
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Reynolds, A. M. 2019. On the emergence of gravitational-like forces in 

insect swarms. Journal of the Royal Society Interface. 16 (160), p. 

20190404. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1098/rsif.2019.0404

The output can be accessed at: https://repository.rothamsted.ac.uk/item/96xq0/on-the-

emergence-of-gravitational-like-forces-in-insect-swarms.

© 13 November 2019, Please contact library@rothamsted.ac.uk for copyright queries.

15/01/2020 12:31 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1098/rsif.2019.0404
https://repository.rothamsted.ac.uk/item/96xq0/on-the-emergence-of-gravitational-like-forces-in-insect-swarms
https://repository.rothamsted.ac.uk/item/96xq0/on-the-emergence-of-gravitational-like-forces-in-insect-swarms
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


1

Supplementary Material

S1. A putative fission-fusion model

Here an alternative, seemingly very credible model for stable insect swarms is examined then 

discounted. It may, however, find application in non-stable situations [Supplementary Material 

5 S9].

Puckett et al. [2015] showed that midges continually switch between distinct flight modes: one 

that is independent and composed of low-frequency maneuvers, and one that consists of 

higher-frequency nearly harmonic oscillations conducted in synchrony with another midge. 

10 This behaviour could potentially be regarded as a fusion-fusion process involving singletons, 

, and pairs, , . In this case the long-time dynamics can be described by a 1N 2N 1 1 2N N N
α

β
+ €

pair of reaction-diffusion equations
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where the diffusivity, , of the pairs is negligible compared with the diffusivity, , of the 2D 1D

15 singletons. When the reaction dynamics are very much faster than the diffusive transport, local 

equilibrium is established, i.e., , and Eqn. S1 reduces to two diffusion 
2
1 22 0N Nα β− ;

equations which when added together give
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20 where . In the two limits, and , Eqn. S2 becomes1 2N N N= + 1 2N N>> 2 1N N>>
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The first case which is consistent with the observed predominance of singletons [Puckett et 

al. 2015] corresponds to normal diffusion, the latter case corresponds to superdiffusion 

[Reynolds and Geritz 2015, Supplementary Material S9]. Neither is consistent with the 

25 formation of a stationary swarm (in which diffusion is ‘frozen’). Nor are they consistent with the 

emergence of a resultant centrally-attractive force. 
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S2. Gravitational-like forces emerge from intermittent elastic coupling between pairs of 

individuals: capturing both short- and long-time dynamics 

30 Here it is shown how gravitational-like forces can emerge from intermittent elastic coupling 

between pairs of insects; in a way that captures both short- and long-time dynamics. The 

emergence of resultant restorative forces from intermittent coupling may explain why insects 

appear to be tightly bound to the swarm while at the same time weakly coupled inside it 

[Puckett et al. 2014]. The underlying dynamics are here modelled by

35            (S4)
( )( ) 2i i ij j i i
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= − + − +
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where and denote the 3-dimensional position and velocity of the ith individual in the swarm ix iu

at time t , is the 3-dimensional position of the jth individual,  is a coupling constant,  and jx ( )ijk t

 are increments of a white noise process with autocorrelation . In ξd ( ) ( ) ( )dttttdtd // −= δξξ

the absence of time-dependent coupling, individual motions are described by an Ornstein-

40 Uhlenbeck process, i.e., by a first-order autoregressive process. In this case velocities are 

Gaussian distributed with mean zero and unit variance (a.u.). And movements are ballistic 

over time intervals less than the velocity autocorrelation timescale T=1 (a.u.) and are diffusive 

over long times. The coupling is consistent with the observations of Puckett et al. [2015]. 

Puckett et al. [2015] reported that in laboratory swarms of the midge Chironomus riparius 

45 individual insects tend to continually switch between two distinct flight modes: one that 

consists of lower frequency maneuvers and one that consists of higher-frequency nearly 

harmonic oscillations conducted in synchrony with another insect. The coupling arrests 

relative dispersion and consequently results in the formation of a statistically stationary swarm 

(Fig. S1a). Coupling also leads to the emergence of gravitational-like forces, i.e., to resultant 

50 forces (mean accelerations) that bind individuals to the swarm centre and which increase 

linearly with distance from the swarm centre (Fig. S1b). This is consistent with observations 

[Okubo 1986, Kelley and Ouellette 2012] and is indicative of a self-gravitating system [Okubo 

1986]. Linear resultant restorative forces are also obtained when the coupling between 

individuals is nonlinear, e.g., when the linear coupling in the model, Eq. S4., is replaced either 

55 by  or by . Moreover, as observed ( )( )ij j i j ik t − −x x x x ( ) ( ) 1/2
sgnij j i j ik t − −x x x x

[Reynolds et al. 2017], emergent resultant forces are speed dependent (Fig. S1c). The 

modelling may also account for the occurrence of ellipsoid-shaped swarms [Kelley and 

Ouellette 2013] which is not possible in truly self-gravitating systems; but can arise here if the 

coupling strength and/or the likelihood of coupling is dependent on direction.
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60

Figure S1) Model predictions for a swarm containing 10 intermittently-coupled 

individuals. a) Coupling arrests relative dispersion, resulting in the formation of a 

65 statistically-stationary swarm. b) Coupling leads to the emergence of gravitational-like 

forces, i.e., to resultant forces (here the x-component of the mean acceleration is 

shown) that bind individuals to the swarm centre and which increase linearly with 

distance from the swarm centre. c) The emergent forces are speed dependent.  At any 

time just 1 randomly chosen pair of individuals are coupled (kij=1 a.u.). All other individuals 

70 are uncoupled (kij=0). The coupling persists for a time  a.u. Thereafter a new randomly 0.5t∆ =
chosen pair of individuals are coupled. And so on. Simulation data are shown for a single 

component of acceleration. The blue line shows data only for the left hemisphere, and the red 

line only for the right hemisphere.
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S3. Incorporating interactions into the model of Okubo model

75 Okubo [1986] did not explicitly model interactions between individuals; rather their net effect 

was subsumed into a resultant force term. By analogy with Newtonian gravitational attraction, 

Okubo [1986] speculated that the resultant internal attraction produces, on average, a centrally 

attractive force that acts on each individual. Here I posit a slightly more elaborate model that 

takes partial account of interactions between individuals. In contrast with Okubo’s [1986] 

80 model, this new model predicts correctly that swarms effectively ‘solidify’ (stabilize, becoming 

more robust to environment perturbations) rather than ‘melt’ (destabilize) as they grow in size 

[Ni and Ouellette 2016]. The new model is also shown to encapsulate observed features of 

swarming that are beyond the scope of Okubo’s [1986] model. Here I assume that individuals 

are attached to the instantaneous centre-of-mass of their companions rather than to the 

85 centre-of-mass of the whole swarm (because individuals are not attracted to themselves). That 

is, I assume that the likelihood of finding individual “1” at some position  in a swarm with N 1x

individuals is 
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90 not accounted for here. All other individuals, “2”, “3”,…”N”, are distributed in a directly 

analogous way so that 

           (S6)( )1 2 3 1 2 3 2 2 3, , ,..., ( | , ,..., ) ( | , ,..., )...N N NP x x x x p x x x x p x x x x=

Integrating, Eqn.S6, over all but one individual shows that the swarm is not localized in space 

but is instead freely roaming.  The joint distribution, Eqn. S6, is maximal at .1 2 ... Nx x x= =

95

Weak localization does, however, arise if each individual is attracted to both its companions 

and to a swarm marker (located at x=0) so that etc. In accordance with 1

2

1 N

i
i

x x
N =

= ∑
observations [Puckett and Ouellette 2014], the influence of the swarm marker is predicted to 

wane as the swarm grows in size. Stronger localization can be modelled in an analogous way. 

100 In the case of weak localization, the joint distribution, Eqn. S6, is maximal at the location of 

the swarm marker and unconditional distributions of position are Gaussian 1 2 ... 0Nx x x= = =
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distributed with mean zero and variance, , in broad agreement with observations [Kelley 
2
xσ

and Ouellette 2013]. Reynolds and Ouellette [2016] showed how to construct trajectory 

simulation models that are exactly compatible with these position statistics and with prescribed 

105 velocity statistics. If velocities are Gaussian distributed, then the resultant force term in this 

model is given by
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laboratory swarms [Okubo 1987, Kelley and Ouellette 2013]. But in contrast with Okubo’s 

110 [1986] model, individual positions are correlated as (where ). The 22
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new model therefore predicts that the mean-square centre-of-mass position is given by 

whereas Okubo’s [1987] model predicts that  That is, 
2 2

2
, 1

1 N

c i j x
i j

x x x
N

σ
=

= ≈∑ 2 2 /c xx Nσ=

the new model predicts whereas Okubo’s [1987] model predicts that  2 2/3
cx N∝ 2 1/3

cx N −∝

because the number density of insects in a swarm is approximately constant, i.e.,  
1/3

x Nσ ∝

115 [Kelly and Ouellette 2013]. This may be a significant difference because Reynolds [2019] 

showed that the observed solid-like properties of swarms (a finite Young’s modulus and yield 

stress) [Ni and Ouellette 2016] can, somewhat counter-intuitively, be attributed to be attributed 

to centre-of-mass movements. The new model therefore predicts that swarms effectively 

‘solidify’ as they increase in size whereas Okubo’s [1986] model predicts that they effectively 

120 melt (lose their solid-like properties). This distinction is not without biological significance 

because male midges swarm to provide a mating target for females, making stationarity 

(tensile strength) desirable. This new model indicates that swarm size is not constrained by 

the need for stationarity, re-enforcing biological explanations for swarm size distributions 

[Neems et al. 1992].

125

The new model may also account for the observed statistical clustering of individuals within 

laboratory swarms [Kelley and Ouellette 2013]. The mean spacing between non-interacting 

individuals in a swarm with a Gaussian density profile is predicted to be  ( )2 2
i i xx y σ− =
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whereas for N interacting individuals in spatially-localized Gaussian swarms, 

130  (where ). Interacting insects are therefore predicted on average to ( )2 22

3i i xx y
N

σ− =
+

i j≠

be closer together than are non-interacting insects. The new model also predicts, in 

accordance with observations [Kelley and Ouellette 2013], that   root-mean-square nearest-

neighbour distances decrease as swarms grow more populous. 

135 S4. Interactions can result in density-dependent memory terms

Here it shown that density-dependency of memory terms in stochastic models, e.g., Eqn. 7, 

can be attributed to interactions between individuals. Swarms consisting of 10 individuals were 

simulated using the model of Okubo [1986]. Apart from short range repulsion these individuals 

were non-interacting, Short range repulsion [Ni and Ouellette 2015] was implemented by 

140 reflecting the velocities of individuals that get sufficiently close to another. The memory term 

in Okubo’s [1986] model can be recovered from simulated trajectories by averaging over 

velocity increments conditioned on both velocity and absolute distance from the swarm centre. 

In the presence of short range repulsion, this procedure reveals that the effective memory 

term is dependent on position (Fig. S2a). This is simply a consequence of repulsion (reflection) 

145 curtailing the velocity autocorrelation and the fact that this occurs most frequently in the core 

of the swarm. Rescaling reveals that the effective memory term is proportional to the swarm 

density profile (Fig. S2b).



7

150 Figure S2) Short range repulsion results in density-dependent memory terms. a) 

Averaged velocity-increments conditioned on velocity, u, and on position, x, reveals 

the density dependency of the effective memory term. b) Conditional averages collapse 

when rescaled by the density profile, , showing that the effective memory is ( )P x

proportional to . Predictions were obtained using Okubo’s [1986] model with ( )P x

155 and T=1 a.u. to track 10 individuals simultaneously. Short range repulsion was 1, 1x uσ σ= =

implemented at a range 0.01 a.u.
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S5. Speculative ideas about nucleation

The new model, Eqn. 7, predicts that any swarm shape is stable. If correct then it follows that 

160 swarm shapes are determined by the nucleation process and not by the swarm dynamics that 

maintain cohesiveness. Larger swarms have density profiles that are closely Gaussian [Kelley 

and Ouellette 2013]. Smaller swarms have density profiles with Gaussian cores and heavier 

tails [van der Vaart, Private Communication]. Here it is shown how these observations can be 

attributed to individual attraction to a visual feature (a ‘swarm marker’) on the ground over 

165 which swarms tend to form. This swarm nucleation process can be modelled by simple 

variants of Okubo’s [1986] classic model in which the term describing the resultant internal 

attraction to the swarm centre, , is replaced by a term describing attraction to 
2

2
u

x

A x x
σ
σ

= −

the swarm marker. Here I posit that the attraction to the swarm marker is limited in range and 

described by

170                        (S8)
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The precise form of the attraction is not important as comparable results are obtained when 

the range of influence of the swarm maker, Λ, is limited in other ways. The associated density 

profile, ρ, is determined by  [Reynolds and Ouellette 2016] and so given by
2
u d

A x
dx

σ ρ
ρ

=

175                   (S9)
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This is Gaussian when and otherwise has a Gaussian core and an exponential tail. xσΛ>>

If the range of attraction, , grows more rapidly than linearly with swarm size then smaller Λ xσ
swarms will have heavy-tail density profiles and larger swarms will have Gaussian density 

profiles, in accordance with observations [van der Vaart, Private Communication]. 

180

S6. Accounting for non-Gaussian velocity statistics 

Kelley and Ouellette [2013] reported that standardized probability density functions of 

horizontal and vertical velocities have Gaussian-shaped cores and exponential-like tails that 

grow monotonically with swarm size. This trend is clearer in the speed distributions. Kelley 

185 and Ouellette [2013] reported that their small swarms, like the small swarms of Okubo [1986], 

agree well with Maxwell-Boltzmann statistics (which pertain to ideal gases close to 

thermodynamic equilibrium); for their larger swarms, however, the speed distributions show 



9

long, nearly exponential tails that grow monotonically with swarm size. Kelley and Ouellette 

[2013] suggested that the deviations from Gaussian and Maxwell-Boltzmann statistics can be 

190 attributed to clustering [Supplementary Material 3]; that is, to the non-uniform distribution of 

the individual insects within the swarm. Here it is shown how the observations of Kelley and 

Ouellette [2013] can be attributed to changes in the velocity statistics at the swarm edge. Such 

changes in velocities are predicted by the new stochastic model, Eqn. 7, (Fig. 1) and are 

expected on biological grounds because individual insects are free to join or leave swarms 

195 and because the velocities of solitary insects (new joiners) are generally higher than the 

velocities of insects within swarms [Puckett and Ouellette, 2014].  

When velocity variances, ,  are position-dependent, the unconditional probability density 
2
uσ

function for velocity is determined by

200         (S10)( ) dx
xu
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xuux
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2
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if velocities are locally Gaussian and if, consistent with observations [Okubo 1986, Kelley and 

Ouellette 2013], the swarm has a Gaussian density profile. It is readily shown using the saddle 

point approximation that if increases monotonically with distance from the swarm centre 
2
uσ

then  will have Gaussian-shaped cores and long, nearly exponential tails that grow ( )uP

205 monotonically with increasing swarm size (Fig. S3a) in accordance with observations [Kelley 

and Ouellette 2013]. Furtherover, in accordance with observations [Kelley and Ouellette 

2013], standardized speed distributions have Maxwellian cores and long, nearly exponential 

tails that grow monotonically with swarm size (Fig. S3b). Predictions are shown for the 

illustrative case where the velocity variance a.u. when  and 12 =uσ xx σ2<

210  when  (Fig. S3c); which is broadly consistent with the new ( )2 1 2u xxσ σ= + − xx σ2≥

stochastic model, Eqn. 7 (Fig. 1) and which from a biological perspective allows for velocity 

matching across the outskirts of the swarm, i.e., between individuals inside and outside of the 

swarm. This analysis is not realistic in detail but is illustrative of a general principle. 

Conversely, if within-swarm velocities are greater than external velocities then the tails of 

215  are predicted to narrow with increasing swarm size, contrary to experiment [Kelley and ( )uP

Ouellette 2013]. 
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Figure S3a,b) Predicted forms of the position-averaged velocity and speed distributions 

220 for swarms with spatially-dependent mean-square velocities displayed in c). 
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S7. The mean surface pressure on an insect swarm

The scalar virial theorem states that for a self-gravitating system in static equilibrium 

2T+W+S=0 where T is the kinetic energy, W is the potential energy and S is the surface 

225 pressure. Gorbonos et al. [2016] found that laboratory swarms of the midge Chironomus 

riparius have S<0, indicating that the swarms are effectively experiencing stabilizing inward 

pressures on their outer surfaces. Gorbonos et al. [2016] reported that “such external 

stabilizing pressures are commonly found in astrophysical stellar systems, such as globular 

clusters.” Here I show how that the observed flux of individuals into and out of a swarm will 

230 create a flux of momentum that acts as a surface pressure term in 2T+W+S=0 [Kelley and 

Ouellette 2012, Ni and Ouellette 2016, Sinhuber et al. 2019]. Fluxes of individuals into and out 

of swarms are, in fact, an inherent feature of the new model because swarms are predicted to 

be surrounded by low-density clouds of individuals that undergo diffusion [See text relating to 

Eqn. 1]. 

235

In the analogy with self-gravitating systems [Okubo 1986], the predicted contributions to the 

swarm binding from the surrounding insects correspond to a ‘dark matter halo’; structures that 

extended well beyond the edges of stellar systems and those existence can be inferred 

through their effects on the motions of stars and gas within those systems.

240

Fluxes of individuals into and out of the swarm can be expected to momentarily shift the centre-

of-mass of the swarm and cause it to expand and contract. Centre-of-mass movements have, 

in fact, been observed in the laboratory but these movements may be due, in part, to the 

limited number of individuals within the swarms and to other processes [Reynolds and 

245 Ouellette 2016]. A simple one-dimensional stochastic model that accounts for centre-of-mass 

movements can be formulated using the approach of Reynolds and Ouellette [2016]. This 

model is given by

                      (S11)
( ) ( )

2 2

2

2u u

x

u ud u
du dt dt x x dt dW

dt T T

dx udt

σ σ
σ

−
= − − − +

′ ′
=

where x and u are the position and velocity of the insect at time t, is a velocity T′
250 autocorrelation time and   is an incremental Wiener process with correlation property( )tdW

. Positions are Gaussian distributed with mean  and variance ( ) ( ) ( )dttdWtdW τδτ =+ x
2
xσ
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and velocities are Gaussian distributed with mean and variance . When centre-of-
dx

u
dt

= 2
uσ

mass motions vanish, , Eqn. S10 reduces the classic model of Okubo [1986]. 0
dx

dt
=

255 The kinetic and potential energies are given by

                 (S12)
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It follows that the surface pressure term is given by

                   (S13)
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d x

S
dt

 
= − 
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and so is negative, in accordance with observations [Gorbonos et al. 2016]. It can be shown 

260 that this result, i.e., that S=0 for stationary swarms and that S<0 for time-dependent swarms, 

holds true generally, irrespective of the form of the swarm density profile and irrespective of 

the velocity statistics. Changes in swarm size due to fluxes of individuals into and out of the 

swarm can be modelled in a similar way. In this case, the mean velocity depends x

x

dx
u

dt

σ
σ

=

on position and consequently mean speed profiles, 

265
2

2

2
exp ,

2 2
u

u u

u u
u u erfσ

π σ σ
  

= − +        

are not predicted to be flat in the cores of swarms contrary to observations (speeds vary by a 

factor of about 1.4 when model parameters are chosen to match experimental estimates of 

kinetic and potential energies, and surface pressures). This suggests that the dominate 

contribution to the surface pressure term comes from centre-of-mass movements. 

270

In principle surface confining pressures can be produced by ‘stochastic’ boundaries beyond 

which outwardly-moving individuals sporadically turn around to commence flying towards the 

centre of the swarm also result in (results not shown). Such behaviour is biologically plausible 

because “the distinct and stable properties of the swarm core and outer region may provide a 
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275 mechanism for the regulation of the swarm edge: an individual may be able to recognise that 

it has crossed the phase boundary, and that it is therefore time to turn around to remain in the 

swarm” [Sinhuber and Ouellette 2017].There is, however, no evidence for this in the datasets 

of Sinhuber et al. [2019]. The likelihood of turning back towards the swarm centre does not 

vary with distance from the swarm centre when outside of the swarm cores. Hard boundaries 

280 at which density profiles fall abruptly to zero also result in confining surface pressures (analysis 

not shown) but such boundaries seem biologically implausible except perhaps at ground level. 

The imposition of a single hard boundary at ground-level is incompatible with observations 

which indicate an isotropic origin of surface pressure [Gorbonos et al. 2016].

285 S8. The most tightly-bound wild swarms are predicted to be analogous to black holes

Okubo [1986] proposed that insect swarms are analogous to self-gravitating systems. 

Reynolds [2018] subsequently posited a more nuanced proposal: namely that laboratory 

swarms are analogous to globular clusters, as claimed by Gorbonos et al. [2016], whereas 

wild swarms are analogous to stars and giant gaseous planets. The distinction arises because 

290 the presence of a fluctuating environment drives the formation of transient, local order 

(synchronized subgroups) and because this local order pushes the swarm as a whole into a 

new state that is robust to environmental perturbations. The theory of Reynolds [2018] predicts 

that the aerial density profiles of wild swarms are accurately characterized by q-Gaussians 

where 2-q is the number of individuals in a synchronized group. Subgroups typically consist 

295 of a pair of individuals but subgroups containing many more individuals have been observed, 

albeit fleetingly [Shishika et al. 2014]. q-Gaussians, also known as polytropic distributions, 

constitute the simplest, physical plausible models for self-gravitating systems. Gaussians, i.e., 

q-Gaussians with , correspond to collisionless systems of stars like globular clusters. q-1→q

Gaussians with q<1 provide models for stars and giant gaseous planets.  Reynolds [2018b] 

300 found support for q-Gaussians with q<1 in telemetry data for swarming mosquitoes [Shishika 

et al. 2014]. 

Here the theory of Reynolds [2018] is shown to predict that the entropies of the most tightly 

bound wild swarms are approximately proportional to their surface areas and so in congruence 

305 with the entropies of black holes [Hawking 1975]. The analogy between insect swarms and 

self-gravitating systems is thereby pushed to its’ most extreme limit.
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According to the theory of Reynolds [2018] the aerial density profiles of the most tightly bound 

wild swarms are characterised by q-Gaussians with q’s large and negative, i.e., by

310        (S14)
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where x is the distance from the swarm centre and is a measure of the size of the swarm. xσ

In contrast with Gaussian distributions which have long thin tails, the q-Gaussians vanish at 

the outer surface of the swarm, thereby creating a ‘horizon’:  individuals can enter but not exit 

from the swarm (without first decoupling their dynamics from the swarm dynamics).

315

If velocities, u, are Gaussian distributed and independent of position, as they are to good 

approximation in laboratory swarms [Kelley and Ouellette 2013], then the Shannon entropy at 

position, x, 
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(S16)

The same result, albeit with a different constraint constant, is obtained with other choices for 

325 the velocity distribution. Integration of Eqn. S16 over x reveals that the dominant contribution 

to the total entropy (over 50% of the total) comes from a narrow shell of the swarm, the outer 

shell where  (Fig. S4a), and that this contribution does not depend on the size xx σ385.0>

of the swarm, . It follows that the total entropy is approximately proportional to the area of xσ
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the swarm (Fig. S4b). This contrasts with the total entropies of less-strongly-bound swarms 

330 that are proportional to their volumes because there are no dominant narrow shells.

Figure S4) Entropies of the most tightly-bound wild swarms are predicted to be 

proportional to their surface areas and are therefore analogous to black holes. a) The 

dominant contribution to the entropies (in bits) of strongly-bound swarms (characterized by q-

335 Gaussian density profiles with q large and negative [Reynolds 2018b]) are predicted to come 

from their outer shells. Shown for comparison are the more distributed-contributions to the 

total entropies of  less-strongly-bound swarms b) The total entropies (in bits) of strongly-bound 

swarms (with q=-10) is proportional to their surface areas, where  (o). The line 24 Rπ xR σ3=

is added to guide the eye. Entropies were calculated numerically for 3-dimensional spherical-

340 symmetric swarms.
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S9. Supernova-like instabilities

Some external sounds can trigger the explosive dispersal of laboratory swarms of the midge 

Chironomus riparius [Sinhuber and van der Vaart, Private Communication]. Here it is shown 

345 that this instability may be attributed to a proliferation of pairwise interactions which might be 

expected if the males are falsely altered to the presence of females. Exploding insect swarm 

may therefore be analogous to supernovas as both kinds of events are caused by the sudden 

ignition of fusion reactions.  This is just one possible mechanism, awaiting experimental 

testing. Another possibility is that external noise disrupts (breaks) the coupling between 

350 individuals, causing the swarm to break-up.

Midge swarms are composed exclusively of males and are epigamic. It is thought that males 

locate females within the swarm by listening for their characteristic wingbeat sounds which 

distinguish them from males. Males are therefore highly sensitive to acoustic stimuli and as 

355 consequence swarms can be perturbed by external sounds [Ni et al. 2015]. Midges typically   

spend about 15% of their time engaged in nearly harmonic oscillatory flights conducted in 

synchrony with another midge (velocities tend to be antiparallel) [Puckett et al. 2015]. Puckett 

et al. [2015] suggested that these interactions were used for determining the gender of other 

individuals. Flying back and forth passed another midge may be a way for an individual to 

360 isolate the sound of that midge from the background hum of the rest of the swarm. The fission-

fusion model, Eqn. S3, describes the long-time dynamics of swarms where this behaviour 

proliferates, induced perhaps by an external sound source that is mistaken for the presence 

of females. The 3-dimensional solution to Eqn. S3

      (S17)( ) ( ) ( )
26 4 2, 1N r t Dt Dt r

−− − = + 

365 shows that the proliferation of bound anticorrelated (non-diffusive) pairs triggers very rapid 

expansion of the swarm. The width, , of the swarm is predicted to grow super-ballistically ∆

over time according to , i.e., the expansion of the swarm is accelerating over ( )4
2 3 Dt∆ =

time. This expansion is predicted to cease when dilution precludes pairwise interactions.

370 By way of contrast, proliferation of correlated (diffusive) subgroups of individuals is predicted 

to result in tightly-bound swarms that are analogous to black holes [Supplementary Material 

S9]. These findings are consistent with the analysis of Reynolds [2018b] which predicts that 
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the presence of correlations intensifies the resultant attraction to the swarm centre, whilst the 

presence of anticorrelates weakens it.

375

S10. Midge swarms have anti-thermodynamic properties in common with self-

gravitating systems

Sinhuber et al. [2019] reported on the response of insect swarms in a laboratory experiment 

where they had full control over external perturbations. They considered the effect of controlled 

380 variable light exposure on the swarming behaviour. They found that individuals respond to 

light changes by speeding up during brighter conditions and that the swarm responds to the 

perturbations by compressing and simultaneously increasing the attraction of individual 

midges to the swarm’s centre of mass. Sinhuber et al. [2019] obtained a quantitative physical 

understanding of this consistent swarm-level response by making an analogy to 

385 thermodynamics, with the state effectively moving along an isotherm in the thermodynamic 

phase plane. This was done by relating changes in density to changes in microscopic pressure 

per unit mass defined as

                   (S18)ii
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i
i xAu

NV
.

3

1

1

2 +=Π ∑
=

where and  positions (relative to the centre of mass), velocities and accelerations of ii ux , iA

390 individual insects. This definition captures the work done by insects moving in the effective 

potential well of the swarm. The observed isothermal swarm-level response is predicted by 

the model of Reynolds et al. [2017] following a compression (a startle response to a change 

in light level) (Fig. S5a-c). By way of contrast when the perturbation consists of both a 

compression and a loss of a few of individuals from the swarm, the swarm-level response is 

395 predicted to be non-adiabatic (Fig. S5d) and ‘anti-thermodynamic’ since pressure and so 

temperature increases when heat (energy) is carried away from the swarm by displaced 

individuals (a process akin to evaporation). Self-gravitating systems are also anti-

thermodynamic, i.e., have negative heat capacities [Eddington 1920]. This similitude may help 

to an establish a "thermodynamic" description of swarms, as advocated by Ouellette [2017].  

400 In accordance with observations [van der Vaart, Private Communication] the model of 

Reynolds et al. [2017] predicts that average pressures .
3/2N−Π ∝
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Figure S5) Predicted swarm densities and pressures before (blue) and after (red) a 

compression. a) Probability density functions for swarm densities and b) pressures. c) 

405 Pressure as a function of density showing that compression moves the state of the 

swarm along an isotherm. d) A non-adiabatic response is predicted to arise when 

compression is accompanied by the loss of a few (~30%) individuals from the swarm. 
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Predictions are shown for the model of Reynolds et al. [2017] with  and T=1 1,1 == ru σσ
a.u. N=38 individuals were tracked simultaneously. Compressions reduced the swarm 

410 volumes by 25%. Pressures and densities were monitored over 1 a.u. of time after 

compression.

S11. A putative origin of inertia

When driven by an oscillatory visual cue laboratory swarms of the midge Chironomus riparius 

415 respond as if they are viscoelastic [van der Vaart et al. 2019]. The behavioral response of 

midges to the motion of conspecifics endows the swarms with an effective inertia. The 

emergence of effective inertia is predicted by the stochastic model of Reynolds et al. [2017]. 

Nonetheless, the origins of this effective inertia have until now remained elusive. Here I show 

how this effective inertia can arise if the interactions of individuals with the rest of the swarm 

420 are like the interactions of electric charges and currents with an electromagnetic field, i.e., if 

the interactions are ‘gravito-electromagnetic’ rather than gravitational per se. The approach 

draws heavily on the analysis of Sciama [1953] who showed that local inertial reaction forces 

could, through the influence of gravity, be determined by the motion of distant objects. This is 

a form of Mach’s Principle. 

425

The strength of the “gravito-electric” field, the gravitational counterpart of the electric field, is 

given by

         (S19) 1

c t
φ ∂= −∇ −

∂
A

E

where 

430 ( ) ( ) 3/G d xφ ρ ′ ′ ′= −∫x x x x

and 

        (S20)( ) ( ) ( ) 3/
G

d x
c

ρ ′ ′ ′ ′= −∫A x x v x x x

are the scalar and vector potentials, G is a constant (setting the strength of the interactions), ρ
is the mass charge density, v is velocity (of an individual at x’ relative to an individual at x) and 

435 c is the speed of propagation of the gravito-electric field. The gravito-magnetic field =∇∧B A

does not act strongly because midges do not circulate (orbit) in a preferred direction [van der 
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Vaart and Sinhuber, Private Communication] and so the curl of the vector potential vanishes 

(on average). 

440 From the perspective of any one individual, moving with velocity v with respect to the swarm’s 

center of mass, every part of the swarm appears, albeit approximately, to be moving rigidly 

with velocity -v. Consequently,

         (S21)
c

φ≈ − v
A

The gravito-electric forces operating within swarms are “adaptive” rather than Newtonian, 

445 being relatively weak in the cores of the swarms where densities are relatively high and being 

relatively high in the outskirts of swarms where densities are relatively low [Gorbonos et al. 

2016]. Adaptation is crucial for reconciling the observed nearly Gaussian density profiles with 

resultant centrally-attractive forces that are observed to nearly increase linearly with 

increasing distances from the swarm centers [Okubo 1986, Kelley and Ouellette 2013, 

450 Gorbonos et al. 2016]. For such a linear resultant force to arise with Newtonian-like 

gravitational interactions, individuals would have to be uniformly rather than with Gaussian 

distributed throughout the swarm.  Nonetheless, at the mean-field level of description adopted 

here, adaptive gravity in swarms with Gaussian density profiles is equivalent to Newtonian 

gravity in swarms with uniform density profiles; as both scenarios give rise to the same 

455 resultant forces, i.e., to the same scalar potential . Gauss’s law for gravity dictates that for a φ

uniformly-dense, spherically-symmetric swarm of radius R subject to Newtonian gravito-

electric forces

                 (S22)
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It follows that an individual located at a distance r from the swarm center experiences an 

460 inward gravito-electric force given by

        (S23)
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v dv
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π ρ π ρ

    = − − + − ≤       

The first term on the right-hand side of Eqn. S23 is the resultant attraction to the swarm center 

which in accordance with observations increases linearly with distance from the center [Okubo 

1986, Kelley and Ouellette 2013] and is speed dependent. The speed dependency is 
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465 consistent with that predicted by the stochastic model of Reynolds et al. [2017] (Fig. S6). This 

is different in form from the observed, much-stronger dependency that is predicted by models 

based on exponential rather than Gaussian velocity statistics [Reynolds et al. 2017]. 

Exponential velocity statistics have been attributed to clustering of individuals [Kelley and 

Ouellette 2012] and to edge effects [Supplementary Material S6]. When present these effects 

470 could mask/swamp the gravito-electric contributions to the speed dependency of resultant 

accelerations.  The second term describes a gravito-electric force (an inertial reaction force) 

produced by the swarm that opposes the forces (intrinsic and/or external) acting on an 

individual whenever it accelerates. In this model, an individual’s inertia is therefore determined 

by the motion of the rest of the swarm and is a purely collective phenomenon being a biological 

475 realization of Sciama’s [1953] formulation of Mach’s Principle. In this picture, distant 

individuals in the swarm effectively generate a vector potential field throughout the swarm that 

acts on other individuals whenever intrinsic or external forces cause them to accelerate. In 

other words, when a focal individual accelerates, gravitational-like disturbances are 

propagated to all the other individuals in the swarm. These perturbed individuals set up 

480 currents that cause disturbances to propagate back to the focal individual to produce an inertial 

reaction force.   

The results of numerical simulations indicate that for relatively large swarms with , x uTσ σ≥

signal speeds are typically about twice the insect flight speeds as might be expected if (as 

485 argued in the main text) gravity is an emergent property of pairwise interactions between 

individuals. In this case, inertial masses at swarm centers, are comparable to 
2

2
,u

i gm m
c

σ≈

gravitational masses, . Higher signal speeds are, however, predicted for smaller swarms gm

where individual perceptual fields may be continually overlapping so that disturbances can 

propagate more freely throughout the swarm without the need for significant individual 

490 movements (and so not limited by an individual’s speed).
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Figure S6) Average value of a single component of the acceleration Ax conditioned on 

495 insect flight speed s, computed using the stochastic model of Reynolds et al. [2017] with 

and (red lines) and predicted by the Sciama-Mach model, Eqn. S23 with 2, 1x uσ σ= = 1T =

(green lines).10c =

The switching from inward to outward gravito-electric forces which occurs when individuals 

500 outpace gravity is a key prediction and its verification adds further support to the 
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appropriateness of the Sciama-Mach model (Fig. S7). Reynolds et al. [2017] showed that 

mean accelerations (gravity) increase monotonically with increase speed. This data extended 

out to about 2.5 times the mean speed. Further analysis suggests that at higher speeds, mean 

accelerations decrease with increasing speed, perhaps eventually changing sign, in broad 

505 agreement with the Sciama-Mach model (Fig. S7).   The outward accelerations need not be 

construed as being ‘repulsive’ because the results of numerical simulations indicate that they 

tend to ‘retard’ the motions of fast, inward-moving individuals thereby keeping velocities within 

accessible (prescribed) realms for self-propelled organisms. That is, individuals experiencing 

outward accelerations are typically moving towards the centre of the swarm. 

510

Figure S7) Average value of a single component of the acceleration Ax conditioned on 

midge speed s computed from experimental data for a) small swarms with N<30 individuals 

and for b) large swarms with N>50 (●). The solid-lines are added to guide the eye. The dashed 

515 lines represent 95% confidence intervals. Data are taken from Sinhuber et al. [2019]. 



24

In accordance with the model predictions, Eqns. S23, the velocity-autocorrelation time, a proxy 

for inertia, decreases with monotonically with increasing distance from the swarm center (Fig. 

S8a). Inertia is predicted to vanish at locations far from the swarm.

520

Figure S8a) In accordance with the Sciama-Mach model, Eqn. S23, the velocity 

autocorrelation timescale T, a proxy for inertia, decreases monotonically with 

increasing distance from the swarm center, r. b) Inertia is anisotropic being larger 

along the long horizontal axis of the swarm than it is along the short horizontal axis. 

525 The timescale where is the ( )/ lnT t R t= −∆ ∆ ( ) ( ) ( ) ( ) ( )/R t u t t u t u t u t∆ = + ∆

autocorrelation function for one-component for velocity (which to good approximation is 

approximately exponential  at short times [Okubo 1986]). This is evaluated with ( ) /e t TR t −∆∆ ≈

for trajectory-segments starting within annuli with inner and outer radii, r and 0.1t s∆ =

where is the root-mean-square size of the swarm. Data are taken from Sinhuber 0.2 rr σ+ rσ

530 et al. [2019]; ensemble averaging over all 17 dusk-time swarms. The average horizontal 

aspect ratio is 1.1 which to good approximation is the ratio of the velocity autocorrelation 

times in the cores of the swarms.
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Laboratory swarms tend to be weakly axisymmetric [Kelley and Ouellette 2013]. According to 

535 Mach’s principle such nonuniform distributions of matter lead to anisotropy of inertia. Velocity 

autocorrelation timescales (inertia) are, in fact, anisotropic being larger along the longer 

horizontal axes of the swarms (Fig. S8b). The vertical dimension is not considered here 

because individuals tend to join swarms by flying above them, thereby extending swarms in 

the vertical direction [Kelley and Ouellette 2013] and because the Earth’s gravity influences 

540 individual movements in that direction.

Gravito-magnetic forces may be present intermittently (but on average they vanish). When 

present they can be expected to result in rotational trajectories. The presence of such 

trajectories is consistent with a ‘thermodynamic’ analysis of laboratory swarms which has 

545 revealed that individuals have 9 rather than 6 degrees of freedom; 3 translational degrees of 

freedom, 3 potential and 3 rotational [Sinhuber et al. 2019]. Peaks in the power spectra for 

rotations of the velocity vector, i.e., u^A, are also consistent with the intermittent presence of 

rotational trajectories (Fig. S9a, b). 
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550

Figure S9 Evidence for the presence of rotational trajectories in laboratory insect 

swarms a) Rotations of the velocity vector of a single midge are indicative of the presence of 

gravitomagnetic forces with as clockwise and anticlockwise rotations are equally 0=B

555 prevalent. b) Average power spectra of rotations for 17 dusk-time swarms. The high-frequency 

peaks are indicative of rotations c). Power spectra of rotations predicted by the model of 

Reynolds et al. [2017] (with all model parameters, , set to unity a.u.) with and without , ,R u Tσ σ

rotation-inducing ‘spin’ terms ( ). Experimental data are taken from Sinhuber et al. ( )4,4,5=Ω

[2019]. Similar predictions are obtained when .( )4, 4, 5= ± ± ±Ω

560

Further evidence for gravito-magnetic forces comes from comparisons of the observations 

with predictions from the stochastic models. Stochastic models for the simulation of swarming 

insect trajectories admit gravitomagnetism. These models take the general form 
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        (S24)
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dx u dt
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565 where u and x denote the velocity and position of the midge at time t, and where is an ( )idW t

incremental Wiener process with correlation property . The ( ) ( ) ( )i j ijdW t dW t dtτ δ δ τ+ =

functional form of deterministic term, , and the magnitude of the driving noise, b, can ( ), , ta u x

be constrained by the requirement that the simulated trajectories be consistent the observed 

position-velocity statistics. Mathematically, these consistency conditions are implemented 

570 through the Fokker-Planck equation

         (S25)
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where is the joint distribution of velocity and position. In general this equation does ),,( txuP

not have a unique solution for as an arbitrary rotation vector function , satisfying ( )txua ,, ( )uφ

 (with ) , can be added to . For isotropic, Gaussian velocities (a 0i

ix

φ∂ =
∂

0 as→ → ∞uφ ia P

575 good approximation for laboratory swarms [Kelly and Ouellette 2013]), the simplest such term 

corresponds to  [Borgas et al. 1997, Sawford 1999].  This ( ) ( ), , , ,i i ijk j ka t a t uε→ + Ωu x u x

additional term endows the simulated trajectories with a ‘handedness’ or chirality about some 

axes indicated by the direction which may change over time. This term which is allowed by Ω
the mathematics but need not be present therefore reproduces the effects of magnetic fields, 

580 i.e., Lorentz forces where . Here this term was added to the stochastic = ∧F v B = −B Ω
model of Reynolds et al. [2017] for swarming insects making it gravito-electromagnetic rather 

than gravito-electric. Power spectra of rotations predicted by the gravito-electromagnetic 

stochastic model resemble observations (Fig.S9c).

The non-linear (quadratic) forms of result in trajectories those handedness is dependent ( )uφ

585 on their direction of travel along some preferred axis [Reynolds 2002]. ‘Corkscrew’ trajectories 

where, for example, the preferred sense of rotation of trajectories in the 1-2 plane is 

determined by the direction of motion along the 3 axis, arise when

, where( ) ( ), , , ,i i ia t a t A u→ +u x u x
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590 with .  Corkscrew trajectories were not identified in the empirical datasets of 0321 =Γ+Γ+Γ

Sinhuber et al. [2019].

595


