fields and layouts of the 

chessboard trials.  
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F1, 2010 F6, 2011 

  

A2, 2011 A3, 2012 

  

B, 2012 C2, 2012 

  

Figure 9. Fields with Chessboard trials from Google Maps 
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Figure 10 gives estimates of soil series for each plot where soil series differ within the site. 

 

Flawborough F1, 2010 Flawborough F6, 2011 

 
Fladbury-integrade-Evesham-integrade-Worcester 

 

Fladbury-Evesham-Fladbury-Evesham 

Burford, A2, 2011 Bedfordia, B3, 2012 
 

 

Aberford – Elmton  

 

St Lawrence, Wickham, Efford 

Figure 10. Soil types on chessboard fields 

 

Figure 11 shows the cluster groups for the chessboard areas from analysis of previous yields 

described in Chapter 4. Areas within each cluster behaves in a similar way with regard to yields 

across years. The identity of cluster groups is arbitrary, but these and the soil groups are used to 

explore the relationships between N optima and its components in Figures 33–38. 

 

The average past wheat yields from past field yield maps for the chessboard areas are shown in 

Figure 12. Full details are given in Chapter 4. 

 

Figure 13 shows electrical conductivity from EMI mapping of the fields. The distance between 

paralled soil scans was often somewhat more than the ~10m plot size of the chessboard plots so 

there are substantial numbers of missing data. 
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F1, 2010 F6, 2011 

 

A2, 2011 A3, 2012 

   
B3, 2012 C2, 2012 

    
 

Figure 11. Cluster groups from previous yield on chessboard fields (see Chapter 4) 

 

F1, 2010 
7.9-12.1 t/ha 

F6, 2011 
6.4-10.3 t/ha 

  

A2, 2011 
6.6-9.8 t/ha 

A3, 2012 
6.3-10.2 t/ha 

  

B3, 2012  

 

 

 

Figure 12. Averaged past wheat yields on chessboard fields (see Chapter 4) 
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F1, 2010 F6, 2011 

 

 

A2, 2011 A3, 2012 

 

 

B3, 2012  

 

 

 

Figure 13. Soil Electrical Conductivity on chessboard fields. NB soil measures sometimes taken at 

tramline width not plot width of ~10m so missing values for some plots. 

 

4.3.3 Aerial Photographs 

Visual effects of N application and underlying spatial variation were apparent in May/June in all the 

chessboard trials, though visual effects of N were much more limited at Flawborough in 2011 

(Figure 14) . 
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F1, 2010 F6, 2011 

  

A2, 2011 A3, 2012 

  

B2, 2012 C2, 2012 
In 

  

 

Figure 14. Aerial images of Chessboard trials with field ID and harvest year. 

 

4.3.4 Plot yields 

Each site clearly showed strong effects of N on yield as seen by the chessboard pattern showing 

through in plot yields in Figure 15, with the exception of Flawborough 2011 where there was very 

little yield response to N, and some very high yields achieved without N. All sites showed large 

spatial variation in grain yield, both from plot data and from kriged data giving estimated yields at 

each N rate for each individual plot (Figure 17). Generally the higher yielding areas at each site 

correspond to the evidently greener areas from the aerial photography. There is some exception in 
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2012 at Burford and Bedfordia, where the greener areas in June end with the lowest yields. Yields 

were generally low in 2012. 

F1, 2010 
3.9-12.6 t/ha 

F6, 2011 
6.1-11.6 t/ha 

 

A2, 2011 
3.4-10.5 t/ha 

A3, 2012 
3.2-9.2 t/ha 

 

 
B3, 2012 

3.2-9.2 t/ha 
C2, 2012 

1.0-10.8 t/ha 

 
 

 
Figure 15. Plot combine harvester yields of each individual plot in the Chessboard trials. Dark blue 

corresponds to low yield, dark red to higher yield. Values are given for the range in plot yields. 

There was some lodging at Flawborough 2010 site at the highest N rates in the highest yielding 

areas, shown in Figure 16 below. There was no lodging at any other site. 

  
 

Figure 16. Plot lodging (% area lodged) at Flawborough 2010 
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4.3.5 Kriged yields – at each N rate 

F1, 2010 F6, 2011 

  0N 3.9-9.2 

120N 6.9-11.7 

240N 8.3-12.6 

360N 7.9-12.0 

0N 6.7-10.5 

100N 6.9-10.7 

200N 6.5-11.1 

300N 6.4-10.4 

A2, 2011 A3, 2012 

   0N 4.0-6.1 

120N 6.9 -9.9 

240N 7.6-11.3 

360N 8.6-11.0 

  0N 3.5-6.8 

120N 5.2-8.0 

240N 6.2-8.6 

360N 6.8-8.8 
 

Figure 17. Kriged yields at each N rate of chessboard trials. Dark blue corresponds to low yield, dark 

red to higher yield. Values are given for the range in plot yields at each N level. 
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B3, 2012 

C2, 2012 

  0N 6.1-7.9 

120N 6.1-9.1 

240N 6.9-9.3 

360N 6.6-8.5 

  0N 1.4-6.2 

120N 4.8-8.2 

240N 7.3-9.8 

360N 6.5-10.9 
Figure 17 (cont). Kriged yields at each N rate of chessboard trials. Dark blue corresponds to low 

yield, dark red to higher yield. Values are given for the range in plot yields at each N level. 

Spatial variation in yield exceeded 2 t/ha at all sites and 4 t/ha at Flawborough. Generally the patterns 

of spatial variation were consistent across all levels of applied N, i.e. higher yielding areas yielded 

more whether or not N fertiliser was applied. However there was a strong exception in 2012 at the 

Burford and Bedfordia sites where areas yielding the most without N applied, yielded the least with 

high levels of N applied. This is likely to be due to the abnormally dull and wet summer in 2012, 

where larger crops generally tended to perform poorly; this is discussed further in sections 3.7.4. 

 

4.3.6 N responses & N optima 

For each plot at each site N responses were fitted using Linear plus Exponential function and 

economic optima determined (Equation 2). A random selection of these responses are shown for 

each site in Figure 18, with all optima plotted for each site. The differences in shape between sites 

is striking, but whilst there is substantial variation in N optima within each site, the shape of the 

response within each site is relatively consistent. Variation in N optima exceeds 100 kg/ha at all 

sites, and relates more to yield at some sites (e.g. Bedfordia 2012) than at others. 
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F1, 2010 F6, 2011 

 

A2, 2011 A3, 2012 

  

B3, 2012 C2, 2012 

 

Figure 18. N responses and N optima (triangles) of Chessboard trials using Linear plus Exponential 

fits with R fixed at each site. A random subset of the total number of responses is presented for each 

trial. 

 

The responses at Flawborough in 2010, Burford 2011 and Shipton in 2012 are reasonably typical 

of N response curves in the UK, giving N optima between 100 kg N/ha and >340kg N/ha. The lack 
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of response to N is evident at Flawborough in 2011 and is probably partly due to spring drought 

meaning N fertiliser was not taken up in time to affect grain yield. Responses in 2012 for Burford 

and Bedfordia became negative at higher N rates, especially so at Bedfordia with some areas 

yielding as little with 340 kg N/ha as they did with no fertiliser. Whilst such N responses were 

common in 2012, typically such responses are rare, especially in the absence of lodging. 

 

F1, 2010 
101-248kg N/ha 

F6, 2011 
0-110kg N/ha 

 

A2, 2011 
172 - >360kg N/ha 

A3, 2012 
67-360kg N/ha 

 
 

B, 2012 
0-188kg N/ha 

C2, 2012 
213 - >360kg N/ha 

 
 

Figure 19. N optima (BER=5) from fits in Figure 12 of Chessboard trials with field ID and harvest year. 

Values are minimum and maximum N requirements in trial. Darker colour higher is N requirement. 

 

Spatial variation in N optima (Figure 19) does not always clearly follow the same patterns that are 

evident from aerial imagery or from kriged grain yields. The patterns are most consistent for 

Burford and Bedfordia in 2012 where the lowest yielding bands give the lowest N optima, and vice 

versa.  
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4.3.7 Yield at optima 

F1, 2010 
8.0-12.1 t/ha 

F6, 2011 
6.8-10.6 t/ha 

 

A2, 2011 
8.4-11.0 t/ha 

A3, 2012 
6.3-8.8 t/ha 

  

B3, 2012 
6.3-9.2 t/ha 

C2, 2012 
7.5-10.9 t/ha 

  
 

Figure 20. Yields at N optima of Chessboard trials from fits in Figure 19 with field ID and harvest year. 

Dark blue corresponds to low yield, dark red to higher yield. Values give minimum and highest 

yields, excluding outliers. 

 

The variation in yields at N optima (Figure 20) at each site is greater than 2 t/ha and is similar to 

the variation in yield at any given N rate. This suggests N limitation is not a major cause of the 

spatial variation in yield in each of these fields.   
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4.3.8 Plot protein 

There is a clear effect of N application on grain protein at each of the sites as the pattern shows 

through clearly (Figure 21), including for Flawborough 2011 which was unresponsive for yield. 

There is underlying spatial variation but this isn’t generally as clear as that for grain yield and 

corresponds less clearly to the visible spatial variation from the aerial imagery. 

 

F1, 2010 
7.6-14.3 %DM 

F6, 2011 
6.9-12.8 %DM 

A2, 2011 
8.1-14.5 %DM 

A3, 2012 
9.6-16.3 %DM 

 

B3, 2012 
10.3-16.8 %DM 

C2, 2012 
7.8-13.6%DM 

 
 

 
Figure 21. Grain protein content of each individual plot in the Chessboard trials. Darker colour 

corresponds to higher protein. Values are given for the minimum and maximum protein in each trial, 

excluding outliers. 

 

4.3.9 Kriged protein at each N rate 

The spatial variation in the kriged grain protein content at each N rate is generally less coherent 

than that for grain yield, and is generally less consistent between N rates (Figure 22). However, 

variation in grain protein at each N rate is large, always exceeding 2% and often much more.  
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F1, 2010 F6, 2011 

  0N 7.6-10.6 

120N   8.3-11.3 

240N 11.8-13.8 

360N 12.6-14.3 

    0N 6.9-10.9 

100N 8.2-11.4 

200N 9.9-12.6 

300N 10.2-12.7 
A2, 2011 A3, 2012 

   0N 8.4-10.7 

120N 9.3 -12.0 

240N 9.9-13.0 

360N 11.5-14.6 

  0N 9.6-12.7 

120N 9.8-13.6 

240N 14.0-15.1 

360N 13.7-15.9 
 
 
 

B3, 2012 

 
 
 

C2, 2012 

    0N 10.4-12.8 

120N 11.9-15.7 

  0N 4.4-6.2 
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240N 12.8-15.7 

360N 14.6-16.5 

120N 4.8-8.2 

240N 7.3-9.8 

360N 6.5-10.9 
Figure 22. Kriged protein contents at each N rate of chessboard trials. Darker red corresponds to 

higher protein. Values are given for the range in kriged plot proteins at each N level, excluding 

outliers. 

 

4.3.10 Protein responses 

Quadratic curves were fitted to the kriged protein data for each N fertiliser rate in each plot, but 

these were found to inadequately describe the protein response at Flawborough 2010 (F1) and 

Burford 2012 (A3) and there are insufficient N rates to fit a more sophisticated model. Therefore, 

plot figures are shown in Figure 23 and values given for protein at optima interpolated between plot 

values. At three of the sites (Burford 2011, Bedfordia and Shipton 2012) the protein content 

continues to increase with N rate with little evidence of levelling off. Where protein contents do 

clearly level off (Flawborough 2010, Burford 2012) there is a wide range in protein at the optima; 

the optima does not appear to occur at a consistent point on the protein response curve either 

within or between sites.   
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F1, 2010 F6, 2011 

 

A2, 2011 A3, 2012 

 

B3, 2012 C2, 2012 

Figure 23. Protein responses to N and interpolated protein at N optima (triangles) of Chessboard 

trials 

 

4.3.11 Protein at N optima 

Grain protein at the optima varies substantially within each site (Figure 24). Given that protein 

content is given at the optimum, and that protein content clearly increases with N fertiliser rate, the 
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protein at the optima is not an independent variable and so would be expected to vary with N 

optima. 

 

F1, 2010 
9.9-13.2 %DM 

F6, 2011 
7.1-10.8 %DM 

  

A2, 2011 
10.5-13.7 %DM 

A3, 2012 
11.1-15.1 %DM 

 

 

B3, 2012 
11.5-14.3 %DM 

C2, 2012 
10.4-13.4 %DM 

  

 

Figure 24. Grain protein content at N optima of Chessboard trials from quadratic fits in Figure 23 with 

field ID and harvest year. Darker red corresponds to higher protein. Values are given for the range in 

proteins at optima for each site, excluding outliers. 

 

4.3.12  Grab sample measures 

Grab samples were taken from selected plots in each experiment to enable calculation of harvest 

index (proportion of total above ground dry matter (grain + straw) in the grain), straw yields and 

total N uptake. Full data is available from zero N plots at all sites, other N rates were sampled less 

intensively and can only be represented at F1, A3 & B3 (Figures 25–27); at the other sites 

insufficient samples were collected to meaningfully krig to produce maps.   
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4.3.12.1 Harvest Index 

There is little consistent impact of N fertiliser rate on harvest index (Figure 25), though it tends to 

reduce markedly at the higher N rates at Burford and Bedfordia in 2012. There are interesting 

differences in spatial cohesion of variation in Harvest Index, with substantial spatial interactions 

with N rate at some sites, for example relative areas of high harvest index completely shift from 

zero N to high N at Flawborough 2010. The patterns in spatial variation in harvest index bear only 

limited similarity to other measures in each field. 

4.3.12.2 Straw N% 

Straw N% generally increased with N application rate and tended to show some spatial coherence 

within each field between N levels (Figure 26). 

4.3.12.3 Nitrogen Harvest Index (NHI) 

Nitrogen Harvest Index (proportion of total crop N in the grain) was little affected by N rate in 2010 

but was strongly reduced with increasing N level in 2012 at Burford and Bedfordia, though not 

Shipton (Figure 27). There was relatively little spatial consistency in NHI across N levels and it was 

generally not clearly linked to spatial variation evident in other measures.  
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F1, 2010 F6, 2011 

    0N 54.6-58.7% 

120N 50.8-57.8% 

240N 52.0-56.4% 

360N 53.3-54.6% 

    0N 49.8-59.6% 

A2, 2011 A3, 2012 

   0N 48.8-50.8 
 

  0N 8.1-48.3% 

120N 41.5-45.6% 

240N 39.0-46.0% 
B3, 2012 C2, 2012 

    0N 45.1-50.3% 

120N 38.4-53.4% 

360N 1.4-44.6% 

0N 21-52%      120N 45-51% 

240N           360N  
50-58%                               49-58%

Figure 25. Kriged Harvest Index (%) for the chessboard trials. All plots were sampled at zero-N at all 

sites, but only selected plots for other N rates so kriging is not possible for all N rates at all sites. 

Darker colour is higher value. Values are given for the range in kriged plot proteins at each N level, 

excluding outliers. 
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F1, 2010 F6, 2011 

    0N 0.36-0.60% 

120N 0.37-0.43% 

240N  0.50-0.52% 

360N 0.54-0.72% 

    N/A 

A2, 2011 A3, 2012 

   0N 0.28-0.35% 
 

  0N 120N  

240N      360N 0.54-0.73% 
B3, 2012 C2, 2012 

    0N 0.35-0.77% 

120N 0.77-0.99% 

240N 1.03-1.21% 

360N 0.96-1.55% 

0N       120N  

240N   360N  

Figure 26. Kriged Straw N concentration (%) for the chessboard trials. All plots were sampled at zero-

N at all sites, but only selected plots for other N rates so kriging is not possible for all N rates at all 

sites. Darker colour is higher value. Values are given for the range in kriged plot proteins at each N 

level, excluding outliers. 

  

0.39-0.64% 0.38-0.93% 

0.68-0.73%

0.3-0.49% 0.3-0.51%

0.41-0.55% 
0.35-0.73%
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F1, 2010 F6, 2011 

    0N  75-86% 

120N  80-87% 

240N   83-86% 

360N  80-84% 

    N/A 

A2, 2011 A3, 2012 

   0N 82-86% 
 

 0N 120N 

240N 360N  
% 

B3, 2012 
C2, 2012 

0N 120N  

240N 360N  

0N 54-83% 120N  

240N       360N  
Figure 27. Kriged N Harvest Index (%) for the chessboard trials. All plots were sampled at zero-N at 

all sites, but only selected plots for other N rates so kriging is not possible for all N rates at all sites. 

Darker colour is higher value. Values are given for the range in kriged plot proteins at each N level, 

excluding outliers. 

 

4.3.13 Total N Uptake 

Total N uptake was calculated at each N level for each plot from grain DM yield, grain N% 

(protein/5.7), straw yield calculated using harvest index and straw N%. 

69-83% 62-82% 

70-76% 65-75% 

68-85% 65-77% 

63-68% 56-69% 

74-84%54-83%

79-85% 77-87%
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4.3.13.1 Harvested SNS 

Without fertiliser N applied, total N uptake gives the best measure of N available to the crop from 

the soil throughout the season, hence it is the best measure of Soil N Supply. Figure 28 shows that 

there was large spatially coherent variation in SNS for each of the fields, variation exceeding 

75 kg N/ha in all but one field. 

 

F1, 2010 
60-173 kg/ha 

F6, 2011 
95-175 kg/ha 

 

A2, 2011 
65-100 kg/ha 

A3, 2012 
72-186 kg/ha 

 
 

B3, 2012 
124-197 kg/ha 

C2, 2012 
26-102 kg/ha 

 
 

Figure 28. Harvested SNS (Crop N Uptake with zero N) of Chessboard trials. Darker colour higher 

value. Values are given for the range in values at each N level, excluding outliers. 

4.3.13.2 Total N uptake with N applied 

Total N uptake for N levels other than zero was calculated using the HI and straw N% values for 

each plot where available in Figure 21, else using averaged NHI for each N rate within each site. 
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F1, 2010 F6, 2011 

120N 115-226kg 

240N 196-289kg 

360N 197-296kg 

100N 100-184kg 

200N 106-212kg 

300N 136-205kg 

A2, 2011 A3, 2012 

 120N 130-203kg 

240N 171-226kg 

360N 199-257kg 
 

120N 122-199kg 

240N 187-243kg 

360N 221-284kg 
B3, 2012 C2, 2012 

120N 240N  

360N 244-319kg 

120N          240N  

360N 148-260kg 
Figure 29. Kriged N Harvest Index (%) for the chessboard trials. All plots were sampled at zero-N at 

all sites, but only selected plots for other N rates so kriging is not possible for all N rates at all sites. 

Darker colour is higher value. Values are given for the range in kriged plot proteins at each N level, 

excluding outliers. 

4.3.13.3 Broken stick regressions of Total N yield 

In order to assess the response of N uptake to N fertiliser in each plot a split line (broken stick) 

regression was performed in Genstat restricting the plateau to horizontal (Figure 30). This allows  

  

177-262kg 227-295kg 80-144kg 140-208kg
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F1, 2010 F6, 2011 

  

A2, 2011 A3, 2012 

 

B3, 2012 C2, 2012 

 

Figure 30. Broken stick regressions of total crop N uptake for a random set of selected plots for the 

Chessboard trials. Black triangles show crop N uptake at the optima. 

 

The crop N uptake responses tend to show more variability in their shape between sites than within 

sites. How N optima relates to the crop N uptake response and the breakpoint also varies between 

and within sites. At most sites the majority of N optima occur well before the breakpoint is reached, 

however at August 2011 the optima for yield for many plots seems to be higher than that required 
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to get maximal N into the crop. At Shipton 2012 crop N uptake continues to increase in many areas 

beyond the highest N rate of 360kg N/ha. Some caution is needed not to over-interpret these 

regressions, given that there are only 4 N rates in each.  

4.3.13.4 Fertiliser Recovery (slope) 

F1, 2010 
34-78% 

F6, 2011 
1-47% 

 

A2, 2011 
38 – 88% 

A3, 2012 
35-80% 

 
 

B3, 2012 
36-95% 

C2, 2012 
39-58% 

  

Figure 31. Fertiliser recovery of chessboard trials from slope of broken stick regression analysis. 

Darker colour higher value. 

 

Figure 31 shows large variation in fertiliser N recovery as estimated from the slope of crop N 

uptake. Fertiliser recovery is typically 60%, the chessboard trials show that it consistently varies by 

+/-20% around this average. Fertiliser recovery at Flawborough 2011 and Shipton 2012 were both 

very low, due to drought and waterlogging, respectively. 
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4.3.13.5 Crop N Demand (plateau) 

Figure 32 shows variation in crop N demand as estimated from the plateau from broken stick 

regressions exceeding 60 kg/ha at all sites. Spatial variation in crop N demand closely matches 

that for yield at higher N rates. 

 

F1, 2010 
202-296 kg/ha 

F6, 2011 
135-203 kg/ha 

  

A2, 2011 
191-296 kg/ha 

A3, 2012 
221-280 kg/ha 

  

B3, 2012 
247-311 kg/ha 

C2, 2012 
155-227 kg/ha 

 

 

Figure 32. Crop N Demand of chessboard trials from plateau of broken stick regression analysis. 

Darker colour higher value. 

 

4.4 Exploring relationships in spatial variation in N optima 

In order to understand the prime underlying causes in the variation in N requirement in the 

chessboard trials the relationships with the three components Crop N Demand, SNS and fertiliser 

recovery have been assessed in Figures 33 to 35. Recognising that relationships may differ in 

different parts of the field we have grouped plots from each site by soil type where different soil 

series are evident, or by cluster groups from analysis of previous yield maps (see Chapter 4). 
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Crop N Demand 

There are few strong positive relationships between crop N demand and N optima within the 

chessboard experiments if average regressions are assessed (Figure 33). Relationships with yield 

are weaker still (Figure 36). However, at most sites there is some evidence of a positive 

relationship when assessing within a soil group. For example, Flawborough 2010 appears to show 

no relationship overall between crop N demand and N optima, but in fact there are a series of 

positive relationships within the different soil zones. At all sites in 2010 and 2011 some positive 

relationship is evident using a boundary line approach (Kindred et al., 2015).  

 

Soil N Supply 

Figure 37 shows there is a strong negative relationship between N requirement and SNS at three 

sites (F1, A3 and B3) and relationships within some soil groups at two more (A2 and C2). There is 

no apparent relationship between N optima and N supply at F6, where optima are low and SNS is 

high. At A3 in 2012 there is clearly a small area in Cluster group 4 which is behaving anomalously, 

with very high SNS but low yields, and some high yields with lower SNS. It seems likely that in a 

‘normal’ year other than 2012 the areas giving high SNS would also have given high yields. 

 

Fertiliser Recovery 

Several sites show a relationship between N optima and fertiliser recovery (Figure 35). The 

negative relationships at two sites (A2 and C2) do seem to be driving some of the variation in N 

requirement. However, many of the relationships are positive (F1, A3 and B3) with higher 

recoveries associated with higher N optima, the opposite to that expected if fertiliser recovery is 

driving differences in N optima.  This may be due to the strong negative association between 

fertiliser recovery and SNS at all sites except Burford 2011 (Figure 38). At Burford in 2012 the 

relationship between SNS and fertiliser recovery seems to be non-linear, with very low fertiliser 

recovery on two plots where SNS was very high, and high fertiliser recovery on some plots with 

moderate SNS. 

  

There is generally little relationship between fertiliser recovery and yield (data not shown).  
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F1, 2010 F6, 2011 

 

A2, 2011 A3, 2012 

 

B3, 2012 C2, 2012 

Figure 33. Relationship of N optima with Crop N Demand as determined by the asymptote of broken 

stick regression for the Chessboard trials. For each site data is grouped by soil series or cluster 

groups (see Figs 10 & 11). Solid line shows regression for all data. 
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F1, 2010 F6, 2011 

 

A2, 2011 A3, 2012 

B3, 2012 C2, 2012 

 

Figure 34. Relationship of Soil N Supply with N optima for the Chessboard trials. TNY @ 0N = Total N 

yield with no N applied. For each site data is grouped by soil series or cluster groups (see Figs 10 & 

11). Solid line shows regression for all data. 

 

 

  



Page 77 of 196 

 

F1, 2010 F6, 2011 

A2, 2011 A3, 2012 

B3, 2012 C2, 2012 

 

Figure 35. Relationship of Fertiliser Recovery with N optima for the Chessboard trials. Fertiliser 

recovery estimated as slope parameter from fitting of broken stick to N uptake data. For each site 

data is grouped by soil series or cluster groups (see Figs 10 & 11). Solid line shows regression for all 

data. 

  



Page 78 of 196 

 

F1, 2010 F6, 2011 

 

A2, 2011 A3, 2012 

 

B3, 2012 C2, 2012 

 

 
Figure 36. Relationship of Grain yield at N level 3 with N optima for the Chessboard trials. For each 

site data is grouped by soil series or cluster groups (see Figs 10 & 11). Solid line shows regression 

for all data. 

 

  



Page 79 of 196 

 

F1, 2010 F6, 2011 

 

A2, 2011 A3, 2012 

 

B3, 2012 C2, 2012 

 

Figure 37. Relationship of Grain yield at N level 3 with SNS for the Chessboard trials. For each site 

data is grouped by soil series or cluster groups (see Figures 10 & 11). Solid line shows regression 

for all data. 
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F1, 2010 
34-78% 

F6, 2011 
1-47% 

A2, 2011 
38 – 88% 

A3, 2012 
35-80% 

 

B3, 2012 
36-95% 

C2, 2012 
37-60% 

  

Figure 38. Relationship of SNS and fertiliser recovery for the Chessboard trials. For each site data is 

grouped by soil series or cluster groups (see Figures 10 & 11). Solid line shows regression for all 

data. 
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4.4.1 Multiple linear regression 

Multiple linear regression was conducted in Genstat to assess the statistical importance of each of 

the components and their interactions. For each site a regression analysis was conducted with N 

optima as the modelled term, with SNS, crop N demand, fertiliser recovery included as variates 

and soil series and cluster class as groups. The proportion of variation explained by each term on 

its own was collated and the best parsimonious model to explain variation in N optima was 

assessed. A summary of results is given in Table 4 below.  

 

Table 4 . All Subsets regression analysis N optima of chessboards with harvested SNS, CND (defined 

by N uptake at max N rate) and fertiliser recovery (slope from broken stick analysis) including soil 

and cluster class as groups to explain variation in N optima. 

   % variation explained by single terms Terms included in final model (significance) 
Variance 

explained 

by final 

model Trial SNS CND recovery 

soil 

series 

cluster 

classes SNS CND recovery 

soil 

series 

cluster 

classes 

Flawborough 

2010 46.18 2.28 35.24 22.69 17.51 <0.001 <0.001   <0.001   64.3 

Flawborough 

2011 0.00 16.12 6.59 5.73 16.11 0.005 <0.001  0.025  <0.001 22.7 

Burford 2011 0.00 6.56 14.96 0.98 6.29 <0.001 <0.001 <0.001  <0.001 38.9 

Burford 2012 56.15 26.62 30.78 NA 25.42 <0.001 <0.001 <0.001  <0.001 75.9 

Bedfordia 69.74 29.22 28.37 34.86 19.25 <0.001 <0.001 0.007  0.011 75.6 

Shipton 0.33 13.42 1.64 NA 2.86 <0.001 <0.001 <0.001   0.019 65.8 

 

The analysis confirms SNS to be the strongest predictor of N optima at three of the sites. At the 

other three sites no component is dominant and variation explained tends to be low. At Shipton, 

whilst the explanatory power of any individual component is very weak, together they account for 

65% of the variation, highlighting the importance of the interactions between the components. At all 

sites spatial classification by soil or cluster group was significant in explaining variation. However, 

at no site could more than 76% of variation be explained, and for the two sites in 2011 less than 

40% of variation was explained 

 

4.5 Soil measures at Chessboard sites 

Soil samples were taken from selected plots in each experiment. Soil mineral N was measured to 

90cm depth and soil organic matter, soil N% and potentially mineralisable N measured on top soil 

(Figures 39 to 42). 



Page 82 of 196 

 

Figure 39. Relationship between measured SMN and harvest SNS for the Chessboard trials. 

 

 

Figure 40. Relationship between measured potentially mineralisable N (PMN) and harvest SNS for the 

Chessboard trials. 



Page 83 of 196 

 

Figure 41. Relationship between measured SOM% and harvest SNS for the Chessboard trials. 

 

 

Figure 42. Relationship between soil total N% and harvest SNS for the Chessboard trials 

 

It is clear that no soil measure adequately explains the variation in harvested SNS either within 

fields or between fields. Baxter et al. (2003; 2005) has previously assessed the potential for using 

surrogate measures such as elevation or clay content to infer variation from limited SMN 

measures; the results here suggest this is unlikely to succeed. 
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4.6 Canopy measures at Chessboard sites 

Each site was assessed with a Crop Circle device to measure spectral reflectance and NDVI on a 

number of occasions (Figure 43). The patterns ultimately shown in SNS and yield potential are 

often clear from canopy reflectance early in the season. At most sites the effect of N fertiliser 

application dominates the canopy reflectance in scans in April and beyond. However, this is not the 

case at Flawborough 2011 or Shipton (C2) 2012 where drought and waterlogging respectively had 

large impacts. 

 

F1, 2010 F6, 2011 
 12 March 0.16-0.38 

   
21 April   0.2-0.7

 
7 May 0.3-0.8

 
20 May 0.25-0.85 

 

November 0.29-0.43

 
March 0.34-0.56  

 
April 0.48-0.72 

 
May 0.5-0.75 

 
A2, 2011 A3, 2012 

   Nov  0.38-0.58 

Feb   0.39-0.60 

April  0.41-0.66 

May   0.27-0.78 

  Dec  0.23-0.67 

March  0.35-0.57 

April  0.19-0.84 
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May  0.17-0.86 
Figure 43. Crop Circle measures of NDVI for each of the chessboard trials through the season. 

Darker green corresponds to higher NDVI. Values are given for the range in NDVI at each date. 

 
B3, 2012 

C2, 2012 

 Dec  0.14-0.53 

Feb  0.07-0.18 

Mar 0.48-0.71 

May  0.50-0.86 

   
Mar  

April 0.18-0.67 

May  0.28-0.77 
 

Figure 43 cont.  Crop Circle measures of NDVI for each of the chessboard trials through the season. 

Darker green corresponds to higher NDVI. Values are given for the range in NDVI at each date. F = 

Flawborough, A = August (Burford), B = Bedfordia, C= Shipton. 

 

4.7 Explaining variation in N requirement at each site 

Using the data shown in Figures 9–43 it is possible to attempt some explanation of the major 

drivers of variation in each of the chessboard experiments 

 

4.7.1 F1 Flawborough 2010 

The variation in N optima between 100 and 240 kg N/ha at site F1 is large, spatially coherent and 

visually matches the trends in variation the soil N supply, crop N demand, AFR and the underlying 

soil series. Some lodging at the highest N rates in the most fertile parts of the field could have 

contributed to slight yield declines at the highest N rates in some areas. The variation in optimum N 

was due predominantly to variation in soil N supply which varies from 60 to 170 kg N/ha. However, 

there clearly are interactions between the three components at the site, with positive correlation of 

SNS with grain yields and negative correlation of SNS with fertiliser recovery. The importance of 
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crop N demand and fertiliser recovery in determining the N requirement must therefore be 

recognised.  

 

The positive association between soil N supply and yield has not been widely acknowledged 

before. It seems that other attributes of the soil (more water, more of the other plant nutrients, 

better aeration) have helped to make more N available to the crops and hence boost their yields 

and demand for N. 

 

Measurements of soil mineral N made in the spring showed little variation (30–60 kg/ha) with no 

strong spatial coherence pattern. The large variation in the harvested soil N supply was therefore 

somewhat surprising and remains unexplained; there are no clear differences in soil organic matter 

or soil total N% to indicate differences in mineralization, yet in certain areas of the field the crop 

accessed much more nitrogen from the soil. The parts of the field where the soil N supply was 

largest were where in past years yield was also largest (see Chapter 4). It is possible that the 

greater crop growth in these areas could have left more organic matter to accumulate in the soil 

and to mineralise and release N. These areas tended to align with small differences in topography 

which perhaps are associated with access to deep soil water, which might contain some 

concentration of nitrate.  

 

4.7.2 F2 Flawborough 2011 

The poor response to fertiliser N at Flawborough in 2011 was probably caused by drought. Table 3 

(p44) shows rainfall there during March, April and the first 3 weeks of May was only 38.8 mm 

(compared with long-term average 160.5 mm). This lack of rain severely limited the uptake of 

fertiliser N and limited crop growth and tillering. The warm dry conditions increased the likelihood of 

loss of fertiliser N through volatilization of ammonia. Fertiliser recovery varied from zero to 50% but 

did not appear to explain variation seen in N requirement. The drought is likely to have killed much 

of the soil's microflora, and rapid mineralisation of N caused by rewetting in late May and June was 

too late to increase yields substantially; there were too few shoots and leaves to intercept light and 

photosynthesize. Nitrogen was taken up, however, and this increased protein in the grain. 

 

Areas where N optima was larger than zero were mostly in areas of the Worcester soil series 

where the soil supplied less N. Across the Worcester soil the variation in N optima visually matches 

trends in variation seen in soil N supply. The changing patterns of the canopy reflectance (Figure 

43) over the season at this site suggest that N was becoming limiting in different areas at different 

times. The different patterns seen late in the season and finally in harvested SNS perhaps 

supports the notion that mineralisation occurred late after the drought and rewetting. 
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4.7.3 A2 Burford 2011 

The Burford 2011 field has a Y-shaped valley where the soil is much deeper than elsewhere in the 

field (over 90 cm compared with 30–40 cm elsewhere). The soil is of the Aberford series and yields 

more than the thinner soil elsewhere. The pattern of N optima for the site is spatially coherent, but 

cannot perfectly be matched to the patterns of soil N supply, crop N demand, AFR or the soil 

series. Generally the higher yielding Y shaped valley also gave a higher SNS, but variation in SNS 

was relatively limited ranging by only 35 kg N/ha from 65 to 100 kg N/ha. Overall the relationship 

between N optima and SNS is poor, but it is more evident within the Aberford soil series and within 

other defined areas of the field. Whilst it seems that crop N demand may have some positive 

relationship with optima in some areas, the negative relationship of fertiliser recovery with N optima 

is stronger and perhaps is the greater driver at this site. The variation in fertiliser recovery here is 

large (0.3 to 0.88) and, unlike at other sites, is unrelated to SNS. Instead it is positively related to 

yield in some areas.  

 

4.7.4 A3 Burford 2012 

The 2012 season was atypical giving a dry early spring followed by a very wet and dull late spring 

and autumn. The Burford 2012 field was adjacent to that in 2011 and has a deeper clay bank 

running diagonally across the field SE to NW. This area had previously given higher yields in the 

field and was evidently greener throughout the season as seen from the aerial photography (Figure 

9) and from the NDVI from the Crop Circle canopy sensor (Figure 43) indicating a larger crop. 

Without nitrogen applied, this was the highest yielding area of the field, however, with N applied 

this area gave lower yields. This manifests a peculiarity of the 2012 season where larger crops in 

normally high yielding situations tended to yield less. Indeed, other N response experiments 

conducted by ADAS & others in 2012 were unusually flat and often showed higher N fertiliser rates 

to give reductions in yield. In general, factors that normally give higher yields, such as earlier 

sowing, heavier land and later higher biomass varieties, tended to give lower in yields in 2012. 

Grain quality also tended to be very poor in 2012, with specific weight especially badly affected 

(Marshall, 2013). This indicates poor grain filling. Opinions within the industry for the low yields and 

quality in 2012 were divided, with many citing water-logging of soils through spring and summer as 

the major cause, others pointed to the exceptionally high disease pressure in this year resulting 

from the wet warm conditions. The explanation that best explains the N response and other affects 

seen in 2012 is that respiration rates were high relative to low levels of solar radiation. Night time 

temperatures were relatively warm encouraging maintenance respiration, and respiration is greater 

in larger crops. In this year the light levels were not great enough to pay for the greater carbon 

costs of a larger canopy intercepting more light, so that crops which were larger in May ended up 

yielding less. Unfortunately respiration rates are very rarely measured in crops, and we know of no 

measures made in 2012, so this hypothesis to explain the low yields in 2012 is entirely speculative.  
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The normally higher yielding areas yielded less at Burford in 2012 and had a lower N requirement 

than the rest of the field. The low yields gave a lower crop N demand, ranging by 60 kg/ha across 

the field. The lower yielding areas also had a higher soil N supply, ranging by over 100 kg/ha 

across the field with very high SNS (100– >150kg/ha) in the North East corner and variation in the 

rest of the field generally between 70–100kg/ha. Whilst there is a negative relationship between 

yield and SNS in this field in this year, the relationship between SNS and normal yield potential is 

positive. There is therefore a strong relationship between N optima and both crop N demand and 

SNS at this site, but the relationship with SNS is more convincing as the major driver of the 

variation in N optima (r2 of 0.56). Fertiliser recovery varies greatly at this site but is positively 

related to N optima so cannot be the major driver of variation in N requirement. Again, fertiliser 

recovery is low where SNS is high. 

 

It is doubtful that in a more normal year the same variation in crop N demand would be seen, the 

impact on spatial variation in N response and N requirements on this field in a more normal year 

can only be speculated on. 

 

4.7.5 B2 Bedfordia 2012 

The Bedfordia field in 2012 has given similar anomalous responses to the season as at Burford. 

The areas which are generally higher yielding were greener in spring, yielded most without fertiliser 

but yielded least with N applied, and vice versa. The N responses at Bedfordia are very flat and 

negative at higher N rates, indeed yields at 360 kg N/ha are often lower than at zero N. This again 

reflects the negative affect of large canopies in 2012. SNS levels are generally high at Bedfordia, 

exceeding 120 kg/ha across the whole field and reaching nearly 200 kg/ha in the highest regions. 

These high levels are likely due to a history of manure use on this field combined with warm wet 

conditions being favourable for mineralisation. However, this is despite low measured SMNs 

(generally <50 kg/ha) and relatively low SOM and soil N% (Figures 41 & 42).   

 

The variation in yields and N responses generally matches the variation in soil series and cluster 

groups reasonably well. N optima are lower in the areas where yields are lower, though these are 

areas that would usually yield better. These areas also have higher SNS levels, so as with Burford 

2012, N optima correlates with both crop N demand and SNS. Again, the relationship with SNS is 

stronger (r2=0.689) and seems to be the major driver in variation in N optima.  

 

Also as with Burford 2012 there is large variation in fertiliser recovery with positive relationship with 

N optima, presumably due again to a negative correlation between fertiliser recovery and SNS.    
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4.7.6 C2 Shipton 2012 

The lower lying parts of the Shipton field were waterlogged for long periods throughout the spring 

and summer of 2012. These areas are strongly reflected in the yields achieved, with the lower 

yielding areas to the NE and SW of the higher yielding band running SE-NW being the worst 

affected.  

 

Unlike the other sites in 2012 there was a strong response to N at Shipton with no negativity at 

higher N rates, with N optima mostly exceeding 300 kg/ha. This crop was not as thick as those at 

Burford and Bedfordia, with tillering being severely restricted in parts by waterlogging. Nitrogen 

application at higher N rates at this site therefore likely had an abnormally large effect on tillering 

and tiller survival. The yield variation and effect of N is clearly evident on the aerial imagery and 

canopy reflectance measures. 

 

The spatial variation in N optima generally corresponds to the variation in SNS, but it is evident 

from Figure 34 that the general relationship between SNS and optima is only apparent within 

cluster groups. It also appears that yield is having some influence on N optima at this site; some 

areas with moderately high SNS have lower have low yields and lower optima – for example a 

circular in the NE of the field and a strip running diagonally SE-NW across the field. Because the N 

optima was more than 360 kg/ha at much of this site much of the resolution in the variation in N 

optima in these areas is masked.  

 

Fertiliser N recovery was low across this site, not exceeding 60% anywhere on the field, averaging 

47%. It is perhaps surprising that the lowest N recovery here of 39% is no higher than the lowest 

recovery at all other sites. Again there is a negative association with SNS, fertiliser recovery being 

lowest where harvested SNS highest. There is however a slight negative relationship between 

fertiliser recovery and N optima, at least for the soils in Cluster group 1 (Figure 35), suggesting that 

variation in fertiliser recovery may be driving some of the variation in N requirement in parts of the 

field. 

 

It seems that the ultimate causes of variation in N requirement at this site are spatially complex and 

that all components are responsible for the variation, some more than others in different parts of 

the field, but with interactions between all. 

 

4.8 Chessboard discussion & conclusions 

4.8.1 Variation in N requirement 

The chessboard trials demonstrated a surprising amount of variation in yield and N requirements 

within fields, exceeding 2.5 t/ha and 100kg N/ha, respectively, at all sites. 
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The chessboard trial approach has been used to assess spatial variation in N requirements by 

Pringle et al. (2003) in Australia but to our knowledge has not been used elsewhere. The trials 

have all successfully shown spatially coherent variation in N requirement and allow some 

understanding to be made of the causes of that variation from the underlying soil. 

 

A set of spatial experiments such as these reported here that allow variation in yield and N 

requirement to be assessed in the context of their determinants and in the context of soil & crop 

variation have not been conducted before in the UK. Two N response experiments harvested with 

a commercial combine in Bedfordshire were conducted in 2000 by Lark and Wheeler (2003). Data 

from these trials has been reanalysed here using zero-N yield as a surrogate for harvested SNS 

and yield at the optima as a surrogate for crop N demand (Figure 44). Variation in N optima in 

these trials was large, varying from 0 to 300 kg at one site and 0 to 200 kg/ha at the other. At one 

site it seemed that the variation was more due to crop N demand, the other due to variation in 

SNS.  

 

Bypass field 2000

 

Banq field 2000 
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Figure 44. Regression analysis of N optima from spatial experiments at Silsoe in 2000 conducted by 

Lark & Wheeler 2003, using yield at zero N as a surrogate for harvested SNS and yield at optima as a 

surrogate for crop N demand. 

 

4.8.2 Components of N requirement 

Within the six chessboard trials, variation in N requirement is strongly associated with variation in 

SNS at three sites (Flawborough 2010, Burford 2012, Bedfordia 2012) and more loosely 

associated at all sites, N recovery is suspected to be a major driver at two sites (Burford 2011, 

Shipton 2012) and crop N demand is implicated in playing an important supporting role at 3 sites 

(Flawborough 2011, Burford 2011, Shipton 2012).  

4.8.2.1 Interaction between components  

The extent to which the three components Crop N demand, SNS and fertiliser recovery are 

spatially correlated was unexpected and has major implications for estimating fertiliser N 

requirements. The experiments have demonstrated a clear positive association within fields 

between yield potential and harvested SNS. It seems that soil conditions that are conducive to 

higher yields are also able to supply more N from the soil. The reason for higher yield potential is 

likely to be greater aeration and availability of water through the season, given that soil water 

contains some level of nitrate then some greater level of N availability might be expected, though 

probably not to the level seen in some of the fields. High yielding areas would be expected to 

remove more nutrients from the soil, though this does not appear to be the case with nitrogen. High 

yielding areas over time will create and return more biomass from roots and straw to the soil thus 

increasing soil organic matter levels, and higher soil organic matter levels can increase yields 

through improved soil structure and greater water retentiveness.  Where soil organic matter is high 

greater mineralisation is expected hence a greater supply of N from the through the season. The 

association with SOM would be the most intuitive explanation for the link between SNS and yield 

potential, so it is somewhat surprising that there are so few clear relationships with measured 

SOM, total N% or potentially mineralisable N from soil samples. It is possible that SOM to depth is 

the causal link, which was not measured.  

 

It is also surprising that the association between SNS and fertiliser recovery is stronger than that 

between yield and fertiliser recovery. It had previously been assumed that sites with higher yield 

potential tend to give higher fertiliser recoveries, through the greater demand for N from the crop 

(Sylvester-Bradley & Kindred, 2009 However, there is no evidence to support this found here. 

Instead, it seems that a higher SNS tends to be associated with a lower fertiliser recovery. Some 

care is needed not to over-interpret these data, as the estimation of recovery from broken stick 

regression is arithmetically connected to SNS (the Y intercept) and Crop N Demand (the 

asymptote), especially as we only have four N levels, so the relationship could be an artefact. 
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However, the negative relationship between SNS and recovery could make biological sense where 

high SNS is a result of high soil organic matter and high levels of microbial activity: Where 

microbial activity is high N fertiliser may be more readily taken up by soil microbes giving greater 

immobilisation and reduced fertiliser recovery (King et al., 2001). It is also possible that given the 

greater N supply from the soil, which may be available at different times to fertiliser N, that crops 

with higher SNS don’t need to take up as much of the fertiliser N available. However, given the 

normally linear N uptake response to N fertiliser seen in experiments this doesn’t seem plausible. 

4.8.2.2 Soil N Supply 

Overall, it seems that the most important component determining fertiliser N requirement is the Soil 

N Supply, both within fields and between fields. In all fields where harvested SNS was less than 

120 kg/ha the N optima was generally high, normally more than 200 kg N/ha. Where SNS was 

greater than 120 kg/ha N optima were generally below 200 kg N/ha.  

 

Unfortunately, current methods for predicting soil N supply are unsatisfactory (Kindred et al., 2012). 

‘Field assessment’ (based on soil type and previous crop) is quick, cheap and correct on average, 

but it explains less than 50% of field-to-field variation, and it can only be used to predict variation 

within fields where soil types or past management differ markedly. Tests for mineral N in the soil 

are more precise, and precision and accuracy might be improved with assessments of 

mineralization; but it still does not predict more than 50% of field-to-field variation and it is too 

costly to use repeatedly within fields (Marchant et al., 2012). The predictive power of the soil tests 

conducted on the chessboard trials here are also disappointing (Figures 39–42). The visual 

associations between canopy reflectance measures in early spring and final harvested SNS seen 

in the chessboard trials here are therefore encouraging and point to the potential for successful 

application of canopy sensing to estimate N supply directly which is presented in Chapter 4.  

4.8.2.3 Crop N Demand 

Whilst crop N demand and N optima are generally positively  associated (Figure 33, Table 4) there 

is little evidence from the chessboard trials of a strong driving relationship between yield potential 

and N optima; the positive relationships between achieved yield and N optima at Burford and 

Bedfordia in 2012 are confounded by the anomalous effects of the 2012 season and the unusual 

negative relationship between yield and SNS; in a more normal year the expectation would have 

been for the lower yielding higher SNS areas to have the higher yield potential. Current fertiliser N 

recommendations (RB209, Defra 2010) do not explicitly make adjustments for yield potential for 

cereal crops; rather an allowance can be made for high yielding crops from recording grain protein 

contents. An explicit link with yield is part of NVZ regulations and the calculation of Nmax limits, 

with an additional 20 kg N/ha permitted for every 1t increase in grain yield (Defra 2008). 

Calculation by N Management Guide also has an explicit link with crop yield, with crop N demand 
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calculated as grain yield * 23 kg N/t for feed wheats and * 25kg N/t for bread wheats. Because 

these figures are divided by fertiliser recovery they actually result in a marginal increase in N 

fertiliser requirement of 38 to 42 kg N/t extra grain yield. These figures are hard to justify from the 

evidence from the chessboard trials. This is in part due to the interactions with other components, 

especially SNS being higher where yields are higher, but it perhaps also implies that as yields 

increase the marginal crop N content reduces; higher yields might be expected to be associated 

with lower protein, higher harvest index and lower straw N% so may require less than 23 kg N/t of 

additional yields. Figure 45 shows the relationship between optimal grain yield and crop N demand 

determined by broken stick regression to be between 17 and 21 kg/t for 4 of the six sites, with 

Burford 2011 giving low and Shipton high outliers in the slope. 

  

Figure 45. Relationship between optimal grain yield and Crop N Demand determined by broken stick 

regression for the six chessboard experiments 

 

It is clear from the chessboard trials that past yield map information can be used to inform variable 

yield estimates across the field, though in anomalous years those estimates may be wrong. 

Without reliable long term weather forecasting it is unlikely to be possible to accurately forecast 

spatial variability in yields at the time when fertiliser decisions need to be made. In early May 2012 

crops look good and expectations were of high yields, it was the later weather that affected final 

yields. Given the lack of strong relationships between crop N demand and N optima in these trials 

there is a question mark over whether we should estimate yields as part of the calculation to 

estimate N requirements on a spatial basis; large adjustments to yield and crop N demand 

estimates can have large impacts on the calculated N requirement. However, given the association 

between SNS and yield potential, making adjustments to SNS estimates without also adjusting 

Crop N Demand estimates can also give misleading predictions of N requirement. It therefore 
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seems that more effort should be given to predicting SNS but estimates of yield and CND should 

also be made. 

4.8.2.4 Fertiliser recovery 

All the experiments showed very large variation in fertiliser N recovery. Whilst this was rarely a 

driving force in the variation in N requirement, its variation still makes a large difference to 

calculating predicted N requirements. Apart from the negative association with SNS, the variation 

in fertiliser recovery remains unexplained and there are no obvious factors which could be used to 

estimate its variation on a spatial basis. 

 

Overall, despite the strongest relationships existing with SNS, knowing only one component is not 

enough; we must consider all components together to predict N fertiliser requirement with 

reasonable precision. The relative importance of these factors varies from site to site and within 

sites, generally as a function of soil type, and interactions between the components can vary from 

place to place. 

 

4.8.3 Variation in grain protein content 

Monitoring grain protein content is advocated in RB209 and the  N Management Guide as the best 

way to gauge whether N fertiliser applications to crops have been appropriate. Previous work has 

suggested that when the crop is fertilised for a financially optimum yield protein is around 11% for 

feed varieties and 12% for milling varieties (Sylvester-Bradley & Clarke, 2009). Whilst it has been 

noted that there is substantial variation around these, and that averaged proteins over fields and 

years should be used as indicators rather than individual results, it had been hoped that mapping 

protein content in fields could be a useful surrogate for judging N requirements within fields. 

However, all of the chessboard trials have shown variation in protein content at the optima 

exceeding 3% DM, with optimal protein contents seen as low as 7% and as high as 15% across 

trials. This variation is larger than the variation in grain protein commonly seen in farm, which might 

typically vary from 9% to 13%. On average the protein at the N optima were 11.2, 9.0, 12.0, 14.1, 

13.2 and 12.0% for Flaw 2010, Flaw 2011, Burford 2011, Burford 2012, Bedfordia 2012 annd 

Shipton 2012, respectively. Apart from Flawborough 2011 which was anomalously non-responsive 

to N for yield, the average protein values at optima were reasonably close to the benchmarks of 11 

and 12% (all fields except Flawborough grew milling varieties). Proteins at Burford and Bedfordia in 

2012 were high, perhaps as a result of the poorer grain filling and reduced yields in this year.  

 

The point at which N optima interjects with the protein response curve is not consistent (Figure 23). 

Generically, the grain protein response to N continues to slightly higher N rates than that for grain 

yield, so grain protein content at the optima for yield could be expected to generally fall in a similar 

position on the protein response curve, somewhat before the shoulder is reached. Whilst on 
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average this holds true for most of the sites, the variability apparent from Figure 23 shows that the 

protein response curve and yield response curves are not always well aligned. This perhaps 

underlies the complexity and interactions of the system that drives the spatial variation in grain 

yield and grain protein responses to N fertiliser, from differences in N availability, N uptake, growth, 

tillering, tiller abortion, spikelet determination, leaf expansion, stem elongation and accumulation of 

water soluble carbohydrates, floret initiation and survival, numbers of grain set and potential grain 

size through endosperm cell number, late N uptake of N and remobilisation from leaves and stem 

to grain, photosynthesis and respiration through grain filling, protein deposition in the grain and 

starch deposition in the grain. This is the first study to characterise spatial variation in the protein 

response to N and there is clearly still much more to understand about the drivers for final grain 

protein content, its relation to yield and to the N optima. 

 

Looking at the spatial patterns in protein at a standard N rate (Figure 22) in relation to the patterns 

in N optima (Figure 19), there is some negative associations at most of the sites in at least some 

areas; where protein is high this should indicate optima is low and vice versa. Looking at the 

relationship formally in Figure 46 a clear negative relationship between protein at 240 kg N/ha and 

N optima is revealed, with the Flawborough 2011 and Burford 2012 sites standing out as outliers. 

 

Figure 46. Relationship between N optima and protein at N level 3 (normally 240 kg N/ha) determined 

by broken stick regression for the six chessboard experiments 

 

Whilst the variability in grain protein content, its responses and its value at the N optima have 

somewhat knocked our confidence in the value of grain protein as a monitor of successful N 

management, Figure 46 demonstrates that it remains a useful tool in judging N optima, perhaps 
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the best we have available. More caution should perhaps however be advised in inferring 

conclusions from results in single fields or years. 

 

4.8.4 Variation in grain yield 

Substantial variation in yield was seen in each of the fields, always more than 2 t/ha and often 

exceeding 3 t/ha. At every site, the size of spatial variation in yield at sub-optimal N rates was 

similar to that at higher N rates, or at the optimal N rate. In all cases except the anomalous year of 

2012, the highest yielding areas of the field were higher yielding however much N was applied.  

 

Because we know that yields on the lower yielding areas could not be increased to the level of the 

higher yielding areas by applying more N fertiliser we can therefore conclude that the cause of 

yield variation within fields in the UK is not predominantly due to N fertiliser limitation. What the 

major cause of the variation in yield within fields actually is remains largely unexplained. In some 

fields there are obvious explanations, such as soil depth at Burford 2011 and severity of water-

logging due to elevation at Shipton 2012. However, in most cases there is no explanation available 

from the measures taken; the variation cannot be ascribed to variation in organic matter, pH, P or 

K. Lark et al., (1998) found much of the spatial variation in a barley field to ultimately be due to 

differences in soil water holding capacity. 

 

Given the large variability in yield ubiquitously seen in fields investigations into what is causing this 

variation should be a fundamental question of utmost concern to crop scientists and soil scientists 

alike. However, we know of no current research tackling this important question. Spatial 

experimentation provides a unique opportunity to better understand this variation, and hence 

understand soil effects on yields more generally, as variation in yield can be assessed in the 

presence and absence of resources suspected of limiting yields. Here we have assessed the 

impact of N fertiliser on yield, similar experiments could assess the range of nutrients, or even 

assess the impact of water limitation by providing trickle irrigation.  

 

Variation in grain yield within fields is mostly not due to N limitation. “What is it due to?” remains an 

important unanswered question. 

 

4.8.5 Wider implications from the chessboard trials 

The chessboard trials have transformed our understanding of N responses and made us question 

many previously held assumptions. The underlying cause of the variation is not well understood 

but chessboard trials give great opportunity to better understand soils and their optimal 

management. 
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The variation in yields at N optima at each site is similar to the variation in yield at any given N rate. 

This suggests N limitation is not a major cause of the spatial variation in yield in each field. Other 

factors in the soil that affect the amount of water and nutrients available to the crop must be more 

important than differences in optimal N. 

 

The overall levels of N optima seen in the chessboard trials are fairly consistent with previous plot 

experiments. Zero-N responses as at Flawborough 2011 and some plots at Bedfordia 2012 are 

relatively common, with 6 out of 30 N response experiments in recent AHDB Cereals & Oilseeds 

work showing no response to N (Sylvester-Bradley et al., 2008). The cause for the lack of 

response is invariably high levels of SNS, which, at least in part, is the cause at Flawborough and 

Bedfordia. Finding 3 sites out of 6 with some N optima above 360 kg N/ha is perhaps a little more 

surprising. It is possible that the fitting of the responses in these trials is affected by only having 

four N rates compared to at least 5 or 6 in conventional N response experiments. If an N rate had 

been included between 240 and 360 kg N/ha which had given a similar yield to the 360 kg N rate 

then the optima may have been pulled down. However, the reasonable shapes of the curves and 

the fits to the plot data points suggests that at least some of the plots did have very high N optima.  

 

The variation in N optima seen in these trials has implications for the interpretation of N responses 

from small plot trials generally. It is clear that the resulting optima from an N response experiment 

can be very different depending on where in the field the trial is located. This variation could 

explain a large part of the notoriously large variation in N optima seen between trials that hinders 

prediction of optima through factors such as previous cropping, soil type, over-winter rainfall and 

yield expectation. If within field variation in soil can have such a large impact on N optima there is a 

need to better understand the causes and nature of this variation. Chessboard type trials provide 

an exciting opportunity to better understand the effect of soil on N optima as all other factors which 

normally vary between N response trials (field, variety, history, agronomy, sowing date, seed rate, 

soil management etc.) are kept constant; the only thing that changes is the soil (and potentially 

aspect also). 

 

Half of the chessboard trials conducted were in the anomalous season of 2012 where extremely 

wet and dull weather produced yields, spatial variation and N responses which may be highly 

atypical. The 2010 and 2011 seasons were also somewhat atypical with both suffering 

exceptionally dry springs. There would be real value in conducting further chessboard trials in other 

years, which would hopefully be more representative.  
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5 Estimating N Demand – Predicting Yield & Protein 

Whilst seemingly not the most important driver of variation N requirements, the chessboard trials 

showed that estimation of crop N demand was still important in accurately predicting N 

requirements. There are various possible approaches to estimate yield potential within fields, either 

continuously to the minimum definable resolution of the field, or via the delineation of zones within 

the field that might be expected to yield similarly. Most obviously previous yield maps can be used 

for this purpose (Robertson et al., 2008), but soil scanning and satellite sensing may also be 

useful. In order to integrate this data usefully zoning techniques such as clustering may be of 

value. This chapter assesses how we can best interpret previous soil and yield maps to provide 

useful yield estimates (Lark & Stafford, 1997; Blackmore et al., 2003; King et al., 2005; Ross et al., 

2008). 

 

Analysis was made of selected fields farmed by the 5 farmers with whom we worked with in this 

project and selected results from the 6 fields used for the chessboard experiments are presented 

here. 

 

In addition the possibility of mapping grain protein content was examined at three of the farms, the 

results of which are reported in this chapter.   

 

5.1 Yield mapping 

Yield mapping equipment is now readily available, and comes as standard on many new combine 

harvesters. However, there are a range of issues in generating, viewing, transferring and analysing 

yield maps to make them really useful. Even farmers who have yield maps often do little with them, 

not having a good answer to the ‘so what?’ question. 

5.1.1 Dealing with Yield map data 

There are multiple issues in dealing with yield map data, both practical and statistical (Birrell et al., 

1996; Blackmore & Moore, 1999; Arslan & Colvin, 2002). Many different types of yield monitor are 

used on-farm from several different manufacturers. Yield is inferred from sensors in the grain 

elevator either by measurement of mass flow (eg by impact plate or radiometry) or volume flow (eg 

by optical or NIR sensors). Each is different in its accuracy, precision and frequency. Many yield 

monitors in the UK assess volumetric flow so require the specific weight of the grain to be input into 

the calibration on a regular basis. Yield monitors also usually incorporate an in-line moisture meter 

allowing yield to be adjusted to a traded moisture content, although it is not usually clear from the 

output of yield map data whether these moisture corrections have been made, or to what ‘dry’ 

moisture level any correction has been made to. Yield monitors are linked to a digital GPS receiver 

to give position and speed allowing calculation of yield and associated latitude and longitude for 

each datapoint. Different GPS systems have differing levels of accuracy; for high accuracy a 
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differentiated signal is required, either from a base station (eg RTK) or from a mobile phone signal. 

It is not normally clear from raw yield map datafiles how accurate the GPS signal is, or whether it is 

differentiated. 

 

There is inevitably a delay between the crop being cut and entering the header to it being threshed, 

sieved and entering the grain elevator & hence the yield measurement being made (Lark & 

Wheeler, 2000). Depending on where the GPS receiver is located on the combine an appropriate 

delay can be factored in. Whilst the delay may be adjusted for within the yield monitor system, or 

may be adjusted in the yield mapping software afterwards, however it is not clear from yield map 

datasets whether any such adjustments have been made, and if so, what. The dynamics of grain 

flowing through the combine can be affected by crop type & yield level, forward speed and 

combine settings for drumspeed, fanspeed and sieves, especially where these affect the amount of 

grain going through the returns system. Considerable research work has assessed the varying 

dynamics of grain flow through combines to try to create better reconstructed yield maps, though 

this is not generally used in commercial yield maps (Arslan & Colvin, 2002; Lyle et al., 2014).   

 

The quality of yield maps can be very dependent on the operator of the combine. This is not just in 

terms of set-up and calibration of the yield monitor, but also in terms of how the combine is driven. 

Most important is that the header is constantly cutting a full (or constant) width. Where GPS is 

used to plot the combines course or a laser on the header is used for auto-steer guidance the 

width should be reasonably constant within a run. However many operators harvest the crop in 

lands, often cutting the first cut with the divider in a tramline wheeling then cutting round and round, 

so that the unloading augur is always on the cut side. Depending on the width of the header 

relative to tramline width this normally results in the final strips cut not being a full header width. 

Some systems automatically calculate the cut width from the GPS signals, some sense the cut 

width and some allow the width to be estimated manually. Whilst the cut width is often recorded in 

yield map data outputs it is not always clear whether the output yield has been corrected or not. 

The accuracy of the yield estimates from these widths comparative to yields from full header widths 

must therefore be questionable. Note that if the estimate of width has been inaccurately used to 

adjust the yield calculation then these strips can show up as high yield, though they more normally 

show as low yield.  

 

A wide range of file types and data formats exist for yield map data, dependent on the 

manufacturer and model. Similarly there are a wide range of software tools for viewing and 

analysing yield maps. Each manufacturer has software to support their yield data files. However, 

there is also generic crop management and precision mapping software, such as Gatekeeper, 

which can handle yield datafiles from the full range of manufactures. In addition, Claas and other 

manufacturers now operate telematics system whereby yield data (as well as a full suite of 
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combine performance data) is continually relayed to a central server via mobile phone signals, and 

data can be accessed remotely. 

 

There is little consistency in the format of the data from different yield monitors, even the recorded 

format of latitude and longitude is not consistent. Most raw yield mapping datafiles will however 

include: 

 Lat, Long & GPS time 

 Yield as is  

 Moisture  

 Adjusted Yield 

In addition, many also include elevation, speed, cutter height, cutter width and can include all 

measures of all sensors from the combine including engine speed, drum speed, temperature etc. 

 

There has been a considerable amount of research effort, especially in the US and Australia, 

devising post-processing routines to deal with yield map data and the issues above, with the 

creation of software tools such as Yield Editor (Sudduth & Drummond, 2007), Vesper (Minasny, 

McBratney & Whelan, 2005) and others (Griffin et al., 2005; Ping & Doberman, 2005). However, a 

consistent system for post-processing data has not been agreed and is not generally used by 

growers (Lyle et al., 2014). 

 

An AHDB Cereals & Oilseeds project running in parallel to Auto-N is developing approaches and 

software for the post -processing of yield data in the UK (RD-2012-3785). 

 

5.1.2 Statistical techniques for integrating yield map data 

The spatial variation evident in yield maps usually changes considerably between years, so yield 

maps from several years must be analysed together to get a predictive estimate of yield variation 

across the field (Blackmore, 2000). This spatio-temporal complexity is largely due to the soil and 

crop performing differently with different weather and management in different years, but it is 

somewhat clouded by the noise, errors and variability inherent in yield maps.  

 

Extracting an underlying signal from these somewhat noisy data is a challenge, but there are 

statistical methodologies to deal with them.  There are two broad approaches.  One (e.g. 

Blackmore et al., 2003; Kleinjan et al., 2006) considers local mean yield and its variability, 

identifying regions where yield is relatively stable and regions where it is less predictable. An 

approach like this is used by SOYL described as Performance Mapping, which identifies areas 

which are consistently above average, consistently below average and areas which are highly 

variable.  
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Another approach (Lark & Stafford, 1997; Perez-Quezada et al. 2003) uses a more flexible 

‘clustering’ approach with smoothing. Here locations in a field are grouped into classes which show 

more or less uniform season-to-season patterns of variation (e.g. consistently above-average 

yields, above average yields except in dry seasons, consistently below-average yields, etc.).  

These classes have been shown to account for substantial soil variation (e.g. King et al., 2005), 

since a region with a more-or-less uniform season-to-season pattern of yield variation is likely to be 

subject to more-or-less uniform constraints on crop performance (e.g. small available water 

capacity, poor soil structure leading to poor establishment and greater slug damage, etc.). 

 

In the cluster analysis we used only yield monitor data from winter wheat fields as these proved 

more reliable than those for other crops. First the yield monitor data from  years (typically no more 

than four) were mapped onto a square grid at intervals of ~10m by taking the average of the yields 

in the neighbourhood of each grid node in each year. This resulted in  yield values 

, 	 , … , 	 	for each of the grid nodes where ,  are the co-ordinates of the grid 

point.  

 

From these data we can create a classification. We standardise each of the  sets of yield data to 

have a mean of zero and a standard deviation of 1. We then choose the number of classes ( ) we 

wish to impose on the data. Each class , 1,2, … ,  is characterised by a centroid vector 

̅ , ̅ , … , ̅ , where the elements are the average value of the variates in class . We measure 

how well a unit  resembles a class  by calculating the Euclidean distance in the vector space 

̅ 	  

In a fuzzy k-means clustering each unit belongs to some degree to every class. The classification 

is made by minimization of  

 

where  is the membership of unit  to class , and  is the fuzziness exponent which we set 

equal to 1.25. The membership across the classes must sum to 1: 

1. 

To choose the number of cluster classifications we apply values of k from 1 to 5 and then use the 

normalized classification entropy  
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1

log
1

log  

where 	  is the number of units (nodes on the grid). The entropy is plotted against , and we look 

for a point that falls below the overall trend, such as a local minimum, or the point at which an initial 

rapid decline is followed by a more gentle decrease.  

 

Once we have chosen how many classifications we which to use we return to the fuzzy 

membership classification for this number of classes and apply spatial smoothing. This is 

necessary to create coherent zones in space, otherwise the classification is likely to result in 

speckled classification maps that are not appropriate for management. The distributions of 

memberships, , are strongly bimodal, and so, following Lark (1998), we converted them to 

unimodal distributions with a symmetric logratio transform. We then smoothed the transformed 

memberships, , using a weighted average of the transformed memberships in circular 

neighbourhoods, , of radius : 

∗ , . 

The weights must sum to one and are given by  

,
1

∑ 1
				∀		 ∈  

where  describes the spatial structure in the variogram of the yield monitor data  

 

and  is the separation between units  and . For practical purposes a ‘hard’ classification is 

needed, and so each unit was assigned to the class for which its membership was greatest. 

 

The size of  affects the results. If  is too small then the classification is likely to remain 

fragmented; if it is too large then the memberships are likely to be over smoothed. We used the 

coherence index defined by Lark (1998) to identify an appropriate radius for . It is given by 

∑
 

where  is the proportion of pairs of units within a distance 10√2 that belong to the same 

class, and  is the proportion of units that belong to class q. The larger is the value of  the more 

coherent is the classification. For full details see Milne et al. (2011). 

 

In addition to yield maps other information from soil sensing (EMI) and canopy sensing may be 

useful in delineating management zone boundaries and in estimating likely yields.  
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5.2 Variation in grain yield between years 

Data was collected from the 5 farmers in this project and compiled into a common data file format. 

The following routine was applied to all yield data: 

 Common filename structure, dataformat, column titles & order and units 

 Calculated projection from WGS 84 to British National Grid – Eastings & Northings. 

 Calculation of combine direction 

 Identification of sharp changes in direction and exclusion of data at start and end of runs 

 Exclusion of data more than 3 standard deviation from mean 

 Calculation of moisture adjusted yield 

 Exclusion of anomalous combine runs 

Data was viewed and reported using ArcGIS. 

 

5.2.1 Flawborough 2010 

Figure 47 shows the spatial variation in yields at the Flawborough F1 field between 2002 and 2013. 

The rectangular whole in the map in 2010 is where the chessboard trial was located. Some 

features are evident in most years, but other areas show large relative changes between crops and 

years.   
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2002 Winter wheat (1st) 
6.1-12.9 t/ha; mean 9.9 t/ha 

2004 Wnter wheat (1st) 
8-13.9 t/ha; mean 10.9t/ha 

2005 OSR 
2-6t/ha; mean 4.3t/ha 

   

2006 Winter wheat (1st) 
7-13 t/ha; mean 9.8 t/ha 

2007 OSR 
1.2-5t/ha; mean 3.0t /ha 

2008 Winter wheat (1st) 
8-14 t/ha; mean 11.1 t/ha 

   

2009, Spring Beans 
2-6t/ha; mean 4.1t/ha 

2010, Wheat (1st) 
6-14t/ha; mean 9.9 t/ha

2013, Wheat (1st) 
5-12t/ha; mean 8.7 t/ha 

   

Figure 47. Yield Maps from field F1. The symbology uses Jenks Natural breaks to best show spatial 

variation. Blue = low yield; red = high yield. Range and mean is given for each crop.  

 

A 10 m grid was imposed on the field to allow data from different years to be integrated and 

compared. The cluster analysis was restricted to only those grid squares where data was available 

from all years. 

 

The final cluster map is shown in Figure 48, along with simple and normalised averages for each 

grid square for all crops and just for wheat. Similar patterns are evident for all approaches, though 

these are more distinct when restricted to wheat and when normalised averages are used.  
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Cluster Map Average yield (all crops) Average yield (wheat) 

  

 Average normalised yields Average normalised wheat 

 

  

Figure 48. Integrated Yield Maps from field F1 

 

Average yield per cluster group Normalised yield per cluster group 

Figure 49. Mean (a) and Normalised (b) centroid yield values for the Cluster Groups for field A2 for 

groups shown in Figure 49a 

 

The line graphs in Figure 49 shows the performance of each cluster group in each year. There is 

evidently some consistency between groups with cluster group 5 always being lower yielding and 

group 1 nearly always giving the highest yields. Group 3 is less consistent, having highest yields in 

2 years but low yields in 2007. 
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The past yields, averages, normalised averages and cluster groups for the other chessboard fields 

are reported below. 

 

5.2.2 Flawborough F6 2011 

2002 Pea 
1-3.5 t/ha; mean 2.0 t/ha 

2003 Wnter wheat (1st) 
6-13 t/ha; mean 9.2t/ha 

2004 OSR 
2.2-4.7 t/ha; mean 3.7t/ha 

   

2005 Wheat (1st) 
6.5-14.3 t/ha; mean 9.7t/ha 

2006 OSR (1st) 
1.5-6.7 t/ha; mean 4.2 t/ha 

2007 Wheat (1st) 
5.3-13t/ha; mean 9.1t /ha 

   

2008 OSR 
1.5-7 t/ha; mean 4.1 t/ha 

2009, Wheat (1st) 
5.5-14t/ha; mean 9.7t/ha 

2010,OSR 
1.4-7t/ha; mean 5.0 t/ha 

  
2011, Wheat (1st) 

6-14t/ha; mean 9.6 t/ha 
2012, Wheat (2nd) 

5-12.8t/ha; mean 8.7 t/ha
 

 
 

 

Figure 50. Yield Maps from field F6. The symbology uses Jenks Natural breaks to best show spatial 

variation. Blue = low yield; red = high yield. Range and mean is given for each crop.  
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Cluster Map Average yield (all crops) Average yield (wheat) 

   

 Average normalised yields Average Normalised wheat 

 

  

Figure 51. Integrated Yield Maps from field F6 

 

Average yield per cluster group Normalised yield per cluster group

Figure 52. Mean (a) and Normalised (b) centroid yields for the Cluster Groups for field A2 for groups 

shown in Figure 51a 

 

There is considerable spatio-temporal variability in field F6, as shown by Figure 51 and Figure 53, 

which is not entirely captured by the normalised average yield map. Cluster Group 1 on the eastern 
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edge gives highest yields in some years but lowest in others, whilst group 3 (western corner) is 

generally lower yielding but has some years with high yields. 

 

5.2.3 Burford A2 2011 

2000 Vetch 
 t/ha; mean  t/ha 

2001 Winter wheat (1st) 
 t/ha; mean t/ha 

2003 Winter wheat (1st) 
t/ha; mean t/ha 

 

2004 OSR 
/ha; mean t/ha 

2005 Wheat (1st) 
 t/ha; mean t/ha 

2007 Wheat (1st) 
t/ha; mean t /ha 

 

2008 OSR 
 t/ha; mean  t/ha 

2009, Wheat (1st) 
t/ha; meant/ha 

2010,OSR 
t/ha; mean  t/ha 

 
Figure 53. Yield Maps from field A2. The symbology uses Jenks Natural breaks to best show spatial 

variation. Blue = low yield; red = high yield. Range and mean is given for each crop.  
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Cluster Map Average yield (all crops) Average yield (wheat) 

 Average normalised yields Average Normalised wheat 

 

  

Figure 54. Integrated Yield Maps from field A2 

 

Average yield per cluster group Normalised yield per cluster group

Figure 55. Mean (a) and Normalised (b) centroid yields for the Cluster Groups for field A2 for groups 

shown in Figure 54a 

 

Field A2 also demonstrates substantial spatio-temporal variation. The characteristic Y-shape from 

the physical valley is clearly apparent from the yield maps in only some years, notably 2001. 

However it comes through strongly in the averaged yield maps and is present in the cluster map as 

Group 4, with considerable variability year to year, having high yields in the droughted year of 2007 

but less well in other years. 
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5.2.4 Burford A3 2012 

2000 Winter wheat (1st) 
t/ha; mean  t/ha 

2001 OSR 
 t/ha; mean t/ha 

2002 Winter wheat (1st) 
8-13.9 t/ha; mean 10.9t/ha 

 

2003 OSR 
t/ha; mean t/ha 

2006 Wheat (1st) (1st) 
 t/ha; mean t/ha 

2007 Wheat (1st) 
t/ha; mean t /ha 

 

2008 OSR 
- t/ha; mean  t/ha 

2010, Wheat (1st) 
- t/ha; mean t/ha 

2011, peas 
t/ha; mean  t/ha 

 
Figure 56. Yield Maps from field A3. The symbology uses Jenks Natural breaks to best show spatial 

variation. Blue = low yield; red = high yield. Range and mean is given for each crop.  

 

There is substantial year to year yield variation in A3. In particular the clay bank that runs E-W 

across the field is distinctly evident in 2000 but less so in other years. It comes through in the 

normalised average yield but not in the cluster groups (Figure 58). Figure 59 shows the northern 

corner (cluster 5) to be consistently low yielding and the eastern corner to be consistently high 

yielding.  
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Cluster Map Average yield (all crops) Average yield (wheat) 

 

 Average normalised yields Average Normalised wheat 

 

Figure 57. Integrated Yield Maps from field A3 

 

Average yield per cluster group Normalised yield per cluster group

Figure 58. Mean (a) and Normalised (b) centroid yields for the Cluster Groups for field A2 for groups 

shown in Figure 57a 

 

 

  



Page 112 of 196 

5.2.5 Bedfordia B2 2011 

2004 Winter wheat (1st) 
- t/ha; mean t/ha 

2005 Wnter wheat (2nd) 
- t/ha; mean t/ha 

2006 Spring Beans 
- t/ha; mean t/ha 

  

2007 Wheat (1st) 
-t/ha; mean /ha 

2008 Wheat () 
- t/ha; mean t/ha 

2009 Wheat () 
-t/ha; mean .t /ha 

 

2010 Wheat  
- t/ha; mean  t/ha 

2011, OSR 
- t/ha; mean .t/ha 

 

 

 

Figure 59. Yield Maps from field B2. The symbology uses Jenks Natural breaks to best show spatial 

variation. Blue = low yield; red = high yield. Range and mean is given for each crop.  

 

Despite the large spatial variation there are some distinct areas in field B2, with the western edge 

consistently lower yielding (cluster groups 4 & 5 in Figure 61) and the central areas in cluster group 

1 consistently giving high yields. 
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Cluster Map Average yield (all crops) Average yield (wheat) 

 

  

 Average normalised yields Average Normalised wheat 

 

  

Figure 60. Integrated Yield Maps from field B2 

 

Average yield per cluster group Normalised yield per cluster group

Figure 61. Mean (a) and Normalised (b) centroid yields for the Cluster Groups for field B2 for groups 

shown in Figure 60a 
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5.2.6 Shipton by Beningborough C2 2011 

2002 Wnter wheat (1st) 
 t/ha; mean  t/ha 

2003 Wnter wheat (2nd) 
- t/ha; mean t/ha 

2008 Spring beans 
- t/ha; mean t/ha 

   

2011 OSR 
- t/ha; mean t/ha 

  

 

 

 

Figure 62. Yield Maps from field C2. The symbology uses Jenks Natural breaks to best show spatial 

variation. Blue = low yield; red = high yield. Range and mean is given for each crop.  

 

Available yield data from C2 was too limited to conduct further analyses. 

 

5.3 Soil maps 

A range of soil scanning services are available commercially in the UK from providers including 

Agrii Soil Quest, SOYL, Soil Essentials and Precision Decisions. There are two main types of soil 

sensor, one uses non-contact Electro-Magnetic Induction (EMI) sensors (such as Geonics EM38), 

the other uses a contact based approach with a disc or coulter giving electrode contact with the soil 

(such as Veris 3100) to give Electrical Conductivity (EC) (Sudduth et al., 2003). Soil electrical 

conductivity has been shown to be a useful and reliable method of characterising soil variation in 
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fields (King et al., 2003; 2005). EMI and EC sensors measure the apparent electrical conductivity 

of the soil, hence indicating available water content and soil texture. If used when the soil has 

reached field capacity they can be especially useful for interpretation of yield maps and delineation 

of management zones (King et al., 2005).  

 

F1 Shallow 

  

F1 Deep 

  
 

F6 Shallow 

 

F6 Deep 

 

A2 Shallow 

      
 

A2 Deep 

     
 

A3 shallow 

 

A3 Deep 

  

B2 Shallow B2 Deep 
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C2 Shallow 

 

C2 Deep 

  

Figure 63. Soil Electrical conductivity maps from commercial soil sensors 

 

The variation shown by the soil conductivity maps generally tends to reflect the variation seen in 

yields and the yield cluster maps. 

 

5.3.1 Elevation maps 

The topography of fields often closely corresponds to variability in soil properties and crop 

performance. Figure 64 shows altitude from the 6 fields measured whilst taking the soil EC scans. 

These can be turned into digital elevation maps and slope angles can be derived, as can change in 

the angle of slope. Such maps can be useful in defining the boundaries of areas of the field that 

behave differently.  
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F1 

  
 

F6 

 

A2 
 

A3 
 

    

B C2 
 

   
   

Figure 64. Altitude maps from commercial soil sensors for the six chessboard fields 

 

5.4 Canopy sensing for yield prediction 

Assessment of canopy reflectance through NDVI or similar measures in season could help predict 

the likely yield, or at least variation in that yield (Ferrio et al., 2004; Panda et al., 2010). The main 

options for canopy assessment on farm are via proximal sensing with on tractor sensors such as 

Crop Circle, Optrx and N sensor or satellite sensing, though imagery from manned and unmanned 

aircraft (eg UAVs) are increasingly available commercially.  

 

Selected N Sensor and satellite NDVI maps for the chessboard fields are shown below. 
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F1 F6 

April 2004 May 2006

 

April 2004

 

May 2005 

May 2008

 

May 2010

 

May 2007

 

May 2009

 

B2  April 2010 C2 April 2002 
 

   
   

Figure 65. N sensor ‘biomass’ maps from some of the chessboard fields in selected years 

 

Visual comparisons of the canopy reflectance maps with corresponding yield maps in Figures 65 & 

66 often show similar spatial patterns, although regression analyses (not shown here) fail to show 

good relationships between canopy sensing and yield within fields.  
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F1 F6 
May 2010

 

April 2011

 

April 2012

 

April 2013

 April 2013 

 
A2 A3 

May 2010

  

May 2011 April 2011 

 

May 2013 

 
May 2012

 

May 2013

B2 C2 
  April 2012 

 

May 2013 

 

May 2013 

   
Figure 66. Selected SOYL Satellite NDVI ‘biomass’ maps from the chessboard fields  

 

5.5 Best approaches to estimate yield 

There tends to be coherent spatial variation in yield within fields, which, whilst relative yields are 

different in different years and spatial patterns are not exactly the same each year, the general 

patterns tend to be consistent across years and are often reflected in the spatial variation in soil 

conductivity, topography and canopy sensing. There seems to be little between different 

approaches to estimate yield. Whilst a cluster analysis approach may give the most robust method 

to utilise yield and other information to form zones, simpler methods of averaging yield or using a 
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relative performance basis seem to generally define the variation to an acceptable degree, 

especially given the relatively modest influence of yield on N optima. Average yields for each zone 

or each grid square can be predicted from past yield performance at the start of the season, and 

feasibly can be updated with canopy sensing information through spring, to indicate whether an 

individual zone is likely to be higher or lower yielding than normal in that year.  

 

5.6 Variation in grain protein 

5.6.1.1 Accuharvest protein sensor 

On-combine protein sensors were used in this study to assess the spatial variation in grain protein 

content within and between fields, and whether measurement of grain protein can be usefully used 

in determining and judging N fertiliser rates. Three Accuharvest On-Combine Grain Analyser 

protein sensors were acquired from the company Zeltex Inc (Maryland, US) and fitted by Soil 

Essentials and Precision Decisions to the combines of Nick August, Flawborough Farms and 

Bedfordia Farms.  

 

Such sensors have previously been evaluated in Australia by Taylor et al., 2005 & Whelan et al., 

2009 and in the USA by Long et al. (2008; 2015). This was one of the first studies to evaluate the 

sensors for UK cereals.  

 

The sensor sits outside the casing of the grain elevator of the combine (see picture), with holes 

and a sampling mechanism to take and return samples from and to the grain elevator. The sensor 

itself measures reflectance from 16 LEDs with wavelengths in the NIR ranging from 893 to 1045, 

and uses partial least squared regression analysis to generate calibrations from the NIR 

reflectance curves.  

 

Figure 67. Zeltex Accuharvest protein sensor mounted on grain elevator 
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5.6.1.2 Protein maps from the Accuharvest 

Protein maps from the three farms are presented below. 

Flawborough 2010  

Flawborough 2012 

  
 

 

Bedfordia 2010 

  

 
 
Bedfordia 2011 
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August 2010 

    

August 2011 

 

August 2012 

 

 

Figure 68. On-combine protein data from the Accuharvest protein sensor at Flawborough, Bedfordia 

& Burford 

 

The variation seen in grain protein tend across the fields in Figure 68 tends to be less than that 

generally seen for grain yield. Despite efforts unfortunately it was not possible to fully validate the 

protein sensor calibrations on or off the combine. Various technical difficulties were encountered 

limiting the amount of data collected from the protein sensors. Figure 69 shows the Accuharvest 

under-predicting protein in the lab. On farm it often seemed to over-predict protein compared to 

field scale measures made on-farm. 
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Figure 69. Results from calibration samples in the lab from an Accuharvest protein sensor and from 

the FOSS Sofia portable NIR instrument, compared to FOSS Infratec as a reference measure.  

 

5.6.2 Variation in grain protein from field samples 

Ear samples were taken by hand from a number of fields at geo-referenced locations and samples 

threshed and grain analysed for grain protein using FOSS Infratec or Sofia.  

Results generally showed limited coherent spatial variation in grain protein content. 

 

5.6.3 Conclusions on variation and prediction of grain protein content 

The spatial variation seen in grain protein content in the chessboard trials, using the on-combine 

protein sensor and from geo-referenced hand samples is substantial but is not easily measured, 

understood or predicted. The expected negative variation between grain yield and grain protein 

doesn’t explain most of the variation in protein. We do not adequately understand the causes of the 

variation in grain protein, though it is likely to be due to the availability of N from the soil and 

recovery of fertiliser, especially with regard to the timing of the availability of N and the capacity for 

late N uptake. Furthermore, the variability in grain protein at the optima seen in the chessboard 

trials and elsewhere (Sylvester-Bradley & Clarke, 2009) negates the hypothesis set out in this 

project that knowledge of grain protein content allows useful inference of ‘success’ in N 

management. Differences in grain protein within and between fields cannot be taken to imply 

differences in N optima when taken by themselves in a single year. On average N optima for feed 

wheat do coincide with ~11% protein content, but the variation around this means that it can only 

be used as a tool to judge N success on-farm across a number of fields and years. This brings into 

question the value of spatial measurement of grain protein by on-combine sensing for the purposes 

of improving N management for feed wheat. 
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6 Calibrations from Canopy Reflectance 

6.1 Using the crop as a measure of crop N demand, soil N supply, or plant N status 

The crop itself has long been expected to indicate soil nutrient status (Hall, 1905). This approach 

has found most use in horticulture where a plant’s value tends to be enhanced (Sylvester-Bradley 

et al., 2004). A range of approaches has been tried, for example testing N% of plant tissue 

(Greenwood et al., 1990), sap nitrate (Scaife & Stevens 1983), tissue colour (Matsunaka et al., 

1997), and canopy reflectance using NDVI.  None of these has yet proved successful on an 

absolute scale. Often variation between sites, varieties, and development stages prevents easy 

interpretation.  

 

Two complementary approaches were investigated in this project, the first to estimate soil N supply 

from the crop over-winter, the second to judge N demand from the crop in spring. Over-winter 

sensing of NDVI holds promise for estimating soil N supply when compared against predicted 

NDVI of an N-unlimited crop for a given thermal time after sowing & plant population (Sylvester-

Bradley et al., 2009); in spring concepts of canopy management (Sylvester-Bradley et al., 1997) 

whereby canopy size is taken to indicate progress towards a target optimum canopy, optimum 

canopy size is relatively conservative but varies slightly with potential yield, and canopy colour 

indicates the immediate balance between N supply and N demand (Lemaire et al., 2008; Heege et 

al., 2008). 

 

6.2 Approaches for use of canopy signals to guide N decision making 

The use of canopy reflectance measures to guide better N decision making has received 

enormous global attention (e.g. Berntsen et al., 2006; Ortiz-Monasterio & Raun, 2007; Solie et al., 

2012; Samborski et al., 2009; 2015; Mulla, 2013; Cao et al., 2015). Canopy reflectance measures, 

ratios and calibrations can indicate crop N uptake and crop N status. Various approaches have 

been developed to translate the information from canopy signals into useable N advice. These 

include the use of nil-N and high-N areas or ‘windows’ (Raun et al., 2008; Roberts et al., 2010; 

2011; Yue et al., 2015), use of the Nitrogen Nutrition Index (NNI), Canopy Chlorophyll Content 

Index (CCCI; Fitzgerald et al., 2010) and estimation of leaf N concentration (Li et al., 2010; 2016; 

Wang et al., 2012). Whilst some approaches give a recommendation for how much N to apply 

given the crops current condition & perhaps using other information such as yield prediction (e.g. 

Isaria), many approaches vary N around a pre-set mean N rate based on variation in spectral 

reflectance (e.g. Reusch, 2005).      

 

However, none of the above approaches explicitly calculate N requirement from estimation of Crop 

N demand, Soil N Supply and Fertiliser Recovery. Within this chapter we try to seek an approach 
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and calibrations that would allow direct estimation of these components, specifically through 

calibrations for SNS, yield potential, crop N uptake and crop N status within the Auto-N logic. 

 

6.3 Principles of Canopy Reflectance 

All measures of canopy reflectance make use of the different spectral signature of different crops 

(see Figure 70). Visible light (400 nm to 700 nm) is absorbed more by larger canopies, so less is 

reflected back. Light in the Near Infra-Red (NIR) part of the spectrum (700 nm to 1400 nm) is 

scattered and reflected by structures in plant cell walls, so that larger crops reflect more NIR. The 

ratio of reflectance of visible light to NIR light can therefore usefully be used to compare the size of 

crop canopies, in vegetation indices such as Normalised Difference Vegetation Index (NDVI). 

Whilst measures such as NDVI are often thought of as indicating the ‘greeness’ of the crop, this is 

not actually what is being measured. Indeed ‘greenness’ is actually a human construct; large 

‘green-looking’ crops actually reflect less green light (550 nm) than smaller ‘yellow-looking’ crops, 

but they appear greener because proportionately more red (650 nm) and blue (450 nm) light is 

absorbed by the crop.  

 

The different spectral signatures of crops is demonstrated in Figure 70 which shows the spectral 

reflectance measured by a spectroradiometer of a range of seed rate and N rate treatments in an 

experiment at Boxworth on the same date in spring 2012. It can be seen that reflectance of bare 

soil gradually increases with increasing wavelength, where those of the crop treatments all follow a 

similar shaped curve of less reflection than bare soil at the visible part of the spectrum and greater 

reflection than bare soil in the NIR portion. A bulge in reflectance can clearly be seen at 550 nm 

giving the green appearance, and the treatments with larger canopies (higher seed rates or more 

N) clearly reflect less (absorb more) visible light and reflect more NIR light. 
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Figure 70 Example Canopy Reflectance from an Auto-N experiment measured by a LICOR 

spectroradiometer 

 

6.3.1 Vegetation Indices 

A range of vegetation indices have been developed to simplify the comparison of spectral 

signatures such as above, and to allow cheaper instruments to be used assessing just 2 or 3 

individual wavelengths.  

 

The most commonly used vegetation index is NDVI which is simply reflectance in the NIR minus 

reflectance in visible divided by the sum of NIR and visible reflectance (Haboudane et al., 2004).  

 

The exact wavelengths used for NDVI vary between studies and sensors but are generally around 

650nm and 800nm. Values for NDVI can range from 0 to 1, but typically range from 0.1-0.2 for 

bare soil to 0.8-0.9 for a completely closed canopy. The use of NDVI has two major limitations, 

firstly it can be affected by the underlying soil, especially by soil wetness; secondly, it becomes 

saturated with dense canopies, limiting its use to discriminate variability between large canopies 

(Wang et al., 2012). Various other indices have been developed to help overcome these issues, 

summarised in Table 5.  
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Table 5. Summary of selected vegetation indices 

Abbrev Name Calculation References Notes 
NDVI Normalised Difference 

Vegetation Index 
(ʎ810ʎ640)/(ʎ810+ʎ640) Tucker et al., 

1979 
 

 

NDRE Normalised Difference 
Red Edge 

(ʎ810-740)/(ʎ810+ʎ740) Rodriguez et 
al. 2006 

Chlorophyll and N 
status 

SAVI Soil Adjusted VI [(ʎnir - ʎred)/(ʎnir + ʎred +L)] 
(1+L) 

Huete, 1988 L adjusted to 
minimise noise 
caused by soil. L=0.5 
for most crop 
conditions, low soil 
covers L=1 and high 
soil covers L=0.25 
 

OSAVI Optimised Soil Adjusted 
VI 

((NIR-Red) 
/((NIR+Red+0.16)*(1+0.16)) 

Steven 1997 
 
 

 

GNDVI Green NDVI (ʎ780-ʎ590)/( ʎ780-ʎ590) Gitelson & 
Merzlyak 
1996 
 

 

GDVI  (ʎ780-ʎ670)/(ʎ670) Shanahan 
2001 

 

EVI Enhanced VI (2.5*((NIR-red) / (NIR+(6*red)-
(7.5*blue)+1)) 

 

Huete et al., 
1997 

Optimising NDVI 
using blue 
reflectance to correct 
for soil background & 
reduce atmospheric 
influences 

ARVI Atmospherically 
resistant VI 

(NIR-(2RED-
BLUE)/(NIR+(2RED-BLUE) 

Kaufmann et 
al., 1996 

NDVI resistance to 
atmospheric factors 

OVI Optimal Vegetation 
Index 

(1+0.45)(ʎ800)^2+1)/(ʎ670+0
.45) 

Reyniers et 
al 2006 
 

 

REIP Red edge inflection 
point 

700+40*((((670nm+780nm)/2
)-700nm)/(740nm-700nm)) 

Guyot et al 
1988 
 

 

MCARI Modified chlorophyll 
absorption ratio index 

(ʎ700-ʎ670-0.2(ʎ700-
ʎ550))(ʎ700/ʎ670) 

Daughtry et 
al. 2000 
 

 

TCARI Transformed 
chlorophyll absportion 
in reflectance index 

3((ʎ700-670)-0.2(ʎ700-
ʎ550)(ʎ700/670)) 

Haboudane 
et al., 2002 
 
 

 

CCCI Canopy Chlorophyll 
Content Index 

(NDRE-NDREMIN)/ 
NDREMAX-NDREMIN) 

Fitzgerald et 
al., 2010 

 

 

6.4 Data sources & Measurements 

In order to assess canopy signals from UK crops reflectance data was measured and collated from 

a range of ADAS trials included bespoke experiments to set up differences in canopy structure and 

canopy N content. The aim was to determine whether it was possible, using non-destructive 

scanning techniques to assess and predict SNS, yield potential, crop N uptake and N status. In 

order to achieve this, a series of field trials were established, and data were collected from existing 

field trials. These are outlined below. 
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6.4.1 Datasets 

Various datasets were collated into one Auto N calibration master file, summarised in Table 6. 

These include data from a total of 52 trials or sites, with 12994 individual data points collected over  

Table 6.   List of trial data included in the calibration dataset Masterfile.  
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Table 6.   List of trial data included in the calibration dataset Masterfile. 

  Project  Site  Location  Year  Treatments  Crop 
Sowing 
date 

Soil type 
Number 
of N 
rates 

Number of individual 
data points 

1  Green Grain  Terrington  Norfolk  2006  Varieties  WW1  18/10/2005 Z  2  160 

2 
Green Grain 
N study 

Terrington  Norfolk  2006  N x Variety  WW1  18/10/2005 Z  6  36 

3  N Ghost  Boxworth  Cambridgeshire  2006  Residual N  WW2  06/10/2005 CL  6  26 

4  N Ghost  Terrington  Norfolk  2006  Residual N  WW2  11/10/2005 Z  6  12 

5  N Ghost  Boxworth  Cambridgeshire  2007  Residual N  WW2  26/09/2006 CL  6  68 

6  N Ghost 
High 

Mowthorpe 
North Yorkshire  2007  Residual N  WW2  30/09/2006 SCL  6  51 

7  N Ghost  Rosemaund  Herefordshire  2007  Residual N 
Winter 
Barley 

20/09/2006 SCL  6  72 

8  N Ghost  Terrington  Norfolk  2007  Residual N  WW2  27/10/2006 Z  6  68 

9  N Ghost  Boxworth  Cambridgeshire  2008  Residual N  Wheat  12/10/2007 CL  6  96 

10  N Ghost 
High 

Mowthorpe 
North Yorkshire  2008  Residual N  Barley  21/09/2007 SCL  6  96 

11  N Ghost  Rosemaund  Herefordshire  2008  Residual N  Oats  31/10/2007 SCL  6  84 

12  N Ghost  Terrington  Norfolk  2008  Residual N  Wheat  10/10/2007 Z  6  96 

13  MALNA  Boxworth  Cambs  2009  N x variety  WW1  26/09/2008 CL  5  60 

14  N species  Cransford  Suffolk  2009  N x Variety  Barley  15/10/2008 CL  5  150 

15  N timing  Seaham  County Durham  2009  N x timing  WW1  19/11/2008 SCL  6  16 

16  N timing  Seaham2  County Durham  2009  N x timing  WW2  24/10/2007 SCL  6  16 

17  N timing  Terrington  Norfolk  2009  N x timing  WW1  26/09/2008 Z  6  192 

18  N x Fungicide  Terrington  Norfolk  2009  N x fungicides  WW1  26/09/2008 Z  6  120 

19  SNS plots  Terrington  Norfolk  2009  N  WW1  26/09/2008 Z  2  26 

20  SNS plots  Boxworth  Cambridgeshire  2009  N  WW1  04/10/2008 CL  2  6 

21  Soil QC  Ropsley  Lincs  2009  Long term N  Wheat  01/10/2008 CL  8  64 

22  Masstock  Fowlmere  Cambs  2010  Varieties x N  Wheat  30/09/2009 ??  5  152 

23  N x Fungicide  Boxworth  Cambridgeshire  2010  N x Fungicides  Wheat  25/09/2009 CL  5  200 

24  MINNO  Boxworth  Cambridgeshire  2010  N  Wheat  10/10/2009 CL  5  72 

25  MINNO  Terrington  Norfolk  2010  N  Wheat  09/10/2009 ZL  5  66 
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26  MINNO  Boxworth  Cambridgeshire  2011  N + Autumn N  Wheat  10/10/2009 CL  5  26 

27  MINNO  Terrington  Norfolk  2011  N + Autumn N  Wheat  17/10/2010 ZL  5  20 

28 
MINNO 
Residue 

Terrington 
Norfolk 

2013 
Previous crops & 
incorporation 

Wheat  18/11/2012 ZL  2  271 

29 
MINNO 
Ghost 

Boxworth  Cambridgeshire  2011  Residual N  WW2  18/10/2010 CL  6  18 

30 
MINNO 
Ghost 

Terrington  Norfolk  2011  Residual N  WW2  17/10/2010 ZL  6  6 

31  CRD  Boxworth  Cambs  2011 
Seed rate x 
Autumn N 

Wheat  11/10/2010 CL  4  84 

32  HYLO  Terrington  Norfolk  2011  N x Variety  Wheat  14/10/2010 SZL  7  882 

33  HYLO  Watlington    2011  N x Variety  WW1  05/10/2010 ZCL  7  254 

34  HYLO  Boxworth  Cambridgeshire  2012  N x Variety  Wheat  22/09/2011 Clay  7  147 

35  HYLO  Rosemaund  Herefordshire  2012  N x Variety  Wheat  05/10/2011 ZL  7  306 

36  Auto‐N HYLO  Terrington  Norfolk  2011 
Seed rate x 

Autumn N x N 
Wheat  14/10/2010 ZL  7  84 

37 
Additional N 

strip 
Flawborough  Notts  2011  Autumn N  WW  24/09/2010 CL  2  2 

38 
Unlimited N 

strip 
Flawborough  Notts  2011  Unlimited N  WW  24/09/2010 CL  2  2 

39 
MINNO 
Auto‐N 

calibration 
Boxworth  Cambridgeshire  2011  N  Wheat  18/10/2010 CL  5  11 

40 
MINNO 
Auto‐N 

calibration 
Terrington  Norfolk  2011  N  Wheat  17/10/2010 SZL  5  18 

41  Chessboard  Flawborough  Notts  2010  N x Soil  WW1  25/09/2009 CL  4  153 

42  Chessboard  Flawborough  Notts  2011  N x Soil  WW  24/09/2010 CL  4  2598 

43  Chessboard  Burford  Oxon  2011  N x Soil  WW  20/09/2010
Cotswold 
brash 

4  1507 

44  Chessboard  Burford  Oxon  2012  N x Soil  Wheat  20/09/2011
Cotswold 
brash 

4  1600 

45  Chessboard  Bedfordia  Beds  2012  N x Soil  Wheat  01/10/2011 SCL  4  1080 
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46  Chessboard 
Shipton by 
Beningborou

gh 
North Yorkshire  2012  N x Soil  Wheat  20/10/2011 SCL  4  906 

47 
Chessboard 

Ghost 
Flawborough  Notts  2011  Residual N  WW2  23/09/2010 CL  0  530 

48  Bare soil red  Flawborough  Notts  2011  Bare soil  WW  24/09/2010 CL  1  1 

49 
Bare soil 
grey 

Flawborough  Notts  2011  Bare soil  WW  24/09/2010 CL  1  1 

50 
Auto‐N 

Calibration 
trial 

Boxworth  Cambs  2011 
Seed rate x 

Autumn N x N 
Wheat  11/10/2010 CL  5  210 

51 
Auto‐N 

Calibration 
trial 

Boxworth  Cambs  2012 
Seed rate x 

Autumn N x N 
Wheat  28/09/2011 CL  4  198 

52 
Auto‐N 

Calibration 
trial 

Ropsley  Lincolnshire  2012 
Seed rate x 

Autumn N x N 
Wheat  30/09/2011 CL  8  74 

           Total  12994 
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6.4.2 Sensors 

Each of the trials listed in Table 6 were assessed in the field using various crop sensors at a range 

of growth stages. The sensor used depended on the project aims, but where relevant these data 

were used to increase the data available to use as part of the Auto-N calibration. In each trial one 

or more of the sensors shown in Table 6 were used. Dependent on the wavelengths available, 

indices in Table 4 were calculated. 

 

Table 7. Sensor equipment used to scan the Auto-N calibration, chessboard and other N response 

trials included in the calibration Masterfile.  

Sensor  Possible wavelengths/measures  History 

Crop Circle 210 
Measures 2 wavelengths (590, 880nm) with an 
active light source 

Holland Scientific. Used on 
ADAS trials since 2006 

Crop Circle S1  590, 880  Used in 2007 only 

Crop Circle S4  590, 720, 880 Used in 2007 only 

Crop Circle 470 

Measures 3 wavelengths at a time with a choice 
of 6 filters (450, 550, 590, 670,730, 760) with an 
active light source 

Used on ADAS trials since 
2009 

Crop Circle 430 

Measures 3 wavelengths at a time with a choice 
of 6 filters (670, 730 and 760) with an active 
light source 

Used from 2010 onwards 

OptRx Ag Leader 
The commercial version of the crop circle 430 
with 3 filters 

Commercial version of Crop 
Circle from AgLeader, bought 
out from Holland Scientific.

CropScan 

Measures up to 16 wavelengths at a time and 
incident radiation, but no light source (400 to > 
1000 nm) 

Mainly used by ADAS on OSR 
trials, not cereals 

     

Yara N Sensor Crop Spec  Active light source full spectroradiometer   

LICOR 1800 
Spectroradiometer 

Measures full range of wavelengths from 400 
nm to 1100 nm at 2 or 10 nm intervals. No light 
source 

 

Digital photographs  GAI   

SunScan  light interception/GAI   

     

 

6.4.3 Auto-N Calibration Experiments  

In order to assess the impact of canopy size, variety and seed rate on canopy reflectance, and to 

attempt to develop separate calibrations for crop N uptake, biomass, crop N concentration and 

crop N status the Auto-N calibration trials (Trials 50, 51, and 52 in Table 6) were set up.  

 

Three Auto-N calibration trials were established at Boxworth (2011, 2012) and Ropsley (2012). The 

two Boxworth trials included 24 unique treatments, consisting of 3 seed rates (100, 300 and 600 
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seeds per m2), two autumn N rates (0 and 200 kg N/ha), and four spring N rates (0, 100, 200 and 

300 kg N/ha). The autumn and spring N applications were made at standard farm practice timings, 

using a 12m pneumatic spreader. At each application date, the date, crop growth stage, 

approximate green area index (GAI) and shoots/m2 were recorded. Each trial was arranged in a 

split-plot design with seed rate in the main plots and autumn and spring N rates randomised within 

these main plots. There were two replicates of each treatment. Plots were 9 m x 6 m with 3 m 

discard plots between blocks to enable to fertiliser spreader to be switched off without 

compromising the treatment applications. The crops received standard treatments other than N 

fertiliser. There was also a 2 m x 2 m bare soil reference area marked out which was maintained 

as bare soil by hoeing or spraying with glyphosate at each visit. Autumn N fertiliser applications 

were applied as soon as possible after sowing/emergence using the pneumatic spreader. The 

fertiliser was applied to the full plot area. A soil sample was collected for each site to record the pH, 

% organic matter, soil mineral N analysis, total N% and mineralisation by anaerobic incubation 

before the end of April and analysed by Hill Court Farm Research.  

 

Available sensors were used on the Auto-N calibration trials approximately 10 days after N 

applications when reference measurements were collected in late March, mid-April and early May. 

In addition to sensor use on these trials, a range of reference measurements were also taken on 

both the Auto-N Calibration and Auto-N Chessboard trials, with quadrat samples taken to measure 

biomass, crop N concentration and crop N uptake on selected plots with plant samples sent off for 

N% analysis by DUMAS. Each of the trials were taken to harvest and yield and % dry matter were 

recorded for each plot. In addition, grain N% was measured using a FOSS Sofia NIR protein 

analyser. In addition, prior to harvest, grab samples (approx. 50 shoots per plot) were collected, 

the number of shoots were counted, straw and ears separated, dried, weighed, threshed and grain 

weight measured. These samples were then also sent off for %N analysis by DUMAS. 

 

6.4.4 Results  

Measured and collated data are shown in Figure 71, with NDVI calculated from different sensors 

using slightly different wavelengths. Figure 72 constrains the data to just one sensor type, the Crop 

Circle 210, showing more consistency. It can be seen that NDVI increases over time, but that the 

variation within a measurement date can be very large.  
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Figure 71 NDVI Measures from all trials listed in Table 5 made with a range of sensors 

 

Figure 72 NDVI Measures from trials using the Crop Circle 210 sensor.  

 

6.5 SNS Sensing 

The chessboard trials showed, at least indicatively, that the areas with the highest harvested SNS 

tended to look greenest (have the highest NDVI) throughout the season. 

 

The difference between NDVI of a given crop and the predicted NDVI of an N-unlimited crop 

should therefore give an indication of N deficiency, so long as nothing other than N has limited 

potential growth. The extent of N deficiency (hence maximum SNS) that can be detected increases 

with time; it is only reasonable to expect to detect differences of SNS greater than, say, 100 kg/ha 

once this level of SNS is beginning to limit crop growth. There are a number of challenges in 

developing a robust calibration for estimating SNS from canopy signals. The first is to define the 

course of NDVI of N-unlimited crops against thermal time after sowing. A calibration for SNS then 

needs to be developed for the difference between N-unlimited NDVI and a given measured NDVI. 

This calibration needs to be dynamic as associated SNS differences to NDVI differences increase 

with time. The impact of seed rate, variety, soil type etc on NDVI values needs to be considered to 
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judge whether calibrations can be robust over sites, or whether specific adjustments can be made. 

The large quantities of canopy reflectance data amassed over a range of trials with associated 

measures allows us to test this.  

 

The former scoping study (Sylvester-Bradley et al. 2009) found that over winter and early spring 

NDVI signals for bare ground and fully-fertilised wheat canopies were reasonably consistent over 

sites and seasons. Here we further develop and test the hypothesis that sensor signals of crop 

NDVI or other indices could be calibrated to predict soil nitrogen supply (SNS) over winter through 

the concept of an N-unlimited crop. Measurements were taken from plots which had N fertiliser 

applied in autumn to ensure they were not limited by N over winter and into spring. 

 

There is a consistent, positive relationship between thermal time and NDVI of an N-unlimited wheat 

crop, as shown in Figure 73 which includes measures from 8 sites over 2 seasons. It is therefore 

possible to estimate the NDVI of an N-unlimited wheat crop from the empirical regression 

relationship, which is simply 0.0005 x thermal time (P < 0.001, r2 = 0.74). 

 

 

Figure 73 NDVI of N-unlimited crops over thermal time. Data from ADAS 'N Ghost' trials over 

two years, four sites per year. The sites were High Mowthorpe (2007), Boxworth (2007, 2008), and 

Terrington (2007, 2008). 

 

The Auto-N logic proposes that the difference between the unlimited NDVI and measured NDVI 

can be indicative of the SNS in a crop that has received no N fertiliser.  This theoretical approach is 
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shown in Figure 74, and is presented using trials data in Figures 75 and 76, in which the grey line 

represents the predicted N unlimited crop NDVI values using equation 1 described above. In each 

of the experiments shown in Figure 7, a treatment was included in which the crop was not limited 

for N. This enabled the measurement of NDVI from an N unlimited crop (shown by the cross 

symbols) under the same conditions as an N limited crop, in which the treatments were exposed to 

various background soil N supplies. It can be seen in Figures 75b and 76 that the difference 

between the measured NDVI of an N limited crop and that of an N unlimited crop ('NDVI 

difference') increases over time. This is as expected, the crop N limitation is unlikely to show as 

clearly earlier in the season when the crop is still relatively small, and has little requirement for N. 

As the crop grows, and its N requirement increases, whilst the SNS decreases, the N limitation 

becomes more distinct, which can be seen by the increase in NDVI difference. In the trials shown 

below, there were a range of treatments and background SNS, which is why the NDVI values at a 

given thermal time are varying. This enabled the relationship between NDVI difference and 

harvested SNS to be evaluated across factors such as soil type, seed rate and variety.  

 

Figure 74 The theoretical relationship between the NDVI of an N unlimited crop, and that of an N 

limited crop  
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Figure 75 The relationship using measured experimental data from eight trials over two years 

including winter wheat, winter barley (WO) and winter oats (WO). Each trial included an N unlimited 

treatment, which is indicated by the cross. The relationship between these N unlimited values and 

thermal time can be predicted using a linear equation described in section above, shown here by the 

grey line  

 

Figure 75 demonstrates the increase in the difference between the measured NDVI and expected 

unlimited N NDVI (NDVI difference) over thermal time. This indicates that the ability to predict SNS 

should increase over time, as the limitation becomes more apparent in the crop.  

 

This can be seen in Figure 76 below for the 'N Ghost' trials. The harvested SNS was measured on 

these trials by measuring the total N content of the unfertilised crop. Using multiple regression the 

relationship of harvested SNS with the NDVI difference value (NDVI from N unlimited plots minus 

measured NDVI) and thermal time was quantified. There is a clear relationship between ‘NDVI 

difference’ and harvested, but it is clear that the detectable harvested SNS increases with thermal 

time, as the ability to predict harvested SNS increases. These data were analysed using a multiple 

regression in GenStat (Version 16.1. 2013, VSN International Ltd.), there was a significant fit 

(P<0.001, r2 = 0.324), and this relationship is shown by the wireframe plot in Figure 76.  This 

equation forms the basis of estimating SNS in the Auto-N logic so is deemed commercially 

sensitive and has been omitted from this report.  
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Figure 76 The relationship between NDVI difference (NDVI for an unlimited N crop – Measured 

NDVI), thermal time (degree days) and Harvested SNS (kg/ha) for the eight N ghost experiments. 

Wireframe surface plot representing the multiple regression of soil nitrogen supply (SNS) at harvest, 

thermal time, and NDVI difference.  

 

The relationship between measured, harvested SNS and the SNS predicted using this relationship 

can be seen for each of the trials in which harvested SNS and NDVI data were available in Figure 

77, and the fitted regressions are outlined in Table 8. There is a range in predictive capability, but 

predictive capability in the chessboard trials is generally poor. It is also evident that the highest 

predictive power of the SNS equation is highest between 1000 – 2000 degree days. This is as 

expected, since the crop is expected to show its SNS limitation as the season progresses, but 

saturation of NDVI is expected as the crop reaches complete canopy closure. The most valuable 

time for assessing SNS is early spring, and this demonstrates that the equation works most 

successfully around this time.

Thermal time 
(degree days) 

NDVI difference  

Harvested SNS 
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Figure 77  Predicted SNS values plotted against measured harvested SNS values for a range of experiments and cereal crops detailed in Table 7. 

Correlation coefficients and P values are given in Table 5.3. 
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Table 8.  Correlation coefficients, r2 and P values for Predicted vs Harvested SNS values for each assessment date on a range of cereal trials.  

 Crop Experiment  Site Date Thermal time  Correlation 
coefficient 

R2 P value 

1  Barley N Ghost  High Mowthorpe 23/01/2008 891.05 ‐0.22 0.05 0.333 

2  Barley N Ghost  High Mowthorpe 26/02/2008 1074.9 ‐0.29 0.08 0.203 

3  Barley N Ghost  High Mowthorpe 01/04/2008 1263.8 ‐0.30 0.09 0.182 

4  Barley N Ghost  High Mowthorpe 02/05/2008 1480.6 0.09 0.01 0.714 

5  Barley N Ghost  Rosemaund 14/12/2006 903 0.94 0.88 0.001 

6  Barley N Ghost  Rosemaund 29/01/2007 1200 ‐0.92 0.84 0.001 

7  Barley N Ghost  Rosemaund 21/02/2007 1330 ‐0.90 0.81 0.002 

8  Barley N Ghost  Rosemaund 15/03/2007 1497 0.92 0.85 0.001 

9  Oats N Ghost  Rosemaund 16/01/2008 483.85 ‐0.64 0.41 0.088 

10  Oats N Ghost  Rosemaund 12/02/2008 672.2 ‐0.43 0.19 0.287 

11  Oats N Ghost  Rosemaund 14/03/2008 863.35 ‐0.07 0.00 0.876 

12  Oats N Ghost  Rosemaund 18/04/2008 1101.75  0.75 0.56 0.032 

13  Wheat Auto‐N calibration  Ropsley 11/03/2012 1185.85  0.53 0.28 0.222 

14  Wheat Auto‐N calibration  Ropsley 02/05/2012 1583 0.95 0.90 <0.001 

15  Wheat Auto‐N calibration  Ropsley 13/05/2012 1681.25  0.96 0.92 <0.001 

16  Wheat Chessboard  Bedfordia 11/12/2011 750 0.32 0.10 <0.001 

17  Wheat Chessboard  Bedfordia 27/02/2012 1387 0.06 0.00 0.343 

18  Wheat Chessboard  Burford 11/12/2011 973 ‐0.02 0.00 0.650 

19  Wheat Chessboard  Burford 05/03/2012 1690 0.48 0.23 <0.001 

20  Wheat Chessboard  Burford 05/05/2012 2240 0.47 0.22 <0.001 

21  Wheat Chessboard  Burford 01/06/2012 2600 0.55 0.30 <0.001 

22  Wheat Chessboard  Burford  17/11/2010 587.75 ‐0.01 0.00 0.887 

23  Wheat Chessboard  Burford  24/02/2011 956.95 0.32 0.10 <0.001 

24  Wheat Chessboard  Burford  01/04/2011 1221.45  0.45 0.20 <0.001 

25  Wheat Chessboard  Burford  16/05/2011 1780.15  0.53 0.28 <0.001 

26  Wheat Chessboard  Flawborough 12/03/2010 957.9 0.30 0.09 0.098 

27  Wheat Chessboard  Flawborough 21/04/2010 1300.8 0.32 0.10 0.250 

28  Wheat Chessboard  Flawborough 20/05/2010 1602.15  0.32 0.10 0.251 
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29  Wheat Chessboard  Flawborough 03/02/2011 783.3 0.07 0.00 0.171 

30  Wheat Chessboard  Flawborough 10/03/2011 993.65 ‐0.01 0.00 0.780 

31  Wheat Chessboard  Flawborough 16/03/2011 1034.8 ‐0.05 0.00 0.274 

32  Wheat Chessboard  Flawborough 08/04/2011 1269.8 0.06 0.00 0.510 

33  Wheat Chessboard  Flawborough 23/05/2011 1831.2 0.41 0.17 <0.001 

34  Wheat MINNO crop residues  Terrington 25/02/2013 675.2 0.43 0.18 0.097 

35  Wheat MINNO crop residues  Terrington 08/03/2013 729.5 0.48 0.23 0.060 

36  Wheat MINNO crop residues  Terrington 19/03/2013 767.85 ‐0.27 0.07 0.308 

37  Wheat MINNO crop residues  Terrington 28/03/2013 785.85 ‐0.49 0.24 0.052 

38  Wheat MINNO crop residues  Terrington 15/04/2013 889.7 0.28 0.08 0.299 

39  Wheat MINNO crop residues  Terrington 22/04/2013 957.55 0.73 0.53 0.001 

40  Wheat MINNO crop residues  Terrington 01/05/2013 1044.45  0.76 0.57 0.001 

41  Wheat MINNO crop residues  Terrington 09/05/2013 1139.65  0.81 0.66 <0.001 

42  Wheat MINNO crop residues  Terrington 13/05/2013 1184.5 0.81 0.66 <0.001 

43  Wheat MINNO crop residues  Terrington 21/05/2013 1264.95  0.80 0.64 <0.001 

44  Wheat MINNO crop residues  Terrington 03/06/2013 1438.6 0.94 0.88 <0.001 

45  Wheat MINNO crop residues  Terrington 14/06/2013 1546.65  0.94 0.88 <0.001 

46  Wheat MINNO crop residues  Terrington 21/06/2013 1655.9 0.96 0.92 <0.001 

47  Wheat MINNO crop residues  Terrington 08/07/2013 1924.9 0.96 0.93 <0.001 

48  Wheat MINNO crop residues  Terrington 17/07/2013 2085.2 0.80 0.65 <0.001 

49  Wheat MINNO crop residues  Terrington 02/08/2013 2402.7 ‐0.86 0.75 <0.001 

50  Wheat N Ghost  Boxworth 28/02/2006 974.75 0.98 0.96 0.004 

51  Wheat N Ghost  Boxworth 11/04/2006 1225.4 0.94 0.89 0.016 

52  Wheat N Ghost  Boxworth 08/12/2006 644 0.89 0.80 0.003 

53  Wheat N Ghost  Boxworth 23/01/2007 892 0.86 0.74 0.006 

54  Wheat N Ghost  Boxworth 15/02/2007 996 0.85 0.72 0.008 

55  Wheat N Ghost  Boxworth 08/03/2007 1129 0.89 0.79 0.003 

56  Wheat N Ghost  Boxworth 27/12/2007 571.4 0.34 0.12 0.132 

57  Wheat N Ghost  Boxworth 01/02/2008 821 0.43 0.18 0.052 

58  Wheat N Ghost  Boxworth 06/03/2008 1024.7 0.73 0.53 <0.001 
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59  Wheat N Ghost  Boxworth 09/04/2008 1251.6 0.91 0.82 <0.001 

60  Wheat N Ghost  High Mowthorpe 04/01/2007 773 0.78 0.61 0.023 

61  Wheat N Ghost  High Mowthorpe 01/02/2007 939 0.63 0.40 0.094 

62  Wheat N Ghost  High Mowthorpe 05/03/2007 1106 0.43 0.18 0.292 

63  Wheat N Ghost  Terrington 03/03/2006 887.05 0.95 0.91 0.003 

64  Wheat N Ghost  Terrington 12/04/2006 1131.2 0.97 0.95 0.001 

65  Wheat N Ghost  Terrington 12/12/2006 394 0.28 0.08 0.333 

66  Wheat N Ghost  Terrington 22/01/2007 668 ‐0.03 0.00 0.921 

67  Wheat N Ghost  Terrington 13/02/2007 771 ‐0.01 0.00 0.975 

68  Wheat N Ghost  Terrington 09/03/2007 953 0.02 0.00 0.957 

69  Wheat N Ghost  Terrington 22/12/2007 544.2 0.69 0.48 <0.001 

70  Wheat N Ghost  Terrington 29/01/2008 789 0.72 0.52 <0.001 

71  Wheat N Ghost  Terrington 04/03/2008 991.05 0.64 0.41 0.002 

72  Wheat N Ghost  Terrington 10/04/2008 1229.7 0.93 0.87 <0.001 
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testing the extent to which N balances predict soil N supplies after both cereals and oilseed rape; 

improved prediction of NDVI with unlimited N supply (accounting for any effects of soil, genotype, 

sowing date and seed rate; Sylvester-Bradley et al., 2009); measurement and interpretation of 

canopy colour in spring as distinct from canopy size (Heege et al., 2008). 

 

Other sources of variation in canopy signals come from illumination angle and time of day. Active 

sensors such as the Crop Circle/Optrx/RapidScan and Yara N sensor have their own light source 

so effects of ambient light are mitigated to a large extent. Even so, within experimental measures 

we aim to use the sensors between 10am to 3pm. The height of the sensor does influence the field 

of view so maintaining a constant height above the crop is important. 

 

6.6 Calibrations for N uptake, biomass, N Nutrition Index 

Once variable rate N has been applied measures of canopy reflectance still ought to be useful in 

judging the N status of the crop even if we don’t have, within the Auto-N logic, a rational method to 

use the information quantitatively to recalculate N requirements. Such measures should help judge 

the success of N applications so far and provide reassurance that the crop is ‘on target’ or, 

conversely, alert the grower to areas where the crop is either not performing or is at risk of lodging 

allowing remaining fertiliser N applications to be reconsidered. 

 

In considering crop N status it is important to separate the current size of the crop (biomass, GAI, 

crop N uptake) which indicates how much N has been taken up by the crop so far, from the 

inherent ‘greeness’ of the crop, which can be considered to indicate how much N is available to the 

crop at this instance.  

 

Perhaps the best method of quantifying crop N status is the Nitrogen Nutrition Index (NNI) 

(Greenwood et al., 1990;1991; Lemaire et al., 2008). The NNI uses the concept of a critical N 

concentration above which the crop is deemed to have sufficient N and below which N is deemed 

to be deficient. The critical N concentration reduces over time as the crop grows larger and less 

photosynthetically active organs such as stems form an increasing proportion of the total biomass 

(Grindlay, 1997).  The relationship between critical N concentration and biomass has been defined 

empirically by Justes et al (1994) by collating biomass and N concentration measures from N 

response experiments at sequential growth stages (Fig 78) and is represented by the equation Ncrit 

= 5.35*Biomass^-0.442.  
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Figure 78 Critical Nitrogen Curves for wheat as presented by Justes et al., 1994, Annals of 

Botany 74, p397-407.  

 

This allows the calculation of NNI for a given crop of known biomass and N concentration as the 

proportion of the measured N concentration against the calculated critical N concentration. An NNI 

of 1 therefore indicates that the crop is at the critical N concentration, an NNI greater than 1 

indicates luxury uptake and an NNI below 1 indicates deficiency.  

 

The Auto-N calibration dataset was used to assess the relationships of a range of spectral indices 

with measures of crop biomass, N uptake, N concentration and NNI. Figures 79-81 shows these 

relationships using the Crop Circle sensor with growth stages before ear emergence (relationships 

tend to deteriorate after ear emergence as varietal differences affect canopy signals). Whilst NDVI 

saturates quickly in its power to differentiate biomass at about 3 t/ha, other indices such as NDRE 

seem better able to differentiate at higher biomass (Fig 79). Relationships are consistently better 

expressed on a fresh weight basis than dry weight.  
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Figure 79  Relationships of spectral reflectance indices with a) biomass and b) total fresh weight 

for wheat crops from a range of experiments measured by Crop Circle.  

 

Reasonable calibrations can be obtained for crop N uptake from reflectance indices (Figure 81), 

but direct relationships with N concentration are very poor. This reflects the changing ‘appearance’ 

of N concentration through the season in relation to the size of the crop; canopy reflectance is 

mostly driven by ground cover and the amount of crop material, rather than the intensity with which 

an individual leaf absorbs and reflects light. NDRE appears to give the tightest relationships with 

crop N uptake. 

 

Figure 80  Relationships of spectral reflectance indices with a) crop N uptake (kg/ha) and b) 

tissue N concentration for wheat crops from a range of experiments measured by Crop Circle 
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The lack of a predictive relationship with N concentration means prohibits the calculation of NNI 

from independent calibrations for biomass and N concentration. However, direct calibration for NNI 

does seem feasible with reasonably linear relationships with the reflectance indices (Figure 82). 

Incorporating thermal time into these relationships could allow greater differentiation of sub- and 

super-optimal crops. Other approaches such as canopy chlorophyll content index may also be 

useful in assessing NNI (Gitelson et al., 2005; Fitzgerald et al., 2010; Li et al., 2014; Xu et al., 

2014; Basso et al., 2015; Jin et al., 2015; Yao et al., 2015;  Cao et al., 2015; 2016). 

 

 

Figure 81  Relationships of spectral reflectance indices (a. NDVI, b.GDVI, c. NDRE, d., OSAVI) 

with N nutrition index (crop N status) for wheat crops from a range of experiments measured by Crop 

Circle 

 

Evidence from the chessboard trials shows that NNI can be of value in judging optimal N rates, 

with areas showing lower NNI being those with the higher N requirements (Figure 83) 

 

 

Figure 82  Relationship between NNI and optimum N for selected plots from chessboard 

experiments. 

 

6.6.1 Impacts of soil, variety & seed rate on canopy signals 

It is clear that there is variation in canopy signals caused by factors other than crop N uptake or N 

status. There are differences between sites that may relate to soil properties, especially wetness, 
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but these have not shown consistent effects in the datasets here. It seems that soil adjusted 

indices such as OSAVI do generally give a marginal improvement over straight NDVI.   

 

There are differences in canopy reflectance between varieties that do not evidently relate to 

differences in biomass, LAI or N status. These differences become bigger through the season and 

are most evident once ears have emerged. For early season growth the differences are small 

enough to be ignored but later variety specific adjustments or calibrations may be warranted. 

Seed rate has a very large effect on canopy reflectance, especially early in the season. We have 

found no easy correction or adjustment for this, but seed rate and plant establishment differences 

need to be considered when using canopy reflectance to judge variation in SNS. 

 

6.7 Conclusions on canopy signals 

We have developed a workable calibration for variation in SNS using NDVI and thermal time since 

sowing. Whilst the relationship is far from universal across all sites, it does work well at some sites.  

 

We have collated a dataset that gives useful calibrations for biomass, crop N uptake and NNI. 

Indices such as NDRE are generally better NDVI, saturating at higher levels. Whilst there is strong 

saturation in signals for biomass and crop N uptake at relatively low levels, there is much less 

evidence of saturation for NNI. Prediction of NNI by canopy signals appears relatively consistent 

across the datasets, making it potentially useful. Whilst we can use NNI as a check to monitor 

success of N management, we don’t however a logical method to include it within the Auto-N 

system to quantify N requirements. 

 

There is a wide and ever increasing literature around calibrations from canopy signals for crop N 

uptake, GAI, biomass, N concentration, N status and NNI (Mistele et al., 2008; Samborski et al., 

2014; Li et al., 2015. Zhao et al., 2016, Chen, 2015, Cao et al., 2015; Devadas et al., 2015; Feng 

et al., 2015).  Whilst it has been shown that calibrations are feasible there does not yet seem to be 

a widely proven robust and reliable method to rationally turn this information into recommendations 

for the economic N requirement. 
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7 Final Auto-N System 

Using the findings from Chapters 2, 3, 4 & 5 the final Auto-N system to estimate N requirement 

integrating information from precision technologies is set out below. This uses information to 

estimate crop N demand, SNS and fertiliser recovery to improve the estimate of N requirement 

through the season.  

 

Within the datasets collected in this project large and unexpected interactions between 

components have been seen. This means that better estimating one component (say SNS) without 

refining estimates of the other components (demand and recovery) can actually give worse 

predictions of N requirement than using standard values. Fig 14, using data from the 2010 

chessboard experiment, shows that even if SNS was known perfectly less than half of the variation 

in N requirement would be predicted without perfect knowledge of the other components.  

 

  

Figure 83 Prediction of measured N optima using calculated N requirements using knowledge 

of SNS (a) and SNS and yield (b) from the 2010 chessboard experiment at Flawborough.  

 

In this case predicted N requirements in areas with high harvested SNS (hence low N optima) tend 

to be under-predicted, because these areas had higher with-N yields hence higher crop N demand 

than expected, giving consequently higher measured N optima. The economic performance of 

such predictions can be worse than using a standard flat rate. This cautions against aiming for 

spurious precision but shows the importance of getting a good estimate of large scale changes in 

the N components, getting the average right and accepting that applications will never be perfect 

everywhere.  

 

7.1 Estimating Crop N Demand 

The direct link between yield and N requirement has been shown here to be weak, yet it is 

important to estimate crop N demand not least due to its positive relationship with SNS discovered 
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here: without adjusting for the impact of crop N demand the N requirements of areas with high SNS 

could be underestimated. 

 

Crop N demand is estimated from yield x crop N content. Crop N content is taken to be 23 kg N/t 

for feed wheat and 25 kg N/t for milling wheat. There is variation in crop N content between 

varieties and between sites. Yield level can impact crop N content as higher yielding crops tend to 

have a higher harvest index and lower grain protein content, giving a lower crop N content. 

However, such differences are relatively subtle and difficult to predict, so are not included within 

the Auto-N system. This project has shown there to be large variation in protein content at the 

optima, both within fields and between fields. These differences do have a substantial impact on 

the N optima that in principle could be accounted for. However, we not yet well enough understand 

the dynamics of protein content or consistency of differences between years to be able to use it in 

predictions of crop N demand.  

 

Our prediction of spatial variation in CND are therefore limited to our predictions in differences of 

yield. Given the variability in achieved yields between years and the modest association with N 

requirement, we conclude that only broad indicative estimates of spatial yield differences are 

necessary, and that the method of achieving those estimates through zones or through a grid 

system using past average or predicted in-year yields is not critical. What is important is that some 

attempt to account for yield differences across the field is made.  

 

7.2 Estimating SNS 

The original intention was to consider an N balance approach for base estimates of SNS, and 

annual measures of SNS on each field were made on this basis. If previous N applications and N 

offtakes are known then it should be possible to make some allowances for N leaching and 

changes to soil organic matter to predict SNS spatially. The expectation would be that areas giving 

highest yields and proteins with uniform N applications would be areas where N offtakes were 

higher and resulting SNS would be lower. However, the unexpectedly strong relationship between 

yield potential and harvested SNS seen in the chessboard experiments refutes the applicability of 

the N balance hypotheses on a spatial basis, unless full estimation of mineralisation from 

differences in soil organic matter could be made.  An N balance approach may however still give a 

worthwhile method of judging average field SNS to use as a baseline. 

 

Crop sensing can also be used to judge differences in SNS, assuming that nitrogen has been the 

major limitation to growth and that other factors have not been responsible for the spatial variation 

in the crop. Chapter 5 shows there is feasibility of getting an SNS estimate from canopy sensing on 

an absolute basis by using NDVI with estimated NDVI of an N-unlimited crop from knowledge of 

thermal time since sowing. Whilst a useable calibration has been developed, the variability in the 
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data suggests that large errors can be associated with SNS predictions, and experience from other 

work shows that poor prediction of SNS can be costly (Kindred et al., 2012).  

 

We therefore advocate the use of the calibration developed in Chapter 5 to spatially adjust the 

estimate of SNS around a field average, with constraints on what the maximum and minimum SNS 

could be in the field. 

 

To estimate the average field SNS we suggest using an N-balance type approach as inferred in the 

HGCA wheat N Management Guide. First the autumn N residue is estimated based on the balance 

of N applied (or fixed) and that removed in the crop. Typical OSR and bean crops are expected to 

leave a residue of around 120 kg N/ha, whereas cereals might leave 80kg/ha. Estimates for other 

crops is given in Table 9. These estimates may be adjusted based on the amount of fertiliser N 

applied, its efficiency recovery by the crop (eg was spring very dry so N uptake limited?) and the 

achieved yield and N offtake in crop & straw. 

 

Table 9.  Estimated typical autumn N residues for a range of previous crops. Values are inferred from 

N Management Guide. 

Previous crop 
Estimated N Residue 

Kg/ha 
High N Grass 150 
High N veg 150 
bare land 130 
Med N veg 125 
Potatoes 125 
Oilseed rape 120 
Beans 120 
Peas 120 
Grazed fodder 100 
low N grass 100 
uncropped land with green cover 90 
Wheat 80 
feed barley 80 
malting barley 70 
Triticale 60 
Oats 60 
Forage cut 60 
low N vegetables 60 
sugar beet 50 

 

The amount of residual N available to the following crop will depend on how much is lost to 

leaching over the winter, which is largely dependent on the retentiveness of the soil and the 

amount of excess winter rainfall. The HGCA N Management guide infers the retentiveness of soils 

in high, medium and low rainfall areas as in Table 10. Tools and models such as Irriguide could 

give more dynamic estimates of retentiveness.  
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Table 10. Typical retentiveness of RB209 Soil groups in low, medium and high rainfall conditions. 

  Rainfall 
Soil type low moderate wet 

    
Deep clays 90% 80% 60% 
Deep silty soils 100% 90% 80% 
medium soils 80% 70% 50% 
Sands 40% 20% 10% 
Sandy loams 60% 40% 20% 
Shallow soils not over sandstone 70% 50% 30% 
shallow soils over sandstone 65% 45% 25% 

 

Multiplying the N residue by retentiveness gives an estimate of the SNS available in spring. An 

estimate then also is needed for the likely mineralisation of the soil, and also N made available by 

deposition. The N Management Guide uses an adjustment of 20kg/ha to account for the difference 

between typical measured spring SNS and that at harvest. Additional mineralisation may be 

expected on soils with high SOM% or where organic resources (farmyard manure, composts, 

biosolids etc) have been regularly used in the recent past. There aren’t currently reliable & robust 

methods to estimate the additional N available from mineralisation from knowledge of SOM%, but 

an indicative relationship of 10kg/ha per 1% increase in SOM above 4% provides a sensible basis 

for judgement (Kindred et al., 2012). Soil measures using anaerobic incubation can be used to give 

indicative estimates of Additionally Available N. However, over-estimating N mineralisation can be 

costly. Mineralisation of N can also be inferred from past experience of fields, for example meadow 

land or fields which are prone to lodging are likely to have greater mineralisation. Given the 

relationships seen here between yield potential and SNS, it may be that higher yielding fields could 

be taken to infer greater mineralisation potential.  

 

In the absence of a robust predictive methodology for mineralisation it is most appropriate to allow 

a manual adjustment for expected mineralisation, with expected values between 10 and 50 kg/ha 

for most soils. Mineralisation from organic and peat soils can be much higher.  

 

The residue N multiplied by retentiveness plus the mineralisation estimate gives the baseline SNS.  

 

The canopy sensing methodology comparing measured NDVI with expected N-unlimited NDVI can 

be used to check the ‘baseline’ SNS before any fertiliser N has been applied, by estimating the 

mean, minimum and maximum predicted SNS in the field. This can be a tool to compare to the 

estimated baseline SNS and adjustments made if the crop seems to be growing faster or slower 

than expected.  

 

Spatial differences in SNS can be estimated using NDVI differences from the mean NDVI for the 

field to estimate the difference in SNS using the equation with thermal time developed in Chapter 
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5.  This allows a rational basis for generating variable SNS predictions across the field but ensuring 

that the field average is based upon sound estimates and that extreme high or low estimates are 

constrained to a sensible range. 

 

This approach also allows the estimation of variation in SNS even after N has been applied, so 

long as early N applications are uniform. This is important as the prediction of SNS from canopy 

sensing increases with time, so estimates of SNS variability can still be made up to late March 

before the main variable rate applications.  

 

7.3 Fertiliser Recovery 

The chessboard trials have shown very great variation in fertiliser recovery across fields, between 

20-80%. However, we have not yet been able to explain or predict this variability. At present we 

have no other basis for changing N recovery estimates other than known differences in soil type: 

Silts/clay = 60% 

Sandy = 65% 

Chalk = 55% 

 

It is possible that on Burford soils recovery could be linked to stoniness. At other sites, differences 

in soil type within a field is probably insufficient to assume different recoveries. 

 

7.4 Calculating N requirements & scheduling 

The Auto-N system thus integrates two spatial data layers (Crop N Demand & SNS) with a fertiliser 

recovery estimate to calculate the fertiliser N requirement for each point in the field.  

 

The Crop N Demand layer is calculated simply from estimated yield x crop N content.  

 

The SNS layer is a bit more complex, but basically uses a baseline estimate of SNS modified by a 

spatial NDVI layer using equation from Chapter 5 using knowledge of thermal time since sowing. 

 

In principle these layers can be created and calculated within precision farm management software 

such as Gatekeeper. 

 

Once the N requirement has been calculated the timing and splitting of applications needs to be 

decided. The decisions on early splits of N impact on the information that is subsequently available 

through canopy sensing later in spring. The splitting and timing of N applications can usefully be 

used to manage the canopies to help avoid lodging and to achieve optimal canopy size. In essence 
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this means delaying N applications to crops which are well tillered and lush in spring and using 

early N to promote growth in crops which are thin and backward. 

 

When considering canopy sensed differences after the first application it will always be necessary 

to know what was applied previously. For this reason ideally the first N application in Feb / early 

March should be uniform to allow easier interpretation of subsequent canopy scans. A judgement 

is needed on a whole field or management zone basis whether early N is needed, then either apply 

0 or 40 (or 60) kg/ha.  Calculating the N requirement in March as above, the remaining fertiliser N 

to be applied can be split between April and May. 

 

This project has considered the use of canopy sensing through the season to adjust subsequent N 

applications. However, there are serious difficulties in doing so. As soon as the first variable rate N 

application has been made there are many measurements and assumptions required in order to 

recalculate N requirements in terms of CND, SNS and recovery. For each spatial unit knowledge 

would be needed of: 

 Updated crop N demand 

 Initial estimated SNS 

 N fertiliser already applied 

 Crop N uptake 

 Soil N still available to be taken up 

 Fertiliser N still available to be taken up 

Given the variability in the measures and estimates of SNS and of crop N uptake and the variability 

in fertiliser recovery and dynamics of N uptake, we feel the assumptions required to estimate the 

above would be too shaky to be worthwhile.  

 

It has not proved possible to reconcile the approach adopted here of calculating fertiliser N 

requirement on a rational basis by estimating CND, SNS and recovery with a separate approach 

based on crop N uptake and N status later in the season, without discarding the original calculation 

of N requirement.  

 

Whilst we have shown in Chapter 5 that canopy sensing can usefully estimate differences in Crop 

N uptake and crop N status, it is not clear how such information can rationally be used to 

determine the remaining N fertiliser requirement, whilst it may indicate that N is limiting it doesn’t 

tell you how much more N it is economically worth applying. Measures that use approaches such 

as the N Nutrition Index may however be useful tools to measure of success through the season 

and to judge whether estimates of demand, N supply and recovery are right or not. 
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Whilst the central Auto-N logic developed in the project is freely available, the equation for SNS 

prediction from thermal time has been withheld from publication to allow commercial partners to 

develop and commercialise an Auto-N system accommodating the individual sensor data available 

to them. We hope these will be applied by the commercial partners in conjunction with software 

applications and precision technologies. Each commercial partner provided a system for testing 

commercially in Chapter 7.  

 

Ultimately, any system will need to deal appropriately with spatially variable disturbances such as 

leaf disease, water-logging, take-all, rabbit grazing etc. The cause of poorer areas of the crop is of 

fundamental importance to how N management should be adapted. With yield limiting factors such 

as compaction then yield potential may be compromised so N rates should be cut back, on the 

other hand patches with poor establishment or suffering compaction, water-logging, take-all, slug 

damage etc may benefit from greater N applied early to stimulate tillering and root development. Of 

course, where patches are poor due to low soil N supply, higher N rates would be warranted. 

Whilst the impacts of non-N factors have been considered in the project, the complexity is too great 

to deal with each possible cause in detail. Instead, the project focused efforts on the estimated 

~80% of cases where growth is limited by N supply. In using the Auto-N system commercially, 

systems will be required for dealing with poor patches not limited by N supply, with adjustment to N 

rates based on expected N demand. 
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8 Evaluation of the Auto-N system 

The Auto-N approach described in Chapter 6 was evaluated in two ways. Firstly the data sets from 

the chessboard trials were used to compare predicted N requirements for each plot from previous 

yield information and in season canopy sensing with the measured N optima, and consequences 

for profitability, yield and N losses were calculated. Secondly, in 2013 and 2014 validation trials 

were set up by the commercial partners using the Auto-N system on commercial fields, with 

tramline comparisons to standard uniform field N rates.   

 

8.1 Evaluation from Chessboard trials  

The chessboard trials can be used to test potential approaches for predicting N requirements 

against the measured N optima across the fields, and to evaluate the financial and environmental 

benefits of improved predictions. 

 

8.1.1 Quantifying potential benefits from a perfect system 

Firstly we assess the potential for improvement by quantifying the financial benefit of getting N 

recommendations exactly right, on average for the field and for each ~10x10m area in the field. 

Comparisons are made against the recommended N rates for these fields as deemed by RB209. 

The margin over N cost at the optimum and at a given N rate was calculated using a grain price of 

£120/t and N fertiliser price of £0.75 /kg. This gives a breakeven ratio of 6.2 so quoted N optima 

here are slightly lower than reported in Chapter 3. 

 

Table 11.  Economic margins from RB209 recommended N rates compared to applying the measured 

N optima across each of the chessboard trials.  

Site RB209 
recommended 

rate 
kg N/ha 

Range in 
measured 

N opt 
kg N/ha 

Average N 
optima 

 
kg N/ha 

Average 
margin 
RB209 

£/ha 

Average 
margin @ 

opt 
£/ha 

Average 
Profit 

foregone 
£/ha 

Flaw 2010 190 115-265 185 1073 1076 3.64 

Flaw 2011 190 0-95 10 910 1026 116.22 

Burford ‘11 210 162- >360 264 939 950 10.87 

Burford ‘12 210 53-359 219 720 725 4.90 

Bedfordia 190 0-171 93 853 898 45.04 

Shipton ‘12 190 207- >360 322 797 897 100.02 

 

It can be seen from Table 11 that the potential to improve economic margins by more accurately 

meeting N requirements is large (>£40/ha) at sites where the average measured N optima is very 

different to the recommended N rate (ie Flawborough 2011, Bedfordia 2012 and Shipton 2012). 

However, at other sites where the average measured N optima is close to the average 
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recommended rate, the scope for financial benefit is much more modest (<£11/ha) despite each of 

these sites having large (>100 kg/ha) variation in N optima.  This difference between accuracy of 

the average rate for the field and precision of the application to match variation within the field can 

be seen in Table 12 where differences in margin and profit foregone are assessed at the average 

N rate for the field. 

 

Table 12.  Average margins and profit foregone (£/ha) from the chessboard trials when average N rate 

for the field is same as the average measured N optima. 

Site Average N 
optima 

 
kg N/ha 

Margin with flat 
rate @ average 
N opt for field 

£/ha 

Average 
margin @ 

opt for each 
plot 
£/ha 

Average 
Profit 

foregone 
£/ha 

20kg 
N/ha 
less 
than 

ave opt 

20kg 
N/ha 
more 
than 

ave opt 

Flaw 2010 185 1073 1076 3.51 5.92 5.67 

Flaw 2011 10 1025 1026 1.73 3.14 12.22 

Burford ‘11 246 943 950 6.39 7.90 6.97 

Burford ‘12 219 720 725 4.62 6.09 6.19 

Bedfordia ‘12 93 887 898 10.71 15.02 10.60 

Shipton ‘12 322 883 897 13.40 14.86 16.67 

 

The maximum financial benefit from improved spatial precision of N application, as opposed to 

improved accuracy on average, for the chessboard trials is between £1.73/ha to £13.40/ha. This is 

surprisingly small given the size of variation seen in N optima in these trials. It implies that whilst 

there is large variation in the total range in N optima in the chessboards, only a relatively small 

proportion of the area is very different to the average N optima. The sites with the greatest profit 

foregone at Bedfordia and Shipton are those with large areas of very divergent N optima. The 

fields were of reasonable size and should reasonably reflect the potential benefits for fields in 

general, except perhaps for large fields with large areas with large differences. 

 

The shape of the N response curve means that under-fertilising can be more costly than over-

fertilising. Sylvester-Bradley et al. (2008) calculated over a population of response curves it was 

worth applying 10-15kg N/ha more than the economic optima in order to minimise this effect. Each 

chessboard trial here is a population of response curves and the differential effects on profit 

foregone of under or over applying by 20kg N/ha are shown in the last two columns of Table 12. 

Whilst at Bedfordia 2012 the cost of under-applying is substantially greater, at other sites the 

differences are marginal, and at Flawborough 2011 and Shipton 2012 the costs of over-applying by 

20kg/ha are bigger than under-applying by 20kg/ha. Overall the evidence from the chessboard 

trials does not support applying more than the economic optima in order to minimise the perceived 

risks of under-fertilising. 
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As well as the potential financial impact from a ‘perfect’ system on N recommendation, it is also 

possible to quantify the environmental impacts through improved N use and higher yields.  Table 

13 shows that these impacts are generally very modest, and all accrue from improved accuracy of 

the average N rate for the field rather than improved precision dealing with the spatial variability. 

Where measured N optima is higher than recommended, more N is used and yields are higher, 

where N savings are made the yield penalty tends to be small. Where average N for the field is 

correct there are no net savings in N fertiliser, as areas requiring less N are compensated by areas 

requiring more N. The more targeted use of N does give an increase in yield, though this is 

modest. 

 

Table 13.  Impacts of perfect prediction system on N loss and yield for the chessboard trials. 

Site N saved from 
RB209  
kg N/ha 

Yield difference from 
RB209 

t/ha 

Yield difference from 
average 

t/ha 

Flaw 2010 5 0 0.03 

Flaw 2011 180 -0.16 0.01 

Burford ‘11 -54 0.42 0.05 

Burford ‘12 -8 0.09 0.03 

Bedfordia ‘12 97 -0.24 0.09 

Shipton ‘12 -132 1.67 0.11 

 

8.1.2 Testing the Auto-N system on the chessboard trials 

The use of available data to accurately predict crop N demand, SNS and ultimately N requirement 

was assessed for each chessboard trial. 

 

Crop N Demand for each site was calculated from past average yields for each plot from previous 

yield maps, multiplied by crop N content (23 kg N/t feed wheat, 25 kg/t milling wheat). SNS was 

estimated using the N balance approach to estimate average for the field with variability between 

plots estimated using the equation from Chapter 5. Cumulative thermal time since sowing was 

calculated from Irriguide. Fertiliser recovery was assumed constant for each site as detailed in 

Chapter 6. N requirement was calculated from (CND-SNS) / Fertiliser Recovery and was compared 

to measured N optima. 

 

Results show varying success in predicting CND (Figure 84) and SNS (Figure 85) between sites. 

Whilst variation in CND within sites is poorly predicted, average predictions are reasonably 

accurate except for Flawborough 2011 which was severely affected by drought. Variation in SNS is 

reasonably predicted at Flawborough 2010 and there is a relationship at Burford 2012. However, 

relationships are weak at other sites. Absolute predictions are substantially inaccurate at Bedfordia 

and Burford 2012.  
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Predictions of N requirement are poor at all the sites (Figure 86), especially at Flawborough 2011 

and Bedfordia 2012 where higher SNS and lower CND than expected gives lower N optima than 

recommended. 

Flawborough 2010 Flawborough 2011 

Burford 2011 

 

Burford 2012 

Bedfordia 2012 

 
 

Shipton 2012 

 

Figure 84  Prediction of Crop N Demand from past yield data and assumed crop N content (23 kg 

N/t) for the chessboard trials  
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Flawborough 2010 Flawborough 2011 

 
Burford 2011 Burford 2012 

Bedfordia 2012 

 

Shipton 2012 

 

Figure 85 Prediction of variation in SNS using Crop Circle for the chessboard trials  

 

 



Page 160 of 196 

Flawborough 2010 Flawborough 2011 

 
Burford 2011 Burford 2012 

Bedfordia 2012 Shipton 2012 

Figure 86 Prediction of N requirement from Crop N Demand and SNS for the chessboard trials  

 

The economics of the Auto-N predictions can be compared to flat rate RB209 predictions by 

comparing margins over N cost and profit foregone from applying the optimum. The economics of 

the Auto-N system are shown in Table 14 which can be compared to Table 12 for margins at the 

optima and at RB209 recommended rates.  
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Table 14.  Impacts of Auto-N prediction system on economic margin, N loss and yield for the 

chessboard trials. 

Site Ave Auto-N 
recommended 

rate 
kg N/ha 

Average 
margin 
Auto-N 

£/ha 

Average 
Profit 

foregone 
vs optima 

£/ha 

Margin 
difference 
to RB209 

£/ha 

N 
Difference 
to RB209 

Kg/ha 

Yield 
Difference 
to RB209 

t/ha 

Flaw 2010 221 1049 26.89 -23.24 31 0 

Flaw 2011 185 916 110.36 5.97 -5 0.02 

Burford ‘11 243 944 6.52 4.35 33 0.24 

Burford ‘12 267 711 14.09 -9.19 57 0.28 

Bedfordia 237 783 114.84 -63.40 62 -0.14 

Shipton ‘12 260 851 26.89 54.55 70 0.89 

 

It can be seen that the economic margins achieved with the Auto-N system are only superior to 

RB209 flat rate applications at three of the six sites; at the others they are substantially worse. It 

seems that in trying to improve N recommendations it is easier to get rates ‘more wrong’ than it is 

to improve accuracy. It is clear again from this that the average N rate for the field is what causes 

the major economic differences. 

 

8.2 Validation trials 

In 2013 and 2014 the Auto-N system was tested on eight fields, using either Crop Circle/Optrx or 

Yara N Sensor tractor mounted crop sensors, or SOYL Nsense satellite imagery to provide SNS 

estimates using the approach in Chapter 6. Thermal time since sowing for each canopy 

measurement date was calculated from Irriguide output. For each field spatially variable crop N 

demand was estimated from previous yield maps, using either estimates for management zones, 

cluster analysis, calculation of normalised average yields or SOYL performance mapping. SNS for 

the field was estimated by the N balance technique described in Chapter 6 and checked by SMN 

testing. Spatial variation in SNS was calculated using the formula developed in Chapter 5.  Agrii, 

SOYL, Yara, Precision Decisions and Agleader each worked with one or more farmers, selecting 

fields that allowed comparison of at least 4 tramlines, ideally with predominant variation along the 

length of the tramline.  

 

8.2.1 Methodology 

To enable some judgement to be made on what the appropriate N rates was, four comparisons 

were made in each field; the uniform standard N rate to be applied to majority of field representing 

farm practice; Auto-N variable rate application; flat rate with 60kg N/ha more than standard N rate; 

flat rate with 60kg N/ha less than standard N rate. The 60kg figure was set in 2014 to match with 
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treatments made in the AHDB LearN project. Each commercial partner worked with the farmer to 

place the tramline comparisons, create application maps and ensure applications are made 

appropriately. Where possible fertiliser treatments were preferentially made with pneumatic 

spreader or applied as liquid UAN, to ensure a distinct cut off at the tramline boundary. Where 

spinning disc spreaders were used two tramline widths were used for each treatment. Applications 

were split with generally ~40kg N/ha applied uniformly in February/March and the balance split in 

two equal applications in April and early May. 

 

Measurement of yield on the tramline comparisons was made by farmer’s combine harvester with 

yield mapping. Where possible we sought to ensure that each tramline width contained at least two 

combine runs with a completely full header, and that combine runs that span between tramline 

widths were avoided or data discarded. The harvesting of tramline wheelings was kept consistent 

between tramlines, and where feasible tramline yield comparison measures were made harvesting 

in the same direction.  Yield data from the combine was sent to ADAS for statistical analyses. 

Financial margin over N fertiliser cost was calculated for each yield point assuming grain price of 

£120/t and N price of £0.75/kg. Yields and margins were averaged for each combine run and each 

tramline within each field. 

 

8.2.2 Results 

Details of the validation trials are given below.  

 

Agrii set-up trials with with Nick August at Burford in 2013 & 2014: Yields on the field Sour Corner 

in 2013 were low due to a hot dry period in June/July which burnt off the crop and meant estimated 

yield potentials weren’t realised. It can be seen from the yield map in Figure 87 that the spatial 

variation in yield was greater than any imposed treatment difference. The first two tramlines of the 

eastern side of the field gave lower NDVI measures, was observed to be more ‘backward’ and 

gave lower yields than the rest of the field. The spatial variation in this field somewhat 

compromises fair comparisons between tramlines, but average yields and margins for each are 

reported in Table 11. Discounting results from tramlines 1 and 10 which are headlands, the results 

suggest little consistent difference between N rates, with the lowest N rate (130 kg N/ha) actually 

giving the highest average yields, and therefore the highest margins. The Auto-N system has used 

a higher N rate on average and seemingly achieved lower yields on this field in this season, giving 

the lowest gross margin. The higher standard deviations around the Auto-N tramlines, suggest that 

the lower yield may be due to poorer yielding areas coinciding with these treatments, however 

further statistical analysis of treatment comparisons either side of the tramline in similarly 

performing areas do not show any advantage for the Auto-N system. 
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Aerial photo 

 

Soil EC 

 

Yield Map 2011 

Defined Management zones 

 

Crop Circle measure Validation trial treatments 

    
Auto-N application map 

 

Yield t/ha 2013 

 

Margin over N cost 

 
Figure 87 Validation trial on field Sour Corner (Nick August, Burford) with Agrii Auto-N system 

in 2013 

 

Table 15.  Average Yield and Margin over fertiliser N cost for each tramline for the validation trial in 

Figure 87. 

Tramline # from W N applied 

Average 
Yield 
t/ha 

Standard 
deviation 

Yield 
(t/ha) 

Average 
Margin 
over N 
£/ha 

Standard 
Deviation 
Margin 

£/ha 
1 130 5.99 0.823 795 124
2 200 6.43 0.667 804 100
3 245 Auto-N 5.98 1.075 701 174
4 200 6.47 1.007 810 151
5 270 6.58  0.880 771 132
6 130 7.09 0.840 959 126
7 270 6.64 0.827 781 124
8 200 6.44 0.764 807 115
9 240 Auto-N 5.97 1.491 704 231
10 200 5.06 1.182 599 177
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Treatments were set-up in a similar way on this farm in 2014 (see Figure 80). Spatial variation in 

final yield in this field was much less distinct, but there were not obvious differences between N 

treatments, only the lower N rate tramline showing a slightly lower yield (Table 16). 

 

Aerial image Soil Electrical Conductivity Crop Circle NDVI Feb 2014 

 Application map Yield Map 2014 Margin over N cost 

Figure 88 Validation trial on field Blenheim Hovel (Nick August, Burford) with Agrii Auto-N 

system in 2014 

 

Table 16.  Average Yield and Margin over fertiliser N cost for each tramline for the validation trial in 

Figure 88. 

Tramline # from 
W 

N applied 
kg/ha 

Average 
Yield t/ha 

Standard 
deviation 

t/ha 

Average 
Margin 
over N 

£/ha 

Standard 
Deviation 

£/ha 
1 240 headland 10.81 1.16 1130 142 
2 240 10.49 0.75 1098 92 
3 240 10.03 1.39 1035 160 
4 Auto-N 238 10.40 1.01 1087 124 
5 Auto-N 267 10.16 0.53 1039 71 
6 300 10.53 0.97 1056 117 
7 240 10.40 0.86 1086 102 
8 240 10.20 0.63 1058 77 
9 180   9.36 0.57 1004 68 
10 180 10.16 0.81 1097 92 
11 240 10.59 0.79 1105 91 
12 240 10.40 0.79 1082 91 
13 300 10.26 0.66 1021 79 
14 300 10.49 0.70 1046 81 
15 240 10.22 1.01 1057 121 
16 240 9.84 0.95 1008 115 

 

Validation trials were set up by SOYL at Bedfordia using SOYL ‘performance mapping’ to estimate 

potential yield and satellite imagery to estimate variation in SNS. Unfortunately a technical error 

with the N application meant more N fertiliser was applied than intended compromising the Auto-N 
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comparisons on two fields in 2013 (Fig 89). Spatial variation in final grain yield was greater than 

any N treatment effect in both fields in 2013. 

 

Yield Expectation 
Council Houses 

 

Satellite NDVI 
 

 

N Application Map 
 

 

Yield 2013 
 

Broad Green 

 

 

 

  

Figure 89 Validation trials on two Bedfordia Farms fields (‘Opposite Council Houses’ and ‘Broad 

Green’) with Auto-N system utilising SOYL satellite imagery in 2013. 

 

SOYL conducted two further validation trials at Bedfordia in 2014 (Figure 90). Effects of N rate on 

yield were limited, with modest impacts of 50kg more or less (Table 17). Comparisons were 

somewhat compromised by incomplete yield map data, especially in Field 171. In both fields the 

Auto-N validation area coincided with a lower yielding area and in Field 145 irregular combining 

severely restricted the useable data points and hampered a fair comparison.  
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Yield Estimate 
Field 145 

 

SOYL Satellite 
imagery 

Validation 
treatments 

Yield 2014 
 

N Margin 
 

Field 171     

Figure 90 Validation trial on fields 145 and 171 at Bedfordia Farms with Auto-N system utilising 

SOYL satellite imagery in 2014 

 

Table 17.  Average Yield and Margin over fertiliser N cost for each tramline for the Bedfordia 

validation trials in Figure 90. 

Tramline # from 
W or N 

N applied 
kg/ha 

Average 
Yield t/ha 

Standard 
deviation 

t/ha 

Average 
Margin 
over N 

£/ha 

Standard 
Deviation 

£/ha 
Field 145      

1 Standard (240) 14.02 2.68 1514 290 
2 -60 kg 13.88 1.48 1514 178 
3 +60kg 14.26 2.16 1490 250 
4 Standard (240) 14.35 1.41 1535 158 
5 Auto-N (230) 12.64 2.03 1371 201 
      

Field 171      
1 Standard 13.37  1359 130 
2 -60 kg 13.10  1377 136 
3 +60kg 12.63  1210 124 
4 Standard (240) 13.03  1318 123 
5 Auto-N (230) 11.69  1179 116 
6 Standard 11.47  1131 217 

 

Further validation trials were conducted by SOYL in 2014 on two other fields comparing farmer’s 

practice with Auto-N and SOYLsense treatments (Fig 91 & 92). Spatial variation dominated the 

yield maps and there were no strong consistent differences in yield or margin (Tables 18 & 19). 

The variation in N applied within the Auto-N tramlines was 120-247 kg N/ha at High St Lane and 

175-218 kg N/ha at Hamstyles, though on both fields the average applied Auto-N rate was within 

10kg of the standard in most tramlines.  
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Aerial image

 

SOYL Performance map 

 

SOYL Satellite NDVI 

 

Validation trial N rates 

 

Yield Map 2014 Margin over N 

 

 

Figure 91  Validation trial on field High Street Lane with Auto-N system utilising SOYL satellite 

imagery in 2014 

 

Table 18.  Average Yield and Margin over fertiliser N cost for each tramline for High St Lane SOYL 

validation trials in Figure 91. 

Tramline # 
from W N applied kg/ha 

Average 
Yield t/ha 

Standard 
deviation 

t/ha 

Average 
Margin over 

N £/ha 

Standard 
Deviation 

£/ha 
      

1 Standard (195) 10.80 1.80 1148 214.9 

2 
SOYLsense 

(202)  11.09 1.61 1183  195.1 
3 Auto-N (214) 11.01 1.68 1162 200.0 
4 Standard (195) 10.88 1.86 1147 227.5 

5 
SOYLsense 

(208) 11.00 1.70 1141 203.6 
6 Auto-N (212) 11.25 1.53 1161 180.6 
7 Standard (195) 11.31 1.44 1182 172.5 

8 
SOYLsense 

(202) 11.25 1.57 1173 186.4 
9 Auto-N (193) 11.32 1.71 1194 206.5 
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Aerial image 

 

SOYL Performance map 

 

Satellite NDVI measure 

 

Validation trial treatments 

 

Yield 2014 

 

    

Margin over N cost 

 
 

Figure 92 Validation trial on field Hamstyles with Auto-N system utilising SOYL satellite imagery 

in 2014 
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Table 19.  Average Yield and Margin over fertiliser N cost for each tramline for Hamstyles field SOYL 

validation trials in Figure 92. 

Tramline # 
from NW N applied kg/ha 

Average 
Yield t/ha 

Standard 
deviation 

t/ha 

Average 
Margin over 

N £/ha 

Standard 
Deviation 

£/ha 
      
1 Standard (195) 7.47 2.69 769 322 
2 SOYLsense (196)  7.52 2.43 745 291 
3 Auto-N (182) 9.15 2.14 953 253 
4 Standard (195) 9.56 2.72 990 326 
5 SOYLsense (197) 10.09 2.17 1054 261 
6 Auto-N (203) 10.84 1.79 1139 216 
7 Standard (196) 10.73 1.45 1130 174 
8 SOYLsense (198) 10.73 1.60 1249 191 
9 Auto-N (216) 10.93 1.46 1140 175 
      

 

There was little evidence that the Auto-N treatment performed better than standard; the majority of 

variation between tramlines was due to inherent spatial variation. 

 

Precision Decisions tested three fields using the Yara N sensor to estimate SNS and past yields to 

estimate Crop N Demand.  Application maps were generated in Gatekeeper for fields at 

Flawborough, JSR and with David Blacker.  
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Margin over N cost 

 
Figure 93 Validation trial on field Number 5 (Flawborough Farms) with Auto-N system utilising N 

sensor 

 

At Flawborough variation in expected yield hence crop N demand was greater than variation in 

canopy reflectance from the N sensor, so the Auto-N application Map was more driven by variation 
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in yield (Figure 93). The size of field here allowed greater replication of treatments than at other 

fields tested. 

 

Table 20.  Average Yield and Margin over fertiliser N cost for each tramline for Number 3 field 

(Flawborough) validation trial in Figure 93. 

Tramline # 
from SW 

Treatment 
N applied 

kg/ha 
Average 
Yield t/ha 

Standard 
deviation 

t/ha 

Average 
Margin over 

N £/ha 

Standard 
Deviation 

£/ha 

       
1 Standard 180 12.61 0.99 1369 119 
2 Auto-N 218 12.61 1.13 1339 140 
3 Standard 180 12.31 1.07 1333 129 
4 High 240 12.22 0.83 1273 101 
5 Low 120 11.84 0.90 1328 108 
6 Standard 180 11.68 1.26 1257 151 
7 Auto-N 153 11.80 0.97 1293 127 
8 Standard 180 11.82 1.02 1274 122 
9 Low 120 11.70 1.11 1310 133 
10 High 240 12.27 1.06 1278 128 
11 Standard 180 12.03 1.06 1299 127 
12 Auto-N 227 12.40 1.10 1307 139 
13 Standard 180 12.30 1.09 1331 131 
14 Low 120 12.10 1.24 1358 149 
15 High 240 12.26 1.10 1277 131 
16 Standard 180 11.54 1.21 1240 146 
17 Auto-N 297 11.93 1.17 1195 148 
18 Standard 180 11.76 1.20 1267 144 
       

Averages Standard 180 12.05 1.16 1302 139 
 Auto-N 214 12.20 1.14 1293 146 
 Low 120 11.84 1.07 1328 128 
 High 240 12.25 1.16 1276 118 

 

Overall, N applications from the Auto-N system were slightly higher than the standard N rate and 

yields were also slightly higher, but not high enough to pay for the extra N as the margin was 

slightly lower (Table 20). The N rate with +60kg N/ha gave the highest yield but the lowest margin, 

whereas the -60kg N/ha treatment gave the lowest yields but being only 0.4 t/ha lower than the 

highest rate, the lowest N rate gave the highest margin. This suggest that the optimal N rate for 

this field was considerably lower than the standard rate applied, at least in this year. 
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Aerial image 

 

Yield Expectation N sensor map 

Auto-N application map 
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Yield Map 

 

 

       

Margin over N cost 

 

Figure 94 Validation trial on field Scurfs Decoy at JSR Farms with Auto-N system utilising N 

sensor 

 

The field at JSR Farms has an historically lower yielding area at the NW of the field, which also 

gave the greatest canopy reflectance in spring so indicated the highest SNS. This gave this area 

the lowest N requirement using the Auto-N system. Yields in this area were not much affected by 

low or high N rates so the low N rates of the Auto-N system gave a higher margin in this area 

(tramline 5; Table 21). Yield map data for the eastern half of the field are incomplete, 
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compromising its robustness. Over the field differences in yield between high and low N rates were 

small, and the lowest N rate gave the highest margin. 

 

Table 21.  Average Yield and Margin over fertiliser N cost for each tramline for Scurfs Decoy (JSR 

Farms) validation trial in Figure 94. 

Tramline # 
from SW 

Treatment 
N applied 

kg/ha 
Average 
Yield t/ha 

Standard 
deviation 

t/ha 

Average 
Margin over 

N £/ha 

Standard 
Deviation 

£/ha 

       
1 Standard 205 8.02 0.83 799 100 
2 Low 145 7.81 0.63 821 76 
3 High 265 8.25 0.72 778 87 
4 Standard 205 8.00 0.92 796 111 
5 Auto-N 144 7.90 0.95 833 124 
6 Standard 205 7.62 0.64 751 77 
7 Low 145 7.56 0.94 792 113 
8 High 265 7.96 0.69 743 83 
9 Standard 205 7.99 0.68 794 82 
10 Auto-N 208 7.61 0.57 747 69 
11 Standard 205 n/a n/a n/a n/a 
12 High 265 8.83 0.56 848 67 
13 Standard 205 8.53 0.63 860 76 
14 Low 145 9.98 0.90 1082 108 
15 Standard 205 9.01 0.85 917 102 
16 Auto-N 164 9.55 1.17 1015 127 
       

Averages Standard 205 8.03 0.82 799 99 
 Auto-N 164 8.28 1.23 863 152 
 Low 145 8.23 1.23 872 147 
 High 265 8.22 0.75 774 90 

  

At David Blacker’s field the N sensor canopy reflectance showed a less ‘green’ area on the south-

eastern edge indicating a lower SNS and higher N requirement (Figure 88). Historic yields had also 

been higher in the south of the field, especially in the south-west corner, indicating higher crop N 

demand and high N requirement. Lower historic yields in the north of the field gave a lower N 

requirement.   

 

Spatial variation in yield in 2014 roughly matched that from the N Sensor and from previous yield 

maps. The spatial variation in the south of the field coincided with the treatment boundary between 

tramlines 1 and 2, with the highest yielding area in the south of the field perhaps overstating the 

advantage of the Auto-N system in tramline 1 (Table 22). The trend in spatial variation in yield west 

to east in this field was confounded with the treatments making it difficult to draw conclusions on 

treatment differences. However the higher N rate in tramline 5 appears to give a substantially 

higher yield (1 t/ha) than the lower N rate in tramline 6, although the higher margin is given by the 

standard N rate in tramline 4. 
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Figure 95 Validation trial on field Overton at David Blacker’s farm with Auto-N system utilising N 

sensor 
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Table 22.  Average Yield and Margin over fertiliser N cost for each tramline for Overton field (David 

Blacker) validation trial in Figure 95. 

Tramline # 
from SW 

Treatment 
N applied 

kg/ha 
Average 
Yield t/ha 

Standard 
deviation 

t/ha 

Average 
Margin over 

N £/ha 

Standard 
Deviation 

£/ha 

       
1 Auto-N 276 10.28 1.56 943 182 
2 Standard 190 9.00 1.68 854 201 
3 Auto-N 262 9.49 1.69 857 208 
4 Standard 190 9.63 1.35 930 164 
5 High 250 9.85 1.33 909 160 
6 Low 130 8.88 1.33 886 160 
7 Standard 190 9.20 0.94 884 116 
       

 

8.2.3 Conclusions from validation trials 

We have shown using measures from the chessboard trials and from commercial trials on-farm 

that it is possible to use precision technologies to calculate N fertiliser recommendations using the 

principles of CND, SNS and fertiliser recovery. However, it has not been possible to demonstrate 

that such a recommendation system will inevitably deliver improved yields, profitability or N 

fertiliser use. Indeed, it seems from the chessboard experiments that systems aimed to improve N 

fertiliser accuracy can actually lead to larger errors. Whilst there is large variation in N optima it can 

be easier to make predictions worse rather than better. Caution is required to the extent that N 

rates are adjusted in field. 

 

The validation trials have demonstrated the many difficulties in conducting tramline comparisons, 

and the need for careful interpretation. There is a need for better methodologies to deal with yield 

map data and to analyse, visualise and interpret tramline comparisons. The comparison and 

evaluation of variable rates is particularly challenging. 

 

It is striking from the validation trials how the inherent spatial variation is so much greater than any 

variation due to N treatments. Even large differences in N rate (120kg N/ha) in the trials here have 

given only modest differences in yield, and these differences are often insufficient to pay for the 

difference in N. This suggests that N is not the major driver of the variation in yield within fields. 

 

The evidence presented here cannot be used to show a large economic benefit of adopting an 

Auto-N system. It also seems that any potential benefits to the environment through reduced N use 

or improved yields from more precise variable rate management can only be modest, even with a 

perfect system. The larger benefits come from improving recommendations at the field or 

management zone level, but there don’t seem to be quick fixes to robustly aid these decisions. 

Instead it seems likely that experience over years is required to build confidence in the appropriate 

N rates for sub-fields, fields and farms. Potential for Precision Farming to improve N management 
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for the benefit of farming and the environment are perhaps not just to be found addressing within 

field variability, but to help make better decisions field to field, and for the farm as a whole. This 

should be reflected in future work developing and testing precision farming technologies to improve 

N management across the farm over the rotation and through differing years. 
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9 Discussion & Conclusions 

We have learnt an enormous amount through the course of this project. It has improved our 

fundamental understanding of N requirements and their determinants. It has highlighted the 

enormous variability within fields, showing the importance of soil and how little we really 

understand how the soil impacts crop growth & requirements. It has demonstrated the power of 

conducting experiments at the field scale, and the potential to work with farmers to set up and 

measure field-scale trials. And it has shown the value in precision farming datasets to improve on-

farm decision making. Variation in N requirements is large, as is the variation in yield, protein, soil 

N supply and fertiliser recovery.  

 

We have shown that the core principles of the Auto-N system, based on the concepts set out in the 

AHDB wheat N Management Guide, are sound. It is possible and rational to calculate N 

requirements based on estimates of Crop N Demand, Soil N Supply and Fertiliser Recovery, 

whether on a field by field or within field basis. Past yield maps can be used to estimate spatial 

variation in Crop N Demand and canopy sensing, whether on tractor or from satellite, can be used 

to estimate spatial variation in Soil N Supply.  

 

However, the large and somewhat unexplained variation in measured N requirements means that 

any prediction system will inevitably produce errors and improvement over the standard 

recommendation system (or even a standard figure of, say, 200 kg N/ha) is likely to be relatively 

modest. It is evident from the chessboard trials that getting an accurate field average is 

considerably more important financially than precisely dealing with the variation within the field. 

Indeed, it is surprising how small the calculated benefits of variable rate N application are in terms 

of profitability, yield, N savings, N leaching and GHG emissions. Other studies have claimed larger 

benefits (eg Biermacher et al., 2009; Knight et al., 2009).  The perception that precision farming 

technologies will make a large contribution to sustainable intensification through better targeting of 

fertiliser inputs (Day, 2005) may be challenging to fulfil through variable rate N alone. It is possible 

that the greater potential for precision farming comes through deriving learnings through shared 

data and using technologies to evaluate agronomic interventions on farm, rather than just through 

better targeted variable applications. 

 

This project didn’t aim to evaluate current commercial systems for variable rate N management. 

However, the findings here support the principle that thinner, less ‘green’ crops are associated with 

a lower SNS and so warrant extra N application in relation to thicker greener areas. This is the 

basis of most commercial variable rate systems, albeit not expressed in terms of SNS. Most 

commercial systems do not explicitly account for variation in yield potential, though given the 

positive relationship between yield and SNS seen here its estimation can be important to avoid the 

potential under-application of areas with higher SNS and higher yield potential, or over-application 
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to low SNS areas with low yield potential. However, many commercial systems do advocate 

switching from ‘Robin Hood’ (rob from the rich, give to the poor) to a ‘King John’ (give to the rich) 

approach later in the season. Whilst we have not tested such an approach here, it does in principle 

help account for the higher requirement of higher yielding crops. We have seen that higher yielding 

areas tend to show greater ‘greenness’ in canopy reflectance measures late in the season, and the 

application of additional N for yield later in the season is appropriate, once the canopy has been 

built and lodging risks from extra N minimised.  Trials to compare such commercial systems would 

be of value, but as shown in Chapter 7, it is very difficult to properly compare and evaluate variable 

rate systems. The measurements made possible by precision farming technologies can provide 

useful management tools to assess variability within and between fields. However, deciding how to 

adapt management based on that information is not straight-forward and it seems unlikely that any 

single algorithm could result in reliable decisions without reliance on human experience. The 

greatest value of canopy sensing seems to be in its ability to help detect areas and fields with high 

SNS early in the season, and to monitor N status of crops through the season. It is important to 

know the cause of the spatial variation seen in order to have confidence that it can be rectified by 

varying N fertiliser; if the reason for poor performing areas is not known the best response may be 

to reduce input costs (Oliver et al., 2010). Canopy sensing could usefully give much information 

about crop status between fields and between years, as well as within fields, through the 

comparison of curves. Much could be learnt and inferred about the causes of differences in crop 

performance by comparison to ‘benchmark’ curves, and thus how to remediate poorer crops and 

manage stronger ones. Systems are required to enable such comparisons to be made, and 

ultimately decision support tools could be developed. 

 

The chessboard trials have transformed our understanding of fertiliser N requirements. Previously 

it has been difficult to test the influence of soil induced differences in individual components of N 

optima; previous N responses came from experiments on different farms and fields and often in 

different years so that management and variety differences are confounded with inherent soil 

differences. The chessboard experiments give a unique opportunity to understand how soil 

variation affects crops' demand for N, the supply of N from the soil, fertiliser recovery and the 

requirement for N within individual fields. The major learning has been the degree of spatial 

association between the components, especially the positive relationship between yield and SNS, 

and negative relation between SNS and fertiliser recovery. These relationships explain much of the 

variation in N requirement, and explain the difficulty in showing strong relationships between N 

requirement and any of its individual components. The relative importance of the components 

varies from site to site and within sites, generally as a function of soil type. Knowing only one 

component is not enough; we must consider all components together to predict N fertiliser 

requirement with reasonable precision. Interactions between the components can vary from place 

to place. 



Page 179 of 196 

 

The large variation in fertiliser recovery and absence of any good relationship with N optima 

requires further examination. We need to understand this so that we can improve fertiliser recovery 

and the use of fertiliser to obtain larger yields without greater inputs (Sylvester-Bradley & Withers, 

2011). 

 

The spatial variation in yield is large, but it is evident from this study and others that the 

relationship between yield and N requirement is not strong. Whilst the crop in higher yielding areas 

evidently needs to take up more N to satisfy the demand for protein formation in the grain, these 

areas tend to also have more N available from soil and perhaps achieve a higher recovery of 

fertiliser N. The advantages in terms of extra yield of using optimal rather than fixed N rates are 

generally very small in relation to the spatial variation in yield. It is clear that N is not the major 

explanatory factor in yield variation within and between fields; whilst variation in N optima was 

large, spatial variation in yield at the N optimum was also large – lower yielding areas will not yield 

as much as higher yielding areas, however much N is applied to them. Applying optimal N rates 

everywhere barely diminishes the spatial variation in yield.  

 

The lack of a strong relationship between yield and N requirement raises some important 

questions. Firstly, the N Management Guide and Auto-N logic both invoke a direct relationship 

between yield and N recommendation of around 40 kg N/t extra grain yield (23kg N/t content / 0.6 

fertiliser recovery). This is difficult to support with the empirical evidence, and it leads to some very 

high estimated N requirements for high yielding crops (e.g. >400 kg N /ha for a 15 t/ha crop with 

100 kg/ha SNS and 60% recovery). The fact that recent very high yielding crops have been 

achieved with much more modest N inputs (e.g. Yield Enhancement Network 2015; 

www.yen.adas.co.uk) demonstrates that high yields aren’t synonymous with high N rates. It seems 

likely that the marginal increase in N demand at high yields is less than 23 kg N/t, as harvest index 

increases and protein content reduces. This warrants further attention within the review of fertiliser 

recommendations (RB209), especially for growers targeting high yields.   

 

Whilst nitrogen limitation has been posited as a potential cause of the yield plateau in wheat 

(Knight et al., 2012), evidence from the trials here would suggests that the size of the impact of any 

likely sub-optimal N use within-fields is likely to be small.  

 

That N doesn’t explain much of the spatial variation in yield, leaves the large and important 

question of what is the major cause of yield variation within and between fields? This should be a 

fundamental question of utmost concern to crop and soil researchers. However, we know of no 

research directly tackling this question. Fundamentally our current understanding of how soils can 

affect crop yield is through the availability of water and nutrients, although the recent concept of 
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‘soil health’ apparently invokes additional microbiological effects (Laishram et al., 2012).  Spatial 

experimentation such as the chessboard trials provides a unique opportunity to better understand 

soil-induced variation, and hence understand soil effects on yields more generally, as variation in 

yield can be assessed in the presence and absence of resources suspected of limiting yields. Here 

we have assessed the impact of N fertiliser on yield, but similar experiments could be used to 

assess the range of nutrients, or even to quantify the impact of water limitation by providing trickle 

irrigation. 

 

The amount of variation in grain protein at the N optima both between fields and within fields is 

disappointing. It had been hoped that systems could be developed to use grain protein content as 

a reliable measure of success of N management between and within fields. Instead it appears that 

spatial differences in the dynamics of grain protein accumulation may be an important driver in 

differences in crop N demand and N requirement. There is a need to better understand the drivers 

of soil & weather induced differences in grain protein content and their impact on N requirements. 

The Fertiliser Manual RB209 advocates using the deviations in grain protein from 11% as an 

indicator of how previous N rates have related to optimum N, and this is the only mechanism 

through which it justifies higher N rates for higher yielding crops. Whilst grain protein is still the best 

available measure of success, it needs to be used with caution, averaging across fields and years 

(Sylvester-Bradley & Clarke, 2009).   

 

Consideration of spatial variation raises the question of what is the appropriate scale to measure or 

manage crops – individual plant scale (e.g. by laser scanning), ~1 m2 (e.g. through individual 

spray-nozzle control), ~10 m grid (e.g. by spray-boom section), sub-field zones, field, farm, 

landscape, or region. Whilst the chessboard trials demonstrated large variation in N optima within 

fields, they also showed large variation between fields, the mean N optimum at Flawborough 2011 

being almost zero. From an economic perspective, it appears most important to achieve an 

accurate average N rate at the largest scale before accounting for variation at a smaller scale. 

Small errors have small costs, but large errors have disproportionately large costs.  It is therefore 

more important to avoid a few large errors than to correct many small errors, and decisions should 

generally tend towards the mean. Whilst the shape of the N response curve generally means there 

is slightly more to be lost from under-fertilising than over-fertilising, and past work has shown that it 

can be worth over-fertilising on average by around 10–15 kg N/ha (Sylvester-Bradley et al., 2008), 

the chessboard trials here provided no support for this. It is likely that the perceived need to avoid 

the risk of yield loss by applying more than the optimum is over-stated in the industry. 

 

It seems the primary aim for N management overall should be to achieve accuracy first for the 

whole country (e.g. through national fertiliser recommendations), then for whole farms, then field by 

field, and lastly for areas within fields. The highest impact decisions are made at the largest scale, 
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these therefore require the most care.  Assuming larger scale decisions are correct, the value of 

making adjustments at a finer scale is proportional to the scale being considered; fine scale 

adjustments have small benefits, dependent on the flatness or relative curvature of the response 

function of the decision being made (Rogers et al., 2016).  However, the crux of the this is in the 

assumption that “larger scale decisions are correct”.  Major opportunities therefore come from the 

management and aggregation of crop intelligence: if observations at a small scale aggregate to 

indicate that a larger scale decision is inexact, it is more important to correct all decisions at that 

larger scale, than just to make corrections where the observations have been made. This could 

apply across farms as well as within farms, so there could be big pay-backs from networking farms 

to collate and interpret crop intelligence, and also better representative crop monitoring (of any 

reasonably predictive metrics) at national and regional scales, for example with satellite data. 

There is suggestion from analysis of protein content across farms (Weightman et al., 2011) that 

these may differ in their achieved protein contents and hence N requirements (Kindred & 

Sylvester-Bradley, 2014). This suggests that some farms may consistently need more N than is 

advised in the Fertiliser Manual (RB209; Defra, 2010) to achieve optimal yields and quality, whilst 

others may consistently need less, so could make savings on N fertiliser use. Whilst grain protein 

is still a useful metric, we need more certain measures of whether N use on farm is too low or too 

high.  

 

The chessboard trials here have demonstrated that experiments can be conducted at the field 

scale set up with farm equipment by farmers. Modern fertiliser spreader technology makes it easy 

for farmers set up simple tramline comparisons for themselves, comparing 50kg N/ha more and 

less than their standard rate on adjacent tramlines. Canopy sensing and yield mapping on the 

combine allow the effects of this difference in N rate to be quantified relatively easily. The 

validation trials here demonstrated the feasibility of this approach in practice, and now a new 

AHDB project titled ‘LearN’ is testing whether such tramline comparisons can usefully be used by 

farmers to judge the N requirements on-farm. Such approaches have been successfully 

demonstrated for N management elsewhere in the world, even in small-scale agriculture without 

the use of precision farming technologies (Yue et al., 2015). 

 

The use of spatial experimentation and farmer-managed line trials represents a large opportunity 

for future research, especially for better understanding soils and agronomic interactions. Traditional 

crop research employs experimental designs that minimise the effects of uncontrolled 

environmental variables (particularly soil variation) so that measured responses (e.g. in yield) to 

controllable inputs (seed, tillage, fertiliser, pesticides) can be tested, but the small area of these 

trial plots commonly restricts the relevance of their results to one soil. We suggest that field scale 

spatial experiments offer an opportunity for research scientists to investigate the multiple 

unknowns involved in extrapolation between small and large scales; not least the interactions 
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between agronomic innovations (e.g. in variety, chemistry, machinery) and soil variation. As a 

result of this realisation, ADAS now has an Innovate UK sponsored project (ref: 101627) which is 

developing an approach named Agronŏmics to develop rigorous field protocols, data processing 

software and geostatistical analyses to support the use of tramline trials for scientific research 

(Kindred et al., 2016; Rudolph et al., 2016) Whilst several studies recognise the need and power of 

on-farm spatial experimentation to provide local information to drive site specific management (e.g. 

Whelan et al., 2012 ; Hong et al., 2005), few have recognised its potential role in wider research 

questions if robust geo-statistical approaches can be developed (Panten et al., 2010; Pringle et al., 

2010; Lawes & Bramley, 2012). 

 

The Auto-N Project sought to show how the wide ranging sets of data and information available to 

growers from precision technologies could be integrated usefully so as to improve N fertiliser 

management. Whilst we have been able to show the priorities that should be attached to particular 

datasets for N management purposes, it is clear that an enormous amount of data collected by 

farmers remains under-utilised. Growers often still do not know how to store, transfer, view and 

integrate yield map data, let alone know what to do with it once it is processed. However, the 

opportunities from the ‘big data’ stored on farm are beginning to be recognised.  It is now possible 

to imagine a future not too far away where a farmer can stand in a field with a smart phone and, via 

web services on ‘the cloud’, instantly access all past field records (crop, varieties, agrochemicals, 

fertilisers, etc.), see underlying soil maps (integrated from national datasets), imagery from 

satellites (e.g. soil brightness) and from soil scanning (EMI) which define management zones, and 

data from analyses of soil samples (or possibly even in-field soil sensing) for P, K, Mg, pH SOM% 

on fine scale. It could also be possible to view past and latest satellite imagery of the crop, all past 

tractor & machinery movements across the field (with quantified diesel use), all past yield map and 

crop sensor map data (and useful integrated measures from these – e.g. performance maps with 

cluster analysis to determine similar zones), along with past meteorological records and future 

weather forecasts interpolated for this particular point. Via an App Store, a whole suite of potential 

crop decision support package algorithms could be available that integrate the data sources to 

provide advice on disease forecasting, pest monitoring, weed management, fertiliser 

recommendations, best PGR use, etc. This ultimate vision might be termed a ‘Global Crop 

Intelligence System’ (GCIS) and whilst its realisation appears eminently feasible, even with 

currently available technology, this will clearly be an enormous task. The key to ensuring success 

will be in choosing the most telling initial steps for investment and development. Whilst the 

Precision Farming industry has mainly focussed on enabling fine-tuning of input rates within fields, 

the Auto-N Project has provided an invaluable opportunity, working in the context of the most 

important variable input (nitrogen) for the most extensive UK crop (wheat), to take a broader view, 

and to assess what the most valuable first steps towards the GCIS might be.  It has shown that the 

largest opportunities are at large rather than fine scales.  Thus the initiatives which achieve most 
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effective and valuable successes are likely to be those that integrate these many data into useful 

information at a broad scale, so as to maximise the value of automating better farming decisions.   
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