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On the emergence of gravitational-like forces in insect swarms

Andy M. Reynolds

5 Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK

Abstract Okubo [1986] was the first to propose that insect swarms are analogous to self-

gravitating systems. In the intervening years striking similarities between insect swarms and 

self-gravitating systems have been uncovered. Nonetheless, experimental observations of 

10 laboratory swarms provide no conclusive evidence of long-range forces acting between 

swarming insects. The insects appear somewhat paradoxically to be tightly bound to the 

swarm while at the same time weakly coupled inside it. Here I show how resultant centrally-

attractive gravitational-like forces can emerge from the observed tendency of insects to 

continually switch between two distinct flight modes: one that consists of low-frequency 

15 maneuvers and one that consists of higher-frequency nearly harmonic oscillations conducted 

in synchrony with another insect. The emergent dynamics are consistent with ‘adaptive’ gravity 

models of swarming and with variants of the stochastic models of Okubo and Reynolds for the 

trajectories of swarming insects: models that are in close accord with a plethora of 

observations of unperturbed and perturbed laboratory swarms. The results bring about a 

20 radical change of perspective as swarm properties can now be attributed to known biological 

behaviours rather than to elusive physical influences.
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Introduction 

Insect swarms do not display the choreographed movements seen in fish schools and bird 

flocks, but their members do remain in just a small portion of the space available to them 

35 [Kelley and Ouellette 2013]. Nonetheless, individuals are behaving collectively rather than 

interacting independently with visual features on the ground over which swarms tend to form 

[Puckett and Ouellette 2014]. By drawing an analogy with Newtonian gravitational attraction, 

Okubo [1986] speculated that the interactions between swarming insects produces, on the 

average, a centrally-attractive force that acts on every individual. There is now strong 

40 experimental support for such a resultant restoring force in laboratory swarms of Chironomus 

riparius midges [Kelley and Ouellette 2013]. The emergence of this resultant restoring force 

has been attributed to the insects interacting via long-range gravitational-like forces [Gorbonos 

et al. 2016]. This is a tempting possibility because insects are thought to interact acoustically, 

responding to wing-beat noise whose far-field intensity is expected to decay according to an 

45 inverse square law [Sueur et al. 2005]. Gravitational-like interactions would therefore arise if 

one insect reacts to another by accelerating towards the source of the sound with a strength 

that is proportional to the received sound intensity. Experimental observations of laboratory 

swarms do, however, provide no conclusive evidence for such long-range forces acting 

between swarming insects [Puckett et al. 2014]. Instead, insects on average display an 

50 approximately equivalent acceleration towards almost any feature of the swarm (nearest 

neighbour, Voronoi centroid, i.e., towards the emptiest region of space in the insect’s vicinity, 

swarm centre). This suggests that individuals are on average weakly coupled, but also   tightly 

bound to the swarm itself [Puckett et al. 2014].

55 Here I show how the resultant forces can emerge from the observed tendency of insects to 

continually switch between two distinct flight modes: one that is composed of relatively straight 

to and fro movements and one that consists of higher-frequency oscillations [Okubo 1986, 

Puckett et al. 2015]. Model formulation is presented in next section. The new model is shown 

to be closely related to two successful but seemingly distinct models of insect swarms: the 

60 stochastic models of Okubo [1986] and Reynolds et al. [2017] and the ‘adaptive’ gravity 

models of Gorbonos et al. [2016]. It is also shown how the new model can account for 

observations that are beyond the scope of the previous models. This is followed by a 

Discussion. 

65
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Emergence of gravitational-like interactions at the macroscopic level

Model formulation and properties

Multi-camera stereo-imaging and particle-tracking techniques have provided detailed 

70 recordings of the three-dimensional trajectories of Chironomus riparius midges within 

laboratory swarms [Kelley and Ouellette 2012, Puckett et al. 2015]. By performing a time-

frequency analysis of these trajectories, Puckett et al. [2015] showed that the midge flight 

behaviors can be segmented into two distinct modes: one that is independent and composed 

of low-frequency maneuvers and one that consists of higher-frequency nearly harmonic 

75 oscillations conducted in synchrony with another midge (velocities tend to be antiparallel). 

These observations have similitude with the observations of Okubo [1986] who remarked that 

the trajectories of individual midges may be classified into two distinct patterns, one being a 

“loose” pattern and the other a “tight” pattern. In the loose pattern, an insect exhibits relatively 

straight to- and fro- moments that might resemble a pendulum motion. In the tight pattern, an 

80 insect exhibits a relatively short, zigzag motion that might resemble a random flight. In practise 

most individuals display a pattern which combines these two extremes.

The observations of Puckett et al. [2015] and Okubo [1986] suggest that at long-times (times 

longer than the velocity autocorrelation timescale), individual flight patterns can effectively be 

85 partitioned into episodes of “hovering” and “flying” (diffusing) and that the long-time dynamics 

can be approximated by a pair of reaction-diffusion equations

(1)
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90 Here H(x,t) and F(x,t) are the densities of hoverers and fliers located at position x at time t, α 

is the rate at which individuals switch from being hoverers to being fliers (with diffusivity D) 

and β sets the rate at which fliers switch to becoming hoverers after interacting with hoverers 

[An alternative, seemingly very credible model is examined then discounted in the 

Supplementary Material S1]. These pairwise interactions (biological behavioural traits) could 

95 be mediated either acoustically or visually. When the reaction dynamics are very much faster 

than the diffusive transport, local equilibrium is established, i.e., . The stable 0=− HFH βα

equilibria are F=α/β, H=C-F if the density of individuals (fliers and hoverers) C>α/β and H=0, 

F=C if C<α/β.  
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100 Adding together the two parts of Eqn. 1 under the assumption of local equilibrium gives

 (2)
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when C>α/β. This shows that the spatial distribution of all individuals within the swarm is 

‘frozen’ in time, since the right-hand side of the diffusion equation, Eqn. 2, vanishes. That is, 

105 the reaction dynamics exactly cancel out the effects of diffusion, thereby creating a stable 

swarm. Individual fliers are, nonetheless, diffusing within the confines of the swarm. This is 

made manifest when Eqn. 2 is rewritten as
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110 The first, second and third forms of Eqn. 3 correspond to random walk models

ξd
P

D
dx

′
= 2

(4)

(5)ξd
P

D
dt

x

P

P

D
dx

′
+

∂
∂′

= 2ln

2

1

(6)ξd
P

D
dt

x

P

P

D
dx

′
+

∂
∂′

= 2ln

115 where x is the position of an individual at time t,  are increments of a white noise process ξd

with autocorrelation for noises at time t and t/ and where the ( ) ( ) ( )dttttdtd // −= δξξ

amplitudes of the noise terms, , are evaluated: at the start of each step (the ‘Ito’ PD /2 ′
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interpretation) in Eqn. 4; at the mid-point of each step (the ‘Stratonovich’ interpretation) in Eqn. 

5; and at the end of each step (the ‘Hänggi-Klimontovich’ interpretation) in Eqn. 6. This non-

120 uniqueness of the corresponding random walk model arises because the interpretation of the 

intensity of the coloured driving noise is ambiguous in the long-time limit. The colouring of the 

driving noise is indicative of there being a feedback from the macroscopic level of description 

of the swarms in terms of the probability density, P, to the microscopic kinematics. An 

individual’s movement is therefore dependent on global properties of the swarm.

125

Directly analogous results can be obtained albeit non-analytically using a stochastic model 

that captures both short- and long-time dynamics [Supplementary Material S2].

Equation (6) is the long-time limit of a close relative of the stochastic models of Okubo [1986] 

130 and Reynolds et al. [2017] for the joint evolution of an insect’s position, x, and velocity, u,

     (7)

2 22lnu uu P P
du dt dt d

T x TP
dx udt

σ σ ξ′ ∂= − + +
∂′

=

where  and where  is a velocity scale rather than a mean-square velocity per se. P P
β
α

′ = 2
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Equation 6 is obtained from Eqn. 7 as the velocity autocorrelation timescale with 0→T

, i.e., .DT u →2σ ∞→Tt /

135

In the models of Okubo [1986] and Reynolds et al. [2017] interactions between the individuals 

are not explicitly modeled [but they can be as shown in Reynolds [2018a] and in the 

Supplementary Material S3]; rather, their net effect is subsumed into a restoring force term. In 

the model of Reynolds et al. [2017] this term is given by , (i.e., by for swarms 
x

P
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∂ ln2σ x
x

u
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140 with Gaussian density profiles, as in Okubo’s [1986] classic model where individuals in the 

swarm behave on the average as if they are trapped in an elastic potential well). In the new 

model, Eqn. 7, this restoring force is renormalized according to the local density and is given 

by As a result, the central attraction is relatively low in the core of the swarm 
2 ln

.u P

xP

σ ∂
∂′

where the density is relatively high and relatively high in the outskirts of the swarm where the 
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145 density is relatively low. This closely mirrors ‘adaptive’ gravity models of insect swarms 

wherein effective forces (presumed to be acoustic interactions) are renormalized according to 

the local noise amplitude [Gorbonos et al. 2016]. In Gorbonos et al. [2016] this modelling 

assumption was motivated by the fact “that for many animals, the perception of sound is not 

fixed, but rather adapts to the total sound intensity so that acoustic sensitivity drops when 

150 there is strong background noise. This is a common feature of biological sensory organs, 

preventing damage and their saturation.” It is crucial to bring model predictions in line with 

observations [Gorbonos et al. 2016]. By preventing collapse (Jeans instability) it also endows 

swarms with a natural mechanism for self-stabilization [Gorbonos and Gov 2018]. Here 

‘adaptation’ arises freely and is not imposed on the model. Similarly, the ‘frictional term’, 

155 , which in the models of Okubo [1986] and Reynolds et al. [2017] causes velocity Tu /−

fluctuations to relax back to their (zero) mean value is here replaced by . This TPu /′−

modification can be attributed to the interactions between the hoverers and fliers. Note that a 

similar modification, , is induced when short-range repulsions are incorporated into TPu /′−
numerical simulations made with the model of Reynolds et al. [2017] [Supplementary Material 

160 S4]. The noise term represents fluctuations in the resultant internal force that arise partly 

because of the limited number of individuals in the swarm and partly because of the 

nonuniformity in their spatial distribution [Okubo 1986].

For locations in and around the core of swarm, the new model, Eqn. (7), reduces (up to 

165 multiplicative constants, ) to the model of Reynolds et al. [2017]. This in turn effectively ( )0P′

reduces to Okubo’s [1986] classic model
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′

=
(8)

when positions are Gaussian distributed. These models agree well with numerous 

170 experimental observations of laboratory swarms [Reynolds et al. 2017, Reynolds 2018a, 

Reynolds 2019, van der Vaart 2019]. The new model does, however, account for observations 

that are beyond the reach of previous stochastic models; namely the dependency of effective 

spring constants on swarm size [Gorbonos et al. 2016]; the emergence of non-Gaussian 

velocity statistics [Kelley and Ouellette 2013]; and the near constancy of swarm densities 

175 [Kelley and Ouellette 2013, Puckett and Ouellette 2014].
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Accounting for observations that are beyond the scope of previous models

Effective spring constants

180 Large laboratory swarms and wild swarms tend to be cylindrical in shape with the central axes 

orientated vertically (along the z-axis) [Kelley and Ouellette, 2013, Attanasi et al. 2014]. In the 

cores of swarms with Gaussian density profiles, the restorative force term in Eqn. 7 increases 

linearly with distance from the swarm centre. In these locations, the restorative force can 

therefore be characterized by an effective spring constant, . For highly 
( )

2

2 0
u

x

K
P

σ
σ

=
′

185 cylindrical swarms with , Eqn. 7 predicts that and x y zσ σ σ= = 1,x y z x xK K K K σ −= < ∝

. Lower effective spring constants in the z-direction are observed in laboratory 
3/2

z zK σ−∝

swarms [Kelley and Ouellette 2013] as are the two different scalings with swarm size 

[Gorbonos et al. 2016]. These predictions also closely match predictions of Gorbonos et al.’s 

[2016] adaptive gravity model. Nonetheless, if individuals were interacting with one another 

190 via long-range gravitational-like forces then all swarms would be spherical in shape, or nearly 

so. If, on the other hand, swarms are bound together by the interactions between hoverers 

and fliers, then any shape swarm is possible (stable) in principle [Eqn. 2]. Swarm shapes may, 

however, be constrained by the nucleation process [Supplementary Material S5]. In contrast 

with the new model, Eqn. 7, Okubo’s [1986] stochastic model predicts contrary to experiment 

195 a single scaling with swarm size, namely and .
2

x y xK K σ−= ∝ 2
z zK σ −∝

Accounting for the emergence of non-Gaussian velocity statistics

For locations in the outskirts of the swarm the new model, Eqn. 7, departs from the models of 

Okubo [1986] and Reynolds et al. [2017]. It predicts that velocity statistics are heterogeneous 

rather than homogeneous (position-independent) (Fig. 1a-c) and it predicts that mean 

200 accelerations grow non-linearly rather than linearly with distance from the swarm centre (Fig. 

1c). The former prediction is supported by observations (Fig. 2a). In accordance with model 

expectations, the velocity-variance profile is concave. This is consistent with the velocities of 

solitary insects being generally higher than the velocities of insects within swarms [Puckett 

and Ouellette, 2014]. It is also consistent with velocity (and speed) distributions having nearly 

205 exponential tails that develop with increasing swarm size [Kelley and Ouellette 2013] (Fig. 2b, 

Supplementary Material S6). The latter prediction is consistent with simulation data produced 
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by Gorbonos et al.’s [2016] adaptive gravity model and more tentatively with experimental 

observations [Okubo 1986]. Note that in the stochastic models of Reynolds et al. [2017], 

velocity statistics are a model input and not a model prediction.

210

Near constant densities

The density of insects within laboratory swarms of midges is approximately constant [Kelley 

and Ouellette 2013, Puckett and Ouellette 2014]. This is different from what has been 

observed for bird flocks where the number density can fluctuate hugely from flock to flock 

215 [Ballerini et al. 2008]. In contrast with previous models [Okubo 1986, Gorbonos et al. 2016, 

Reynolds et al. 2017] this constancy is predicted by the new model. The total number of fliers 

within a swarm of size Rs is predicted to be  [See text relating to Eqn. 1]. ( )/F sN Rα β=

Therefore, the total number of individuals within a swarm  since  [Puckett et sN R∝ F HN N?
al. 2015]. This constancy although accidental may be significant because it implies that the 

220 continual flow of individuals into and out of a swarm [Kelley and Ouellette 2012, Ni and 

Ouellette 2016, Sinhuber et al. 2019] drives changes in swarm morphology. Somewhat 

counterintuitively such fluctuations are predicted to endow swarms with stabilizing 

macroscopic mechanical properties similar to solids, including a finite Young’s modulus and 

yield strength [Reynolds 2019], properties which have been observed in the laboratory [Ni and 

225 Ouellette 2016]. The fluctuations also have the potential to change fundamentally the 

characteristics of individual flight patterns. Reynolds and Ouellette [2016] showed that center 

of mass fluctuations allow for the emergence of Lévy flight patterns which have subsequently 

been linked to population maintenance in energetic environments [Michalec et al. 2018]. 

230 Alternative models

Equation 6 can be recovered from other variants of the models of Okubo [1986] and Reynolds 

et al. [2017]. It can, for example, be recovered from 

(9)

udtdx

d
T

P
dt

x

P
dt
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uP
du u

u
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′

+
∂

∂+
′

−= ξσσ
2

2 2ln

235 where . Despite its appeal, this and other such variants are incompatible with the TT
β
α=′

observed near homogeneity of velocity statistics within the core of a swarm [Reynolds et al. 
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2017] and with the near constancy of the Lagrangian velocity structure function, [van der 2u∆

Vaart, Private Communication]. 

240 Accounting for speed-dependent forces

The foregoing analysis does not directly encompass one of the most intriguing observations: 

namely the observed speed-dependency of the resultant attractive force [Reynolds et al. 

2017]. Nonetheless, such a dependency is not unexpected given that the resultant force is 

here attributed to the interaction between ‘hoverers’ and ‘fliers’ which is itself predicated on 

245 movement detection.  It is therefore seemingly natural to suppose that the rate parameter, β, 

(which governs the interactions between ‘hoverers’ and ‘fliers’ and which has the dimensions 

of velocity) is, in fact, speed dependent. The simple parameterization  results in 
2
u

u u

σβ
σ

=
+

stable swarms which in accordance with observations [Kelley and Ouellette 2014, Reynolds 

et al. 2017]: have Gaussian density profiles (Fig. 3a); velocity distributions with Gaussian cores 

250 and exponential tails (Fig. 3b); nearly homogeneous velocity statistics (Fig. 3c); and speed-

dependent resultant forces which increase monotonically with an individual’s speed (Fig. 3d). 

Comparable predictions are obtained with other simple, biologically plausible, 

parameterizations of β that decrease monotonically with increasing speed.

 

255 Discussion

Stochastic and mechanistic models of insect swarms that draw inspiration from self-gravitating 

systems are gaining traction because they agree well with experimental observations [Okubo 

1986, Reynolds et al. 2017, Reynolds 2018a,b, Gorbonos et al. 2016, van der Vaart et al. 

2019]. The stochastic model of Reynolds et al. [2017] is, for example, in close quantitative 

260 agreement with data from high-precision, carefully-controlled laboratory experiments [Kelley 

and Ouellette 2013, Ni and Ouellette 2016, Sinhuber and Ouellette 2017, Sinhuber et al. 2019, 

Vaart et al. 2019]. It predicts correctly that swarms consist of a core “condensed” phase 

surrounded by a dilute “vapor” phase [Reynolds 2018a] and it predicts correctly that swarms 

possess emergent continuum mechanical properties, displaying a collective viscoelastic 

265 response to applied oscillatory visual stimuli [van der Vaart et al. et al. 2019]. Moreover, 

mathematical analysis of the model explains why swarms of flying insects have macroscopic 

mechanical properties similar to solids, including a finite Young’s modulus and yield strength 

[Reynolds 2019]. Mathematical analysis also revealed why in contrast with laboratory insect 
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swarms, wild insect swarms display significant coordinated behaviour [Reynolds 2018b]. This 

270 showed how the presence of a fluctuating environment drives the formation of transient, local 

order (synchronized subgroups), and that this local order pushes the swarm as a whole into a 

new state that is robust to environmental perturbations. At same the time, striking similarities 

between insect swarms and self-gravitating systems are being uncovered [Reynolds 2018b, 

Gorbonos et al. 2016, Gorbonos and Gov 2018, Supplementary Material S7-S11]. 

275 Nonetheless, this success need not be attributed to insects interacting with one another via 

gravitational-like forces which would be an over interpretation of experimental observations 

[Puckett et al. 2014]. Here I showed how resultant gravitational-like forces can emerge from 

the observed tendency of insects to continually switch between non-diffusive and diffusive 

flight modes. In other words, the sporadic formulation of bound pairs was shown to be 

280 sufficient to bind the swarm together. The emergent resultant gravitational-like forces were 

found to be consistent with Gorbonos et al.’s [2016] adaptive gravity model rather than with 

Newtonian gravity. That is, the resultant central attraction was predicted to be relatively low in 

the core of the swarm where the density is relatively high and relatively high in the outskirts of 

the swarm where the density is relatively low. The emergent dynamics were also found to be 

285 consistent with variants of the stochastic models of Okubo [1986] and Reynolds et al. [2017]; 

models that faithfully reproduce many observations made in the laboratory [Okubo 1986, 

Reynolds et al. 2017, Reynolds 2018a, Reynolds 2019, van der Vaart et al. 2019]. These 

models can therefore be reinterpreted in a radically new way that is biological rather than 

physical and in a way that this is rooted firmly in observations [Okubo 1986, Puckett et al. 

290 2015] rather than challenged by them [Puckett et al. 2014]. The new analysis suggests that 

despite their success the models of Okubo [1986] and Reynolds et al. [2017] are effective 

(phenomenology) models. It also suggests that the success of Gorbonos et al.’s [2016] 

adaptive gravity model can be attributed to the fact that it will necessarily predict the 

emergence of resultant gravitational-like forces and not because it is founded on a realistic 

295 representation of the way in which insects interact with one another. The new analysis thereby 

provides a bridge between the stochastic models of Okubo [1986] and Reynolds et al. [2017], 

and the manifestly gravitational model of Gorbonos et al. [2016] by showing how both kinds of 

model encapsulate similar dynamics and how both can be freed from their original 

formulations. Moreover, the new stochastic models were shown to predict correctly features 

300 of insect swarms (e.g., anisotropic scaling of effective spring constants, constancy of density) 

that are beyond the scope of the models of Okubo [1986] and Reynolds et al. [2017] but within 

reach of adaptive gravity models [Gorbonos et al. 2016]. Conversely, it reconciles the notion 

of adaptive gravity with the existence of highly cylindrical wild swarms [Attanasi et al. 2014] 

and with speed-dependent accelerations [Reynolds et al. 2017]. The new analysis also shows 

305 how the behaviour of swarms studied in quiescent laboratories can be reconciled with the 
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behaviours of wild swarms which must contend with environmental disturbances. In contrast 

with laboratory swarms, wild swarms form transient synchronized subgroups that push the 

swarms into the new state that is robust to environmental perturbations [Reynolds 2018b]. 

This behaviour (i.e., this strengthening of the effective gravity) may now be seen as an 

310 extension of the behaviour (formulation of transient bound pairs) that underlies the emergence 

of effective gravity itself.
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Figure 1 a, b) Swarms are predicted to have stationary position and velocity statistics. 
430 c) Root-mean-square velocities are predicted to be approximately homogeneous within 

the swarm’s core. d) Individuals are predicted to be effectively bound to the centre of 
the swarm by a force (mean acceleration <A|x>) which in the core of the swarm grows 
linearly with distance from the swarm centre. Predictions are shown at times t=25 (●) and 
t=100 (●) together with the best-fit Gaussian distributions (solid-lines).  Predictions are shown 

435 for Eqn.7 with and . ( ) 1,1,1,
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Figure 2) Hallmarks of model predictions in laboratory swarms. a) Root-mean-square 

velocities profiles are consistent with theoretical expectations (Fig. 1c). b) In 

accordance with observations [Kelley and Ouellette 2013] velocity distributions of large 

440 swarms are predicted to have Gaussian cores and exponential tails. Data (●) are taken 

from Sinhuber et al. [2019]. All 17 dusk-time swarms. The line is added to guide the eye. 

Predictions (●) were obtained using the new stochastic model, Eqn. 7, with 

and  a.u. Shown for comparison is a ( )
2
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Gaussian distribution with equivalent mean and variance (solid-line).
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Figure 3 a, b) Swarms are predicted to have stationary position and velocity statistics 
when interactions are speed dependent. c) Root-mean-square velocities are predicted 
to be approximately homogeneous within the swarm’s core. d) Individuals are predicted 

450 to be effectively bound to the centre of the swarm by a force (mean acceleration <A|s>) 
that increases with an individual’s flight speed in accordance with observations 
[Reynolds et al. 2017] (red line shows data for right side only, blue line show data for left side 
only; and dashed line shows data for both sides which is close to zero, as required by 
symmetry). Predictions are shown at times t=25 (●) and t=100 (●) together with best fit 

455 Gaussian distributions (solid-lines). Predictions are shown for Eqn.7 with

and  a.u.( ) 1,1,1,
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